Solving the Heat Equation (Sect. 6.3).

- Review: The Stationary Heat Equation.
- The Heat Equation.
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.

Review: The Stationary Heat Equation.

Review: The Stationary Heat Equation describes the temperature distribution in a solid material in thermal equilibrium. The temperature is time-independent.

Problem: The time-independent temperature, T, of a bar of length L with insulated horizontal sides and vertical extremes kept at fixed temperatures T_{0}, T_{L}, is the solution of the BVP:

$$
T^{\prime \prime}(x)=0, \quad x \in(0, L), \quad T(0)=T_{0}, \quad T(L)=T_{L},
$$

Remark: The heat transfer occurs only along the x-axis.

Solving the Heat Equation (Sect. 6.3).

- Review: The Stationary Heat Equation.
- The Heat Equation.
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.

The Heat Equation.

Remarks:

- The unknown of the problem is $u(t, x)$, the temperature of the bar at the time t and position x.
- The temperature does not depend on y or z.
- The one-dimensional Heat Equation is:

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x),
$$

where $k>0$ is the heat conductivity, units: $[k]=\frac{(\text { distance })^{2}}{(\text { time })}$.

- The Heat Equation is a Partial Differential Equation, PDE.

Solving the Heat Equation (Sect. 6.3).

- Review: The Stationary Heat Equation.
- The Heat Equation.
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.

The Initial-Boundary Value Problem.

Definition

The IBVP for the one-dimensional Heat Equation is the following:
Given a constant $k>0$ and a function $f:[0, L] \rightarrow \mathbb{R}$ with $f(0)=f(L)=0$, find $u:[0, \infty) \times[0, L] \rightarrow \mathbb{R}$ solution of
$\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x)$,

$$
\text { I.C.: } \quad u(0, x)=f(x)
$$

B.C.: $\quad u(t, 0)=0, \quad u(t, L)=0$.

Solving the Heat Equation (Sect. 6.3).

- Review: The Stationary Heat Equation.
- The Heat Equation.
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.

The separation of variables method.
Summary: IBVP for the Heat Equation.
Propose:

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} v_{n}(t) w_{n}(x) .
$$

where

- v_{n} : Solution of an IVP.
- w_{n} : Solution of a BVP, an eigenvalue-eigenfunction problem.
- c_{n} : Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.

The separation of variables method.

Summary:

- The idea is to transform the PDE into infinitely many ODEs.
- We describe this method in 6 steps.

Step 1:
One looks for solutions u given by an infinite series of simpler functions, u_{n}, that is,

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} u_{n}(t, x)
$$

where u_{n} is simpler than u is the sense,

$$
u_{n}(t, x)=v_{n}(t) w_{n}(x) .
$$

Here c_{n} are constants, $n=1,2, \cdots$.

The separation of variables method.
Step 2:
Introduce the series expansion for u into the Heat Equation,

$$
\partial_{t} u-k \partial_{x}^{2} u=0 \Rightarrow \sum_{n=1}^{\infty} c_{n}\left[\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}\right]=0
$$

A sufficient condition for the equation above is: To find u_{n}, for $n=1,2, \cdots$, solutions of

$$
\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}=0
$$

Step 3:
Find $u_{n}(t, x)=v_{n}(t) w_{n}(x)$ solution of the IBVP

$$
\begin{gathered}
\partial_{t} u_{n}-k \partial_{x}^{2} u_{n}=0 . \\
\text { I.C.: } \quad u_{n}(0, x)=w_{n}(x), \\
\text { B.C.: } \quad u_{n}(t, 0)=0, \quad u_{n}(t, L)=0 .
\end{gathered}
$$

The separation of variables method.
Step 4: (Key step.)
Transform the IBVP for u_{n} into: (a) IVP for v_{n}; (b) BVP for w_{n}.
Notice:

$$
\begin{aligned}
\partial_{t} u_{n}(t, x) & =\partial_{t}\left[v_{n}(t) w_{n}(x)\right]=w_{n}(x) \frac{d v_{n}}{d t}(t) \\
\partial_{x}^{2} u_{n}(t, x) & =\partial_{x}^{2}\left[v_{n}(t) w_{n}(x)\right]=v_{n}(t) \frac{d^{2} w_{n}}{d x^{2}}(x)
\end{aligned}
$$

Therefore, the equation $\partial_{t} u_{n}=k \partial_{x}^{2} u_{n}$ is given by

$$
\begin{aligned}
& w_{n}(x) \frac{d v_{n}}{d t}(t)=k v_{n}(t) \frac{d^{2} w_{n}}{d x^{2}}(x) \\
& \frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)
\end{aligned}
$$

Depends only on $t=$ Depends only on x.

The separation of variables method.
Recall:

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)
$$

Depends only on $t=$ Depends only on x.

- The Heat Equation has the following property:

The left-hand side depends only on t, while the right-hand side depends only on x.

- When this happens in a PDE, one can use the separation of variables method on that PDE.
- We conclude that for appropriate constants λ_{m} holds

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=-\lambda_{n}, \quad \frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)=-\lambda_{n} .
$$

- We have transformed the original PDE into infinitely many ODEs parametrized by n, positive integer.

The separation of variables method.
Summary Step 4: The original IBVP for the Heat Equation, PDE, can transformed into:
(a) We choose to solve the following IVP for v_{n},

$$
\frac{1}{k v_{n}(t)} \frac{d v_{n}}{d t}(t)=-\lambda_{n}, \quad \text { I.C.: } \quad v_{n}(0)=1 .
$$

Remark: This choice of I.C. simplifies the problem.
(b) The BVP for w_{n},

$$
\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x)=-\lambda_{n}, \quad \text { B.C.: } \quad w_{n}(0)=0, \quad w_{n}(L)=0 .
$$

Step 5:
(a) Solve the IVP for v_{n}.
(b) Solve the BVP for w_{n}.

The separation of variables method.

Step 5(a): Solving the IVP for v_{n}.

$$
v_{n}^{\prime}(t)+k \lambda_{n} v_{n}(t)=0, \quad \text { I.C.: } \quad v_{n}(0)=1
$$

The integrating factor method implies that $\mu(t)=e^{k \lambda_{n} t}$.

$$
\begin{gathered}
e^{k \lambda_{n} t} v_{n}^{\prime}(t)+k \lambda_{n} e^{k \lambda_{n} t} v_{n}(t)=0 \quad \Rightarrow \quad\left[e^{k \lambda_{n} t} v_{n}(t)\right]^{\prime}=0 \\
e^{k \lambda_{n} t} v_{n}(t)=c_{n} \quad \Rightarrow \quad v_{n}(t)=c_{n} e^{-k \lambda_{n} t} \\
1=v_{n}(0)=c \quad \Rightarrow \quad v_{n}(t)=e^{-k \lambda_{n} t}
\end{gathered}
$$

The separation of variables method.
Step 5(a): Recall: $v_{n}(t)=e^{-k \lambda_{n} t}$.
Step 5(b): Eigenvalue-eigenvector problem for w_{n} :
Find the eigenvalues λ_{n} and the non-zero eigenfunctions w_{n} solutions of the BVP

$$
w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0 \quad \text { B.C. }: \quad w_{n}(0)=0, \quad w_{n}(L)=0 .
$$

We know that this problem has solution only for $\lambda_{n}>0$.
Denote: $\lambda_{n}=\mu_{n}^{2}$. Proposing $w_{n}(x)=e^{r_{n} x}$, we get that

$$
p\left(r_{n}\right)=r_{n}^{2}+\mu_{n}^{2}=0 \quad \Rightarrow \quad r_{n \pm}= \pm \mu_{n} i
$$

The real-valued general solution is

$$
w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)
$$

The separation of variables method.

Recall: $\quad v_{n}(t)=e^{-k \lambda_{n} t}, \quad w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply,

$$
\begin{gathered}
0=w_{n}(0)=c_{1} \quad \Rightarrow \quad w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right) . \\
0=w_{n}(L)=c_{2} \sin \left(\mu_{n} L\right), \quad c_{2} \neq 0, \quad \Rightarrow \quad \sin \left(\mu_{n} L\right)=0 . \\
\mu_{n} L=n \pi \Rightarrow \mu_{n}=\frac{n \pi}{L} \Rightarrow \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2} .
\end{gathered}
$$

Choosing $c_{2}=1$, we get $w_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)$.
We conclude that: $\quad u_{n}(t, x)=e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right), n=1,2, \cdots$.

The separation of variables method.
Step 6: Recall: $u_{n}(t, x)=e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right)$.
Compute the solution to the IBVP for the Heat Equation,

$$
\begin{gathered}
u(t, x)=\sum_{n=1}^{\infty} c_{n} u_{n}(t, x) . \\
u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right) .
\end{gathered}
$$

By construction, this solution satisfies the boundary conditions,

$$
u(t, 0)=0, \quad u(t, L)=0
$$

Given a function f with $f(0)=f(L)=0$, the solution u above satisfies the initial condition $f(x)=u(0, x)$ iff holds

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right) .
$$

The separation of variables method.
Recall:
$u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right), f(x)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right)$.
This is a Sine Series for f. The coefficients c_{n} are computed in the usual way. Recall the orthogonality relation

$$
\int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x= \begin{cases}0, & m \neq n \\ \frac{L}{2}, & m=n\end{cases}
$$

Multiply the equation for u by $\sin \left(\frac{m \pi x}{L}\right)$ nd integrate,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} c_{n} \int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=\int_{0}^{L} f(x) \sin \left(\frac{m \pi x}{L}\right) d x . \\
& c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-k\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi x}{L}\right) .
\end{aligned}
$$

The separation of variables method.

Summary: IBVP for the Heat Equation.
Propose:

$$
u(t, x)=\sum_{n=1}^{\infty} c_{n} v_{n}(t) w_{n}(x)
$$

where

- v_{n} : Solution of an IVP.
- w_{n} : Solution of a BVP, an eigenvalue-eigenfunction problem.
- c_{n} : Fourier Series coefficients.

Remark:

The separation of variables method does not work for every PDE.

Solving the Heat Equation (Sect. 6.3).

- Review: The Stationary Heat Equation.
- The Heat Equation.
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Let $u_{n}(t, x)=v_{n}(t) w_{n}(x)$. Then

$$
4 w_{n}(x) \frac{d v}{d t}(t)=v_{n}(t) \frac{d^{2} w}{d x^{2}}(x) \quad \Rightarrow \quad \frac{4 v_{n}^{\prime}(t)}{v_{n}(t)}=\frac{w_{n}^{\prime \prime}(x)}{w_{n}(x)}=-\lambda_{n}
$$

The equations for v_{n} and w_{n} are

$$
v_{n}^{\prime}(t)+\frac{\lambda_{n}}{4} v_{n}(t)=0, \quad w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0
$$

We solve for v_{n} with the initial condition $v_{n}(0)=1$.

$$
e^{\frac{\lambda_{n}}{4} t} v_{n}^{\prime}(t)+\frac{\lambda_{n}}{4} e^{\frac{\lambda_{n}}{4} t} v_{n}(t)=0 \quad \Rightarrow \quad\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0$. Therefore,

$$
v_{n}(t)=c e^{-\frac{\lambda_{n}}{4} t}, \quad 1=v_{n}(0)=c \quad \Rightarrow \quad v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t}
$$

Next the BVP: $w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0$, with $w_{n}(0)=w_{n}(L)=0$.
Since $\lambda_{n}>0$, introduce $\lambda_{n}=\mu_{n}^{2}$. The characteristic polynomial is

$$
p(r)=r^{2}+\mu_{n}^{2}=0 \quad \Rightarrow \quad r_{n \pm}= \pm \mu_{n} i
$$

The general solution, $w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply

$$
0=w_{n}(0)=c_{1}, \quad \Rightarrow \quad w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right)
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t}$, and $w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right)$.

$$
0=w_{n}(2)=c_{2} \sin \left(\mu_{n} 2\right), \quad c_{2} \neq 0, \quad \Rightarrow \quad \sin \left(\mu_{n} 2\right)=0
$$

Then, $\mu_{n} 2=n \pi$, that is, $\mu_{n}=\frac{n \pi}{2}$. Choosing $c_{2}=1$, we conclude,

$$
\begin{gathered}
\lambda_{m}=\left(\frac{n \pi}{2}\right)^{2}, \quad w_{n}(x)=\sin \left(\frac{n \pi x}{2}\right) . \\
u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-\left(\frac{n \pi}{4}\right)^{2} t} \sin \left(\frac{n \pi x}{2}\right) .
\end{gathered}
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-\left(\frac{n \pi}{4}\right)^{2} t} \sin \left(\frac{n \pi x}{2}\right)$.
The initial condition is $3 \sin \left(\frac{\pi x}{2}\right)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{2}\right)$.
The orthogonality of the sine functions implies

$$
3 \int_{0}^{2} \sin \left(\frac{\pi x}{2}\right) \sin \left(\frac{m \pi x}{2}\right) d x=\sum_{n=1}^{\infty} \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) \sin \left(\frac{m \pi x}{2}\right) d x
$$

If $m \neq 1$, then $0=c_{m} \frac{2}{2}$, that is, $c_{m}=0$ for $m \neq 1$. Therefore,

$$
3 \sin \left(\frac{\pi x}{2}\right)=c_{1} \sin \left(\frac{\pi x}{2}\right) \quad \Rightarrow \quad c_{1}=3
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: We conclude that

$$
u(t, x)=3 e^{-\left(\frac{\pi}{4}\right)^{2} t} \sin \left(\frac{\pi x}{2}\right)
$$

