Review 1 for Exam 1.

- 6 or 7 problems.
- No multiple choice questions.
- No notes, no books, no calculators.
- Problems similar to homeworks, webwork.
- Exam covers:
- Linear equations (1.1), (1.2).
- Bernoulli equation (1.2).
- Separable equations (1.3).
- Homogeneous equations (1.3).
- Exact equations (1.4).
- Exact equations with integrating factors (1.4).
- Modeling (1.5).

Exam overview

Remark:

- Exam problems will be: Solve this equation. We don't tell you if the equation is linear, separable, etc. You must find that out.
- If you know what type of equation is, then the equation is simple to solve.
- The difficult part in Exam 1 is to know what type of equation is the one you have to solve.

Exam overview

Advice: In order to find out what type of equation is the one you have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t)$.)
2. Bernoulli equations.
(Just by looking at it: $y^{\prime}+a(t) y=b(t) y^{n}$.)
3. Separable equations.
(Few manipulations: $h(y) y^{\prime}=g(t)$.)
4. Homogeneous equations.
(Several manipulations: $y^{\prime}=F(y / t)$.)
5. Exact equations.
(Check one equation: $N y^{\prime}+M=0$, and $\partial_{t} N=\partial_{y} M$.)
6. Exact equation with integrating factor.
(Very complicated to check.)

Review 1 Exam 1.

Example

Find every solution y to the equation $\left(t^{2}+y^{2}\right)\left(t+y y^{\prime}\right)+2=0$.
Solution: Rewrite the equation in a more standard way:

$$
\left(t^{2}+y^{2}\right) y y^{\prime}+\left(t^{2}+y^{2}\right) t+2=0 \quad \Leftrightarrow \quad y^{\prime}=-\frac{\left(t^{2}+y^{2}\right) t+2}{\left(t^{2}+y^{2}\right) y}
$$

Not linear. Not Bernoulli. Not Separable. Not homogeneous.
So the equation must be exact or exact with integrating factor.

$$
\begin{gathered}
N=t^{2} y+y^{3} \quad \Rightarrow \quad \partial_{t} N=2 t y \\
M=t^{3}+t y^{2}+2 \quad \Rightarrow \quad \partial_{y} M=2 t y
\end{gathered}
$$

The equation is exact: $\partial_{t} N=\partial_{y} M$.

Review 1 Exam 1.

Example

Find every solution y to the equation $\left(t^{2}+y^{2}\right)\left(t+y y^{\prime}\right)+2=0$.
Solution: $\partial_{t} N=\partial_{y} M, \quad\left[\left(t^{2}+y^{2}\right) y\right] y^{\prime}+\left[\left(t^{2}+y^{2}\right) t+2\right]=0$.
There exits a potential function ψ such that

$$
\begin{gather*}
\partial_{y} \psi=N, \quad \partial_{t} \psi=M \\
\partial_{y} \psi=t^{2} y+y^{3} \quad \Rightarrow \quad \psi=t^{2} \frac{y^{2}}{2}+\frac{y^{4}}{4}+g(t) \\
t y^{2}+g^{\prime}(t)=\partial_{t} \psi=M=t^{3}+t y^{2}+2 . \\
g^{\prime}(t)=t^{3}+2 \Rightarrow g(t)=\frac{t^{4}}{4}+2 t . \\
\psi(t, y)=\frac{1}{2} t^{2} y^{2}+\frac{y^{4}}{4}+\frac{t^{4}}{4}+2 t, \quad \psi(t, y(t))=c .
\end{gather*}
$$

Review 1 Exam 1.

Example

Find the explicit solution y to the IVP

$$
y^{\prime}=\frac{t\left(t^{2}+e^{t}\right)}{4 y^{3}}, \quad y(0)=-\sqrt{2}
$$

Solution: Not linear. Bernoulli with $n=-3$. Numerator depends only on t, denominator depends only on y : Separable.

$$
4 y^{3} y^{\prime}=t^{3}+t e^{t} \Rightarrow \int 4 y^{3} y^{\prime} d t=\int\left(t^{3}+t e^{t}\right) d t+c
$$

The usual substitution: $u=y(t)$ implies $d u=y^{\prime}(t) d t$,

$$
\int 4 u^{3} d u=\int\left(t^{3}+t e^{t}\right) d t+c \Rightarrow u^{4}=\frac{t^{4}}{4}+\int t e^{t} d t+c
$$

Review 1 Exam 1.

Example

Find the explicit solution y to the IVP

$$
y^{\prime}=\frac{t\left(t^{2}+e^{t}\right)}{4 y^{3}}, \quad y(0)=-\sqrt{2} .
$$

Solution: Recall: $u^{4}=\frac{t^{4}}{4}+\int t e^{t} d t+c$. Integration by parts:

$$
\left.\begin{array}{rl}
f=t, & g^{\prime}=e^{t}, \\
f^{\prime} & =1, \\
& g=e^{t},
\end{array}\right\} \Rightarrow \int t e^{t} d t=t e^{t}-\int e^{t} d t=(t-1) e^{t}
$$

We obtain: $y^{4}(t)=\frac{t^{4}}{4}+(t-1) e^{t}+c$. The initial condition:

$$
(-\sqrt{2})^{4}=0+(0-1)+c \Rightarrow 4=-1+c \Rightarrow c=5 .
$$

We conclude: $y^{4}(t)=\frac{t^{4}}{4}+(t-1) e^{t}+5$. Implicit form.

Review 1 Exam 1.

Example

Find the explicit solution y to the IVP

$$
y^{\prime}=\frac{t\left(t^{2}+e^{t}\right)}{4 y^{3}}, \quad y(0)=-\sqrt{2}
$$

Solution: Recall: $y^{4}(t)=\frac{t^{4}}{4}+(t-1) e^{t}+5$. Implicit form.
The explicit form of the solution is one of:

$$
y(t)= \pm\left[\frac{t^{4}}{4}+(t-1) e^{t}+5\right]^{1 / 4}
$$

The initial condition implies $y(0)=-\sqrt{2}<0$.
We conclude that the unique solution to the IVP is

$$
y(t)=-\left[\frac{t^{4}}{4}+(t-1) e^{t}+5\right]^{1 / 4}
$$

Review 1 Exam 1.

Example

Find every solution y of the equation $y^{\prime}=\frac{3 y^{2}-t^{2}}{2 t y}$.
Solution: Not linear. Bernoulli $n=-1: \quad y^{\prime}=\frac{3 y}{2 t}-\frac{t}{2 y}$.
Not separable. Every term on the right hand side is of the form $t^{n} y^{m}$ with $n+m=2$. Homogeneous.

$$
y^{\prime}=\frac{3 y^{2}-t^{2}}{2 t y} \frac{\left(\frac{1}{t^{2}}\right)}{\left(\frac{1}{t^{2}}\right)} \Rightarrow y^{\prime}=\frac{3\left(\frac{y}{t}\right)^{2}-1}{2\left(\frac{y}{t}\right)}
$$

We introduce the change of unknown:

$$
v=\frac{y}{t} \Rightarrow y=t v \Rightarrow y^{\prime}=v+t v^{\prime}
$$

Review 1 Exam 1.

Example

Find every solution y of the equation $y^{\prime}=\frac{3 y^{2}-t^{2}}{2 t y}$.
Solution: $y^{\prime}=\frac{3\left(\frac{y}{t}\right)^{2}-1}{2\left(\frac{y}{t}\right)}, \quad v=\frac{y}{t}, \quad y^{\prime}=v+t v^{\prime}$.

$$
\begin{gathered}
v+t v^{\prime}=\frac{3 v^{2}-1}{2 v} \Rightarrow t v^{\prime}=\frac{3 v^{2}-1}{2 v}-v=\frac{3 v^{2}-1-2 v^{2}}{2 v} \\
t v^{\prime}=\frac{v^{2}-1}{2 v} \Rightarrow \frac{2 v}{v^{2}-1} v^{\prime}=\frac{1}{t} .
\end{gathered}
$$

This is a separable equation for $v: \int \frac{2 v}{v^{2}-1} v^{\prime} d t=\int \frac{1}{t} d t+c$.

Review 1 Exam 1.

Example

Find every solution y of the equation $y^{\prime}=\frac{3 y^{2}-t^{2}}{2 t y}$.
Solution: $\int \frac{2 v}{v^{2}-1} v^{\prime} d t=\int \frac{1}{t} d t+c$.
The substitution $u=v^{2}-1$ implies $d u=2 v v^{\prime} d t$. So,

$$
\int \frac{d u}{u}=\int \frac{1}{t} d t+c \Rightarrow \ln (|u|)=\ln (|t|)+c \quad \Rightarrow \quad|u|=c_{1}|t|
$$

where $c_{1}=e^{c}$. Substitute back: $\left|v^{2}-1\right|=c_{1}|t|$. Finally, $v=y / t$,

$$
\left|\frac{y^{2}}{t^{2}}-1\right|=c_{1}|t| \quad \Rightarrow \quad\left|y^{2}-t^{2}\right|=c_{1}|t|^{3}
$$

Review 1 Exam 1.

Example

A water tank initially has $V_{0}=100$ liters of water with Q_{0} grams of salt. At $t_{0}=0$ fresh water is poured into the tank. The salt in the tank is always well mixed. Find the rates r_{i} and r_{o} such that:
(a) The tank water volume is constant.
(b) The time to reduce the salt in the tank to one percent of the initial value is $t_{1}=25 \mathrm{~min}$.

Solution:

Part (a): Water volume constant implies $r_{i}=r_{0}=r$. Then $V^{\prime}(t)=0$, so $V(t)=V_{0}$.
Part (b): First find the salt in the tank $Q(t): \frac{d Q}{d t}=r_{i} q_{i}-r_{0} q_{o}(t)$. Incoming fresh water: $q_{i}=0$. Mixing: $q_{o}(t)=Q(t) / V(t)$.

$$
\frac{d Q}{d t}=-\frac{r}{V_{0}} Q(t) \quad \Rightarrow \quad Q(t)=Q_{0} e^{-r t / V_{0}}
$$

Review 1 Exam 1.

Example

A water tank initially has $V_{0}=100$ liters of water with Q_{0} grams of salt. At $t_{0}=0$ fresh water is poured into the tank. The salt in the tank is always well mixed. Find the rates r_{i} and r_{0} such that:
(a) The tank water volume is constant.
(b) The time to reduce the salt in the tank to one percent of the initial value is $t_{1}=25 \mathrm{~min}$.

Solution: Recall: $Q(t)=Q_{0} e^{-r t / V_{0}}$. Condition for r :

$$
\begin{gathered}
Q\left(t_{1}\right)=\frac{Q_{0}}{100} \Rightarrow Q_{0} e^{\left(-r t_{1} / V_{0}\right)}=\frac{Q_{0}}{100} \Rightarrow-\frac{r t_{1}}{V_{0}}=\ln \left(\frac{1}{100}\right) \\
\frac{r t_{1}}{V_{0}}=\ln (100) \Rightarrow r=\frac{V_{0}}{t_{1}} \ln (100) \Rightarrow r=4 \ln (100)
\end{gathered}
$$

Review 1 Exam 1.

Example

Find the solution y to the IVP

$$
y^{\prime}=\frac{2}{t} y-\frac{\sin (t)}{t} y^{2}, \quad y(2 \pi)=2 \pi, \quad t>0
$$

Solution: Not linear. Bernoulli for $n=2$. Divide by y^{2}.

$$
\begin{gathered}
\frac{y^{\prime}}{y^{2}}-\frac{2}{t} \frac{1}{y}=-\frac{\sin (t)}{t}, \quad v=\frac{1}{y} \quad \Rightarrow \quad v^{\prime}=-\frac{y^{\prime}}{y^{2}} . \\
-v^{\prime}-\frac{2}{t} v=-\frac{\sin (t)}{t} \quad \Rightarrow \quad v^{\prime}+\frac{2}{t} v=\frac{\sin (t)}{t}
\end{gathered}
$$

We solve the linear equation with the integrating factor method.

$$
A(t)=\int \frac{2}{t} d t=2 \ln (t)=\ln \left(t^{2}\right) \quad \Rightarrow \quad \mu(t)=t^{2}
$$

Review 1 Exam 1.

Example

Find the solution y to the IVP

$$
y^{\prime}=\frac{2}{t} y-\frac{\sin (t)}{t} y^{2}, \quad y(2 \pi)=2 \pi, \quad t>0
$$

Solution: Recall: $\mu(t)=t^{2}$. Then,

$$
t^{2}\left(v^{\prime}+\frac{2}{t} v\right)=t^{2} \frac{\sin (t)}{t} \Rightarrow\left(t^{2} v\right)^{\prime}=t \sin (t)
$$

Integrating: $t^{2} v=\int t \sin (t) d t+c$. The right hand side can be computed integrating by parts,

$$
\int t \sin (t) d t=-t \cos (t)+\int \cos (t) d t,\left\{\begin{aligned}
f & =t, & & g^{\prime}=\sin (t) \\
f^{\prime} & =1, & & g=-\cos (t)
\end{aligned}\right.
$$

Review 1 Exam 1.

Example

Find the solution y to the IVP

$$
y^{\prime}=\frac{2}{t} y-\frac{\sin (t)}{t} y^{2}, \quad y(2 \pi)=2 \pi, \quad t>0
$$

Solution: $\int t \sin (t) d t=-t \cos (t)+\int \cos (t) d t$. Then,
$t^{2} v=-t \cos (t)+\sin (t)+c \quad \Rightarrow \quad t^{2} \frac{1}{y}=-t \cos (t)+\sin (t)+c$.
The initial condition: $4 \pi^{2} \frac{1}{2 \pi}=-2 \pi \cos (2 \pi)+0+c$, so $c=4 \pi$.

$$
y=\frac{t^{2}}{\sin (t)-t \cos (t)+4 \pi}
$$

Review 1 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: We first verify if the equation is not exact.

$$
\begin{aligned}
& N=\left(x^{3} e^{y}+\frac{x}{y}\right) \quad \Rightarrow \quad \partial_{x} N=3 x^{2} e^{y}+\frac{1}{y} . \\
& M=\left(2 x^{2} e^{y}+1\right)=0 \quad \Rightarrow \quad \partial_{y} M=2 x^{2} e^{y} .
\end{aligned}
$$

So the equation is not exact. We now compute

$$
\frac{\partial_{y} M-\partial_{x} N}{N}=\frac{2 x^{2} e^{y}-\left(3 x^{2} e^{y}+\frac{1}{y}\right)}{\left(x^{3} e^{y}+\frac{x}{y}\right)}=\frac{-x^{2} e^{y}-\frac{1}{y}}{x\left(x^{2} e^{y}+\frac{1}{y}\right)}=-\frac{1}{x}
$$

Review 1 Exam 1.

Example

Find the integrating factor that converts the equation below into an exact equation, where

$$
\left(x^{3} e^{y}+\frac{x}{y}\right) y^{\prime}+\left(2 x^{2} e^{y}+1\right)=0
$$

Solution: Recall: $\frac{\partial_{y} M-\partial_{x} N}{N}=-\frac{1}{x}$. Therefore,

$$
\frac{\mu^{\prime}(x)}{\mu(x)}=-\frac{1}{x} \quad \Rightarrow \quad \ln (\mu)=-\ln (x)=\ln \left(\frac{1}{x}\right) \quad \Rightarrow \quad \mu(x)=\frac{1}{x} .
$$

So the equation $\left(x^{2} e^{y}+\frac{1}{y}\right) y^{\prime}+\left(2 x e^{y}+\frac{1}{x}\right)=0$ is exact. Indeed,

$$
\left.\begin{array}{l}
\tilde{N}=\left(x^{2} e^{y}+\frac{1}{y}\right) \quad \Rightarrow \quad \partial_{x} \tilde{N}=2 x e^{y}, \\
\tilde{M}=\left(2 x e^{y}+\frac{1}{x}\right) \quad \Rightarrow \quad \partial_{y} \tilde{M}=2 x e^{y},
\end{array}\right\} \quad \Rightarrow \quad \partial_{x} \tilde{N}=\partial_{y} \tilde{M}
$$

