Differential linear systems (Sect. 5.4, 5.6, 5.7)

- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).
- Examples: 2×2 linear systems (5.6).
- Phase portraits for 2×2 systems (5.7).
$n \times n$ linear differential systems (5.4).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b}, find an n-vector-valued function \times solution of

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)
$$

The system above is called homogeneous iff holds $\mathbf{b}=0$.
Recall:

$$
\begin{gathered}
A(t)=\left[\begin{array}{ccc}
a_{11}(t) & \cdots & a_{1 n}(t) \\
\vdots & & \vdots \\
a_{n 1}(t) & \cdots & a_{n n}(t)
\end{array}\right], \mathbf{b}(t)=\left[\begin{array}{c}
b_{1}(t) \\
\vdots \\
b_{n}(t)
\end{array}\right], \mathbf{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right] \\
x_{1}^{\prime}=a_{11}(t) x_{1}+\cdots+a_{1 n}(t) x_{n}+b_{1}(t) \\
\left.\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t) \Leftrightarrow \quad \begin{array}{c}
x_{n} \\
x_{n}^{\prime}
\end{array}\right) a_{n 1}(t) x_{1}+\cdots+a_{n n}(t) x_{n}+b_{n}(t) .
\end{gathered}
$$

$n \times n$ linear differential systems (5.4).

Example

Find the explicit expression for the linear system $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{b}$ in the case that

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right], \quad \mathbf{b}(t)=\left[\begin{array}{c}
e^{t} \\
2 e^{3 t}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Solution: The 2×2 linear system is given by

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
e^{t} \\
2 e^{3 t}
\end{array}\right] .
$$

That is,

$$
\begin{aligned}
& x_{1}^{\prime}(t)=x_{1}(t)+3 x_{2}(t)+e^{t} \\
& x_{2}^{\prime}(t)=3 x_{1}(t)+x_{2}(t)+2 e^{3 t} .
\end{aligned}
$$

$n \times n$ linear differential systems (5.4).
Remark: Derivatives of vector-valued functions are computed component-wise.

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right]^{\prime}=\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
\vdots \\
x_{n}^{\prime}(t)
\end{array}\right]
$$

Example

Compute \mathbf{x}^{\prime} for $\mathbf{x}(t)=\left[\begin{array}{c}e^{2 t} \\ \sin (t) \\ \cos (t)\end{array}\right]$.
Solution:

$$
\mathbf{x}^{\prime}(t)\left[\begin{array}{c}
e^{2 t} \\
\sin (t) \\
\cos (t)
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{2 t} \\
\cos (t) \\
-\sin (t)
\end{array}\right]
$$

Differential linear systems (Sect. 5.4, 5.6, 5.7)

- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).
- Examples: 2×2 linear systems (5.6).
- Phase portraits for 2×2 systems (5.7).

Constant coefficients homogenoues systems (5.6).

Remarks:

- Given an $n \times n$ matrix $A(t)$, n-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)
$$

- The system is homogeneous iff $\mathbf{b}=0$, that is,

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)
$$

- The system has constant coefficients iff matrix A does not depend on t, that is,

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)+\mathbf{b}(t)
$$

- We study homogeneous, constant coefficient systems, that is,

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

Constant coefficients homogenoues systems (5.6).

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}
$$

Remark:

- The differential system for the variable \mathbf{x} is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable y such that the system for \mathbf{y} is decoupled, that is, $\mathbf{y}^{\prime}(t)=D \mathbf{y}(t)$, where D is a diagonal matrix.
- We solve for $\mathbf{y}(t)$ and we transform back to $\mathbf{x}(t)$.

Differential linear systems (Sect. 5.4, 5.6, 5.7)

- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).
- Examples: 2×2 linear systems (5.6).
- Phase portraits for 2×2 systems (5.7).

Examples: 2×2 linear systems (5.6).

Example

Find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: Find eigenvalues and eigenvectors of A. We found that:

$$
\lambda_{1}=4, \quad \mathbf{v}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \text { and } \quad \lambda_{2}=-2, \quad \mathbf{v}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

Fundamental solutions are

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t .}
$$

The general solution is $\mathbf{x}(t)=c_{1} \mathbf{x}^{(1)}(t)+c_{2} \mathbf{x}^{(2)}(t)$, that is,

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}, \quad c_{1}, c_{2} \in \mathbb{R} .
$$

Examples: 2×2 linear systems (5.6).

Example

Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to
$\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: We compute $\mathbf{x}^{(1) \prime}$ and then we compare it with $A \mathbf{x}^{(1)}$,

$$
\begin{gathered}
\mathbf{x}^{(1) \prime}(t)=\left[\begin{array}{l}
e^{4 t} \\
e^{4 t}
\end{array}\right]^{\prime}=\left[\begin{array}{l}
4 e^{4 t} \\
4 e^{4 t}
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \Rightarrow \mathbf{x}^{(1) \prime}=4 \mathbf{x}^{(1)} . \\
A \mathbf{x}^{(1)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}=\left[\begin{array}{l}
4 \\
4
\end{array}\right] e^{4 t}=4\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \Rightarrow A \mathbf{x}^{(1)}=4 \mathbf{x}^{(1)} .
\end{gathered}
$$

We conclude that $\mathbf{x}^{(1) \prime}=A \mathbf{x}^{(1)}$.

Examples: 2×2 linear systems (5.6).
Example
Verify that $\mathbf{x}^{(1)}=\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}$, and $\mathbf{x}^{(2)}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$ are solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.

Solution: We compute $\mathbf{x}^{(2) \prime}$ and then we compare it with $A \mathbf{x}^{(2)}$,

$$
\begin{gathered}
\mathbf{x}^{(2)^{\prime}}=\left[\begin{array}{c}
-e^{-2 t} \\
e^{-2 t}
\end{array}\right]^{\prime}=\left[\begin{array}{c}
2 e^{-2 t} \\
-2 e^{-2 t}
\end{array}\right]=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} \Rightarrow \mathbf{x}^{(2) \prime}=-2 \mathbf{x}^{(2)} . \\
A \mathbf{x}^{(2)}=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right] e^{-2 t}=-2\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t},
\end{gathered}
$$

So, $A \mathbf{x}^{(2)}=-2 \mathbf{x}^{(2)}$. Hence, $\mathbf{x}^{(2) \prime}=A \mathbf{x}^{(2)}$.

Examples: 2×2 linear systems (5.6).

Example

Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}$, where $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, and $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
Solution: The general solution: $\mathbf{x}(t)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+c_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t}$.
The initial condition is,

$$
\mathbf{x}(0)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

We need to solve the linear system

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right] .
$$

Therefore, $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right]$, hence $\mathbf{x}(t)=3\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{4 t}+\left[\begin{array}{c}-1 \\ 1\end{array}\right] e^{-2 t} .<$

Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that $A=P D P^{-1}$, with

$$
P=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right], \quad D=\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n}\right]
$$

Equivalently, $P^{-1} A P=D$. Multiply $\mathbf{x}^{\prime}=A \mathbf{x}$ by P^{-1} on the left

$$
P^{-1} \mathbf{x}^{\prime}(t)=P^{-1} A \mathbf{x}(t) \quad \Leftrightarrow \quad\left(P^{-1} \mathbf{x}\right)^{\prime}=\left(P^{-1} A P\right)\left(P^{-1} \mathbf{x}\right)
$$

Introduce the new unknown $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, then

$$
\mathbf{y}^{\prime}(t)=D \mathbf{y}(t) \Leftrightarrow\left\{\begin{array}{c}
y_{1}^{\prime}(t)=\lambda_{1} y_{1}(t), \\
\vdots \\
y_{n}^{\prime}(t)=\lambda_{n} y_{n}(t),
\end{array} \quad \Rightarrow \mathbf{y}(t)=\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right]\right.
$$

Constant coefficients homogenoues systems (5.6).

Proof: Recall: $\mathbf{y}(t)=P^{-1} \mathbf{x}(t)$, and $\mathbf{y}(t)=\left[\begin{array}{c}c_{1} e^{\lambda_{1} t} \\ \vdots \\ c_{n} e^{\lambda_{n} t}\end{array}\right]$.
Transform back to $\mathbf{x}(t)$, that is,

$$
\mathbf{x}(t)=P \mathbf{y}(t)=\left[\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right]\left[\begin{array}{c}
c_{1} e^{\lambda_{1} t} \\
\vdots \\
c_{n} e^{\lambda_{n} t}
\end{array}\right]
$$

We conclude: $\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t}$.
Remark:

- $A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$.
- The eigenvalues and eigenvectors of A are crucial to solve the differential linear system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.

Differential linear systems (Sect. 5.4, 5.6, 5.7)

- $n \times n$ linear differential systems (5.4).
- Constant coefficients homogenoues systems (5.6).
- Examples: 2×2 linear systems (5.6).
- Phase portraits for 2×2 systems (5.7).

Phase portraits for 2×2 systems (5.7).

Remark:

- There are two main types of graphs for solutions of 2×2 linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.
- Case (i): Express the solution in vector components $\mathbf{x}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$, and graph x_{1} and x_{2} as functions of t.
(Recall the solution in the IVP of the previous Example:
$x_{1}(t)=3 e^{4 t}-e^{-2 t}$ and $x_{2}(t)=3 e^{4 t}+e^{-2 t}$.)
- Case (ii): Express the solution as a vector-valued function,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}
$$

and plot the vector $\mathbf{x}(t)$ for different values of t.

- Case (ii) is called a phase portrait.

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

Solution:
We start plotting the
vectors

$$
\begin{gathered}
\mathbf{v}^{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\mathbf{v}^{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
\end{gathered}
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

Solution:
We now plot the functions

$$
\begin{gathered}
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \\
\mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
\end{gathered}
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

Solution:
We now plot the functions

$$
\begin{gathered}
-\mathbf{x}^{(1)}=-\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t} \\
-\mathbf{x}^{(2)}=-\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
\end{gathered}
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

Solution:
We now plot the four functions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)} .
\end{array}
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

Solution:
We now plot the four functions
$\mathbf{x}^{(1)},-\mathbf{x}^{(1)}, \mathbf{x}^{(2)},-\mathbf{x}^{(2)}$,
and $\mathbf{x}^{(1)}+\mathbf{x}^{(2)}$,

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}+\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t} .
$$

Phase portraits for 2×2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$
\mathbf{x}^{(1)}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}, \quad \mathbf{x}^{(2)}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
$$

Solution:

We now plot the eight functions
$\mathbf{x}^{(1)},-\mathbf{x}^{(1)}, \mathbf{x}^{(2)},-\mathbf{x}^{(2)}$, $\mathbf{x}^{(1)}+\mathbf{x}^{(2)}, \quad-\mathbf{x}^{(1)}+\mathbf{x}^{(2)}$,
$\mathbf{x}^{(1)}-\mathbf{x}^{(2)}, \quad-\mathbf{x}^{(1)}-\mathbf{x}^{(2)}$.

Phase portraits for 2×2 systems (5.7).

Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_{1} \neq \lambda_{2}$, so A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions).
Given a solution $\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{v}_{2} e^{\lambda_{2} t}$, to $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_{1} and c_{2}.

The plots are different depending on the eigenvalues signs.
We have the following three sub-cases:
(i) $0<\lambda_{2}<\lambda_{1}$, both positive;
(ii) $\lambda_{2}<0<\lambda_{1}$, one positive the other negative;
(iii) $\lambda_{2}<\lambda_{1}<0$, both negative.

Phase portraits for 2×2 systems (5.7).
Phase portrait: Case (a), two different, real eigenvalues $\lambda_{1} \neq \lambda_{2}$, sub-case $0<\lambda_{2}<\lambda_{1}$, both eigenvalue positive.

Phase portraits for 2×2 systems.
Phase portrait: Case (a), two different, real eigenvalues $\lambda_{1} \neq \lambda_{2}$, sub-case $\lambda_{2}<0<\lambda_{1}$, one eigenvalue positive the other negative.

Phase portraits for 2×2 systems (5.7).
Phase portrait: Case (a), two different, real eigenvalues $\lambda_{1} \neq \lambda_{2}$, sub-case $\lambda_{2}<\lambda_{1}<0$, both eigenvalues negative.

