The Laplace Transform of step functions (Sect. 4.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

Overview and notation.

Overview: The Laplace Transform method can be used to solve constant coefficients differential equations with discontinuous source functions.

Notation:
If $\mathcal{L}[f(t)]=F(s)$, then we denote $\mathcal{L}^{-1}[F(s)]=f(t)$.
Remark: One can show that for a particular type of functions f, that includes all functions we work with in this Section, the notation above is well-defined.

Example

From the Laplace Transform table we know that $\mathcal{L}\left[e^{a t}\right]=\frac{1}{s-a}$.
Then also holds that $\mathcal{L}^{-1}\left[\frac{1}{s-a}\right]=e^{a t}$.

The Laplace Transform of step functions (Sect. 4.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

The definition of a step function.

Definition

A function u is called a step function at $t=0$ iff holds

$$
u(t)= \begin{cases}0 & \text { for } t<0 \\ 1 & \text { for } t \geqslant 0\end{cases}
$$

Example

Graph the step function values $u(t)$ above, and the translations $u(t-c)$ and $u(t+c)$ with $c>0$.

Solution:

The definition of a step function.
Remark: Given any function values $f(t)$ and $c>0$, then $f(t-c)$ is a right translation of f and $f(t+c)$ is a left translation of f.

Example

The Laplace Transform of step functions (Sect. 4.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

Piecewise discontinuous functions.

Example
Graph of the function $b(t)=u(t-a)-u(t-b)$, with $0<a<b$.
Solution: The bump function b can be graphed as follows:

Piecewise discontinuous functions.

Example

Graph of the function $f(t)=e^{a t}[u(t-1)-u(t-2)]$.
Solution:

Notation: It is common in the literature to denote the function values $u(t-c)$ as $u_{c}(t)$.

The Laplace Transform of step functions (Sect. 4.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

The Laplace Transform of discontinuous functions.
Theorem
Given any real number $c \geqslant 0$, the following equation holds,

$$
\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}, \quad s>0 .
$$

Proof:

$$
\begin{gathered}
\mathcal{L}[u(t-c)]=\int_{0}^{\infty} e^{-s t} u(t-c) d t=\int_{c}^{\infty} e^{-s t} d t, \\
\mathcal{L}[u(t-c)]=\lim _{N \rightarrow \infty}-\frac{1}{s}\left(e^{-N s}-e^{-c s}\right)=\frac{e^{-c s}}{s}, \quad s>0 .
\end{gathered}
$$

We conclude that $\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}$.

The Laplace Transform of discontinuous functions.

Example

Compute $\mathcal{L}[3 u(t-2)]$.
Solution: $\quad \mathcal{L}[3 u(t-2)]=3 \mathcal{L}[u(t-2)]=3 \frac{e^{-2 s}}{s}$.
We conclude: $\mathcal{L}[3 u(t-2)]=\frac{3 e^{-2 s}}{s}$.

Example

Compute $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s}\right]$.
Solution: Since $\mathcal{L}[u(t-c)]=\frac{e^{-c s}}{s}$, for $c=3$ we get
$\mathcal{L}^{-1}\left[\frac{e^{-3 s}}{s}\right]=u(t-3)$. Therefore, $\quad \mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s}\right]=2 u(t-3)$.

The Laplace Transform of step functions (Sect. 4.3).

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

Properties of the Laplace Transform.

Theorem (Translations)
If $F(s)=\mathcal{L}[f(t)]$ exists for $s>a \geqslant 0$ and $c \geqslant 0$, then holds

$$
\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} F(s), \quad s>a .
$$

Furthermore,

$$
\mathcal{L}\left[e^{c t} f(t)\right]=F(s-c), \quad s>a+c .
$$

Remark:

- $\mathcal{L}[$ translation $(u f)]=(\exp)(\mathcal{L}[f])$.
- $\mathcal{L}[(\exp)(f)]=$ translation $(\mathcal{L}[f])$.

Equivalent notation:

- $\mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$,
- $\mathcal{L}\left[e^{c t} f(t)\right]=\mathcal{L}[f](s-c)$.

Properties of the Laplace Transform.

Example

Compute $\mathcal{L}[u(t-2) \sin (a(t-2))]$.
Solution: $\mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}, \mathcal{L}[u(t-c) f(t-c)]=e^{-c s} \mathcal{L}[f(t)]$.

$$
\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \mathcal{L}[\sin (a t)]=e^{-2 s} \frac{a}{s^{2}+a^{2}} .
$$

We conclude: $\mathcal{L}[u(t-2) \sin (a(t-2))]=e^{-2 s} \frac{a}{s^{2}+a^{2}}$.

Example

Compute $\mathcal{L}\left[e^{3 t} \sin (a t)\right]$.
Solution: Recall: $\mathcal{L}\left[e^{c t} f(t)\right]=\mathcal{L}[f](s-c), \quad \mathcal{L}[\sin (a t)]=\frac{a}{s^{2}+a^{2}}$.
We conclude: $\mathcal{L}\left[e^{3 t} \sin (a t)\right]=\frac{a}{(s-3)^{2}+a^{2}}$, with $s>3$.

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Using step function notation,

$$
f(t)=u(t-1)\left(t^{2}-2 t+2\right)
$$

Completing the square we obtain,

$$
t^{2}-2 t+2=\left(t^{2}-2 t+1\right)-1+2=(t-1)^{2}+1
$$

This is a parabola t^{2} translated to the right by 1 and up by one. Because of the step function, this is a discontinuous function at $t=1$.

Properties of the Laplace Transform.

Example

Find the Laplace transform of $f(t)= \begin{cases}0, & t<1, \\ \left(t^{2}-2 t+2\right), & t \geqslant 1 .\end{cases}$
Solution: Recall: $f(t)=u(t-1)\left[(t-1)^{2}+1\right]$.
This is equivalent to

$$
f(t)=u(t-1)(t-1)^{2}+u(t-1)
$$

Since $\mathcal{L}\left[t^{2}\right]=2 / s^{3}$, and $\mathcal{L}[u(t-c) g(t-c)]=e^{-c s} \mathcal{L}[g(t)]$, then

$$
\mathcal{L}[f(t)]=\mathcal{L}\left[u(t-1)(t-1)^{2}\right]+\mathcal{L}[u(t-1)]=e^{-s} \frac{2}{s^{3}}+e^{-s} \frac{1}{s} .
$$

We conclude: $\mathcal{L}[f(t)]=\frac{e^{-s}}{s^{3}}\left(2+s^{2}\right)$.

Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c), \\
\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t) .
\end{gathered}
$$

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-4 s} \frac{3}{s^{2}+9}\right]$.
Recall: $\mathcal{L}^{-1}\left[\frac{a}{s^{2}+a^{2}}\right]=\sin (a t)$. Then, we conclude that

$$
\mathcal{L}^{-1}\left[\frac{e^{-4 s}}{s^{2}+9}\right]=\frac{1}{3} u(t-4) \sin (3(t-4)) .
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]$.
Solution: $\mathcal{L}^{-1}\left[\frac{s}{s^{2}+a^{2}}\right]=\cos (a t), \mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$.
We conclude: $\quad \mathcal{L}^{-1}\left[\frac{(s-2)}{(s-2)^{2}+9}\right]=e^{2 t} \cos (3 t)$.

Example

Find $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]$.
Solution: Recall: $\mathcal{L}^{-1}\left[\frac{a}{s^{2}-a^{2}}\right]=\sinh (a t)$
and $\mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c)$.

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]$.
Solution: Recall:

$$
\begin{gathered}
\mathcal{L}^{-1}\left[\frac{a}{s^{2}-a^{2}}\right]=\sinh (a t), \quad \mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c) \\
\mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]=\mathcal{L}^{-1}\left[e^{-3 s} \frac{2}{s^{2}-4}\right]
\end{gathered}
$$

We conclude: $\quad \mathcal{L}^{-1}\left[\frac{2 e^{-3 s}}{s^{2}-4}\right]=u(t-3) \sinh (2(t-3))$.

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Find the roots of the denominator:

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1+8}] \quad \Rightarrow \quad\left\{\begin{array}{l}
s_{+}=1 \\
s_{-}=-2
\end{array}\right.
$$

Therefore, $s^{2}+s-2=(s-1)(s+2)$.
Use partial fractions to simplify the rational function:

$$
\begin{gathered}
\frac{1}{s^{2}+s-2}=\frac{1}{(s-1)(s+2)}=\frac{a}{(s-1)}+\frac{b}{(s+2)}, \\
\frac{1}{s^{2}+s-2}=a(s+2)+b(s-1)=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)} .
\end{gathered}
$$

Properties of the Laplace Transform.

Example

Find $\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]$.
Solution: Recall: $\frac{1}{s^{2}+s-2}=\frac{(a+b) s+(2 a-b)}{(s-1)(s+2)}$

$$
\begin{gathered}
a+b=0, \quad 2 a-b=1, \quad \Rightarrow \quad a=\frac{1}{3}, \quad b=-\frac{1}{3} . \\
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s-1}\right]-\frac{1}{3} \mathcal{L}^{-1}\left[e^{-2 s} \frac{1}{s+2}\right] .
\end{gathered}
$$

Recall: $\mathcal{L}^{-1}\left[\frac{1}{s-a}\right]=e^{a t}, \quad \mathcal{L}^{-1}\left[e^{-c s} F(s)\right]=u(t-c) f(t-c)$,

$$
\mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} u(t-2) e^{(t-2)}-\frac{1}{3} u(t-2) e^{-2(t-2)} .
$$

Hence: $\quad \mathcal{L}^{-1}\left[\frac{e^{-2 s}}{s^{2}+s-2}\right]=\frac{1}{3} u(t-2)\left[e^{(t-2)}-e^{-2(t-2)}\right]$.

