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The Dirac delta generalized function.

Definition
Consider the sequence of functions for n > 1,

δn(t) =


0, t < 0
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The Dirac delta generalized function is given by

lim
n→∞

δn(t) = δ(t), t ∈ R.

Remarks:

(a) There exist infinitely many sequences δn that define the same
generalized function δ.

(b) For example, compare with the sequences δn in the literature.

The Dirac delta generalized function.
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Remarks:

(a) The Dirac δ is a function on the domain R− {0}, and
δ(t) = 0 for t ∈ R− {0}.

(b) δ at t = 0 is not defined, since δ(0) = limn→∞ n = +∞.

(c) δ is not a function on R.
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Properties of Dirac’s delta.

Remark: The Dirac δ is not a function on R.

We define operations on Dirac’s δ as limits n →∞ of the
operation on the sequence elements δn.

Definition

δ(t − c) = lim
n→∞

δn(t − c),

a δ(t) + b δ(t) = lim
n→∞

[
a δn(t) + b δn(t)

]
,

f (t) δ(t) = lim
n→∞

[
f (t) δn(t)

]
,∫ b

a
δ(t) dt = lim

n→∞

∫ b

a
δn(t) dt,

L[δ] = lim
n→∞

L[δn].



Properties of Dirac’s delta.

Theorem ∫ a

−a
δ(t) dt = 1, a > 0.

Proof: ∫ a

−a
δ(t) dt = lim

n→∞

∫ a

−a
δn(t) dt = lim

n→∞

∫ 1/n

0
n dt

∫ a

−a
δ(t) dt = lim

n→∞

[
n
(
t
∣∣∣1/n

0

)]
= lim

n→∞

[
n

1

n

]
.

We conclude:

∫ a

−a
δ(t) dt = 1.

Properties of Dirac’s delta.

Theorem
If f : R → R is continuous, t0 ∈ R and a > 0, then∫ t0+a

t0−a
δ(t − t0) f (t) dt = f (t0).

Proof: Introduce the change of variable τ = t − t0,

I =

∫ t0+a

t0−a
δ(t − t0) f (t) dt =

∫ a

−a
δ(τ) f (τ + t0) dτ,

I = lim
n→∞

∫ a

−a
δn(τ) f (τ + t0) dτ = lim

n→∞

∫ 1/n

0
n f (τ + t0) dτ

Therefore, I = lim
n→∞

n

∫ 1/n

0
F ′(τ + t0) dτ , where we introduced the

primitive F (t) =

∫
f (t) dt, that is, f (t) = F ′(t).



Properties of Dirac’s delta.

Theorem
If f : R → R is continuous, t0 ∈ R and a > 0, then∫ t0+a

t0−a
δ(t − t0) f (t) dt = f (t0).

Proof: So, I = lim
n→∞

n

∫ 1/n

0
F ′(τ + t0) dτ , with f (t) = F ′(t).

I = lim
n→∞

n
[
F (τ + t0)

∣∣∣1/n

0

]
= lim

n→∞
n

[
F

(
t0 +

1

n

)
− F (t0)

]
.

I = lim
n→∞

[
F

(
t0 + 1

n

)
− F (t0)

]
1

n

= F ′(t0) = f (t0).

We conclude:

∫ t0+a

t0−a
δ(t − t0) f (t) dt = f (t0).
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Relation between deltas and steps.

Theorem
The sequence of functions for n > 1,

un(t) =


0, t < 0

nt, 0 6 t 6
1

n

1, t >
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n
.

u
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satisfies, for t ∈ (−∞, 0) ∪ (0, 1/n) ∪ (1/n,∞), both equations,

u′n(t) = δn(t), lim
n→∞

un(t) = u(t), t ∈ R.

Remark:

I If we generalize the notion of derivative as
u′(t) = lim

n→∞
u′n(t), then holds u′(t) = δ(t).

I Dirac’s delta is a generalized derivative of the step function.
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Dirac’s delta in Physics.

Remarks:

(a) Dirac’s delta generalized function is useful to describe
impulsive forces in mechanical systems.

(b) An impulsive force transmits a finite momentum in an
infinitely short time.

(c) For example: The momentum transmitted to a pendulum
when hit by a hammer. Newton’s law of motion says,

m v ′(t) = F (t), with F (t) = F0 δ(t − t0).

The momentum transfer is:

∆I = lim
∆t→0

mv(t)
∣∣∣t0+∆t

t0−∆t
= lim

∆t→0

∫ t0+∆t

t0−∆t
F (t) dt = F0.

That is, ∆I = F0.
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The Laplace Transform of Dirac’s delta.

Recall: The Laplace Transform can be generalized from functions
to δ, as follows, L[δ(t − c)] = lim

n→∞
L[δn(t − c)].

Theorem
L[δ(t − c)] = e−cs .

Proof:

L[δ(t − c)] = lim
n→∞

L[δn(t − c)], δn(t) = n
[
u(t)− u

(
t − 1

n

)]
.

L[δ(t − c)] = lim
n→∞

n
(
L[u(t − c)]− L

[
u
(
t − c − 1

n

)])
L[δ(t − c)] = lim

n→∞
n
(e−cs

s
− e−(c+ 1

n
)s

s

)
= e−cs lim

n→∞

(1− e−
s
n )(

s
n

) .

This is a singular limit, 0
0 . Use l’Hôpital rule.

The Laplace Transform of Dirac’s delta.

Proof: Recall: L[δ(t − c)] = e−cs lim
n→∞

(1− e−
s
n )(

s
n

) .

lim
n→∞

(1− e−
s
n )(

s
n

) = lim
n→∞

(− s
n2 e−

s
n )(

− s
n2

) = lim
n→∞

e−
s
n = 1.

We therefore conclude that L[δ(t − c)] = e−cs .

Remarks:

(a) This result is consistent with a previous result:∫ t0+a

t0−a
δ(t − t0) f (t) dt = f (t0).

(b) L[δ(t − c)] =

∫ ∞

0
δ(t − c) e−st dt = e−cs .

(c) L[δ(t − c) f (t)] =

∫ ∞

0
δ(t − c) e−st f (t) dt = e−cs f (c).
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Differential equations with Dirac’s delta sources.

Example

Find the solution y to the initial value problem

y ′′ − y = −20 δ(t − 3), y(0) = 1, y ′(0) = 0.

Solution: Compute: L[y ′′]− L[y ] = −20L[δ(t − 3)].

L[y ′′] = s2 L[y ]−s y(0)−y ′(0) ⇒ (s2−1)L[y ]−s = −20 e−3s ,

We arrive to the equation L[y ] =
s

(s2 − 1)
− 20 e−3s 1

(s2 − 1)
,

L[y ] = L[cosh(t)]− 20L[u(t − 3) sinh(t − 3)],

We conclude: y(t) = cosh(t)− 20 u(t − 3) sinh(t − 3). C



Differential equations with Dirac’s delta sources.

Example

Find the solution to the initial value problem

y ′′ + 4y = δ(t − π)− δ(t − 2π), y(0) = 0, y ′(0) = 0.

Solution: Compute: L[y ′′] + 4L[y ] = L[δ(t − π)]− L[δ(t − 2π)],

(s2 + 4)L[y ] = e−πs − e−2πs ⇒ L[y ] =
e−πs

(s2 + 4)
− e−2πs

(s2 + 4)
,

that is, L[y ] =
e−πs

2

2

(s2 + 4)
− e−2πs

2

2

(s2 + 4)
.

Recall: e−cs L[f (t)] = L[u(t − c) f (t − c)]. Therefore,

L[y ] =
1

2
L

[
u(t−π) sin

[
2(t−π)

]]
− 1

2
L

[
u(t−2π) sin

[
2(t−2π)

]]
.

Differential equations with Dirac’s delta sources.

Example

Find the solution to the initial value problem

y ′′ + 4y = δ(t − π)− δ(t − 2π), y(0) = 0, y ′(0) = 0.

Solution: Recall:

L[y ] =
1

2
L

[
u(t−π) sin

[
2(t−π)

]]
− 1

2
L

[
u(t−2π) sin

[
2(t−2π)

]]
.

This implies that,

y(t) =
1

2
u(t − π) sin

[
2(t − π)

]
− 1

2
u(t − 2π) sin

[
2(t − 2π)

]
,

We conclude: y(t) =
1

2

[
u(t − π)− u(t − 2π)

]
sin(2t). C


