Complex, distinct eigenvalues (Sect. 5.8)

- Review: The case of diagonalizable matrices.
- Classification of 2×2 systems.
- Real matrix with a pair of complex eigenvalues.
- Phase portraits for 2×2 systems.

Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)
If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t} .
$$

Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{n}\right\}$ and corresponding eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

is given by the expression below, where $c_{1}, \cdots, c_{n} \in \mathbb{R}$,

$$
\mathbf{x}(t)=c_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+\cdots+c_{n} \mathbf{v}_{n} e^{\lambda_{n} t} .
$$

Theorem
If an $n \times n$ matrix A has n distinct eigenvalues, then matrix A is diagonalizable.

Complex, distinct eigenvalues (Sect. 5.8)

- Review: The case of diagonalizable matrices.
- Classification of 2×2 systems.
- Real matrix with a pair of complex eigenvalues.
- Phase portraits for 2×2 systems.

Review: Classification of 2×2 systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

Review: Classification of 2×2 systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).

Review: Classification of 2×2 systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).

Review: Classification of 2×2 systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).
(c-1) $\lambda_{1}=\lambda_{2}$ real-valued with two non-proportional eigenvectors \mathbf{v}_{1}, \mathbf{v}_{2}, (Section 5.9).

Review: Classification of 2×2 systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).
(c-1) $\lambda_{1}=\lambda_{2}$ real-valued with two non-proportional eigenvectors \mathbf{v}_{1}, \mathbf{v}_{2}, (Section 5.9).

Remark:
(c-2) $\lambda_{1}=\lambda_{2}$ real-valued with only one eigen-direction. Hence, A is not diagonalizable, (Section 5.9).

Complex, distinct eigenvalues (Sect. 5.8)

- Review: The case of diagonalizable matrices.
- Classification of 2×2 systems.
- Real matrix with a pair of complex eigenvalues.
- Phase portraits for 2×2 systems.

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v}=\lambda \mathbf{v}$ and $\bar{A}=A$.

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v}=\lambda \mathbf{v}$ and $\bar{A}=A$. Then

$$
\overline{A \mathbf{v}}=\overline{\lambda \mathbf{v}}
$$

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v}=\lambda \mathbf{v}$ and $\bar{A}=A$. Then

$$
\overline{A \mathbf{v}}=\overline{\lambda \mathbf{v}} \quad \Leftrightarrow \quad \bar{A} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}}
$$

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v}=\lambda \mathbf{v}$ and $\bar{A}=A$. Then

$$
\overline{A \mathbf{v}}=\overline{\lambda \mathbf{v}} \quad \Leftrightarrow \quad \bar{A} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} \quad \Leftrightarrow \quad A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} .
$$

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v}=\lambda \mathbf{v}$ and $\bar{A}=A$. Then

$$
\overline{A \mathbf{v}}=\overline{\lambda \mathbf{v}} \quad \Leftrightarrow \quad \bar{A} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} \quad \Leftrightarrow \quad A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} .
$$

Therefore $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ is an eigen-pair of matrix A.

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v}=\lambda \mathbf{v}$ and $\bar{A}=A$. Then

$$
\overline{A \mathbf{v}}=\overline{\lambda \mathbf{v}} \quad \Leftrightarrow \quad \bar{A} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} \quad \Leftrightarrow \quad A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} .
$$

Therefore $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ is an eigen-pair of matrix A.
Remark: The Theorem above is equivalent to the following:

Real matrix with a pair of complex eigenvalues.

Theorem
If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v}=\lambda \mathbf{v}$ and $\bar{A}=A$. Then

$$
\overline{A \mathbf{v}}=\overline{\lambda \mathbf{v}} \quad \Leftrightarrow \quad \bar{A} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} \quad \Leftrightarrow \quad A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}} .
$$

Therefore $\{\bar{\lambda}, \overline{\mathbf{v}}\}$ is an eigen-pair of matrix A.
Remark: The Theorem above is equivalent to the following: If an $n \times n$ real-valued matrix A has eigen pairs

$$
\lambda_{1}=\alpha+i \beta, \quad \mathbf{v}_{1}=\mathbf{a}+i \mathbf{b}
$$

with $\alpha, \beta \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$, then so is

$$
\lambda_{2}=\alpha-i \beta, \quad \mathbf{v}_{2}=\mathbf{a}-i \mathbf{b} .
$$

Real matrix with a pair of complex eigenvalues.

Theorem (Complex pairs)
If an $n \times n$ real-valued matrix A has eigen pairs

$$
\lambda_{ \pm}=\alpha \pm i \beta, \quad \mathbf{v}^{(\pm)}=\mathbf{a} \pm i \mathbf{b},
$$

with $\alpha, \beta \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$, then the differential equation

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

has a linearly independent set of two complex-valued solutions

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda_{+} t}, \quad \mathbf{x}^{(-)}=\mathbf{v}^{(-)} e^{\lambda_{-} t},
$$

and it also has a linearly independent set of two real-valued solutions

$$
\begin{aligned}
& \mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \\
& \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
\end{aligned}
$$

Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda_{+} t}
$$

Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda_{+} t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}
$$

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda+t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda+t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda+t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

$$
\mathbf{x}^{(+)}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)]
$$

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda+t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

$$
\begin{gathered}
\mathbf{x}^{(+)}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(+)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}+i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}
\end{gathered}
$$

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda+t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

$$
\begin{gathered}
\mathbf{x}^{(+)}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(+)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}+i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}
\end{gathered}
$$

A similar calculation done on $\mathbf{x}^{(-)}$implies
$\mathbf{x}^{(-)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}-i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$.

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda+t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

$$
\begin{gathered}
\mathbf{x}^{(+)}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(+)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}+i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}
\end{gathered}
$$

A similar calculation done on $\mathbf{x}^{(-)}$implies
$\mathbf{x}^{(-)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}-i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$.
Introduce $\mathbf{x}^{(1)}=\left(\mathbf{x}^{(+)}+\mathbf{x}^{(-)}\right) / 2$,

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda_{+} t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

$$
\begin{gathered}
\mathbf{x}^{(+)}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(+)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}+i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}
\end{gathered}
$$

A similar calculation done on $\mathbf{x}^{(-)}$implies
$\mathbf{x}^{(-)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}-i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$.
Introduce $\mathbf{x}^{(1)}=\left(\mathbf{x}^{(+)}+\mathbf{x}^{(-)}\right) / 2, \mathbf{x}^{(2)}=\left(\mathbf{x}^{(+)}-\mathbf{x}^{(-)}\right) /(2 i)$,

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda_{+} t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

$$
\begin{gathered}
\mathbf{x}^{(+)}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(+)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}+i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}
\end{gathered}
$$

A similar calculation done on $\mathbf{x}^{(-)}$implies
$\mathbf{x}^{(-)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}-i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$.
Introduce $\mathbf{x}^{(1)}=\left(\mathbf{x}^{(+)}+\mathbf{x}^{(-)}\right) / 2, \mathbf{x}^{(2)}=\left(\mathbf{x}^{(+)}-\mathbf{x}^{(-)}\right) /(2 i)$, then

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}
$$

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$
\mathbf{x}^{(+)}=\mathbf{v}^{(+)} e^{\lambda_{+} t}=(\mathbf{a}+i \mathbf{b}) e^{(\alpha+i \beta) t}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t} e^{i \beta t}
$$

Euler equation implies

$$
\begin{gathered}
\mathbf{x}^{(+)}=(\mathbf{a}+i \mathbf{b}) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
\mathbf{x}^{(+)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}+i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}
\end{gathered}
$$

A similar calculation done on $\mathbf{x}^{(-)}$implies
$\mathbf{x}^{(-)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}-i[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$.
Introduce $\mathbf{x}^{(1)}=\left(\mathbf{x}^{(+)}+\mathbf{x}^{(-)}\right) / 2, \mathbf{x}^{(2)}=\left(\mathbf{x}^{(+)}-\mathbf{x}^{(-)}\right) /(2 i)$, then

$$
\begin{aligned}
& \mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \\
& \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
\end{aligned}
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: (1) Find the eigenvalues of matrix A above,

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

The roots of the characteristic polynomial are

$$
(\lambda-2)^{2}+9=0
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

The roots of the characteristic polynomial are

$$
(\lambda-2)^{2}+9=0 \quad \Rightarrow \quad \lambda_{ \pm}-2= \pm 3 i
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

The roots of the characteristic polynomial are

$$
(\lambda-2)^{2}+9=0 \quad \Rightarrow \quad \lambda_{ \pm}-2= \pm 3 i \quad \Rightarrow \quad \lambda_{ \pm}=2 \pm 3 i
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

The roots of the characteristic polynomial are

$$
(\lambda-2)^{2}+9=0 \quad \Rightarrow \quad \lambda_{ \pm}-2= \pm 3 i \quad \Rightarrow \quad \lambda_{ \pm}=2 \pm 3 i
$$

(2) Find the eigenvectors of matrix A above.

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

The roots of the characteristic polynomial are

$$
(\lambda-2)^{2}+9=0 \quad \Rightarrow \quad \lambda_{ \pm}-2= \pm 3 i \quad \Rightarrow \quad \lambda_{ \pm}=2 \pm 3 i
$$

(2) Find the eigenvectors of matrix A above. For λ_{+},

$$
A-\lambda_{+} I
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

The roots of the characteristic polynomial are

$$
(\lambda-2)^{2}+9=0 \quad \Rightarrow \quad \lambda_{ \pm}-2= \pm 3 i \quad \Rightarrow \quad \lambda_{ \pm}=2 \pm 3 i
$$

(2) Find the eigenvectors of matrix A above. For λ_{+},

$$
A-\lambda_{+} I=A-(2+3 i) I
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: (1) Find the eigenvalues of matrix A above,

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
(2-\lambda) & 3 \\
-3 & (2-\lambda)
\end{array}\right|=(\lambda-2)^{2}+9 .
$$

The roots of the characteristic polynomial are

$$
(\lambda-2)^{2}+9=0 \quad \Rightarrow \quad \lambda_{ \pm}-2= \pm 3 i \quad \Rightarrow \quad \lambda_{ \pm}=2 \pm 3 i
$$

(2) Find the eigenvectors of matrix A above. For λ_{+},

$$
A-\lambda_{+} I=A-(2+3 i) I=\left[\begin{array}{cc}
2-(2+3 i) & 3 \\
-3 & 2-(2+3 i)
\end{array}\right]
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$.

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right]
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right]
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
-1 & -i
\end{array}\right]
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
0 & 0
\end{array}\right] .
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
0 & 0
\end{array}\right]
$$

So, the eigenvector $\mathbf{v}^{(+)}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
0 & 0
\end{array}\right]
$$

So, the eigenvector $\mathbf{v}^{(+)}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ is given by $v_{1}=-i v_{2}$.

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & i \\
0 & 0
\end{array}\right] .
$$

So, the eigenvector $\mathbf{v}^{(+)}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ is given by $v_{1}=-i v_{2}$. Choose

$$
v_{2}=1, \quad v_{1}=-i,
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: $\lambda_{ \pm}=2 \pm 3 i,\left(A-\lambda_{+} I\right)=\left[\begin{array}{cc}2-(2+3 i) & 3 \\ -3 & 2-(2+3 i)\end{array}\right]$.
We need to solve $\left(A-\lambda_{+} I\right) \mathbf{v}^{(+)}=\mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$
\left[\begin{array}{cc}
-3 i & 3 \\
-3 & -3 i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
-1 & -i
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & i \\
0 & 0
\end{array}\right]
$$

So, the eigenvector $\mathbf{v}^{(+)}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ is given by $v_{1}=-i v_{2}$. Choose

$$
v_{2}=1, \quad v_{1}=-i, \quad \Rightarrow \quad \mathbf{v}^{(+)}=\left[\begin{array}{r}
-i \\
1
\end{array}\right], \quad \lambda_{+}=2+3 i
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$,

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
Notice that $\mathbf{v}^{(\pm)}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \pm\left[\begin{array}{c}-1 \\ 0\end{array}\right] i$.

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
Notice that $\mathbf{v}^{(\pm)}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \pm\left[\begin{array}{c}-1 \\ 0\end{array}\right] i$.
The notation $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b} i$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
Notice that $\mathbf{v}^{(\pm)}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \pm\left[\begin{array}{c}-1 \\ 0\end{array}\right] i$.
The notation $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b i}$ implies

$$
\alpha=2,
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
Notice that $\mathbf{v}^{(\pm)}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \pm\left[\begin{array}{c}-1 \\ 0\end{array}\right] i$.
The notation $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b i}$ implies

$$
\alpha=2, \quad \beta=3
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
Notice that $\mathbf{v}^{(\pm)}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \pm\left[\begin{array}{c}-1 \\ 0\end{array}\right] i$.
The notation $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b i}$ implies

$$
\alpha=2, \quad \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: eigenvalues $\lambda_{ \pm}=2 \pm 3 i$, and $\mathbf{v}^{(+)}=\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
The second eigenvector is $\mathbf{v}^{(-)}=\overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
Notice that $\mathbf{v}^{(\pm)}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \pm\left[\begin{array}{c}-1 \\ 0\end{array}\right] i$.
The notation $\lambda_{ \pm}=\alpha \pm \beta i$ and $\mathbf{v}^{(\pm)}=\mathbf{a} \pm \mathbf{b i}$ implies

$$
\alpha=2, \quad \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] .
$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: $\alpha=2, \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \quad$ and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: $\alpha=2, \quad \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \quad$ and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Real-valued solutions are $\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}$, and

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] .
$$

Solution: Recall: $\alpha=2, \quad \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \quad$ and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Real-valued solutions are $\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}$, and $\mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$.

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: Recall: $\alpha=2, \quad \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \quad$ and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Real-valued solutions are $\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}$, and $\mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$. That is

$$
\mathbf{x}^{(1)}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] \cos (3 t)-\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \sin (3 t)\right) e^{2 t}
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: Recall: $\alpha=2, \beta=3, \quad \mathbf{a}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Real-valued solutions are $\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}$, and $\mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$. That is

$$
\mathbf{x}^{(1)}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] \cos (3 t)-\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \sin (3 t)\right) e^{2 t} \Rightarrow \mathbf{x}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right] e^{2 t}
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: Recall: $\alpha=2, \beta=3, \mathbf{a}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Real-valued solutions are $\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}$, and $\mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$. That is

$$
\begin{aligned}
& \mathbf{x}^{(1)}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] \cos (3 t)-\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \sin (3 t)\right) e^{2 t} \Rightarrow \mathbf{x}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right] e^{2 t} . \\
& \mathbf{x}^{(2)}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] \sin (3 t)+\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \cos (3 t)\right) e^{2 t}
\end{aligned}
$$

Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right]
$$

Solution: Recall: $\alpha=2, \beta=3, \mathbf{a}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$.
Real-valued solutions are $\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}$, and $\mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t}$. That is

$$
\begin{aligned}
& \mathbf{x}^{(1)}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] \cos (3 t)-\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \sin (3 t)\right) e^{2 t} \Rightarrow \mathbf{x}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right] e^{2 t} . \\
& \mathbf{x}^{(2)}=\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] \sin (3 t)+\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \cos (3 t)\right) e^{2 t} \Rightarrow \mathbf{x}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right] e^{2 t} .
\end{aligned}
$$

Complex, distinct eigenvalues (Sect. 5.8)

- Review: The case of diagonalizable matrices.
- Classification of 2×2 systems.
- Real matrix with a pair of complex eigenvalues.
- Phase portraits for 2×2 systems.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{rr}2 & 3 \\ -3 & 2\end{array}\right]$.
Solution:
The phase portrait of the vectors

$$
\tilde{\mathbf{x}}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right],
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$.
Solution:
The phase portrait of the vectors

$$
\begin{gathered}
\tilde{\mathbf{x}}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right], \\
\tilde{\mathbf{x}}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right],
\end{gathered}
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$.
Solution:
The phase portrait of the vectors

$$
\begin{gathered}
\tilde{\mathbf{x}}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right], \\
\tilde{\mathbf{x}}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right],
\end{gathered}
$$

is a radius one circle.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$.
Solution:
The phase portrait of the vectors

$$
\begin{gathered}
\tilde{\mathbf{x}}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right], \\
\tilde{\mathbf{x}}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right],
\end{gathered}
$$

is a radius one circle.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$.
Solution:
The phase portrait of the solutions

$$
\tilde{\mathbf{x}}^{(1)}=\left[\begin{array}{c}
\sin (3 t) \\
\cos (3 t)
\end{array}\right] e^{2 t},
$$

$$
\tilde{\mathbf{x}}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right] e^{2 t}
$$

are outgoing spirals.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$.

Solution:

The phase portrait of the solutions

$$
\begin{gathered}
\tilde{\mathbf{x}}^{(1)}=\left[\begin{array}{l}
\sin (3 t) \\
\cos (3 t)
\end{array}\right] e^{2 t} \\
\tilde{\mathbf{x}}^{(2)}=\left[\begin{array}{c}
-\cos (3 t) \\
\sin (3 t)
\end{array}\right] e^{2 t},
\end{gathered}
$$

are outgoing spirals.

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0, \alpha>0$, and $\alpha<0$, where $\beta>0$.

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0, \alpha>0$, and $\alpha<0$, where $\beta>0$.
Solution:

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0, \alpha>0$, and $\alpha<0$, where $\beta>0$.
Solution:

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{a} and \mathbf{b}, sketch qualitative phase portraits of

$$
\mathbf{x}^{(1)}=[\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t)] e^{\alpha t}, \mathbf{x}^{(2)}=[\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t)] e^{\alpha t} .
$$

for the cases $\alpha=0, \alpha>0$, and $\alpha<0$, where $\beta>0$.
Solution:

Real, repeated eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- Repeated eigenvalue diagonalizable 2×2 system.
- Repeated eigenvalue non-diagonalizable 2×2 system.
- Phase portraits for 2×2 systems.

Review: Classification of 2×2 systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

Review: Classification of 2×2 systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).

Review: Classification of 2×2 systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).

Review: Classification of 2×2 systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).
(c-1) $\lambda_{1}=\lambda_{2}$ real-valued with two non-proportional eigenvectors \mathbf{v}_{1}, \mathbf{v}_{2}, (Section 5.9).

Review: Classification of 2×2 systems.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).
(c-1) $\lambda_{1}=\lambda_{2}$ real-valued with two non-proportional eigenvectors \mathbf{v}_{1}, \mathbf{v}_{2}, (Section 5.9).

Remark:
(c-2) $\lambda_{1}=\lambda_{2}$ real-valued with only one eigen-direction. Hence, A is not diagonalizable, (Section 5.9).

Real, repeated eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- Repeated eigenvalue diagonalizable 2×2 system.
- Repeated eigenvalue non-diagonalizable 2×2 system.
- Phase portraits for 2×2 systems.

Repeated eigenvalue diagonalizable 2×2 system.

Remark: For 2×2 systems the situation is fairly simple.

Repeated eigenvalue diagonalizable 2×2 system.

Remark: For 2×2 systems the situation is fairly simple.
Theorem
Every 2×2 diagonalizable matrix A with repeated eigenvalue λ has the form $A=\lambda l$.

Repeated eigenvalue diagonalizable 2×2 system.

Remark: For 2×2 systems the situation is fairly simple.
Theorem
Every 2×2 diagonalizable matrix A with repeated eigenvalue λ has the form $A=\lambda I$.
Proof: Since A is diagonalizable, exists P invertible such that

$$
A=P\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] P^{-1}
$$

Repeated eigenvalue diagonalizable 2×2 system.

Remark: For 2×2 systems the situation is fairly simple.
Theorem
Every 2×2 diagonalizable matrix A with repeated eigenvalue λ has the form $A=\lambda I$.
Proof: Since A is diagonalizable, exists P invertible such that

$$
A=P\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] P^{-1}=P \lambda I P^{-1}
$$

Repeated eigenvalue diagonalizable 2×2 system.

Remark: For 2×2 systems the situation is fairly simple.
Theorem
Every 2×2 diagonalizable matrix A with repeated eigenvalue λ has the form $A=\lambda I$.
Proof: Since A is diagonalizable, exists P invertible such that

$$
A=P\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] P^{-1}=P \lambda I P^{-1}=\lambda P P^{-1}
$$

Repeated eigenvalue diagonalizable 2×2 system.

Remark: For 2×2 systems the situation is fairly simple.
Theorem
Every 2×2 diagonalizable matrix A with repeated eigenvalue λ has the form $A=\lambda l$.

Proof: Since A is diagonalizable, exists P invertible such that

$$
A=P\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] P^{-1}=P \lambda I P^{-1}=\lambda P P^{-1}=\lambda I
$$

Repeated eigenvalue diagonalizable 2×2 system.

Remark: For 2×2 systems the situation is fairly simple.
Theorem
Every 2×2 diagonalizable matrix A with repeated eigenvalue λ has the form $A=\lambda I$.
Proof: Since A is diagonalizable, exists P invertible such that

$$
A=P\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] P^{-1}=P \lambda I P^{-1}=\lambda P P^{-1}=\lambda I
$$

Remark: The \mathbf{x} general solution for $\mathbf{x}^{\prime}=\lambda / \mathbf{x}$ is simple

Repeated eigenvalue diagonalizable 2×2 system.

Remark: For 2×2 systems the situation is fairly simple.
Theorem
Every 2×2 diagonalizable matrix A with repeated eigenvalue λ has the form $A=\lambda I$.
Proof: Since A is diagonalizable, exists P invertible such that

$$
A=P\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] P^{-1}=P \lambda I P^{-1}=\lambda P P^{-1}=\lambda I
$$

Remark: The \mathbf{x} general solution for $\mathbf{x}^{\prime}=\lambda / \mathbf{x}$ is simple

$$
\mathbf{x}(t)=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] e^{\lambda t}
$$

Repeated eigenvalue diagonalizable 2×2 system.

Remark: For 2×2 systems the situation is fairly simple.
Theorem
Every 2×2 diagonalizable matrix A with repeated eigenvalue λ has the form $A=\lambda I$.
Proof: Since A is diagonalizable, exists P invertible such that

$$
A=P\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] P^{-1}=P \lambda I P^{-1}=\lambda P P^{-1}=\lambda I
$$

Remark: The \mathbf{x} general solution for $\mathbf{x}^{\prime}=\lambda / \mathbf{x}$ is simple

$$
\mathbf{x}(t)=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] e^{\lambda t} \quad \Leftrightarrow \quad \mathbf{x}(t)=c_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{\lambda t}+c_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{\lambda t}
$$

Repeated eigenvalue diagonalizable 2×2 system.

Remark: For 2×2 systems the situation is fairly simple.
Theorem
Every 2×2 diagonalizable matrix A with repeated eigenvalue λ has the form $A=\lambda I$.
Proof: Since A is diagonalizable, exists P invertible such that

$$
A=P\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] P^{-1}=P \lambda I P^{-1}=\lambda P P^{-1}=\lambda I
$$

Remark: The \mathbf{x} general solution for $\mathbf{x}^{\prime}=\lambda / \mathbf{x}$ is simple

$$
\mathbf{x}(t)=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] e^{\lambda t} \quad \Leftrightarrow \quad \mathbf{x}(t)=c_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{\lambda t}+c_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{\lambda t}
$$

Remark: The solution phase portraits are always straight lines passing through the origin.

Real, repeated eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- Repeated eigenvalue diagonalizable 2×2 system.
- Repeated eigenvalue non-diagonalizable 2×2 system.
- Phase portraits for 2×2 systems.

Repeated eigenvalue non-diagonalizable 2×2 system.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).
(c-1) $\lambda_{1}=\lambda_{2}$ real-valued with two non-proportional eigenvectors \mathbf{v}_{1}, \mathbf{v}_{2}, (Section 5.9).

Repeated eigenvalue non-diagonalizable 2×2 system.

Remark:
Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.
(a) $\lambda_{1} \neq \lambda_{2}$, real-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ (eigen-directions), (Section 5.7).
(b) $\lambda_{1}=\bar{\lambda}_{2}$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_{1}=\overline{\mathbf{v}}_{2}$, (Section 5.8).
(c-1) $\lambda_{1}=\lambda_{2}$ real-valued with two non-proportional eigenvectors \mathbf{v}_{1}, \mathbf{v}_{2}, (Section 5.9).

Remark:
(c-2) $\lambda_{1}=\lambda_{2}$ real-valued with only one eigen-direction. Hence, A is not diagonalizable, (Section 5.9). Next Class.

Repeated eigenvalue non-diagonalizable 2×2 system.
Example
Show that matrix $B=\frac{1}{2}\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$ is not diagonalizable.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Show that matrix $B=\frac{1}{2}\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$ is not diagonalizable.
Solution: We need to show that all eigenvectors of matrix B are proportional to each other.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Show that matrix $B=\frac{1}{2}\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$ is not diagonalizable.
Solution: We need to show that all eigenvectors of matrix B are proportional to each other. We start computing the eigenvalues,

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Show that matrix $B=\frac{1}{2}\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$ is not diagonalizable.
Solution: We need to show that all eigenvectors of matrix B are proportional to each other. We start computing the eigenvalues,

$$
p(\lambda)=\operatorname{det}(B-\lambda I)
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Show that matrix $B=\frac{1}{2}\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$ is not diagonalizable.
Solution: We need to show that all eigenvectors of matrix B are proportional to each other. We start computing the eigenvalues,

$$
p(\lambda)=\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}
\frac{3}{2}-\lambda & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}^{2}-\lambda
\end{array}\right|
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Show that matrix $B=\frac{1}{2}\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$ is not diagonalizable.
Solution: We need to show that all eigenvectors of matrix B are proportional to each other. We start computing the eigenvalues,

$$
p(\lambda)=\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}
\frac{3}{2}-\lambda & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-\lambda
\end{array}\right|=\left(\frac{3}{2}-\lambda\right)\left(\frac{5}{2}-\lambda\right)+\frac{1}{4}
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Show that matrix $B=\frac{1}{2}\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$ is not diagonalizable.
Solution: We need to show that all eigenvectors of matrix B are proportional to each other. We start computing the eigenvalues,

$$
\begin{gathered}
p(\lambda)=\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}
\frac{3}{2}-\lambda & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-\lambda
\end{array}\right|=\left(\frac{3}{2}-\lambda\right)\left(\frac{5}{2}-\lambda\right)+\frac{1}{4} \\
p(\lambda)=\lambda^{2}-4 \lambda+4=0
\end{gathered}
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Show that matrix $B=\frac{1}{2}\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$ is not diagonalizable.
Solution: We need to show that all eigenvectors of matrix B are proportional to each other. We start computing the eigenvalues,

$$
\begin{gathered}
p(\lambda)=\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}
\frac{3}{2}-\lambda & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-\lambda
\end{array}\right|=\left(\frac{3}{2}-\lambda\right)\left(\frac{5}{2}-\lambda\right)+\frac{1}{4} \\
p(\lambda)=\lambda^{2}-4 \lambda+4=0 \quad \Rightarrow \quad \lambda_{ \pm}=2 .
\end{gathered}
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Show that matrix $B=\frac{1}{2}\left[\begin{array}{cc}3 & 1 \\ -1 & 5\end{array}\right]$ is not diagonalizable.
Solution: We need to show that all eigenvectors of matrix B are proportional to each other. We start computing the eigenvalues,

$$
\begin{gathered}
p(\lambda)=\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}
\frac{3}{2}-\lambda & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-\lambda
\end{array}\right|=\left(\frac{3}{2}-\lambda\right)\left(\frac{5}{2}-\lambda\right)+\frac{1}{4} \\
p(\lambda)=\lambda^{2}-4 \lambda+4=0 \quad \Rightarrow \quad \lambda_{ \pm}=2 .
\end{gathered}
$$

We now compute the corresponding eigenvectors,

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Show that matrix $B=\frac{1}{2}\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$ is not diagonalizable.
Solution: We need to show that all eigenvectors of matrix B are proportional to each other. We start computing the eigenvalues,

$$
\begin{gathered}
p(\lambda)=\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}
\frac{3}{2}-\lambda & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-\lambda
\end{array}\right|=\left(\frac{3}{2}-\lambda\right)\left(\frac{5}{2}-\lambda\right)+\frac{1}{4} \\
p(\lambda)=\lambda^{2}-4 \lambda+4=0 \quad \Rightarrow \quad \lambda_{ \pm}=2 .
\end{gathered}
$$

We now compute the corresponding eigenvectors,

$$
(B-2 I)=
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Show that matrix $B=\frac{1}{2}\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$ is not diagonalizable.
Solution: We need to show that all eigenvectors of matrix B are proportional to each other. We start computing the eigenvalues,

$$
\begin{gathered}
p(\lambda)=\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}
\frac{3}{2}-\lambda & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-\lambda
\end{array}\right|=\left(\frac{3}{2}-\lambda\right)\left(\frac{5}{2}-\lambda\right)+\frac{1}{4} \\
p(\lambda)=\lambda^{2}-4 \lambda+4=0 \quad \Rightarrow \quad \lambda_{ \pm}=2 .
\end{gathered}
$$

We now compute the corresponding eigenvectors,

$$
(B-2 I)==\left[\begin{array}{cc}
\frac{3}{2}-2 & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-2
\end{array}\right]
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Show that matrix $B=\frac{1}{2}\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$ is not diagonalizable.
Solution: We need to show that all eigenvectors of matrix B are proportional to each other. We start computing the eigenvalues,

$$
\begin{gathered}
p(\lambda)=\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}
\frac{3}{2}-\lambda & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-\lambda
\end{array}\right|=\left(\frac{3}{2}-\lambda\right)\left(\frac{5}{2}-\lambda\right)+\frac{1}{4} \\
p(\lambda)=\lambda^{2}-4 \lambda+4=0 \quad \Rightarrow \quad \lambda_{ \pm}=2 .
\end{gathered}
$$

We now compute the corresponding eigenvectors,

$$
(B-2 I)==\left[\begin{array}{cc}
\frac{3}{2}-2 & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-2
\end{array}\right]=\left[\begin{array}{ll}
-\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Show that matrix $B=\frac{1}{2}\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$ is not diagonalizable.
Solution: We need to show that all eigenvectors of matrix B are proportional to each other. We start computing the eigenvalues,

$$
\begin{gathered}
p(\lambda)=\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}
\frac{3}{2}-\lambda & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-\lambda
\end{array}\right|=\left(\frac{3}{2}-\lambda\right)\left(\frac{5}{2}-\lambda\right)+\frac{1}{4} \\
p(\lambda)=\lambda^{2}-4 \lambda+4=0 \quad \Rightarrow \quad \lambda_{ \pm}=2 .
\end{gathered}
$$

We now compute the corresponding eigenvectors,

$$
(B-2 I)==\left[\begin{array}{cc}
\frac{3}{2}-2 & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-2
\end{array}\right]=\left[\begin{array}{ll}
-\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right] \rightarrow
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Show that matrix $B=\frac{1}{2}\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$ is not diagonalizable.
Solution: We need to show that all eigenvectors of matrix B are proportional to each other. We start computing the eigenvalues,

$$
\begin{gathered}
p(\lambda)=\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}
\frac{3}{2}-\lambda & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-\lambda
\end{array}\right|=\left(\frac{3}{2}-\lambda\right)\left(\frac{5}{2}-\lambda\right)+\frac{1}{4} \\
p(\lambda)=\lambda^{2}-4 \lambda+4=0 \quad \Rightarrow \quad \lambda_{ \pm}=2 .
\end{gathered}
$$

We now compute the corresponding eigenvectors,

$$
(B-2 I)==\left[\begin{array}{cc}
\frac{3}{2}-2 & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-2
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] .
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Show that matrix $B=\frac{1}{2}\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$ is not diagonalizable.
Solution: We need to show that all eigenvectors of matrix B are proportional to each other. We start computing the eigenvalues,

$$
\begin{gathered}
p(\lambda)=\operatorname{det}(B-\lambda I)=\left|\begin{array}{cc}
\frac{3}{2}-\lambda & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-\lambda
\end{array}\right|=\left(\frac{3}{2}-\lambda\right)\left(\frac{5}{2}-\lambda\right)+\frac{1}{4} \\
p(\lambda)=\lambda^{2}-4 \lambda+4=0 \quad \Rightarrow \quad \lambda_{ \pm}=2 .
\end{gathered}
$$

We now compute the corresponding eigenvectors,

$$
(B-2 I)==\left[\begin{array}{cc}
\frac{3}{2}-2 & \frac{1}{2} \\
-\frac{1}{2} & \frac{5}{2}-2
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] .
$$

Hence all eigenvectors are proportional to $\mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Repeated eigenvalue non-diagonalizable 2×2 system.

Theorem (Repeated eigenvalue)
If λ is an eigenvalue of an $n \times n$ matrix A having algebraic multiplicity $r=2$ and only one associated eigen-direction, then the differential equation

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

has a linearly independent set of solutions given by

$$
\left\{\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}\right\} .
$$

where the vector \mathbf{w} is solution of

$$
(A-\lambda I) \mathbf{w}=\mathbf{v}
$$

which always has a solution \mathbf{w}.

Repeated eigenvalue non-diagonalizable 2×2 system.
Recall: The case of a single second order equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Recall: The case of a single second order equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Recall: The case of a single second order equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}=\left(r-r_{1}\right)^{2} .
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Recall: The case of a single second order equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}=\left(r-r_{1}\right)^{2} .
$$

In this case a fundamental set of solutions is

$$
\left\{y_{1}(t)=e^{r_{1} t}, \quad y_{2}(t)=t e^{r_{1} t}\right\}
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Recall: The case of a single second order equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}=\left(r-r_{1}\right)^{2} .
$$

In this case a fundamental set of solutions is

$$
\left\{y_{1}(t)=e^{r_{1} t}, \quad y_{2}(t)=t e^{r_{1} t}\right\} .
$$

This is not the case with systems of first order linear equations,

$$
\left\{\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}\right\} .
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Recall: The case of a single second order equation

$$
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0
$$

with characteristic polynomial

$$
p(r)=r^{2}+a_{1} r+a_{0}=\left(r-r_{1}\right)^{2} .
$$

In this case a fundamental set of solutions is

$$
\left\{y_{1}(t)=e^{r_{1} t}, \quad y_{2}(t)=t e^{r_{1} t}\right\} .
$$

This is not the case with systems of first order linear equations,

$$
\left\{\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}\right\} .
$$

In general, $\mathbf{w} \neq \mathbf{0}$.

Repeated eigenvalue non-diagonalizable 2×2 system.
Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.

Repeated eigenvalue non-diagonalizable 2×2 system.
Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

So $p(\lambda)=\lambda^{2}+2 \lambda+1$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

So $p(\lambda)=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2}$.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

So $p(\lambda)=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2}$. The roots and multiplicity are

$$
\lambda=-1, \quad r=2
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

So $p(\lambda)=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2}$. The roots and multiplicity are

$$
\lambda=-1, \quad r=2 .
$$

The corresponding eigenvectors are the solutions of $(A+I) \mathbf{v}=\mathbf{0}$,

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

So $p(\lambda)=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2}$. The roots and multiplicity are

$$
\lambda=-1, \quad r=2
$$

The corresponding eigenvectors are the solutions of $(A+I) \mathbf{v}=\mathbf{0}$,

$$
\left[\begin{array}{cc}
\left(-\frac{3}{2}+1\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}+1\right)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & 1 \\
-\frac{1}{4} & \frac{1}{2}
\end{array}\right]
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

So $p(\lambda)=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2}$. The roots and multiplicity are

$$
\lambda=-1, \quad r=2
$$

The corresponding eigenvectors are the solutions of $(A+I) \mathbf{v}=\mathbf{0}$,

$$
\left[\begin{array}{cc}
\left(-\frac{3}{2}+1\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}+1\right)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & 1 \\
-\frac{1}{4} & \frac{1}{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
1 & -2
\end{array}\right]
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Find the eigenvalues of A. Its characteristic polynomial is

$$
p(\lambda)=\left|\begin{array}{cc}
\left(-\frac{3}{2}-\lambda\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}-\lambda\right)
\end{array}\right|=\left(\lambda+\frac{3}{2}\right)\left(\lambda+\frac{1}{2}\right)+\frac{1}{4} .
$$

So $p(\lambda)=\lambda^{2}+2 \lambda+1=(\lambda+1)^{2}$. The roots and multiplicity are

$$
\lambda=-1, \quad r=2
$$

The corresponding eigenvectors are the solutions of $(A+I) \mathbf{v}=\mathbf{0}$,

$$
\left[\begin{array}{cc}
\left(-\frac{3}{2}+1\right) & 1 \\
-\frac{1}{4} & \left(-\frac{1}{2}+1\right)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & 1 \\
-\frac{1}{4} & \frac{1}{2}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$. We obtain,

$$
\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] v_{2} .
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$. We obtain,

$$
\lambda=-1, \quad v=\left[\begin{array}{l}
2 \\
1
\end{array}\right] v_{2} .
$$

We conclude that this eigenvalue has only one eigen-direction.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$. We obtain,

$$
\lambda=-1, \quad v=\left[\begin{array}{l}
2 \\
1
\end{array}\right] v_{2} .
$$

We conclude that this eigenvalue has only one eigen-direction. Matrix A is not diagonalizable.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$. We obtain,

$$
\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] v_{2}
$$

We conclude that this eigenvalue has only one eigen-direction. Matrix A is not diagonalizable. Theorem above says we need to find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$. We obtain,

$$
\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] v_{2}
$$

We conclude that this eigenvalue has only one eigen-direction. Matrix A is not diagonalizable. Theorem above says we need to find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

$$
\left[\begin{array}{rr|r}
-\frac{1}{2} & 1 & 2 \\
-\frac{1}{4} & \frac{1}{2} & 1
\end{array}\right]
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$. We obtain,

$$
\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] v_{2}
$$

We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

$$
\left[\begin{array}{rr|r}
-\frac{1}{2} & 1 & 2 \\
-\frac{1}{4} & \frac{1}{2} & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & -2 & -4 \\
1 & -2 & -4
\end{array}\right]
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall: $\lambda=-1$, with $r=2$, and $(A+I) \rightarrow\left[\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right]$.
The eigenvector components satisfy: $v_{1}=2 v_{2}$. We obtain,

$$
\lambda=-1, \quad v=\left[\begin{array}{l}
2 \\
1
\end{array}\right] v_{2} .
$$

We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find \mathbf{w} solution of $(A+I) \mathbf{w}=\mathbf{v}$.

$$
\left[\begin{array}{cc|c}
-\frac{1}{2} & 1 & 2 \\
-\frac{1}{4} & \frac{1}{2} & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & -2 & -4 \\
1 & -2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -2 & -4 \\
0 & 0 & 0
\end{array}\right]
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall that:
$\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right] \quad v_{2}$, and $(A+I) \mathbf{w}=\mathbf{v} \Rightarrow\left[\begin{array}{cc|c}1 & -2 & -4 \\ 0 & 0 & 0\end{array}\right]$.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall that:
$\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right] v_{2}$, and $(A+I) \mathbf{w}=\mathbf{v} \Rightarrow\left[\begin{array}{cc|c}1 & -2 & -4 \\ 0 & 0 & 0\end{array}\right]$.
We obtain $w_{1}=2 w_{2}-4$.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall that:
$\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right] v_{2}, \quad$ and $(A+I) \mathbf{w}=\mathbf{v} \Rightarrow\left[\begin{array}{cc|c}1 & -2 & -4 \\ 0 & 0 & 0\end{array}\right]$.
We obtain $w_{1}=2 w_{2}-4$. That is, $\mathbf{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right] w_{2}+\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall that:
$\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right] \quad v_{2}$, and $(A+I) \mathbf{w}=\mathbf{v} \Rightarrow\left[\begin{array}{cc|c}1 & -2 & -4 \\ 0 & 0 & 0\end{array}\right]$.
We obtain $w_{1}=2 w_{2}-4$. That is, $\mathbf{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right] w_{2}+\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.
Given a solution \mathbf{w}, then $c \mathbf{v}+\mathbf{w}$ is also a solution, $c \in \mathbb{R}$.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall that:
$\lambda=-1, \quad \mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right] \quad v_{2}$, and $(A+I) \mathbf{w}=\mathbf{v} \Rightarrow\left[\begin{array}{cc|c}1 & -2 & -4 \\ 0 & 0 & 0\end{array}\right]$.
We obtain $w_{1}=2 w_{2}-4$. That is, $\mathbf{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right] w_{2}+\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.
Given a solution \mathbf{w}, then $c \mathbf{v}+\mathbf{w}$ is also a solution, $c \in \mathbb{R}$.
We choose the simplest solution, $\mathbf{w}=\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Find fundamental solutions of $\mathbf{x}^{\prime}=A \mathbf{x}$, with $A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution: Recall that:
$\lambda=-1, \mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right] v_{2}$, and $(A+I) \mathbf{w}=\mathbf{v} \Rightarrow\left[\left.\begin{array}{cc}1 & -2 \\ 0 & 0\end{array} \right\rvert\,\right.$
We obtain $w_{1}=2 w_{2}-4$. That is, $\mathbf{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right] w_{2}+\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.
Given a solution \mathbf{w}, then $c \mathbf{v}+\mathbf{w}$ is also a solution, $c \in \mathbb{R}$.
We choose the simplest solution, $\mathbf{w}=\left[\begin{array}{c}-4 \\ 0\end{array}\right]$. We conclude,

$$
\mathbf{x}^{(1)}(t)=\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}, \quad \mathbf{x}^{(2)}(t)=\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
$$

Repeated eigenvalue non-diagonalizable 2×2 system.
Example
Find the solution x to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right] .
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find the solution x to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right] .
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Find the solution \mathbf{x} to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right]
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{r}
-4 \\
0
\end{array}\right]\right) e^{-t}
$$

The initial condition is $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Find the solution x to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right] .
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t}
$$

The initial condition is $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.

Repeated eigenvalue non-diagonalizable 2×2 system.

Example
Find the solution x to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right] .
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
$$

The initial condition is $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.

$$
\left[\begin{array}{cc}
2 & -4 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find the solution \mathbf{x} to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right] .
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
$$

The initial condition is $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.

$$
\left[\begin{array}{cc}
2 & -4 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
0 & 4 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find the solution \mathbf{x} to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right] .
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
$$

The initial condition is $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.

$$
\left[\begin{array}{cc}
2 & -4 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
0 & 4 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 / 4
\end{array}\right] .
$$

Repeated eigenvalue non-diagonalizable 2×2 system.

Example

Find the solution x to the IVP

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad A=\frac{1}{4}\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right] .
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}+c_{2}\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
$$

The initial condition is $\mathbf{x}(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]=c_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-4 \\ 0\end{array}\right]$.

$$
\left[\begin{array}{cc}
2 & -4 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
0 & 4 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 / 4
\end{array}\right] .
$$

We conclude: $\mathbf{x}(t)=\left[\begin{array}{l}2 \\ 1\end{array}\right] e^{-t}+\frac{1}{4}\left(\left[\begin{array}{l}2 \\ 1\end{array}\right] t+\left[\begin{array}{c}-4 \\ 0\end{array}\right]\right) e^{-t}$.

Real, repeated eigenvalues (Sect. 5.9)

- Review: Classification of 2×2 diagonalizable systems.
- Repeated eigenvalue diagonalizable 2×2 system.
- Repeated eigenvalue non-diagonalizable 2×2 system.
- Phase portraits for 2×2 systems.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
We start plotting the vectors

$$
\begin{gathered}
\mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \\
\mathbf{w}=\left[\begin{array}{c}
-4 \\
0
\end{array}\right] .
\end{gathered}
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
We start plotting the vectors

$$
\begin{gathered}
\mathbf{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \\
\mathbf{w}=\left[\begin{array}{c}
-4 \\
0
\end{array}\right] .
\end{gathered}
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
Now plot the solutions

$$
\begin{gathered}
\mathbf{x}^{(1)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t} \\
\mathbf{x}^{(2)}=\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
\end{gathered}
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
Now plot the solutions

$$
\begin{gathered}
\mathbf{x}^{(1)}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t} \\
\mathbf{x}^{(2)}=\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right) e^{-t} .
\end{gathered}
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
Now plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)},
\end{array}
$$

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
Now plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)},
\end{array}
$$

This is the case $\lambda<0$.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of
$\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\frac{1}{4}\left[\begin{array}{cc}-6 & 4 \\ -1 & -2\end{array}\right]$.
Solution:
Now plot the solutions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)},
\end{array}
$$

This is the case $\lambda<0$.

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{v} and \mathbf{w}, and any constant λ, plot the phase portraits of the functions

$$
\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}
$$

Solution:
The case $\lambda<0$. We plot the functions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)}
\end{array}
$$

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{v} and \mathbf{w}, and any constant λ, plot the phase portraits of the functions

$$
\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}
$$

Solution:
The case $\lambda<0$. We plot the functions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)}
\end{array}
$$

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{v} and \mathbf{w}, and any constant λ, plot the phase portraits of the functions

$$
\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}
$$

Solution:
The case $\lambda>0$. We plot the functions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)}, \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)}
\end{array}
$$

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{v} and \mathbf{w}, and any constant λ, plot the phase portraits of the functions

$$
\mathbf{x}^{(1)}(t)=\mathbf{v} e^{\lambda t}, \quad \mathbf{x}^{(2)}(t)=(\mathbf{v} t+\mathbf{w}) e^{\lambda t}
$$

Solution:
The case $\lambda>0$. We plot the functions

$$
\begin{array}{ll}
\mathbf{x}^{(1)}, & -\mathbf{x}^{(1)} \\
\mathbf{x}^{(2)}, & -\mathbf{x}^{(2)}
\end{array}
$$

