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Overview of differential equations.

Definition
A differential equation is an equation, where the unknown is a
function, and both the function and its derivative appear in the
equation.

Remark: There are two main types of differential equations:

I Ordinary Differential Equations (ODE): Derivatives with
respect to only one variable appear in the equation.

Example:
Newton’s second law of motion: m a = F.

I Partial differential Equations (PDE): Partial derivatives of two
or more variables appear in the equation.

Example:
The wave equation for sound propagation in air.
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Overview of differential equations.

Example

Newton’s second law of motion is an ODE: The unknown is x(t),
the particle position as function of time t and the equation is

d2

dt2
x(t) =

1

m
F(t, x(t)),

with m the particle mass and F the force acting on the particle.

Example

The wave equation is a PDE: The unknown is u(t, x), a function
that depends on two variables, and the equation is

∂2

∂t2
u(t, x) = v2 ∂2

∂x2
u(t, x),

with v the wave speed. Sound propagation in air is described by a
wave equation, where u represents the air pressure.
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Overview of differential equations.

Remark: Differential equations are a central part in a physical
description of nature:

I Classical Mechanics:
I Newton’s second law of motion. (ODE)
I Lagrange’s equations. (ODE)

I Electromagnetism:
I Maxwell’s equations. (PDE)

I Quantum Mechanics:
I Schrödinger’s equation. (PDE)

I General Relativity:
I Einstein equation. (PDE)

I Quantum Electrodynamics:
I The equations of QED. (PDE).
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Linear Ordinary Differential Equations

Remark: Given a function y : R→ R, we use the notation

y ′(t) =
dy

dt
(t).

Definition
Given a function f : R2 → R, a first order ODE in the unknown
function y : R→ R is the equation

y ′(t) = f (t, y(t)).

The first order ODE above is called linear iff there exist functions
a, b : R→ R such that f (t, y) = a(t) y + b(t). That is, f is linear
on its argument y , hence a first order linear ODE is given by

y ′(t) = a(t) y(t) + b(t).
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Linear Ordinary Differential Equations

Example

A first order linear ODE is given by

y ′(t) = −2 y(t) + 3.

In this case function a(t) = −2 and b(t) = 3. Since these function
do not depend on t, the equation above is called of constant
coefficients.

Example

A first order linear ODE is given by

y ′(t) = −2

t
y(t) + 4t.

In this case function a(t) = −2/t and b(t) = 4t. Since these
functions depend on t, the equation above is called of variable
coefficients.
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The integrating factor method.

Remark: Solutions to first order linear ODE can be obtained using
the integrating factor method.

Theorem (Constant coefficients)

Given constants a, b ∈ R with a 6= 0, the linear differential
equation

y ′(t) = a y(t) + b

has infinitely many solutions, one for each value of c ∈ R, given by

y(t) = c eat − b

a
.

Remark: A proof is given in the Lecture Notes. Here we present
the main idea of the proof, showing and exponential integrating
factor. In the Lecture Notes it is shown that this is essentially the
only integrating factor.
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The integrating factor method.

Main ideas of the Proof: Write down the differential equation as

y ′(t)− a y(t) = b.

Key idea: The left-hand side above is a total derivative if we
multiply it by the exponential e−at . Indeed,

e−aty ′ − a e−at y = b e−at ⇔ e−aty ′ +
(
e−at

)′
y = b e−at .

This is the key idea, because the derivative of a product implies[
e−at y(t)

]′
= b e−at .

The exponential e−at is called an integrating factor. Indeed, we
can now integrate the equation!

e−at y = −b

a
e−at + c ⇔ y(t) = c eat − b

a
.
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The integrating factor method.

Example

Find all functions y solution of the ODE y ′ = 2y + 3.

Solution: Write down the differential equation as y ′ − 2 y = 3.
Key idea: The left-hand side above is a total derivative if we
multiply it by the exponential e−2t . Indeed,

e−2ty ′ − 2 e−2t y = 3 e−2t ⇔ e−2ty ′ +
(
e−2t

)′
y = 3 e−2t .

This is the key idea, because the derivative of a product implies[
e−2t y

]′
= 3 e−2t .

The exponential e−2t is called an integrating factor. Integrating,

e−2t y = −3

2
e−2t + c ⇔ y(t) = c e2t − 3

2
.
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The integrating factor method.

Example

Find all functions y solution of the ODE y ′ = 2y + 3.

Solution:

We concluded that the ODE has
infinitely many solutions, given by

y(t) = c e2t − 3

2
, c ∈ R.

Since we did one integration, it is
reasonable that the solution
contains a constant of
integration, c ∈ R.

−3/2

c < 0

c > 0

0

y

t

c = 0

Verification: y ′ = 2c e2t , but we know that 2c e2t = 2y + 3,
therefore we conclude that y satisfies the ODE y ′ = 2y + 3. C
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The integrating factor method (Sect. 1.1).

I Overview of differential equations.

I Linear Ordinary Differential Equations.
I The integrating factor method.

I Constant coefficients.
I The Initial Value Problem.



The Initial Value Problem.

Definition
The Initial Value Problem (IVP) for a linear ODE is the following:
Given functions a, b : R→ R and constants t0, y0 ∈ R, find a
solution y : R→ R of the problem

y ′ = a(t) y + b(t), y(t0) = y0.

Remark: The initial condition selects one solution of the ODE.

Theorem (Constant coefficients)

Given constants a, b, t0, y0 ∈ R, with a 6= 0, the initial value
problem

y ′ = a y + b, y(t0) = y0

has the unique solution

y(t) =
(
y0 +

b

a

)
ea(t−t0) − b

a
.
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The Initial Value Problem.

Example

Find the solution to the initial value problem

y ′ = 2y + 3, y(0) = 1.

Solution: Every solution of the ODE above is given by

y(t) = c e2t − 3

2
, c ∈ R.

The initial condition y(0) = 1 selects only one solution:

1 = y(0) = c − 3

2
⇒ c =

5

2
.

We conclude that y(t) =
5

2
e2t − 3

2
. C
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The integrating factor method.

Example

Find the solution y to the IVP y ′ = −3y + 1, y(0) = 1.

Solution: Write down the differential equation as y ′ + 3 y = 1.
Key idea: The left-hand side above is a total derivative if we
multiply it by the exponential e3t . Indeed,

e3ty ′ + 3 e3t y = e3t ⇔ e3ty ′ +
(
e3t

)′
y = e3t .

This is the key idea, because the derivative of a product implies[
e3t y

]′
= e3t .

The exponential e3t is called an integrating factor. Integrating,

e3t y =
1

3
e3t + c ⇔ y(t) = c e−3t +

1

3
.
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⇒ c =

2

3
.

We conclude that y(t) =
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3
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Linear Variable coefficient equations (Sect. 2.1)

I Review: Linear constant coefficient equations.

I The Initial Value Problem.

I Linear variable coefficients equations.

I The Bernoulli equation: A nonlinear equation.



Review: Linear constant coefficient equations

Definition
Given functions a, b : R→ R, a first order linear ODE in the
unknown function y : R→ R is the equation

y ′(t) = a(t) y(t) + b(t).

Example

(a) A constant coefficients first order linear ODE is given by

y ′(t) = −2 y(t) + 3.

Here a = −2 and b = 3.

(b) A variable coefficients first order linear ODE is given by

y ′(t) = −2

t
y(t) + 4t.

Here a(t) = −2/t and b(t) = 4t.
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Review: Linear constant coefficient equations

Theorem (Constant coefficients)

Given constants a, b ∈ R with a 6= 0, the linear differential
equation

y ′(t) = a y(t) + b

has infinitely many solutions, one for each value of c ∈ R, given by

y(t) = c eat − b

a
.

Remarks:

(a) A proof is given in the Lecture Notes.

(b) Solutions to first order linear ODE can be obtained using the
integrating factor method.



Review: Linear constant coefficient equations

Theorem (Constant coefficients)

Given constants a, b ∈ R with a 6= 0, the linear differential
equation

y ′(t) = a y(t) + b

has infinitely many solutions, one for each value of c ∈ R, given by

y(t) = c eat − b

a
.

Remarks:

(a) A proof is given in the Lecture Notes.

(b) Solutions to first order linear ODE can be obtained using the
integrating factor method.



Review: Linear constant coefficient equations

Theorem (Constant coefficients)

Given constants a, b ∈ R with a 6= 0, the linear differential
equation

y ′(t) = a y(t) + b

has infinitely many solutions, one for each value of c ∈ R, given by

y(t) = c eat − b

a
.

Remarks:

(a) A proof is given in the Lecture Notes.

(b) Solutions to first order linear ODE can be obtained using the
integrating factor method.



Review: Linear constant coefficient equations

Example

Find all functions y solution of the ODE y ′ = 2y + 3.

Solution: Write down the differential equation as y ′ − 2 y = 3.
Key idea: The left-hand side above is a total derivative if we
multiply it by the exponential e−2t . Indeed,

e−2ty ′ − 2 e−2t y = 3 e−2t ⇔ e−2ty ′ +
(
e−2t

)′
y = 3 e−2t .

This is the key idea, because the derivative of a product implies[
e−2t y

]′
= 3 e−2t .

The exponential e−2t is called an integrating factor. Integrating,

e−2t y = −3

2
e−2t + c ⇔ y(t) = c e2t − 3

2
.
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Review: Linear constant coefficient equations

Example

Find all functions y solution of the ODE y ′ = 2y + 3.

Solution:

We concluded that the ODE has
infinitely many solutions, given by

y(t) = c e2t − 3

2
, c ∈ R.

Since we did one integration, it is
reasonable that the solution
contains a constant of
integration, c ∈ R.

−3/2

c < 0

c > 0

0

y

t

c = 0

Verification: y ′ = 2c e2t , but we know that 2c e2t = 2y + 3,
therefore we conclude that y satisfies the ODE y ′ = 2y + 3. C
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Linear Variable coefficient equations (Sect. 2.1)

I Review: Linear constant coefficient equations.

I The Initial Value Problem.

I Linear variable coefficients equations.

I The Bernoulli equation: A nonlinear equation.



The Initial Value Problem

Definition
The Initial Value Problem (IVP) for a linear ODE is the following:
Given functions a, b : R→ R and constants t0, y0 ∈ R, find a
solution y : R→ R of the problem

y ′ = a(t) y + b(t), y(t0) = y0.

Remark: The initial condition selects one solution of the ODE.

Theorem (Constant coefficients)

Given constants a, b, t0, y0 ∈ R, with a 6= 0, the initial value
problem

y ′ = a y + b, y(t0) = y0

has the unique solution

y(t) =
(
y0 +

b

a

)
ea(t−t0) − b

a
.
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The Initial Value Problem

Example

Find the solution to the initial value problem

y ′ = 2y + 3, y(0) = 1.

Solution: Every solution of the ODE above is given by

y(t) = c e2t − 3

2
, c ∈ R.

The initial condition y(0) = 1 selects only one solution:

1 = y(0) = c − 3

2
⇒ c =

5

2
.

We conclude that y(t) =
5

2
e2t − 3

2
. C
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The Initial Value Problem

Example

Find the solution y to the IVP y ′ = −3y + 1, y(0) = 1.

Solution: Write down the differential equation as y ′ + 3 y = 1.
Key idea: The left-hand side above is a total derivative if we
multiply it by the exponential e3t . Indeed,

e3ty ′ + 3 e3t y = e3t ⇔ e3ty ′ +
(
e3t

)′
y = e3t .

This is the key idea, because the derivative of a product implies[
e3t y

]′
= e3t .

The exponential e3t is called an integrating factor. Integrating,

e3t y =
1

3
e3t + c ⇔ y(t) = c e−3t +

1

3
.
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Linear Variable coefficient equations (Sect. 2.1)

I Review: Linear constant coefficient equations.

I The Initial Value Problem.

I Linear variable coefficients equations.

I The Bernoulli equation: A nonlinear equation.



Linear variable coefficients equations

Theorem (Variable coefficients)

Given continuous functions a, b : R→ R and given constants
t0, y0 ∈ R, the IVP

y ′ = a(t)y + b(t) y(t0) = y0

has the unique solution

y(t) = eA(t)
[
y0 +

∫ t

t0

e−A(s) b(s)ds
]
,

where we have introduced the function A(t) =

∫ t

t0

a(s)ds.

Remarks:

(a) The function µ(t) = e−A(t) is called an integrating factor.

(b) See the proof in the Lecture Notes.
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Linear variable coefficients equations

Example

Find the solution y to the IVP

t y ′ = −2y + 4t2, y(1) = 2.

Solution: We first express the equation as in the Theorem,

y ′ = −2

t
y + 4t ⇒ y ′ +

2

t
y = 4.

ef (t) y ′ +
2

t
ef (t) y = 4t ef (t), f ′(t) =

2

t
.

This function µ = ef (t) is the integrating factor.

f (t) =

∫ t

1

2

s
ds = 2

[
ln(t)− ln(1)

]
= 2 ln(t) = ln(t2).

Therefore, µ(t) = ef (t) = t2.
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We conclude that y(t) = t2 +
1

t2
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Linear Variable coefficient equations (Sect. 2.1)

I Review: Linear constant coefficient equations.

I The Initial Value Problem.

I Linear variable coefficients equations.

I The Bernoulli equation: A nonlinear equation.



The Bernoulli equation

Remark: The Bernoulli equation is a non-linear differential
equation that can be transformed into a linear differential equation.

Definition
Given functions p, q : R→ R and a real number n, the differential
equation in the unknown function y : R→ R given by

y ′ + p(t) y = q(t) yn

is called the Bernoulli equation.

Theorem
The function y : R→ R is a solution of the Bernoulli equation for

y ′ + p(t) y = q(t) yn, n 6= 1,

iff the function v = 1/y (n−1) is solution of the linear differential
equation

v ′ − (n − 1)p(t) v = −(n − 1)q(t).
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The Bernoulli equation

Example

Given arbitrary constants a 6= 0 and b, find every solution of the
differential equation

y ′ = a y + b y3.

Solution: This is a Bernoulli equation. Divide the equation by y3,

y ′

y3
=

a

y2
+ b.

Introduce the function v = 1/y2, with derivative v ′ = −2
( y ′

y3

)
,

into the differential equation above,

−v ′

2
= a v + b ⇒ v ′ = −2a v − 2b ⇒ v ′ + 2a v = −2b.
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The Bernoulli equation

Example

Given arbitrary constants a 6= 0 and b, find every solution of the
differential equation

y ′ = a y + b y3.

Solution: Recall: v ′ + 2a v = −2b.

The last equation is a linear differential equation for v . This
equation can be solved using the integrating factor method.
Multiply the equation by µ(t) = e2at ,(

e2atv
)′

= −2b e2at ⇒ e2atv = −b

a
e2at + c

We obtain that v = c e−2at − b

a
. Since v = 1/y2,

1

y2
= c e−2at − b

a
⇒ y(t) = ± 1(

c e−2at − b
a

)1/2
. C
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Separable differential equations (Sect. 1.3).

I Separable ODE.

I Solutions to separable ODE.

I Explicit and implicit solutions.

I Homogeneous equations.



Separable ODE.

Definition
Given functions h, g : R→ R, a first order ODE on the unknown
function y : R→ R is called separable iff the ODE has the form

h(y) y ′(t) = g(t).

Remark:
A differential equation y ′(t) = f (t, y(t)) is separable iff

y ′ =
g(t)

h(y)
⇔ f (t, y) =

g(t)

h(y)
.

Example

y ′(t) =
t2

1− y2(t)
, y ′(t) + y2(t) cos(2t) = 0.
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Separable ODE.

Example

Determine whether the differential equation below is separable,

y ′(t) =
t2

1− y2(t)
.

Solution: The differential equation is separable, since it is
equivalent to(

1− y2
)
y ′ = t2 ⇒

{
g(t) = t2,

h(y) = 1− y2.

C

Remark: The functions g and h are not uniquely defined.
Another choice here is:

g(t) = c t2, h(y) = c (1− y2), c ∈ R.
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Separable ODE.

Remark: Not every first order ODE is separable.

Example

I The differential equation y ′(t) = ey(t) + cos(t) is not
separable.

I The linear differential equation y ′(t) = −2

t
y(t) + 4t is not

separable.

I The linear differential equation y ′(t) = −a(t) y(t) + b(t),
with b(t) non-constant, is not separable.
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Separable differential equations (Sect. 1.3).

I Separable ODE.

I Solutions to separable ODE.

I Explicit and implicit solutions.

I Homogeneous equations.



Solutions to separable ODE.

Theorem (Separable equations)

If the functions g , h : R→ R are continuous, with h 6= 0 and with
primitives G and H, respectively; that is,

G ′(t) = g(t), H ′(u) = h(u),

then, the separable ODE

h(y) y ′ = g(t)

has infinitely many solutions y : R→ R satisfying the algebraic
equation

H(y(t)) = G (t) + c ,

where c ∈ R is arbitrary.

Remark: Given functions g , h, find their primitives G ,H.
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Solutions to separable ODE.

Example

Find all solutions y to the equation y ′(t) =
t2

1− y2(t)
.

Solution: The equation is equivalent to(
1− y2

)
y ′(t) = t2 ⇒ g(t) = t2, h(y) = 1− y2.

Integrate on both sides of the equation,∫ [
1− y2(t)

]
y ′(t) dt =

∫
t2 dt + c .

The substitution u = y(t), du = y ′(t) dt, implies that∫
(1− u2) du =

∫
t2 dt + c ⇔

(
u − u3

3

)
=

t3

3
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Solutions to separable ODE.

Remarks:

I The equation y(t)− y3(t)

3
=

t3

3
+ c is algebraic in y , since

there is no y ′ in the equation.

I Every function y satisfying the algebraic equation

y(t)− y3(t)

3
=

t3

3
+ c ,

is a solution of the differential equation above.

I We now verify the previous statement: Differentiate on both
sides with respect to t, that is,

y ′(t)− 3
(y2(t)

3

)
y ′(t) = 3

t2

3
⇒ (1− y2) y ′ = t2.
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Solutions to separable ODE.

Example

Find all solutions y to the equation y ′(t) + y2(t) cos(2t) = 0.

Solution: The differential equation is separable,

y ′(t)

y2(t)
= − cos(2t) ⇒ g(t) = − cos(2t), h(y) =

1

y2
.

Integrate on both sides of the equation,∫
y ′(t)

y2(t)
dt = −

∫
cos(2t) dt + c .

The substitution u = y(t), du = y ′(t) dt, implies that∫
du

u2
= −

∫
cos(2t) dt + c ⇔ −1

u
= −1

2
sin(2t) + c .
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u
= −1

2
sin(2t) + c .

Substitute the unknown function y back in the equation above,

− 1

y(t)
= −1

2
sin(2t) + c , c ∈ R.

Remark: Recall the notation in the Theorem:

g(t) = − cos(2t) ⇒ G (t) = −1

2
sin(2t).

h(y) =
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y2
⇒ H(y) = −1

y
.

Hence we recover the Theorem expression: H(y(t)) = G (t) + c .
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Separable differential equations (Sect. 1.3).

I Separable ODE.

I Solutions to separable ODE.

I Explicit and implicit solutions.

I Homogeneous equations.



Explicit and implicit solutions.

Definition
Assume the notation in the Theorem above. The solution y of a
separable ODE is given in implicit form iff function y is given by

H
(
y(t)

)
= G (t) + c ,

The solution is given in explicit form iff function H is invertible and

y(t) = H−1
(
G (t) + c

)
.

Example

(a) y(t)− y3(t)

3
=

t3

3
+ c is in implicit form.

(b) − 1

y(t)
= −1

2
sin(2t) + c is in implicit form.

(c) y(t) =
2

sin(2t)− 2c
is in explicit form.
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Separable differential equations (Sect. 1.3).

I Separable ODE.

I Solutions to separable ODE.

I Explicit and implicit solutions.

I Homogeneous equations.



Homogeneous equations.

Definition
The first order ODE y ′(t) = f

(
t, y(t)

)
is called homogeneous iff

for every numbers c , t, u ∈ R the function f satisfies

f (ct, cu) = f (t, u).

Remark:

I The function f is invariant under the change of scale of its
arguments.

I If f (t, u) has the property above, it must depend only on u/t.

I So, there exists F : R→ R such that f (t, u) = F
(u

t

)
.

I Therefore, a first order ODE is homogeneous iff it has the form

y ′(t) = F
(y(t)

t

)
.
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Homogeneous equations.

Example

Show that the equation below is homogeneous,

(t − y) y ′ − 2y + 3t +
y2

t
= 0.

Solution: Rewrite the equation in the standard form

(t − y) y ′ = 2y − 3t − y2

t
⇒ y ′ =

(
2y − 3t − y2

t

)
(t − y)

.

Divide numerator and denominator by t. We get,

y ′ =

(
2y − 3t − y2

t

)
(t − y)

(1

t

)
(1

t

) ⇒ y ′ =
2
(y

t

)
− 3−

(y

t

)2

[
1−

(y

t

)] .
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Homogeneous equations.

Example

Show that the equation below is homogeneous,
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y2
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Solution: Recall: y ′ =
2
(y

t

)
− 3−

(y

t

)2

[
1−

(y

t

)] .

We conclude that the ODE is homogeneous, because the
right-hand side of the equation above depends only on y/t.

Indeed, in our case:

f (t, y) =
2y − 3t − (y2/t)

t − y
, F (x) =

2x − 3− x2

1− x
,

and f (t, y) = F (y/t). C
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Homogeneous equations.

Example

Determine whether the equation below is homogeneous,

y ′ =
t2

1− y3
.

Solution:
Divide numerator and denominator by t3, we obtain
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We conclude that the differential equation is not homogeneous. C
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Homogeneous equations.

Theorem
If the differential equation y ′(t) = f

(
t, y(t)

)
is homogeneous, then

the differential equation for the unknown v(t) =
y(t)

t
is separable.

Remark: Homogeneous equations can be transformed into
separable equations.

Proof: If y ′ = f (t, y) is homogeneous, then it can be written as
y ′ = F (y/t) for some function F . Introduce v = y/t. This means,

y(t) = t v(t) ⇒ y ′(t) = v(t) + t v ′(t).

Introducing all this into the ODE we get

v + t v ′ = F (v) ⇒ v ′ =

(
F (v)− v

)
t

.

This last equation is separable.
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