Mechanical and electrical oscillations (Sect. 2.7?)

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Application: Mechanical Oscillations.
- Application: The RLC electrical circuit.

Remark:
Different physical systems may have identical mathematical descriptions.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
Summary of solutions of the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0, \quad a_{1}, a_{2} \in \mathbb{R}
$$

and characteristic roots $r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}}$.
(1) Over damped systems: If $a_{1}^{2}-4 a_{0}>0$, then,

$$
y_{1}(t)=e^{r+t}, \quad y_{2}(t)=e^{r-t} .
$$

(2) Critically damped systems: If $a_{1}^{2}-4 a_{0}=0$, then,

$$
y_{1}(t)=e^{-\frac{a_{1}}{2} t}, \quad y_{2}(t)=t e^{-\frac{a_{1}}{2} t}
$$

(3) Under damped systems: If $a_{1}^{2}-4 a_{0}<0$, then

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t) .
$$

with $\alpha=-\frac{a_{1}}{2}, \beta=\frac{1}{2} \sqrt{4 a_{0}-a_{1}^{2}}$. Not damped: If $a_{1}=0$.

Mechanical and electrical oscillations (Sect. 2.7?)

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Application: Mechanical Oscillations.
- Application: The RLC electrical circuit.

Application: Mechanical Oscillations.

Consider a spring attached to the ceiling, having rest length I, with an attached mass m.

- $(I+\Delta I)$ is called equilibrium position of the spring loaded with a mass m.
- The coordinate y measures vertical deviations from the
 equilibrium position.

Forces acting on the system:

- Weight: $F_{g}=m g$.
- Spring: $F_{s}=-k(\Delta I+y)$. Hooke's Law. (Small oscillations.)
- Damping: $F_{d}(t)=-d y^{\prime}(t)$. Fluid Resistance.

Newton's Law: $m y^{\prime \prime}(t)=F_{g}+F_{s}(t)+F_{d}(t)$.

Application: Mechanical Oscillations.

Recall: $F_{g}=m g, \quad F_{s}=-k(\Delta I+y), \quad F_{d}(t)=-d y^{\prime}(t)$.

$$
m y^{\prime \prime}(t)=F_{g}+F_{s}(t)+F_{d}(t)
$$

That is, $\quad m y^{\prime \prime}(t)=m g-k(\Delta I+y(t))-d y^{\prime}(t)$.
At equilibrium, $y=0, y^{\prime}=0$, then $k \Delta I=m g$. Hence

$$
\begin{gathered}
m y^{\prime \prime}(t)=-k y(t)-d y^{\prime}(t) \\
m y^{\prime \prime}+d y^{\prime}+k y=0
\end{gathered}
$$

To solve for the function y, we need the characteristic equation

$$
m r^{2}+d r+k=0 \quad \Rightarrow \quad r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right] .
$$

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Not damped oscillations: $d=0$. No fluid friction.

$$
\begin{gathered}
r_{ \pm}= \pm \sqrt{-\frac{k}{m}}, \quad \omega_{0}=\sqrt{\frac{k}{m}}, \quad r_{ \pm}= \pm i \omega_{0} \\
y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)
\end{gathered}
$$

Remarks:

- Fundamental Frequency: ω_{0}; Period: $T=\frac{2 \pi}{\omega_{0}}$.
- Equivalent expression: $y(t)=A \cos \left(\omega_{0} t-\phi\right)$.
- Amplitude: A; Phase shift: ϕ.

Application: Mechanical Oscillations.

Recall: Not damped oscillations:

$$
y(t)=c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right) \quad \Leftrightarrow \quad y(t)=A \cos \left(\omega_{0} t-\phi\right)
$$

where $\omega_{0}=\sqrt{k / m}$ is the fundamental frequency, A is the amplitude, and ϕ the initial phase shift of the oscillations.
(Recall that the oscillation period is $T=\frac{2 \pi}{\omega_{0}}$.)
Proof: Recall the trigonometric identity:

$$
A \cos \left(\omega_{0} t-\phi\right)=A \cos \left(\omega_{0} t\right) \cos (\phi)+A \sin \left(\omega_{0} t\right) \sin (\phi)
$$

Therefore, comparing the first and last expressions above,

$$
\left.\begin{array}{l}
c_{1}=A \cos (\phi) \\
c_{2}=A \sin (\phi)
\end{array}\right\} \quad \Leftrightarrow \quad\left\{\begin{array}{l}
A=\sqrt{c_{1}^{2}+c_{2}^{2}} \\
\phi=\arctan \left(\frac{c_{2}}{c_{1}}\right) .
\end{array}\right.
$$

Application: Mechanical Oscillations.

Damped Oscillations

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=\frac{1}{2 m}\left[-d \pm \sqrt{d^{2}-4 m k}\right]$.
Rewrite: $r_{ \pm}=-\frac{d}{2 m} \pm \sqrt{\left(\frac{d}{2 m}\right)^{2}-\frac{k}{m}}$.
Introduce: $\omega_{0}=\sqrt{\frac{k}{m}}$, and $\omega_{d}=\frac{d}{2 m}$. Hence

$$
r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}
$$

Remark: We have three cases of damped oscillations:
(a) Over damped: $\omega_{d}>\omega_{0}$.
(b) Critically damped: $\omega_{d}=\omega_{0}$.
(c) Under damped: $\omega_{d}<\omega_{0}$.

Application: Mechanical Oscillations.

Recall: $m y^{\prime \prime}+d y^{\prime}+k y=0$, and $r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}$.
(a) Over damped: $\omega_{d}>\omega_{0}$. Two distinct real roots:

$$
y(t)=c_{1} e^{r_{+} t}+c_{2} e^{r-t}
$$

(b) Critically damped: $\omega_{d}=\omega_{0}$. Repeated real root $r_{+}=r_{-}=\hat{r}$:

$$
y(t)=\left(c_{1}+c_{2} t\right) e^{\hat{\gamma} t} .
$$

(c) Under damped: $\omega_{d}<\omega_{0}$. Complex roots:

$$
\begin{gathered}
y(t)=\left[c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right] e^{-\omega_{d} t} \\
y(t)=A \cos (\beta t-\phi) e^{-\omega_{d} t}
\end{gathered}
$$

where $r_{ \pm}=-\omega_{d} \pm i \beta$, and $\beta=\sqrt{\omega_{0}^{2}-\omega_{d}^{2}}$.

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.

Solution: The equation is: $m y^{\prime \prime}+d y^{\prime}+k y=0$, with $m=5$, $k=5, d=5$. The characteristic roots are

$$
\begin{gathered}
r_{ \pm}=-\omega_{d} \pm \sqrt{\omega_{d}^{2}-\omega_{0}^{2}}, \quad \omega_{d}=\frac{d}{2 m}=\frac{1}{2}, \quad \omega_{0}=\sqrt{\frac{k}{m}}=1 \\
r_{ \pm}=-\frac{1}{2} \pm \sqrt{\frac{1}{4}-1}=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2} . \quad \text { Under damped oscillations. } \\
y(t)=A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}
\end{gathered}
$$

Application: Mechanical Oscillations.

Example

Find the movement of a 5 Kg mass attached to a spring with constant $k=5 \mathrm{Kg} /$ Secs 2 moving in a medium with damping constant $d=5 \mathrm{Kg} /$ Secs, with initial conditions $y(0)=\sqrt{3}$ and $y^{\prime}(0)=0$.
Solution: Recall: $y(t)=A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}$. Hence,

$$
y^{\prime}(t)=-\frac{\sqrt{3}}{2} A \sin \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}-\frac{1}{2} A \cos \left(\frac{\sqrt{3}}{2} t-\phi\right) e^{-t / 2}
$$

The initial conditions:

$$
\begin{array}{cl}
\sqrt{3}=y(0)=A \cos (\phi), & 0=y^{\prime}(0)=\frac{\sqrt{3}}{2} A \sin (\phi)-\frac{1}{2} A \cos (\phi) \\
\tan (\phi)=\frac{1}{\sqrt{3}} & \Rightarrow \phi=\frac{\pi}{6}, \quad \Rightarrow \quad A=2
\end{array}
$$

We conclude: $y(t)=2 \cos \left(\frac{\sqrt{3}}{2} t-\frac{\pi}{6}\right) e^{-t / 2}$.

Mechanical and electrical oscillations (Sect. 2.7?)

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Application: Mechanical Oscillations.
- Application: The RLC electrical circuit.

The RLC electrical circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t$)$: electric current.

Kirchhoff's Law: The electric current flowing in the circuit satisfies:

$$
L I^{\prime}(t)+R I(t)+\frac{1}{C} \int_{t_{0}}^{t} I(s) d s=0
$$

Derivate both sides above: $L I^{\prime \prime}(t)+R I^{\prime}(t)+\frac{1}{C} I(t)=0$.
Divide by $L: I^{\prime \prime}(t)+2\left(\frac{R}{2 L}\right) I^{\prime}(t)+\frac{1}{L C} I(t)=0$.
Introduce $\alpha=\frac{R}{2 L}$ and $\omega=\frac{1}{\sqrt{L C}}$, then $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$.

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r)=r^{2}+2 \alpha r+\omega^{2}$. The roots are:

$$
r_{ \pm}=\frac{1}{2}\left[-2 \alpha \pm \sqrt{4 \alpha^{2}-4 \omega^{2}}\right] \Rightarrow r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}} .
$$

Case (a) $R=0$. This implies $\alpha=0$, so $r_{ \pm}= \pm i \omega$. Therefore,

$$
I_{1}(t)=\cos (\omega t), \quad I_{2}(t)=\sin (\omega t) .
$$

Remark: When the circuit has no resistance, the current oscillates without dissipation.

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to $I^{\prime \prime}+2 \alpha I^{\prime}+\omega^{2} I=0$, where $\alpha=R /(2 L), \omega^{2}=1 /(L C)$, in the cases (a) (b) below.

Solution: Recall: $r_{ \pm}=-\alpha \pm \sqrt{\alpha^{2}-\omega^{2}}$.
Case (b) $R<\sqrt{4 L / C}$. This implies

$$
R^{2}<\frac{4 L}{C} \Leftrightarrow \frac{R^{2}}{4 L^{2}}<\frac{1}{L C} \quad \Leftrightarrow \quad \alpha^{2}<\omega^{2}
$$

Therefore, $r_{ \pm}=-\alpha \pm i \sqrt{\omega^{2}-\alpha^{2}}$. The fundamental solutions are

$$
I_{1}(t)=e^{-\alpha t} \cos \left(\sqrt{\omega^{2}-\alpha^{2}} t\right), \quad I_{2}(t)=e^{-\alpha t} \sin \left(\sqrt{\omega^{2}-\alpha^{2}} t\right) .
$$

The resistance R damps the current oscillations.

