Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
- Constant coefficients equations.
- Variable coefficients equations.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
Summary:
Given constants $a_{1}, a_{0} \in \mathbb{R}$, consider the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial having roots

$$
r_{ \pm}=-\frac{a_{1}}{2} \pm \frac{1}{2} \sqrt{a_{1}^{2}-4 a_{0}} .
$$

(1) If $a_{1}^{2}-4 a_{0}>0$, then $y_{1}(t)=e^{r_{+} t}$ and $y_{2}(t)=e^{r_{-} t}$.
(2) If $a_{1}^{2}-4 a_{0}<0$, then introducing $\alpha=-\frac{a_{1}}{2}, \beta=\frac{1}{2} \sqrt{4 a_{0}-a_{1}^{2}}$,

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t), \quad y_{2}(t)=e^{\alpha t} \sin (\beta t) .
$$

(3) If $a_{1}^{2}-4 a_{0}=0$, then $y_{1}(t)=e^{-\frac{a_{1}}{2} t}$.

Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.

Question:

Consider the case (3), with $a_{1}^{2}-4 a_{0}=0$, that is, $a_{0}=\frac{a_{1}^{2}}{4}$.

- Does the equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+\frac{a_{1}^{2}}{4} y=0
$$

have two linearly independent solutions?

- Or, is every solution to the equation above proportional to

$$
y_{1}(t)=e^{-\frac{\partial_{1}}{2} t} \quad ?
$$

Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
- Constant coefficients equations.
- Variable coefficients equations.

Repeated roots as a limit case.

Remark:

- Case (3), where $4 a_{0}-a_{1}^{2}=0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos (\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$
y_{1 \beta}(t)=e^{-\frac{a_{1}}{2} t} \cos (\beta t) \rightarrow e^{-\frac{\partial_{1}}{2} t}=y_{1}(t) .
$$

- Since $\frac{\sin (\beta t)}{\beta t} \rightarrow 1$ as $\beta \rightarrow 0$, that is, $\sin (\beta t) \rightarrow \beta t$,

$$
y_{2 \beta}(t)=e^{-\frac{a_{1}}{2} t} \sin (\beta t) \rightarrow \beta t e^{-\frac{a_{1}}{2} t} \rightarrow 0
$$

- Is $y_{2}(t)=t y_{1}(t)$ solution of the differential equation? Introducing y_{2} in the differential equation one obtains: Yes.
- Since y_{2} is not proportional to y_{1}, the functions y_{1}, y_{2} are a fundamental set for the differential equation in case (3).

Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
- Constant coefficients equations.
- Variable coefficients equations.

Main result for repeated roots.

Theorem
If $a_{1}, a_{0} \in R$ satisfy that $a_{1}^{2}=4 a_{0}$, then the functions

$$
y_{1}(t)=e^{-\frac{a_{1}}{2} t}, \quad y_{2}(t)=t e^{-\frac{a_{1}}{2} t},
$$

are a fundamental solution set for the differential equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 .
$$

Example

Find the general solution of $9 y^{\prime \prime}+6 y^{\prime}+y=0$.
Solution: The characteristic equation is $9 r^{2}+6 r+1=0$, so

$$
r_{ \pm}=\frac{1}{(2)(9)}[-6 \pm \sqrt{36-36}] \Rightarrow r_{ \pm}=-\frac{1}{3} .
$$

The Theorem above implies that the general solution is

$$
y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3} .
$$

Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
- Constant coefficients equations.
- Variable coefficients equations.

Reduction of the order method: Constant coefficients.

Proof case $a_{1}^{2}-4 a_{0}=0$:
Recall: The characteristic equation is $r^{2}+a_{1} r+a_{0}=0$, and its solutions are $r_{ \pm}=(1 / 2)\left[-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{0}}\right]$.
The hypothesis $a_{1}^{2}=4 a_{0}$ implies $r_{+}=r_{-}=-a_{1} / 2$.
So, the solution r_{+}of the characteristic equation satisfies both

$$
r_{+}^{2}+a_{1} r_{+}+a_{0}=0, \quad 2 r_{+}+a_{1}=0
$$

It is clear that $y_{1}(t)=e^{r+t}$ is solutions of the differential equation.
A second solution y_{2} not proportional to y_{1} can be found as follows: (D'Alembert ~1750.)
Express: $y_{2}(t)=v(t) y_{1}(t)$, and find the equation that function v satisfies from the condition $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$.

Reduction of the order method: Constant coefficients.

Recall: $y_{2}=v y_{1}$ and $y_{2}^{\prime \prime}+a_{1} y_{2}^{\prime}+a_{0} y_{2}=0$. So, $y_{2}=v e^{r_{+} t}$ and

$$
y_{2}^{\prime}=v^{\prime} e^{r_{+} t}+r_{+} v e^{r_{+} t}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} e^{r_{+} t}+2 r_{+} v^{\prime} e^{r_{+} t}+r_{+}^{2} v e^{r_{+} t}
$$

Introducing this information into the differential equation

$$
\begin{gathered}
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right] e^{r_{+} t}+a_{1}\left[v^{\prime}+r_{+} v\right] e^{r_{+} t}+a_{0} v e^{r_{+} t}=0} \\
{\left[v^{\prime \prime}+2 r_{+} v^{\prime}+r_{+}^{2} v\right]+a_{1}\left[v^{\prime}+r_{+} v\right]+a_{0} v=0} \\
v^{\prime \prime}+\left(2 r_{+}+a_{1}\right) v^{\prime}+\left(r_{+}^{2}+a_{1} r_{+}+a_{0}\right) v=0
\end{gathered}
$$

Recall that r_{+}satisfies: $r_{+}^{2}+a_{1} r_{+}+a_{0}=0$ and $2 r_{+}+a_{1}=0$.

$$
v^{\prime \prime}=0 \Rightarrow v=\left(c_{1}+c_{2} t\right) \Rightarrow y_{2}=\left(c_{1}+c_{2} t\right) e^{r_{+} t}
$$

Reduction of the order method: Constant coefficients.

Recall: We have obtained that $y_{2}(t)=\left(c_{1}+c_{2} t\right) e^{r+t}$.
If $c_{2}=0$, then $y_{2}=c_{1} e^{r_{+} t}$ and $y_{1}=e^{r_{+} t}$ are linearly dependent functions.
If $c_{2} \neq 0$, then $y_{2}=\left(c_{1}+c_{2} t\right) e^{r_{+} t}$ and $y_{1}=e^{r_{+} t}$ are linearly independent functions.

Simplest choice: $c_{1}=0$ and $c_{2}=1$. Then, a fundamental solution set to the differential equation is

$$
y_{1}(t)=e^{r_{+} t}, \quad y_{2}(t)=t e^{r_{+} t}
$$

The general solution to the differential equation is

$$
y(t)=\tilde{c}_{1} e^{r+t}+\tilde{c}_{2} t e^{r+t}
$$

Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

$$
9 y^{\prime \prime}+6 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=\frac{5}{3}
$$

Solution: The solutions of $9 r^{2}+6 r+1=0$, are $r_{+}=r_{-}=-\frac{1}{3}$.
The Theorem above says that the general solution is

$$
y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3} \Rightarrow y^{\prime}(t)=-\frac{c_{1}}{3} e^{-t / 3}+c_{2}\left(1-\frac{t}{3}\right) e^{-t / 3}
$$

The initial conditions imply that

$$
\left.\begin{array}{rl}
1 & =y(0)=c_{1} \\
\frac{5}{3} & =y^{\prime}(0)=-\frac{c_{1}}{3}+c_{2}
\end{array}\right\} \quad \Rightarrow \quad c_{1}=1, \quad c_{2}=2
$$

We conclude that $y(t)=(1+2 t) e^{-t / 3}$.

Second order linear homogeneous ODE (Sect. 2.4).

- Review: On solutions of $y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$.
- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
- Constant coefficients equations.
- Variable coefficients equations.

Reduction of the order method: Variable coefficients.

Remark: The same idea used to prove the constant coefficients Theorem above can be used in variable coefficients equations.

Theorem

Given continuous functions $p, q:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$, let $y_{1}:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ be a solution of

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

If the function $v:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ is solution of

$$
\begin{equation*}
y_{1}(t) v^{\prime \prime}+\left[2 y^{\prime}(t)+p(t) y_{1}(t)\right] v^{\prime}=0 \tag{1}
\end{equation*}
$$

then the functions y_{1} and $y_{2}=v y_{1}$ are fundamental solutions to the differential equation above.

Remark: The reason for the name Reduction of order method is that the function v does not appear in Eq. (1). This is a first order equation in v^{\prime}.

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Express $y_{2}(t)=v(t) y_{1}(t)$. The equation for v comes from $t^{2} y_{2}^{\prime \prime}+2 t y_{2}^{\prime}-2 y_{2}=0$. We need to compute

$$
y_{2}=v t, \quad y_{2}^{\prime}=t v^{\prime}+v, \quad y_{2}^{\prime \prime}=t v^{\prime \prime}+2 v^{\prime}
$$

So, the equation for v is given by

$$
\begin{aligned}
& t^{2}\left(t v^{\prime \prime}+2 v^{\prime}\right)+2 t\left(t v^{\prime}+v\right)-2 t v=0 \\
& t^{3} v^{\prime \prime}+\left(2 t^{2}+2 t^{2}\right) v^{\prime}+(2 t-2 t) v=0 \\
& t^{3} v^{\prime \prime}+\left(4 t^{2}\right) v^{\prime}=0 \quad \Rightarrow \quad v^{\prime \prime}+\frac{4}{t} v^{\prime}=0
\end{aligned}
$$

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

knowing that $y_{1}(t)=t$ is a solution.
Solution: Recall: $v^{\prime \prime}+\frac{4}{t} v^{\prime}=0$.
This is a first order equation for $w=v^{\prime}$, given by $w^{\prime}+\frac{4}{t} w=0$, so

$$
\frac{w^{\prime}}{w}=-\frac{4}{t} \Rightarrow \ln (w)=-4 \ln (t)+c_{0} \Rightarrow w(t)=c_{1} t^{-4}, c_{1} \in \mathbb{R}
$$

Integrating w we obtain v, that is, $v=c_{2} t^{-3}+c_{3}$, with $c_{2}, c_{3} \in \mathbb{R}$.
Recalling that $y_{2}=t v$ we then conclude that $y_{2}=c_{2} t^{-2}+c_{3} t$.
Choosing $c_{2}=1$ and $c_{3}=0$ we obtain the fundamental solutions $y_{1}(t)=t$ and $y_{2}(t)=\frac{1}{t^{2}}$.

Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of $y_{2}=v y_{1}$ implies

$$
y_{2}^{\prime}=v^{\prime} y_{1}+v y_{1}^{\prime}, \quad y_{2}^{\prime \prime}=v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}
$$

This information introduced into the differential equation says that

$$
\begin{gathered}
\left(v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}\right)+p\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)+q v y_{1}=0 \\
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}+\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right) v=0 .
\end{gathered}
$$

The function y_{1} is solution of $y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}=0$.
Then, the equation for v is given by Eq. (1), that is,

$$
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0
$$

Reduction of the order method: Variable coefficients.

Proof: Recall $y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0$. We now need to show that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

$$
W_{y_{1} y_{2}}=\left|\begin{array}{cc}
y_{1} & v y_{1} \\
y_{1}^{\prime} & \left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)
\end{array}\right|=y_{1}\left(v^{\prime} y_{1}+v y_{1}^{\prime}\right)-v y_{1} y_{1}^{\prime} .
$$

We obtain $W_{y_{1} y_{2}}=v^{\prime} y_{1}^{2}$. We need to find v^{\prime}. Denote $w=v^{\prime}$, so

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) w=0 \quad \Rightarrow \quad \frac{w^{\prime}}{w}=-2 \frac{y_{1}^{\prime}}{y_{1}}-p .
$$

Let P be a primitive of p, that is, $P^{\prime}(t)=p(t)$, then

$$
\ln (w)=-2 \ln \left(y_{1}\right)-P \Rightarrow w=e^{\left[\ln \left(y_{1}^{-2}\right)-P\right]} \Rightarrow w=y_{1}^{-2} e^{-P}
$$

We obtain $v^{\prime} y_{1}^{2}=e^{-P}$, hence $W_{y_{1} y_{2}}=e^{-P}$, which is non-zero. We conclude that y_{1} and $y_{2}=v y_{1}$ are linearly independent.

