Examples of the Fourier Theorem (Sect. 6.2).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

The Fourier Theorem: Continuous case.

Theorem (Fourier Series)

If the function $f:[-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ is continuous, then f can be expressed as an infinite series

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right] \tag{1}
\end{equation*}
$$

with the constants a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

Furthermore, the Fourier series in Eq. (1) provides a $2 L$-periodic extension of function f from the domain $[-L, L] \subset \mathbb{R}$ to \mathbb{R}.

The Fourier Theorem: Continuous case.

Sketch of the Proof:

- Define the partial sum functions

$$
f_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

with a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

- Express f_{N} as a convolution of Sine, Cosine, functions and the original function f.
- Use the convolution properties to show that

$$
\lim _{N \rightarrow \infty} f_{N}(x)=f(x), \quad x \in[-L, L] .
$$

Examples of the Fourier Theorem (Sect. 6.2).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: In this case $L=1$. The Fourier series expansion is

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)\right]
$$

where the a_{n}, b_{n} are given in the Theorem. We start with a_{0},

$$
\begin{gathered}
a_{0}=\int_{-1}^{1} f(x) d x=\int_{-1}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x \\
a_{0}=\left.\left(x+\frac{x^{2}}{2}\right)\right|_{-1} ^{0}+\left.\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2}\right)
\end{gathered}
$$

We obtain: $\quad a_{0}=1$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$. Similarly, the rest of the a_{n} are given by,

$$
\begin{gathered}
a_{n}=\int_{-1}^{1} f(x) \cos (n \pi x) d x \\
a_{n}=\int_{-1}^{0}(1+x) \cos (n \pi x) d x+\int_{0}^{1}(1-x) \cos (n \pi x) d x
\end{gathered}
$$

Recall the integrals $\int \cos (n \pi x) d x=\frac{1}{n \pi} \sin (n \pi x)$, and

$$
\int x \cos (n \pi x) d x=\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: It is not difficult to see that

$$
\begin{aligned}
a_{n} & =\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}+\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{-1} ^{0} \\
& +\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{0} ^{1}-\left.\left[\frac{x}{n \pi} \sin (n \pi x)+\frac{1}{n^{2} \pi^{2}} \cos (n \pi x)\right]\right|_{0} ^{1} \\
a_{n} & =\left[\frac{1}{n^{2} \pi^{2}}-\frac{1}{n^{2} \pi^{2}} \cos (-n \pi)\right]-\left[\frac{1}{n^{2} \pi^{2}} \cos (n \pi)-\frac{1}{n^{2} \pi^{2}}\right] .
\end{aligned}
$$

We then conclude that $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $a_{0}=1$, and $a_{n}=\frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)]$.
Finally, we must find the coefficients b_{n}.
A similar calculation shows that $b_{n}=0$.
Then, the Fourier series of f is given by

$$
f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0), \\ 1-x & x \in[0,1] .\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}[1-\cos (n \pi)] \cos (n \pi x)$.
We can obtain a simpler expression for the Fourier coefficients a_{n}.
Recall the relations $\cos (n \pi)=(-1)^{n}$, then

$$
\begin{aligned}
& f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1-(-1)^{n}\right] \cos (n \pi x) . \\
& f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x) .
\end{aligned}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution: Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$.
If $n=2 k$, so n is even, so $n+1=2 k+1$ is odd, then

$$
a_{2 k}=\frac{2}{(2 k)^{2} \pi^{2}}(1-1) \quad \Rightarrow \quad a_{2 k}=0
$$

If $n=2 k-1$, so n is odd, so $n+1=2 k$ is even, then

$$
a_{2 k-1}=\frac{2}{(2 k-1)^{2} \pi^{2}}(1+1) \quad \Rightarrow \quad a_{2 k-1}=\frac{4}{(2 k-1)^{2} \pi^{2}} .
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$
f(x)= \begin{cases}1+x & x \in[-1,0) \\ 1-x & x \in[0,1]\end{cases}
$$

Solution:
Recall: $f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[1+(-1)^{n+1}\right] \cos (n \pi x)$, and

$$
a_{2 k}=0, \quad a_{2 k-1}=\frac{4}{(2 k-1)^{2} \pi^{2}}
$$

We conclude: $\quad f(x)=\frac{1}{2}+\sum_{k=1}^{\infty} \frac{4}{(2 k-1)^{2} \pi^{2}} \cos ((2 k-1) \pi x) . \quad \triangleleft$

Examples of the Fourier Theorem (Sect. 6.2).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

Recall:

Definition

A function $f:[a, b] \rightarrow \mathbb{R}$ is called piecewise continuous iff holds,
(a) $[a, b]$ can be partitioned in a finite number of sub-intervals such that f is continuous on the interior of these sub-intervals.
(b) f has finite limits at the endpoints of all sub-intervals.

The Fourier Theorem: Piecewise continuous case.

Theorem (Fourier Series)

If $f:[-L, L] \subset \mathbb{R} \rightarrow \mathbb{R}$ is piecewise continuous, then the function

$$
f_{F}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]
$$

where a_{n} and b_{n} given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 0, \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, & n \geqslant 1 .
\end{array}
$$

satisfies that:
(a) $f_{F}(x)=f(x)$ for all x where f is continuous;
(b) $f_{F}\left(x_{0}\right)=\frac{1}{2}\left[\lim _{x \rightarrow x_{0}^{+}} f(x)+\lim _{x \rightarrow x_{0}^{-}} f(x)\right]$ for all x_{0} where f is discontinuous.

Examples of the Fourier Theorem (Sect. 6.2).

- The Fourier Theorem: Continuous case.
- Example: Using the Fourier Theorem.
- The Fourier Theorem: Piecewise continuous case.
- Example: Using the Fourier Theorem.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0), \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: We start computing the Fourier coefficients b_{n};

$$
\begin{gathered}
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad L=1 \\
b_{n}=\int_{-1}^{0}(-1) \sin (n \pi x) d x+\int_{0}^{1}(1) \sin (n \pi x) d x \\
b_{n}=\frac{(-1)}{n \pi}\left[-\left.\cos (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[-\left.\cos (n \pi x)\right|_{0} ^{1}\right] \\
b_{n}= \\
\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: $b_{n}=\frac{(-1)}{n \pi}[-1+\cos (-n \pi)]+\frac{1}{n \pi}[-\cos (n \pi)+1]$.

$$
b_{n}=\frac{1}{n \pi}[1-\cos (-n \pi)-\cos (n \pi)+1]=\frac{2}{n \pi}[1-\cos (n \pi)],
$$

We obtain: $\quad b_{n}=\frac{2}{n \pi}\left[1-(-1)^{n}\right]$.
If $n=2 k$, then $b_{2 k}=\frac{2}{2 k \pi}\left[1-(-1)^{2 k}\right]$, hence $b_{2 k}=0$.
If $n=2 k-1$, then $b_{2 k-1}=\frac{2}{(2 k-1) \pi}\left[1-(-1)^{2 k-1}\right]$,
hence $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0$, and $\quad b_{2 k}=\frac{4}{(2 k-1) \pi}$.

$$
\begin{gathered}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad L=1 \\
a_{n}=\int_{-1}^{0}(-1) \cos (n \pi x) d x+\int_{0}^{1}(1) \cos (n \pi x) d x \\
a_{n}=\frac{(-1)}{n \pi}\left[\left.\sin (n \pi x)\right|_{-1} ^{0}\right]+\frac{1}{n \pi}\left[\left.\sin (n \pi x)\right|_{0} ^{1}\right] \\
a_{n}=\frac{(-1)}{n \pi}[0-\sin (-n \pi)]+\frac{1}{n \pi}[\sin (n \pi)-0] \quad \Rightarrow \quad a_{n}=0
\end{gathered}
$$

Example: Using the Fourier Theorem.

Example

Find the Fourier series of $f(x)=\left\{\begin{array}{cl}-1 & x \in[-1,0) \text {, } \\ 1 & x \in[0,1) .\end{array}\right.$ and periodic with period $T=2$.

Solution: Recall: $\quad b_{2 k}=0, \quad b_{2 k}=\frac{4}{(2 k-1) \pi}, \quad$ and $\quad a_{n}=0$.
Therefore, we conclude that

$$
f_{F}(x)=\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)} \sin ((2 k-1) \pi x)
$$

