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Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Summary:
Given constants a1, a0 ∈ R, consider the differential equation

y ′′ + a1y
′ + a0y = 0

with characteristic polynomial having roots

r± = −a1

2
± 1

2

√
a2

1 − 4a0.

(1) If a2
1 − 4a0 > 0, then y1(t) = er+t and y2(t) = er-t .

(2) If a2
1 − 4a0 < 0, then introducing α = −a1

2
, β =

1

2

√
4a0 − a2

1 ,

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).

(3) If a2
1 − 4a0 = 0, then y1(t) = e−

a1
2

t .



Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Question:

Consider the case (3), with a2
1 − 4a0 = 0, that is, a0 =

a2
1

4
.

I Does the equation

y ′′ + a1y
′ +

a2
1

4
y = 0

have two linearly independent solutions?

I Or, is every solution to the equation above proportional to

y1(t) = e−
a1
2

t ?
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Repeated roots as a limit case.

Remark:

I Case (3), where 4a0 − a2
1 = 0 can be obtained as the limit

β → 0 in case (2).

I Let us study the solutions of the differential equation in the
case (2) as β → 0 for fixed t.

I Since cos(βt) → 1 as β → 0, we conclude that

y1β(t) = e−
a1
2

t cos(βt) → e−
a1
2

t = y1(t).

I Since
sin(βt)

βt
→ 1 as β → 0, that is, sin(βt) → βt,

y2β(t) = e−
a1
2

t sin(βt) → βt e−
a1
2

t → 0.

I Is y2(t) = t y1(t) solution of the differential equation?
Introducing y2 in the differential equation one obtains: Yes.

I Since y2 is not proportional to y1, the functions y1, y2 are a
fundamental set for the differential equation in case (3).
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Main result for repeated roots.

Theorem
If a1, a0 ∈ R satisfy that a2

1 = 4a0, then the functions

y1(t) = e−
a1
2

t , y2(t) = t e−
a1
2

t ,

are a fundamental solution set for the differential equation

y ′′ + a1y
′ + a0y = 0.

Example

Find the general solution of 9y ′′ + 6y ′ + y = 0.

Solution: The characteristic equation is 9r2 + 6r + 1 = 0, so

r± =
1

(2)(9)

[
−6±

√
36− 36

]
⇒ r± = −1

3
.

The Theorem above implies that the general solution is

y(t) = c1 e−t/3 + c2 te−t/3. C
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Reduction of the order method: Constant coefficients.

Proof case a2
1 − 4a0 = 0:

Recall: The characteristic equation is r2 + a1r + a0 = 0, and its
solutions are r± = (1/2)

[
−a1 ±

√
a2

1 − 4a0

]
.

The hypothesis a2
1 = 4a0 implies r+ = r- = −a1/2.

So, the solution r+ of the characteristic equation satisfies both

r2
+ + a1r+ + a0 = 0, 2r+ + a1 = 0.

It is clear that y1(t) = er+t is solutions of the differential equation.

A second solution y2 not proportional to y1 can be found as
follows: (D’Alembert ∼ 1750.)

Express: y2(t) = v(t) y1(t), and find the equation that function v
satisfies from the condition y ′′2 + a1y

′
2 + a0y2 = 0.

Reduction of the order method: Constant coefficients.

Recall: y2 = vy1 and y ′′2 + a1y
′
2 + a0y2 = 0. So, y2 = ver+t and

y ′2 = v ′er+t + r+ve
r+t , y ′′2 = v ′′er+t + 2r+v

′er+t + r2
+ ver+t .

Introducing this information into the differential equation[
v ′′ + 2r+v

′ + r2
+ v

]
er+t + a1

[
v ′ + r+v

]
er++t + a0v er+t = 0.[

v ′′ + 2r+v
′ + r2

+ v
]
+ a1

[
v ′ + r+v

]
+ a0v = 0

v ′′ +
(
2r+ + a1

)
v ′ +

(
r2
+ + a1r+ + a0

)
v = 0

Recall that r+ satisfies: r2
+ + a1r+ + a0 = 0 and 2r+ + a1 = 0.

v ′′ = 0 ⇒ v = (c1 + c2t) ⇒ y2 = (c1 + c2t) er+t .



Reduction of the order method: Constant coefficients.

Recall: We have obtained that y2(t) = (c1 + c2t) er+t .

If c2 = 0, then y2 = c1e
r+t and y1 = er+t are linearly dependent

functions.

If c2 6= 0, then y2 = (c1 + c2t) er+t and y1 = er+t are linearly
independent functions.

Simplest choice: c1 = 0 and c2 = 1. Then, a fundamental solution
set to the differential equation is

y1(t) = er+t , y2(t) = t er+t

The general solution to the differential equation is

y(t) = c̃1 er+t + c̃2 ter+t .

Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

9y ′′ + 6y ′ + y = 0, y(0) = 1, y ′(0) =
5

3
.

Solution: The solutions of 9r2 + 6r + 1 = 0, are r+ = r- = −1

3
.

The Theorem above says that the general solution is

y(t) = c1e
−t/3 +c2te

−t/3 ⇒ y ′(t) = −c1

3
e−t/3 +c2

(
1− t

3

)
e−t/3.

The initial conditions imply that

1 = y(0) = c1,

5

3
= y ′(0) = −c1

3
+ c2

 ⇒ c1 = 1, c2 = 2.

We conclude that y(t) = (1 + 2t) e−t/3. C
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Reduction of the order method: Variable coefficients.

Remark: The same idea used to prove the constant coefficients
Theorem above can be used in variable coefficients equations.

Theorem
Given continuous functions p, q : (t1, t2) → R, let y1 : (t1, t2) → R
be a solution of

y ′′ + p(t) y ′ + q(t) y = 0,

If the function v : (t1, t2) → R is solution of

y1(t) v ′′ +
[
2y ′(t) + p(t)y1(t)

]
v ′ = 0. (1)

then the functions y1 and y2 = v y1 are fundamental solutions to
the differential equation above.

Remark: The reason for the name Reduction of order method is
that the function v does not appear in Eq. (1). This is a first order
equation in v ′.



Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Express y2(t) = v(t) y1(t). The equation for v comes
from t2y ′′2 + 2ty ′2 − 2y2 = 0. We need to compute

y2 = v t, y ′2 = t v ′ + v , y ′′2 = t v ′′ + 2v ′.

So, the equation for v is given by

t2
(
t v ′′ + 2v ′

)
+ 2t

(
t v ′ + v

)
− 2t v = 0

t3 v ′′ + (2t2 + 2t2) v ′ + (2t − 2t) v = 0

t3 v ′′ + (4t2) v ′ = 0 ⇒ v ′′ +
4

t
v ′ = 0.

Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′, given by w ′ +
4

t
w = 0, so

w ′

w
= −4

t
⇒ ln(w) = −4 ln(t) + c0 ⇒ w(t) = c1t

−4, c1 ∈ R.

Integrating w we obtain v , that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v we then conclude that y2 = c2t
−2 + c3t.

Choosing c2 = 1 and c3 = 0 we obtain the fundamental solutions

y1(t) = t and y2(t) =
1

t2
. C



Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of y2 = vy1 implies

y ′2 = v ′ y1 + v y ′1, y ′′2 = v ′′ y1 + 2v ′ y ′1 + v y ′′1 .

This information introduced into the differential equation says that

(v ′′ y1 + 2v ′ y ′1 + v y ′′1 ) + p (v ′ y1 + v y ′1) + qv y1 = 0

y1 v ′′ + (2y ′1 + p y1) v ′ + (y ′′1 + p y ′1 + q y1) v = 0.

The function y1 is solution of y ′′1 + p y ′1 + q y1 = 0.

Then, the equation for v is given by Eq. (1), that is,

y1 v ′′ + (2y ′1 + p y1) v ′ = 0.

Reduction of the order method: Variable coefficients.

Proof: Recall y1 v ′′ + (2y ′1 + p y1) v ′ = 0. We now need to show
that y1 and y2 = vy1 are linearly independent.

Wy1y2 =

∣∣∣∣y1 vy1

y ′1 (v ′y1 + vy ′1)

∣∣∣∣ = y1(v
′y1 + vy ′1)− vy1y

′
1.

We obtain Wy1y2 = v ′y2
1 . We need to find v ′. Denote w = v ′, so

y1 w ′ + (2y ′1 + p y1) w = 0 ⇒ w ′

w
= −2

y ′1
y1

− p.

Let P be a primitive of p, that is, P ′(t) = p(t), then

ln(w) = −2 ln(y1)− P ⇒ w = e [ln(y−2
1 )−P] ⇒ w = y−2

1 e−P .

We obtain v ′y2
1 = e−P , hence Wy1y2 = e−P , which is non-zero.

We conclude that y1 and y2 = vy1 are linearly independent.


