

$n \times n$ linear differential systems (5.4).

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

$$\mathbf{x}'(t) = A(t)\,\mathbf{x}(t) + \mathbf{b}(t).$$

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

Recall:

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}, \ \mathbf{b}(t) = \begin{bmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{bmatrix}, \ \mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}.$$

$$\begin{aligned} x_1 &= a_{11}(t) x_1 + \dots + a_{1n}(t) x_n + b_1(t) \\ \mathbf{x}'(t) &= A(t) \mathbf{x}(t) + \mathbf{b}(t) \Leftrightarrow &\vdots \\ & x_n' &= a_{n1}(t) x_1 + \dots + a_{nn}(t) x_n + b_n(t). \end{aligned}$$

$n \times n$ linear differential systems (5.4).

Example

Find the explicit expression for the linear system $\mathbf{x}' = A\mathbf{x} + \mathbf{b}$ in the case that

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, \qquad \mathbf{b}(t) = \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Solution: The 2×2 linear system is given by

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}.$$

That is,

$$egin{aligned} & x_1'(t) = x_1(t) + 3x_2(t) + e^t, \ & x_2'(t) = 3x_1(t) + x_2(t) + 2e^{3t}. \end{aligned}$$

 \triangleleft

$n \times n$ linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed component-wise.

	$\left[x_1(t)\right]$	/	$\left[x_{1}^{\prime}(t)\right]$	
$\mathbf{x}'(t) =$	÷	=	÷	
	$x_n(t)$		$x'_n(t)$	

Example

Compute
$$\mathbf{x}'$$
 for $\mathbf{x}(t) = \begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}$.
Solution:
 $\mathbf{x}'(t) \begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}' = \begin{bmatrix} 2e^{2t} \\ \cos(t) \\ -\sin(t) \end{bmatrix}$.

Constant coefficients homogenoues systems (5.6).

Remarks:

• Given an $n \times n$ matrix A(t), *n*-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

 $\mathbf{x}'(t) = A(t)\,\mathbf{x}(t) + \mathbf{b}(t).$

▶ The system is *homogeneous* iff **b** = 0, that is,

$$\mathbf{x}'(t) = A(t) \, \mathbf{x}(t).$$

The system has constant coefficients iff matrix A does not depend on t, that is,

$$\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{b}(t).$$

▶ We study homogeneous, constant coefficient systems, that is,

 $\mathbf{x}'(t) = A\mathbf{x}(t).$

Constant coefficients homogenoues systems (5.6). Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \dots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

 $\mathbf{x}'(t) = A\mathbf{x}(t)$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

 $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$

Remark:

- The differential system for the variable x is coupled, that is, A is not diagonal.
- We transform the system into a system for a variable y such that the system for y is decoupled, that is, y'(t) = D y(t), where D is a diagonal matrix.
- We solve for $\mathbf{y}(t)$ and we transform back to $\mathbf{x}(t)$.

Examples: 2×2 linear systems (5.6).

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1 = 4, \quad \mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \lambda_2 = -2, \quad \mathbf{v}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Fundamental solutions are

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

The general solution is $\mathbf{x}(t) = c_1 \, \mathbf{x}^{(1)}(t) + c_2 \, \mathbf{x}^{(2)}(t)$, that is,

$$\mathbf{x}(t) = c_1 egin{bmatrix} 1 \ 1 \end{bmatrix} e^{4t} + c_2 egin{bmatrix} -1 \ 1 \end{bmatrix} e^{-2t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Examples: 2 × 2 linear systems (5.6). Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$. Solution: We compute $\mathbf{x}^{(1)'}$ and then we compare it with $A\mathbf{x}^{(1)}$, $\mathbf{x}^{(1)'}(t) = \begin{bmatrix} e^{4t} \\ e^{4t} \end{bmatrix}' = \begin{bmatrix} 4e^{4t} \\ 4e^{4t} \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \Rightarrow \mathbf{x}^{(1)'} = 4\mathbf{x}^{(1)}$. $A\mathbf{x}^{(1)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} e^{4t} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} \Rightarrow A\mathbf{x}^{(1)} = 4\mathbf{x}^{(1)}$. We conclude that $\mathbf{x}^{(1)'} = A\mathbf{x}^{(1)}$. Examples: 2×2 linear systems (5.6). Example Verify that $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}$, and $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ are solutions to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$. Solution: We compute $\mathbf{x}^{(2)'}$ and then we compare it with $A\mathbf{x}^{(2)}$, $\mathbf{x}^{(2)'} = \begin{bmatrix} -e^{-2t} \\ e^{-2t} \end{bmatrix}' = \begin{bmatrix} 2e^{-2t} \\ -2e^{-2t} \end{bmatrix} = -2\begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} \Rightarrow \mathbf{x}^{(2)'} = -2\mathbf{x}^{(2)}$. $A\mathbf{x}^{(2)} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} e^{-2t} = -2\begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$, So, $A\mathbf{x}^{(2)} = -2\mathbf{x}^{(2)}$. Hence, $\mathbf{x}^{(2)'} = A\mathbf{x}^{(2)}$.

Examples: 2×2 linear systems (5.6).

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \implies \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

Therefore, $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, hence $\mathbf{x}(t) = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}. \triangleleft$

Constant coefficients homogenoues systems (5.6). Proof: Since *A* is diagonalizable, we know that $A = PDP^{-1}$, with $P = [\mathbf{v}_1, \dots, \mathbf{v}_n], \quad D = \operatorname{diag}[\lambda_1, \dots, \lambda_n].$ Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left $P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t) \quad \Leftrightarrow \quad (P^{-1}\mathbf{x})' = (P^{-1}AP) (P^{-1}\mathbf{x}).$ Introduce the new unknown $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$, then $\mathbf{y}'(t) = D\mathbf{y}(t) \iff \begin{cases} y_1'(t) = \lambda_1 y_1(t), \\ \vdots \\ y_n'(t) = \lambda_n y_n(t), \end{cases} \Rightarrow \mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}.$

Constant coefficients homogenoues systems (5.6). Proof: Recall: $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$, and $\mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$. Transform back to $\mathbf{x}(t)$, that is, $\begin{bmatrix} c_1 e^{\lambda_1 t} \end{bmatrix}$

$$\mathbf{x}(t) = P \mathbf{y}(t) = \begin{bmatrix} \mathbf{v}_1, \cdots, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

We conclude: $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$.

Remark:

- $\blacktriangleright A \mathbf{v}_i = \lambda_i \mathbf{v}_i.$
- The eigenvalues and eigenvectors of A are crucial to solve the differential linear system x'(t) = A x(t).

Remark:

- There are two main types of graphs for solutions of 2 × 2 linear systems:
 - (i) The graphs of the vector components;
 - (ii) The phase portrait.
- Case (i): Express the solution in vector components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, and graph x_1 and x_2 as functions of t. (Recall the solution in the IVP of the previous Example: $x_1(t) = 3 e^{4t} - e^{-2t}$ and $x_2(t) = 3 e^{4t} + e^{-2t}$.)
- Case (ii): Express the solution as a vector-valued function,

 $\mathbf{x}(t) = c_1 \, \mathbf{v}_1 \, e^{\lambda_1 t} + c_2 \, \mathbf{v}_2 \, e^{\lambda_2 t},$

and plot the vector $\mathbf{x}(t)$ for different values of t.

• Case (ii) is called a *phase portrait*.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$$

Solution: We now plot the functions $\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t},$ $\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$$

Solution: We now plot the four functions

x₂

X 1

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \ 1 \end{bmatrix} e^{-2t}.$$

Solution:

We now plot the eight functions

$$\mathbf{x}^{(1)}, \ -\mathbf{x}^{(1)}, \ \mathbf{x}^{(2)}, \ -\mathbf{x}^{(2)}$$

$$\mathbf{x}^{(1)} + \mathbf{x}^{(2)}, \quad -\mathbf{x}^{(1)} + \mathbf{x}^{(2)},$$

$$\mathbf{x}^{(1)} - \mathbf{x}^{(2)}, \quad -\mathbf{x}^{(1)} - \mathbf{x}^{(2)}.$$

Phase portrait: Case (a), two different, real eigenvalues $\lambda_1 \neq \lambda_2$, sub-case $0 < \lambda_2 < \lambda_1$, both eigenvalue positive.

Phase portrait: Case (a), two different, real eigenvalues $\lambda_1 \neq \lambda_2$, sub-case $\lambda_2 < \lambda_1 < 0$, both eigenvalues negative.

