

Consider a spring attached to the ceiling, having rest length I, with an attached mass m.

- (*l* + ∆*l*) is called equilibrium position of the spring loaded with a mass *m*.
- The coordinate y measures vertical deviations from the equilibrium position.

Forces acting on the system:

- Weight: $F_g = mg$.
- Spring: $F_s = -k(\Delta l + y)$. Hooke's Law. (Small oscillations.)
- Damping: $F_d(t) = -d y'(t)$. Fluid Resistance.

Newton's Law: $my''(t) = F_g + F_s(t) + F_d(t)$.

Application: Mechanical Oscillations. Recall: $F_g = mg$, $F_s = -k(\Delta l + y)$, $F_d(t) = -dy'(t)$. $my''(t) = F_g + F_s(t) + F_d(t)$. That is, $my''(t) = mg - k(\Delta l + y(t)) - dy'(t)$. At equilibrium, y = 0, y' = 0, then $k \Delta l = mg$. Hence my''(t) = -ky(t) - dy'(t) my'' + dy' + ky = 0. To solve for the function y, we need the characteristic equation $mr^2 + dr + k = 0 \implies r_{\pm} = \frac{1}{2m} [-d \pm \sqrt{d^2 - 4mk}]$.

Application: Mechanical Oscillations.

Recall:
$$my'' + dy' + ky = 0$$
, and $r_{\pm} = \frac{1}{2m} \left[-d \pm \sqrt{d^2 - 4mk} \right]$.

Not damped oscillations: d = 0. No fluid friction.

$$r_{\pm} = \pm \sqrt{-rac{k}{m}}, \qquad \omega_0 = \sqrt{rac{k}{m}}, \qquad r_{\pm} = \pm i\omega_0.$$

 $y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t).$

Remarks:

- Fundamental Frequency: ω_0 ; Period: $T = \frac{2\pi}{\omega_0}$.
- Equivalent expression: $y(t) = A \cos(\omega_0 t \phi)$.
- Amplitude: A; Phase shift: ϕ .

Recall: Not damped oscillations:

$$y(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) \quad \Leftrightarrow \quad y(t) = A \cos(\omega_0 t - \phi).$$

where $\omega_0 = \sqrt{k/m}$ is the fundamental frequency, A is the amplitude, and ϕ the initial phase shift of the oscillations.

(Recall that the oscillation period is $T = \frac{2\pi}{\omega_0}$.)

Proof: Recall the trigonometric identity:

$$A\cos(\omega_0 t - \phi) = A\cos(\omega_0 t)\cos(\phi) + A\sin(\omega_0 t)\sin(\phi).$$

Therefore, comparing the first and last expressions above,

$$\begin{array}{l} c_1 = A\cos(\phi) \\ c_2 = A\sin(\phi) \end{array} \qquad \Leftrightarrow \qquad \begin{cases} A = \sqrt{c_1^2 + c_2^2} \\ \phi = \arctan\left(\frac{c_2}{c_1}\right). \end{array} \qquad \Box$$

Application: Mechanical Oscillations. Damped Oscillations Recall: my'' + dy' + ky = 0, and $r_{\pm} = \frac{1}{2m} \left[-d \pm \sqrt{d^2 - 4mk} \right]$. Rewrite: $r_{\pm} = -\frac{d}{2m} \pm \sqrt{\left(\frac{d}{2m}\right)^2 - \frac{k}{m}}$. Introduce: $\omega_0 = \sqrt{\frac{k}{m}}$, and $\omega_d = \frac{d}{2m}$. Hence $r_{\pm} = -\omega_d \pm \sqrt{\omega_d^2 - \omega_0^2}$. Remark: We have three cases of damped oscillations:

(a) Over damped: $\omega_d > \omega_0$.

(b) Critically damped: $\omega_d = \omega_0$.

(c) Under damped: $\omega_d < \omega_0$.

Recall: m y'' + d y' + k y = 0, and $r_{\pm} = -\omega_d \pm \sqrt{\omega_d^2 - \omega_0^2}$.

(a) Over damped: $\omega_d > \omega_0$. Two distinct real roots:

$$y(t) = c_1 e^{r_+ t} + c_2 e^{r_- t}.$$

(b) Critically damped: $\omega_d = \omega_0$. Repeated real root $r_{+} = r_{-} = \hat{r}$:

$$y(t)=(c_1+c_2t)\,e^{\hat{r}t}.$$

(c) Under damped: $\omega_d < \omega_0$. Complex roots:

$$y(t) = [c_1 \cos(\beta t) + c_2 \sin(\beta t)] e^{-\omega_d t}$$

$$y(t) = A \cos(\beta t - \phi) e^{-\omega_d t}$$

where
$$r_{\pm}=-\omega_{d}\pm ieta$$
, and $eta=\sqrt{\omega_{0}^{2}-\omega_{d}^{2}}$.

Application: Mechanical Oscillations.

Example

Find the movement of a 5Kg mass attached to a spring with constant $k = 5\text{Kg/Secs}^2$ moving in a medium with damping constant d = 5Kg/Secs, with initial conditions $y(0) = \sqrt{3}$ and y'(0) = 0.

Solution: The equation is: my'' + dy' + ky = 0, with m = 5, k = 5, d = 5. The characteristic roots are

$$r_{\pm}=-\omega_d\pm\sqrt{\omega_d^2-\omega_0^2},\quad \omega_d=rac{d}{2m}=rac{1}{2},\quad \omega_0=\sqrt{rac{k}{m}}=1.$$

 $r_{\pm} = -\frac{1}{2} \pm \sqrt{\frac{1}{4} - 1} = -\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$. Under damped oscillations.

$$y(t) = A \cos\left(\frac{\sqrt{3}}{2} t - \phi\right) e^{-t/2}.$$

Example

Find the movement of a 5Kg mass attached to a spring with constant $k = 5\text{Kg/Secs}^2$ moving in a medium with damping constant d = 5Kg/Secs, with initial conditions $y(0) = \sqrt{3}$ and y'(0) = 0.

Solution: Recall: $y(t) = A \cos\left(\frac{\sqrt{3}}{2}t - \phi\right) e^{-t/2}$. Hence,

$$y'(t) = -\frac{\sqrt{3}}{2}A\sin\left(\frac{\sqrt{3}}{2}t - \phi\right)e^{-t/2} - \frac{1}{2}A\cos\left(\frac{\sqrt{3}}{2}t - \phi\right)e^{-t/2}.$$

The initial conditions:

$$\sqrt{3} = y(0) = A\cos(\phi), \quad 0 = y'(0) = \frac{\sqrt{3}}{2}A\sin(\phi) - \frac{1}{2}A\cos(\phi).$$
$$\tan(\phi) = \frac{1}{\sqrt{3}} \quad \Rightarrow \quad \phi = \frac{\pi}{6}, \quad \Rightarrow \quad A = 2.$$
We conclude: $y(t) = 2\cos\left(\frac{\sqrt{3}}{2}t - \frac{\pi}{6}\right)e^{-t/2}.$

Mechanical and electrical oscillations (Sect. 2.7?)

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- Application: Mechanical Oscillations.
- ► Application: The RLC electrical circuit.

The RLC electrical circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t) : electric current.

Kirchhoff's Law: The electric current flowing in the circuit satisfies:

$$L I'(t) + R I(t) + \frac{1}{C} \int_{t_0}^t I(s) ds = 0.$$

Derivate both sides above: $LI''(t) + RI'(t) + \frac{1}{C}I(t) = 0.$

Divide by L: $I''(t) + 2\left(\frac{R}{2L}\right)I'(t) + \frac{1}{LC}I(t) = 0.$

Introduce $\alpha = \frac{R}{2L}$ and $\omega = \frac{1}{\sqrt{LC}}$, then $I'' + 2\alpha I' + \omega^2 I = 0$.

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) R = 0. This implies $\alpha = 0$, so $r_{\pm} = \pm i\omega$. Therefore,

$$I_1(t) = \cos(\omega t), \qquad I_2(t) = \sin(\omega t).$$

Remark: When the circuit has no resistance, the current oscillates without dissipation.

