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n x n linear differential systems (5.4).

Definition

An n x n linear differential system is a the following: Given an

n X n matrix-valued function A, and an n-vector-valued function b,
find an n-vector-valued function x solution of

x'(t) = A(t) x(t) + b(t).

The system above is called homogeneous iff holds b = 0.

Recall:
ain(t) - ain(t) bi(t) x1(t)
Alt) =1 b= X)) =
an(t) -+ anm(t) bn(t) Xn(1)

X{ = 311(1_') X1+ -+ al,,(t) X + bl(t)
x'(t) = A(t)x(t) + b(t) &
x\ = ap(t) xy + -+ ann(t) xn + bn(t).




n x n linear differential systems (5.4).

Example

Find the explicit expression for the linear system x’ = Ax + b in the
case that

1 3 et X
Sl T O P A o]
Solution: The 2 x 2 linear system is given by
x| |1 3] [x n et
x| 713 1 |x 2e3t|

x| (t) = x(t) + 3x(t) + e,
X(t) = 3x.(t) + x(t) + 2e3.

That is,

n x n linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed
component-wise. )
x1(t) x(1)

X()=| | =] :
Xn(t) Xn(t)
Example
-t
Compute x' for x(t) = | sin(t)
| cos(t)
Solution: g2t 7 22t
x'(t) [sin(t)| = | cos(t)
| cos(t) —sin(t)
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Constant coefficients homogenoues systems (5.6).

Remarks:

» Given an n x n matrix A(t), n-vector b(t), find x(t) solution
x'(t) = A(t) x(t) + b(t).
» The system is homogeneous iff b = 0, that is,
x'(t) = A(t) x(t).

» The system has constant coefficients iff matrix A does not
depend on t, that is,

x'(t) = Ax(t) + b(t).
» We study homogeneous, constant coefficient systems, that is,

x'(t) = Ax(t).




Constant coefficients homogenoues systems (5.6).
Theorem (Diagonalizable matrix)
If n x n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1,--- ,v,} and corresponding eigenvalues
{A1, -+, A\n}, then the general solution x to the homogeneous,
constant coefficients, linear system
X' (t) = Ax(t)
Is given by the expression below, where c1,--- ,c, € R,
x(t) = civy €M+ - 4 cpv, et
Remark:

» The differential system for the variable x is coupled, that is, A
is not diagonal.

» We transform the system into a system for a variable y such
that the system for y is decoupled, that is, y'(t) = Dy(t),
where D is a diagonal matrix.

» We solve for y(t) and we transform back to x(t).
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Examples: 2 x 2 linear systems (5.6).

Example

Find the general solution to x’ = Ax, with A = [:1)) ﬂ

Solution: Find eigenvalues and eigenvectors of A. We found that:

A =4, vib)= E] , and A =-2, v@® = [_11] .

Fundamental solutions are

m _ |1 e @ _ |71 -2t
S PR L P

The general solution is x(t) = c; XV (t) + ¢ x(2)(t), that is,

x(t) = ¢ E] et + ¢ [ 1] e 2t ¢, G € R. p

Examples: 2 x 2 linear systems (5.6).

Example

Verify that x(1) = E] e*t, and x®® = [_1

1] e~ 2t are solutions to

1 3
! __ H —
x' = Ax, with A = [3 1].

Solution: We compute x(1) and then we compare it with Ax(1),

oAt 4ett 1
=[] =[i] =l e = xr=wo

mmﬁlﬂﬂwzﬁauﬂjwiAw:mu

We conclude that x(1) = Ax(1),




Examples: 2 x 2 linear systems (5.6).

Example

Verify that x(!) = E] et and x(?) = [_1

1] e 2t are solutions to

x' = Ax, with A = [:13 :13]

Solution: We compute x(? and then we compare it with Ax(?),

=2t —2t .
x(2) = [ eel2t ] - [_2266—2t] = =2 [ 11] e 2t = x(V = _2x(®),

- Y- g

So, Ax® = —2x(3) Hence x(?) = Ax(). <

Examples: 2 x 2 linear systems (5.6).

Example

Solve the IVP x’ = Ax, where x(0) = [ﬂ and A = E i]

Solution: The general solution: x(t) = ¢ E] e*t + ¢ [_11] e 2L,

The initial condition is,
2 1 -1
X(O): [4] =G [1]+C2 [ 1]
We need to solve the linear system
1 -1] [q] 2 c1_1112
1 1] || (4 | 2|(-1 1 |4|°

Therefore, [q] = :1)’] hence x(t) = 3 [1] e*t + [_11] e 2t <«

G




Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that A = PDP~!, with
P:[vl,---,vn}, D:diag[)\l,---,)\n}.
Equivalently, P~1AP = D. Multiply X' = Ax by P~ on the left
PIX(t) = PrAx(t) & (P'x) = (P7'AP) (P 1x).
Introduce the new unknown y(t) = P~1x(t), then

y{(t):)\lyl(t)a c1 e)\1t
y/(t) — DY(t) = — y(t) _
Yi(t) = Anyn(2), cp et

Constant coefficients homogenoues systems (5.6).

cl e>\1t
Proof: Recall: y(t) = P~1x(t), and y(t) = :
c, et
Transform back to x(t), that is,
cp et
x(t) = Py(t) = [v1, -~ ,vn] :
c, eMnt
We conclude: x(t) = c1v1 eMt ... 4 v, et O
Remark:
> AV,' = )\,'V,'.

» The eigenvalues and eigenvectors of A are crucial to solve the
differential linear system x'(t) = Ax(t).
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Phase portraits for 2 x 2 systems (5.7).

Remark:

» There are two main types of graphs for solutions of 2 x 2
linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.

» Case (i): Express the solution in vector components

x(t) = xa(t) , and graph x; and x; as functions of t.
xa(t)

(Recall the solution in the IVP of the previous Example:
x1(t) = 3e* — e %t and xo(t) = 3e*t + e72t))
» Case (ii): Express the solution as a vector-valued function,
Aot
)

x(t) =qvi e+ e

and plot the vector x(t) for different values of t.

» Case (ii) is called a phase portrait.




Phase portraits for 2 x 2 systems (5.7).
Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

1) _ H et x@ = [—1] o2t

Solution:
We start plotting the
vectors

Phase portraits for 2 x 2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

1) _ H &t @) [—1] o2t

1 1
Solution: X,
We now plot the functions O o
X X
1 ! .
(1) — [1] e4t, v?2 v

x(2) = [_1] e 2t
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Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

1) _ H &t @ [—1] o2t

1 1
Solution: X,
We now plot the functions
1 LT .
=[] N
—1 -x" - S
@ [ 1] o2t

Phase portraits for 2 x 2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

W _ |1 4 @) [T o
=[] e =[] e

Solution: y
2
We now plot the four
functions ) .
X 1 L X
2 v 1
x1 XD v
-1 1 Xl
—xM 1 NED
x(?) —x(2),




Phase portraits for 2 x 2 systems (5.7).
Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

(1) H et X [—1] o2t

1 1
Solution:
We now plot the four X,
. X(1>+X (2)
functions \
(1) (1) () (2) I x
X y —X , X y — X 9 v 2 v?
1 1 X1

and x() + x(2),

o3

Phase portraits for 2 x 2 systems (5.7).

Example
Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

1) _ H &t (@) [—1] o2t

Solution:
We now plot the eight

functions \//
x(l), —x(l), X(2)7 _x(@ 2 I 1

<D 4 x@ x4 g
D _x@ 1) _ @) /’

)




Phase portraits for 2 x 2 systems (5.7).

Problem:

Case (a): Consider a 2 x 2 matrix A having two different, real
eigenvalues A1 # A, so A has two non-proportional eigenvectors
vi, V2 (eigen-directions).

Given a solution x(t) = ¢, vi eMf + ¢, vo e to X/(t) = Ax(t),
plot different solution vectors x(t) on the plane as function of t for
different choices of the constants ¢; and .

The plots are different depending on the eigenvalues signs.
We have the following three sub-cases:

(i) 0 < A2 < A1, both positive;
(i) A2 < 0 < A1, one positive the other negative;

(iii) A2 < A1 <0, both negative.

Phase portraits for 2 x 2 systems (5.7).

Phase portrait: Case (a), two different, real eigenvalues A1 # A,
sub-case 0 < A2 < A1, both eigenvalue positive.




Phase portraits for 2 x 2 systems.

Phase portrait: Case (a), two different, real eigenvalues A1 # Xy,
sub-case Ao < 0 < A1, one eigenvalue positive the other negative.

Phase portraits for 2 x 2 systems (5.7).
Phase portrait: Case (a), two different, real eigenvalues A1 # A,
sub-case \» < A1 < 0, both eigenvalues negative.
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