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n × n linear differential systems (5.4).

Definition
An n × n linear differential system is a the following: Given an
n× n matrix-valued function A, and an n-vector-valued function b,
find an n-vector-valued function x solution of

x′(t) = A(t) x(t) + b(t).

The system above is called homogeneous iff holds b = 0.

Recall:

A(t) =

a11(t) · · · a1n(t)
...

...
an1(t) · · · ann(t)

 , b(t) =

b1(t)
...

bn(t)

 , x(t) =

x1(t)
...

xn(t)

 .

x′(t) = A(t) x(t) + b(t) ⇔

x ′
1 = a11(t) x1 + · · ·+ a1n(t) xn + b1(t)

...

x ′
n = an1(t) x1 + · · ·+ ann(t) xn + bn(t).



n × n linear differential systems (5.4).

Example

Find the explicit expression for the linear system x′ = Ax + b in the
case that

A =

[
1 3
3 1

]
, b(t) =

[
et

2e3t

]
, x =

[
x1

x2

]
.

Solution: The 2× 2 linear system is given by[
x ′1
x ′2

]
=

[
1 3
3 1

] [
x1

x2

]
+

[
et

2e3t

]
.

That is,
x ′1(t) = x1(t) + 3x2(t) + et ,

x ′2(t) = 3x1(t) + x2(t) + 2e3t .

C

n × n linear differential systems (5.4).

Remark: Derivatives of vector-valued functions are computed
component-wise.

x′(t) =

x1(t)
...

xn(t)


′

=

x ′1(t)
...

x ′n(t)

 .

Example

Compute x′ for x(t) =

 e2t

sin(t)
cos(t)

.

Solution:

x′(t)

 e2t

sin(t)
cos(t)

′

=

 2e2t

cos(t)
− sin(t)

 .

C
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Constant coefficients homogenoues systems (5.6).

Remarks:

I Given an n × n matrix A(t), n-vector b(t), find x(t) solution

x′(t) = A(t) x(t) + b(t).

I The system is homogeneous iff b = 0, that is,

x′(t) = A(t) x(t).

I The system has constant coefficients iff matrix A does not
depend on t, that is,

x′(t) = A x(t) + b(t).

I We study homogeneous, constant coefficient systems, that is,

x′(t) = A x(t).



Constant coefficients homogenoues systems (5.6).
Theorem (Diagonalizable matrix)

If n × n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1, · · · , vn} and corresponding eigenvalues
{λ1, · · · , λn}, then the general solution x to the homogeneous,
constant coefficients, linear system

x′(t) = A x(t)

is given by the expression below, where c1, · · · , cn ∈ R,

x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt .

Remark:

I The differential system for the variable x is coupled, that is, A
is not diagonal.

I We transform the system into a system for a variable y such
that the system for y is decoupled, that is, y′(t) = D y(t),
where D is a diagonal matrix.

I We solve for y(t) and we transform back to x(t).
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Examples: 2× 2 linear systems (5.6).

Example

Find the general solution to x′ = Ax, with A =

[
1 3
3 1

]
.

Solution: Find eigenvalues and eigenvectors of A. We found that:

λ1 = 4, v(1) =

[
1
1

]
, and λ2 = −2, v(2) =

[
−1
1

]
.

Fundamental solutions are

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

The general solution is x(t) = c1 x(1)(t) + c2 x(2)(t), that is,

x(t) = c1

[
1
1

]
e4t + c2

[
−1
1

]
e−2t , c1, c2 ∈ R. C

Examples: 2× 2 linear systems (5.6).

Example

Verify that x(1) =

[
1
1

]
e4t , and x(2) =

[
−1
1

]
e−2t are solutions to

x′ = Ax, with A =

[
1 3
3 1

]
.

Solution: We compute x(1)′ and then we compare it with Ax(1),

x(1)′(t) =

[
e4t

e4t

]′
=

[
4e4t

4e4t

]
= 4

[
1
1

]
e4t ⇒ x(1)′ = 4x(1).

Ax(1) =

[
1 3
3 1

] [
1
1

]
e4t =

[
4
4

]
e4t = 4

[
1
1

]
e4t ⇒ Ax(1) = 4x(1).

We conclude that x(1)′ = Ax(1).



Examples: 2× 2 linear systems (5.6).

Example

Verify that x(1) =

[
1
1

]
e4t , and x(2) =

[
−1
1

]
e−2t are solutions to

x′ = Ax, with A =

[
1 3
3 1

]
.

Solution: We compute x(2)′ and then we compare it with Ax(2),

x(2)′ =

[
−e−2t

e−2t

]′
=

[
2e−2t

−2e−2t

]
= −2

[
−1
1

]
e−2t ⇒ x(2)′ = −2x(2).

Ax(2) =

[
1 3
3 1

] [
−1
1

]
e−2t =

[
2
−2

]
e−2t = −2

[
−1
1

]
e−2t ,

So, Ax(2) = −2x(2). Hence, x(2)′ = Ax(2). C

Examples: 2× 2 linear systems (5.6).

Example

Solve the IVP x′ = Ax, where x(0) =

[
2
4

]
, and A =

[
1 3
3 1

]
.

Solution: The general solution: x(t) = c1

[
1
1

]
e4t + c2

[
−1
1

]
e−2t .

The initial condition is,

x(0) =

[
2
4

]
= c1

[
1
1

]
+ c2

[
−1
1

]
.

We need to solve the linear system[
1 −1
1 1

] [
c1

c2

]
=

[
2
4

]
⇒

[
c1

c2

]
=

1

2

[
1 1
−1 1

] [
2
4

]
.

Therefore,

[
c1

c2

]
=

[
3
1

]
, hence x(t) = 3

[
1
1

]
e4t +

[
−1
1

]
e−2t . C



Constant coefficients homogenoues systems (5.6).

Proof: Since A is diagonalizable, we know that A = PDP−1, with

P =
[
v1, · · · , vn

]
, D = diag

[
λ1, · · · , λn

]
.

Equivalently, P−1AP = D. Multiply x′ = A x by P−1 on the left

P−1x′(t) = P−1A x(t) ⇔
(
P−1x

)′
=

(
P−1AP

) (
P−1x

)
.

Introduce the new unknown y(t) = P−1x(t), then

y′(t) = D y(t) ⇔


y ′1(t) = λ1 y1(t),

...

y ′n(t) = λn yn(t),

⇒ y(t) =

c1 eλ1t

...
cn eλnt

 .

Constant coefficients homogenoues systems (5.6).

Proof: Recall: y(t) = P−1x(t), and y(t) =

c1 eλ1t

...
cn eλnt

.

Transform back to x(t), that is,

x(t) = P y(t) =
[
v1, · · · , vn

] c1 eλ1t

...
cn eλnt


We conclude: x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt .

Remark:

I A vi = λivi .

I The eigenvalues and eigenvectors of A are crucial to solve the
differential linear system x′(t) = A x(t).
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Phase portraits for 2× 2 systems (5.7).
Remark:

I There are two main types of graphs for solutions of 2× 2
linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.

I Case (i): Express the solution in vector components

x(t) =

[
x1(t)
x2(t)

]
, and graph x1 and x2 as functions of t.

(Recall the solution in the IVP of the previous Example:
x1(t) = 3 e4t − e−2t and x2(t) = 3 e4t + e−2t .)

I Case (ii): Express the solution as a vector-valued function,

x(t) = c1 v1 eλ1t + c2 v2 eλ2t ,

and plot the vector x(t) for different values of t.

I Case (ii) is called a phase portrait.



Phase portraits for 2× 2 systems (5.7).
Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

Solution:
We start plotting the
vectors

v1 =

[
1
1

]
,

v2 =

[
−1
1

]
.

1v

1−1

−1

1

x 2

x 1

2v

Phase portraits for 2× 2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

Solution:
We now plot the functions

x(1) =

[
1
1

]
e4t ,

x(2) =

[
−1
1

]
e−2t .

x 1

2 v

x x( 2 ) ( 1 )

1

1−1

−1

v
1

2
x



Phase portraits for 2× 2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

Solution:
We now plot the functions

−x(1) = −
[
1
1

]
e4t ,

−x(2) = −
[
−1
1

]
e−2t .

12 v
1

− x
( 1 )

− x ( 2 )

11−1

−1

2x

x

v

Phase portraits for 2× 2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

Solution:
We now plot the four
functions

x(1), −x(1),

x(2), −x(2).

x

2 v

( 1 )
− x − x

( 2 )

( 2 )
x x

( 1 )
1

x 11−1

−1

v
1

2



Phase portraits for 2× 2 systems (5.7).
Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

Solution:
We now plot the four
functions

x(1), − x(1), x(2), − x(2),

and x(1) + x(2),[
1
1

]
e4t +

[
−1
1

]
e−2t .

x      + x

1

2 v

( 1 )
− x ( 2 )

( 2 )
x

( 1 )

( 1 ) ( 2 )

− x

x 1

1−1

−1

2

x

v
1

x

Phase portraits for 2× 2 systems (5.7).

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

Solution:
We now plot the eight
functions

x(1), − x(1), x(2), − x(2),

x(1) + x(2), −x(1) + x(2),

x(1) − x(2), −x(1) − x(2).

1

1

2 v
1

1−1

−1

2
x

x

v



Phase portraits for 2× 2 systems (5.7).

Problem:
Case (a): Consider a 2× 2 matrix A having two different, real
eigenvalues λ1 6= λ2, so A has two non-proportional eigenvectors
v1, v2 (eigen-directions).

Given a solution x(t) = c1 v1 eλ1t + c2 v2 eλ2t , to x′(t) = A x(t),
plot different solution vectors x(t) on the plane as function of t for
different choices of the constants c1 and c2.

The plots are different depending on the eigenvalues signs.
We have the following three sub-cases:

(i) 0 < λ2 < λ1, both positive;

(ii) λ2 < 0 < λ1, one positive the other negative;

(iii) λ2 < λ1 < 0, both negative.

Phase portraits for 2× 2 systems (5.7).

Phase portrait: Case (a), two different, real eigenvalues λ1 6= λ2,
sub-case 0 < λ2 < λ1, both eigenvalue positive.

1

x 2

x1

2v

v



Phase portraits for 2× 2 systems.

Phase portrait: Case (a), two different, real eigenvalues λ1 6= λ2,
sub-case λ2 < 0 < λ1, one eigenvalue positive the other negative.
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Phase portraits for 2× 2 systems (5.7).

Phase portrait: Case (a), two different, real eigenvalues λ1 6= λ2,
sub-case λ2 < λ1 < 0, both eigenvalues negative.
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