Complex, distinct eigenvalues (Sect. 5.8)

Review: The case of diagonalizable matrices.
Classification of 2 x 2 systems.

Real matrix with a pair of complex eigenvalues.
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Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If n X n matrix A is diagonalizable, with a linearly independent
eigenvectors set {vi,--- ,v,} and corresponding eigenvalues
{A\1,-+, An}, then the general solution x to the homogeneous,
constant coefficients, linear system

X' (t) = Ax(t)

is given by the expression below, where c1,--- , ¢y, € R,

At

x(t) = civ M4 -+ v, eME



Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If n X n matrix A is diagonalizable, with a linearly independent
eigenvectors set {vi,--- ,v,} and corresponding eigenvalues
{A\1,-+, An}, then the general solution x to the homogeneous,
constant coefficients, linear system

X' (t) = Ax(t)

is given by the expression below, where c1,--- , ¢y, € R,

At 4. + ChVn e/\nt.

x(t) =civi e
Theorem

If an n x n matrix A has n distinct eigenvalues, then matrix A is
diagonalizable.
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Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified
according to their eigenvalues.
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(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).

(b) A1 = X2, complex-valued. Hence, A has two non-proportional
eigenvectors vi = Vp, (Section 5.8).

(c-1) A1 = Az real-valued with two non-proportional eigenvectors vy,
v, (Section 5.9).



Review: Classification of 2 x 2 systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).

(b) A1 = X2, complex-valued. Hence, A has two non-proportional
eigenvectors vi = Vp, (Section 5.8).

(c-1) A1 = Az real-valued with two non-proportional eigenvectors vy,
v, (Section 5.9).

Remark:

(c-2) A1 = A2 real-valued with only one eigen-direction. Hence, A is
not diagonalizable, (Section 5.9).
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Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.



Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av = Avand A=A.
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If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.
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Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av=Avand A= A. Then

Av=) v < Av=)\v



Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.
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Real matrix with a pair of complex eigenvalues.

Theorem

If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av=Avand A= A. Then

Av=)Av & AvV=)\v <& Av=)\w.

Therefore {\,v} is an eigen-pair of matrix A.



Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av=Avand A= A. Then
Av=2Av & AV=)V & AvV=)V
Therefore {\,v} is an eigen-pair of matrix A.

Remark: The Theorem above is equivalent to the following:



Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av=Avand A= A. Then

Av=Xv & AV=AV & AV=)V
Therefore {\,v} is an eigen-pair of matrix A.

Remark: The Theorem above is equivalent to the following:
If an n x n real-valued matrix A has eigen pairs

AM=a+i3, vi=a+ib,

with o, 3 € R and a,b € R”, then so is

M =a—i3, vy=a—ib.



Real matrix with a pair of complex eigenvalues.

Theorem (Complex pairs)

If an n X n real-valued matrix A has eigen pairs
A =a+if, v =atib,
with a, 3 € R and a,b € R”, then the differential equation
X'(t) = Ax(t)
has a linearly independent set of two complex-valued solutions
x(1) = vy (F) et x(7) = v () At
and it also has a linearly independent set of two real-valued

luti
solutions x(1) — [a cos(ft) — b Sin(ﬁt)] et

x(?) = [a sin(3t) + b cos(Bt)] e**.



Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is



Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is

x(+) — V(-‘r) e>\+t — (a + Ib) e(OH—iﬁ)t



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(.|-) _ V(+) eA+t _ (a + ib) e(a+iﬁ)t _ (a + ib) oot eiﬁt.



Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is

x(+) _ V(+) eA+t _ (a + ib) e(a+iﬁ)t _ (a + ib) oot eiﬁt.

Euler equation implies



Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is
x(+) _ V(+) eA+t _ (a + ib) e(a+iﬁ)t _ (a + ib) oot eiﬁt.
Euler equation implies

xH) = (a + ib) et [cos(St) + isin(Bt)],



Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is
x(H) = v(H) Mt = (a4 jb) el@HA)t — (a + jb) et &/t
Euler equation implies
x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],

x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is
x(+) _ V(+) eA+t _ (a + ib) e(a+iﬁ)t _ (a + ib) oot eiﬁt.

Euler equation implies
x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],

x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et
A similar calculation done on x(=) implies

x(7) = [a cos(Bt) — b sin(8t)] e** — i [a sin(8t) + b cos(3t)] e**.



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(+) — V(+) Apt (a + Ib) (a+iB)t — (a + Ib) eat el',Bt.
Euler equation implies

x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],
x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et
A similar calculation done on x(=) implies
x(7) = [a cos(ft) — b sin(Bt)] e — i [a sin(5t) + b cos((t)] et

Introduce x() = (x(+) + x(=))/2,



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(+) — V(+) Apt (a + Ib) (a+iB)t — (a + Ib) eat el',Bt.
Euler equation implies

x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],
x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et
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x(7) = [a cos(ft) — b sin(Bt)] e — i [a sin(5t) + b cos((t)] et
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Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(+) — V(+) Apt (a + Ib) (a+iB)t — (a + Ib) eat el',Bt.
Euler equation implies

x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],
x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et
A similar calculation done on x(=) implies
x(7) = [a cos(ft) — b sin(Bt)] e — i [a sin(5t) + b cos((t)] et
Introduce x() = (x(+) + x()) /2, x(@ = (x(+) —x(=))/(2/), then

x(1) = [a cos(t) — b sin(Bt)] et



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(+) — V(+) Apt (a + Ib) (a+iB)t — (a + Ib) eat el',Bt.
Euler equation implies

x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],
x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et
A similar calculation done on x(=) implies
x(7) = [a cos(ft) — b sin(Bt)] e — i [a sin(5t) + b cos((t)] et
Introduce x() = (x(+) + x()) /2, x(@ = (x(+) —x(=))/(2/), then
x(1) = [a cos(t) — b sin(Bt)] et
x) = [a sin(Bt) + b cos(3t)] . O



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;L 12 3
x = Ax, A—[_3 2].
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Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;L 12 3
x = Ax, A—[_3 2].

Solution: (1) Find the eigenvalues of matrix A above,

p(\) = det(A— A1)



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))

MM—daM—AU—'p% QEAJ—(

A—2)2+0.



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))

MM—daM—AU—'p% QEAJ—(

A—2)2+0.

The roots of the characteristic polynomial are

(A=2)24+9=0



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))

MM—daM—AU—'p% QEAJ—(

A—2)2+0.

The roots of the characteristic polynomial are

A=224+9=0 = A —2=43j



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))

p()\)—det(A—)\I)—'(_3 (2EA)’ —

A—2)2+0.

The roots of the characteristic polynomial are

A=22+9=0 = Ap—-2=43/ = A\.=2+3i



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;L 12 3
x = Ax, A—[_3 2].

Solution: (1) Find the eigenvalues of matrix A above,

2-))

p()\)—det(A—)\I)—'(_3 (2EA)’ —

A—2)2+0.

The roots of the characteristic polynomial are
A=2249=0 = AI-2=43i = A\p=2+3]

(2) Find the eigenvectors of matrix A above.



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;L 12 3
x = Ax, A—[_3 2].

Solution: (1) Find the eigenvalues of matrix A above,

2-))

MM—daM—AU—'p% QEAJ—(

A—2)2+0.

The roots of the characteristic polynomial are
A=2249=0 = AI-2=43i = A\p=2+3]

(2) Find the eigenvectors of matrix A above. For Ay,

y



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;L 12 3
x = Ax, A—[_3 2].

Solution: (1) Find the eigenvalues of matrix A above,

2-))

MM—daM—AU—'p% QEAJ—(

A—2)2+0.

The roots of the characteristic polynomial are
A=2249=0 = AI-2=43i = A\p=2+3]

(2) Find the eigenvectors of matrix A above. For Ay,

A=l =A—(2+3i)l



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))

p()\)—det(A—)\I)—‘(_3 (2EA)’ —

A—2)2+0.

The roots of the characteristic polynomial are
A=2249=0 = AI-2=43i = A\p=2+3]
(2) Find the eigenvectors of matrix A above. For Ay,

2—(2+3i) 3 ]

A—)\+I:A—(2+3/)l:[ S 2 (24 3)



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
2 3
r_ _
x = Ax, A—[_3 2].

2~ (2+3i) 3

Solution: Ay = 2 + 3/, (A—)\Jr I) = |: _3 2—(2+3i) :



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;o 12 3
x = Ax, A= [_3 NE
2—(2+3i) 3
-3 2—(2+30)|
We need to solve (A — Ay [)v(t) =0 for v(*),

Solution: Ay =2+£3i, (A=A /)= [



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 NE

2~ (2+3i) 3
-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

-3i 3
-3 =3i

Solution: Ay =2+£3i, (A=A /)= [



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 NE

2~ (2+3i) 3
-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

I

Solution: Ay =2+£3i, (A=A /)= [



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 NE

2~ (2+3i) 3
-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

R R R

Solution: Ay =2+£3i, (A=A /)= [



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 NE

Solution: )\i = 2:‘:3[, (/4_)\+ I) _ |:2 (2+3I) 3 :|

-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

[ e S P B



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: )\i = 2:‘:3[, (/4_)\+ I) _ |:2 (2+3I) 3 :|

-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

[ e S P B

So, the eigenvector v(t) = [Zl]
2



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: )\i = 2:‘:3[, (/4_)\+ I) _ |:2 (2+3I) 3 :|

-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

[ e S P B

So, the eigenvector v(t) = [Zl
2

] is given by v, = —iv,.



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: )\i = 2:‘:3[, (A_)\+ I) _ |:2 (2+3I) 3 :|

-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

[ e S P B

So, the eigenvector v() = [Vl

v] is given by v; = —iv,. Choose
2

V2:1, V1:_i7



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: )\i = 2:‘:3[, (/4_)\+ I) _ |:2 (2+3I) 3 :|

-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

[ e S P B

So, the eigenvector v(t) = [Zl] is given by v; = —iv,. Choose
2
—i

V2:17 V1:_i7 = V(+): |: 1

y Ay =24 3i.



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and v(t) = {_I].

The second eigenvector is v(=) = w(+),



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(7) = (), that is, v(-) = [J



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-
The second eigenvector is v(—) = ¥() that is, v(-) = [1 .

0 -1
Notice that v [1] + [ 0} i



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(—) = ¥() that is, v(-) = [1 .
0 -1

Notice that v [1] + [ 0} I.

The notation Ay =a +3i and v =a+bi



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(—) = ¥() that is, v(-) = [1 .
0 -1

Notice that v [1] + [ 0} I.

The notation Ay =a +3i and v(¥) =a+bi implies

a =2,



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(—) = ¥() that is, v(-) = [1 .
0 -1

Notice that v [1] + [ 0} I.

The notation Ay =a +3i and v(¥) =a+bi implies

=2 [B=3



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(—) = ¥() that is, v(-) = [1 .
0 -1

Notice that v [1] + [ 0} I.

The notation Ay =a +3i and v(¥) =a+bi implies

.



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(—) = ¥() that is, v(-) = [1 .
0 -1

Notice that v [1] + [ 0} I.

The notation Ay =a +3i and v(¥) =a+bi implies

a=2, 8=3, a:m, b:[_ol].



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

x' = Ax, A= [_23 3] )

Solution: Recall: =2, =3, a= [(1)] and b — [01].



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(3t) — b sin(3t)] e*f, and



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(3t) — b sin(3t)] e*f, and
x(2) = [a sin(3t) + b cos(Bt)] e



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(Bt) — b sin(3t)] e**, and
x(2) — [a sin(ft) +b cos(ﬁt)] et That is

X1 — (m cos(3t) — {‘01] sin(31) ) e



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(3t) — b sin(3t)] e*f, and
x(2) = [a sin(3t) + b cos(Bt)] ™. That is

(1) — (m cos(3t) — {‘01] sin(31)) € = x¥) = [z‘(')”s((?;t))} &2t



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(Bt) — b sin(3t)] e**, and
x(2) — [a sin(ft) +b cos(ﬁt)] et That is

(1) — (m cos(3t) — {‘01] sin(31)) € = x¥) = [z‘(')”s((?;t))} &2t

x(? = ([(1)] sin(3t)+ [_Cﬂ cos(3t)> e’



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(3t) — b sin(3t)] e*f, and
x(2) = [a sin(3t) + b cos(Bt)] ™. That is

(1) — (m cos(3t) — {‘01] sin(31)) € = x¥) = [z‘(')”s((?;t))} &2t

MO (m sin(3t)+ [—01} cos(31)) €% = x2) - [;:(sgfﬂ &2t
<



Complex, distinct eigenvalues (Sect. 5.8)

Review: The case of diagonalizable matrices.
Classification of 2 x 2 systems.

Real matrix with a pair of complex eigenvalues.

vV v . v.Yy

Phase portraits for 2 x 2 systems.



Phase portraits for 2 x 2 systems.
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Phase portraits for 2 x 2 systems.

Example

Sketch a phase portrait for solutions of X' = Ax, A = [_

Solution:
The phase portrait of the
vectors
i(l) _ sm(3t) 7
cos(3t)

= i )

is a radius one circle.



Phase portraits for 2 x 2 systems.

Example

Sketch a phase portrait for solutions of X' = Ax, A = [_

Solution:
The phase portrait of the
vectors
),,((1) _ sm(3t) 7
cos(3t)

= i )

is a radius one circle.



Phase portraits for 2 x 2 systems.

Example

Sketch a phase portrait for solutions of x’ = Ax, A

Solution:
The phase portrait of the

solutions
)~((1) _ sin(3t) ot
cos(3t) ’

K= {_sf:(séf)t)] e,

are outgoing spirals.



Phase portraits for 2 x 2 systems.

Example

Sketch a phase portrait for solutions of X' = Ax, A = [_2 3].

Solution:
The phase portrait of the @
solutions

K = {_sf:(séf)t)] e,

are outgoing spirals.



Phase portraits for 2 x 2 systems.

Example
Given any vectors a and b, sketch qualitative phase portraits of

xM) = [a cos(t) — b sin(Bt)] e, x?) = [a sin(Bt) + b cos(Bt)] e**.

for the cases « = 0, a > 0, and o < 0, where 8 > 0.



Phase portraits for 2 x 2 systems.

Example
Given any vectors a and b, sketch qualitative phase portraits of

xM) = [a cos(t) — b sin(Bt)] e, x?) = [a sin(Bt) + b cos(Bt)] e**.
for the cases « = 0, a > 0, and o < 0, where 8 > 0.

Solution:
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Example
Given any vectors a and b, sketch qualitative phase portraits of

xM) = [a cos(t) — b sin(Bt)] e, x?) = [a sin(Bt) + b cos(Bt)] e**.
for the cases « = 0, a > 0, and o < 0, where 8 > 0.

Solution:




Phase portraits for 2 x 2 systems.

Example
Given any vectors a and b, sketch qualitative phase portraits of

xM) = [a cos(t) — b sin(Bt)] e, x?) = [a sin(Bt) + b cos(Bt)] e**.
for the cases « = 0, a > 0, and o < 0, where 8 > 0.

Solution:




Real, repeated eigenvalues (Sect. 5.9)

Review: Classification of 2 x 2 diagonalizable systems.
Repeated eigenvalue diagonalizable 2 x 2 system.

Repeated eigenvalue non-diagonalizable 2 x 2 system.

vV v v Y

Phase portraits for 2 x 2 systems.



Review: Classification of 2 x 2 systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified
according to their eigenvalues.
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Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).
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Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).

(b) A1 = X2, complex-valued. Hence, A has two non-proportional
eigenvectors vi = Vp, (Section 5.8).



Review: Classification of 2 x 2 systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).

(b) A1 = X2, complex-valued. Hence, A has two non-proportional
eigenvectors vi = Vp, (Section 5.8).

(c-1) A1 = Az real-valued with two non-proportional eigenvectors vy,
v, (Section 5.9).



Review: Classification of 2 x 2 systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).

(b) A1 = X2, complex-valued. Hence, A has two non-proportional
eigenvectors vi = Vp, (Section 5.8).

(c-1) A1 = Az real-valued with two non-proportional eigenvectors vy,
v, (Section 5.9).

Remark:

(c-2) A1 = A real-valued with only one eigen-direction. Hence, A is
not diagonalizable, (Section 5.9).



Real, repeated eigenvalues (Sect. 5.9)

Review: Classification of 2 x 2 diagonalizable systems.
Repeated eigenvalue diagonalizable 2 x 2 system.

Repeated eigenvalue non-diagonalizable 2 x 2 system.

vV v. v VY

Phase portraits for 2 x 2 systems.



Repeated eigenvalue diagonalizable 2 x 2 system.

Remark: For 2 x 2 systems the situation is fairly simple.
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has the form A = Al.



Repeated eigenvalue diagonalizable 2 x 2 system.

Remark: For 2 x 2 systems the situation is fairly simple.

Theorem
Every 2 x 2 diagonalizable matrix A with repeated eigenvalue \
has the form A = Al.

Proof: Since A is diagonalizable, exists P invertible such that

o[ 0] o
A_P[0 )\}P



Repeated eigenvalue diagonalizable 2 x 2 system.

Remark: For 2 x 2 systems the situation is fairly simple.

Theorem
Every 2 x 2 diagonalizable matrix A with repeated eigenvalue \
has the form A = Al.

Proof: Since A is diagonalizable, exists P invertible such that

A0

A_P[O \

} P~ =prpt



Repeated eigenvalue diagonalizable 2 x 2 system.

Remark: For 2 x 2 systems the situation is fairly simple.

Theorem
Every 2 x 2 diagonalizable matrix A with repeated eigenvalue \
has the form A = Al.

Proof: Since A is diagonalizable, exists P invertible such that

A0

A_P[O \

} Pt=pPAXPt=)PP!



Repeated eigenvalue diagonalizable 2 x 2 system.

Remark: For 2 x 2 systems the situation is fairly simple.

Theorem
Every 2 x 2 diagonalizable matrix A with repeated eigenvalue \
has the form A = Al.

Proof: Since A is diagonalizable, exists P invertible such that

A0

A_P[O \

} Pt=PAXPt=APP =]\l
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Remark: For 2 x 2 systems the situation is fairly simple.

Theorem
Every 2 x 2 diagonalizable matrix A with repeated eigenvalue \
has the form A = Al.

Proof: Since A is diagonalizable, exists P invertible such that

A0

A_P[O \

} Pt=PAXPt=APP =]\l

Remark: The x general solution for x' = A/ x is simple



Repeated eigenvalue diagonalizable 2 x 2 system.

Remark: For 2 x 2 systems the situation is fairly simple.

Theorem
Every 2 x 2 diagonalizable matrix A with repeated eigenvalue \
has the form A = Al.

Proof: Since A is diagonalizable, exists P invertible such that

A0

A_P[O \

} Pt=PAXPt=APP =]\l

Remark: The x general solution for x' = A/ x is simple



Repeated eigenvalue diagonalizable 2 x 2 system.

Remark: For 2 x 2 systems the situation is fairly simple.

Theorem
Every 2 x 2 diagonalizable matrix A with repeated eigenvalue \
has the form A = Al.

Proof: Since A is diagonalizable, exists P invertible such that

A0

A_P[O \

} Pt=PAXPt=APP =]\l

Remark: The x general solution for x' = A/ x is simple

x(t) = N Mo x(t)=a [(1)] & 1 o m .



Repeated eigenvalue diagonalizable 2 x 2 system.

Remark: For 2 x 2 systems the situation is fairly simple.

Theorem
Every 2 x 2 diagonalizable matrix A with repeated eigenvalue \
has the form A = Al.

Proof: Since A is diagonalizable, exists P invertible such that

A0

A_P[O \

} Pt=PAXPt=APP =]\l
Remark: The x general solution for x' = A/ x is simple
x(t) = [q} M e x(t)=q [(1)] M+ o [ﬂ e,

Remark: The solution phase portraits are always straight lines
passing through the origin.



Real, repeated eigenvalues (Sect. 5.9)

Review: Classification of 2 x 2 diagonalizable systems.
Repeated eigenvalue diagonalizable 2 x 2 system.

Repeated eigenvalue non-diagonalizable 2 x 2 system.

vV v v Y

Phase portraits for 2 x 2 systems.



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).

(b) A1 = X2, complex-valued. Hence, A has two non-proportional
eigenvectors v1 = Vp, (Section 5.8).

(c-1) A1 = Az real-valued with two non-proportional eigenvectors vy,
v, (Section 5.9).



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 5.7).

(b) A1 = X2, complex-valued. Hence, A has two non-proportional
eigenvectors v1 = Vp, (Section 5.8).

(c-1) A1 = Az real-valued with two non-proportional eigenvectors vy,
v, (Section 5.9).

Remark:

(c-2) A1 = A2 real-valued with only one eigen-direction. Hence, A is
not diagonalizable, (Section 5.9). Next Class.



Repeated eigenvalue non-diagonalizable 2 x 2 system.
Example

1
Show that matrix B = 5 [ 3 1} is not diagonalizable.

-1 5



Repeated eigenvalue non-diagonalizable 2 x 2 system.
Example

1
Show that matrix B = 5 [ 3 1} is not diagonalizable.
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Solution: We need to show that all eigenvectors of matrix B are
proportional to each other.



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

3 1} is not diagonalizable.

. 1
Show that matrix B = 5 [_1 5

Solution: We need to show that all eigenvectors of matrix B are
proportional to each other. We start computing the eigenvalues,



Repeated eigenvalue non-diagonalizable 2 x 2 system.
Example

1
Show that matrix B = 5 [ 3 1} is not diagonalizable.

-1 5

Solution: We need to show that all eigenvectors of matrix B are
proportional to each other. We start computing the eigenvalues,

p(A) = det(B — \I)



Repeated eigenvalue non-diagonalizable 2 x 2 system
Example

1
Show that matrix B = 5 [_31 ﬂ is not diagonalizable.

Solution: We need to show that all eigenvectors of matrix B are
proportional to each other. We start computing the eigenvalues

3 _ 1
p(A\) =det(B — \l) = |2 3)\‘

N|=
NJoT



Repeated eigenvalue non-diagonalizable 2 x 2 system.
Example

. 1
Show that matrix B = 5 [_1 5

3 1} is not diagonalizable.

Solution: We need to show that all eigenvectors of matrix B are
proportional to each other. We start computing the eigenvalues,

o =aa@- 0= 8 |- ()G ]




Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

. 1
Show that matrix B = 5 [_1 5

3 1} is not diagonalizable.

Solution: We need to show that all eigenvectors of matrix B are
proportional to each other. We start computing the eigenvalues,

AECERIEEES




Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

. 1
Show that matrix B = 5 [_1 5

3 1} is not diagonalizable.

Solution: We need to show that all eigenvectors of matrix B are
proportional to each other. We start computing the eigenvalues,

AECERIEEES

p(A) =X —4r+4=0 = I=2

p(A) =det(B — \l) =




Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

. 1
Show that matrix B = 5 [_1 5

3 1} is not diagonalizable.

Solution: We need to show that all eigenvectors of matrix B are
proportional to each other. We start computing the eigenvalues,

AECERIEEES

p(A) =X —4r+4=0 = I=2

p(A) =det(B — \l) =

We now compute the corresponding eigenvectors,



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

. 1
Show that matrix B = 5 [_1 5

3 1} is not diagonalizable.

Solution: We need to show that all eigenvectors of matrix B are
proportional to each other. We start computing the eigenvalues,

AECERIEEES

p(A) =X —4r+4=0 = I=2

p(A) =det(B — \l) =

We now compute the corresponding eigenvectors,

(B—21) =



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example
. 113 1f. : .
Show that matrix B = 5|1 5|’ not diagonalizable.

Solution: We need to show that all eigenvectors of matrix B are
proportional to each other. We start computing the eigenvalues,
1

-G-9G-)+;

p(A) =X —4r+4=0 = I=2

p(A) =det(B — \l) =

We now compute the corresponding eigenvectors,

3_9 1
(6-ay= =27 57
—2 272



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

3 1f. : .
1 5} is not diagonalizable.

1
Show that matrix B = > [

Solution: We need to show that all eigenvectors of matrix B are
proportional to each other. We start computing the eigenvalues,

AECERIEEES

p(A) =X —4r+4=0 = I=2

p(A) =det(B — \l) =

We now compute the corresponding eigenvectors,

|

o[ -]

NN~
NI =N



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

3 1f. : .
1 5} is not diagonalizable.

1
Show that matrix B = > [

Solution: We need to show that all eigenvectors of matrix B are
proportional to each other. We start computing the eigenvalues,

AECERIEEES

p(A) =X —4r+4=0 = I=2

p(A) =det(B — \l) =

We now compute the corresponding eigenvectors,

] -

o[ -]

NN~
NI =N



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

3 1f. : .
1 5} is not diagonalizable.

1
Show that matrix B = > [

Solution: We need to show that all eigenvectors of matrix B are
proportional to each other. We start computing the eigenvalues,

AECERIEEES

p(A) =X —4r+4=0 = I=2

p(A) =det(B — \l) =

We now compute the corresponding eigenvectors,

3_9 1 _1 1 1 —1
_ - |2 2 — |72 2
e-==[1" 4 <[ 1~ b o)



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

. 1
Show that matrix B = 5 [_1 5

3 1} is not diagonalizable.

Solution: We need to show that all eigenvectors of matrix B are
proportional to each other. We start computing the eigenvalues,

AECERIEEES

p(A) =X —4r+4=0 = I=2

p(A) =det(B — \l) =

We now compute the corresponding eigenvectors,
3 1 11
3 —2 5 -5 = 1 -1
o[ )1
-2 272 —2 2 0 0

Hence all eigenvectors are proportional to v = [J <



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Theorem (Repeated eigenvalue)

If \ is an eigenvalue of an n X n matrix A having algebraic
multiplicity r = 2 and only one associated eigen-direction, then the
differential equation

X'(t) = Ax(t),

has a linearly independent set of solutions given by
(xB(t)y=veM, xI(t) = (vt+w)e)
where the vector w is solution of
(A= X)w=v

which always has a solution w.



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Recall: The case of a single second order equation

y//+31y/+30y:0



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Recall: The case of a single second order equation
1 /
y't+ay +ay=0
with characteristic polynomial

p(r)y=r*>+ar+a



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Recall: The case of a single second order equation
1 /
y't+ay +ay=0
with characteristic polynomial

p(ry=r*>+ar+a=(r—n)



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Recall: The case of a single second order equation
/" /
y'tay tay=0
with characteristic polynomial
p(r)=r*4+ar—+a =(r—n)
In this case a fundamental set of solutions is

{yi(t) = e, yo(t) = te"'}.



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Recall: The case of a single second order equation
/! !
y' +ay +ay=0

with characteristic polynomial

p(ry=r*+ar+a=(r—n)
In this case a fundamental set of solutions is

{n(t) =€, yo(t) =te'}.
This is not the case with systems of first order linear equations,

(xB(t)y=v e, x(t)=(vt+w)e]



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Recall: The case of a single second order equation
Y'+ay' +ay=0

with characteristic polynomial
p(ry=r’>+ar+a=(—n)

In this case a fundamental set of solutions is
{yi(t) = e, yo(t) = te"'}.

This is not the case with systems of first order linear equations,

(xB(t)y=v e, x(t)=(vt+w)e]

In general, w # 0.



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

Find fundamental solutions of X’ = Ax, with A = % [:? _42]
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Example

Find fundamental solutions of X’ = Ax, with A = % [:? _42]

Solution: Find the eigenvalues of A.



Repeated eigenvalue non-diagonalizable 2 x 2 system.
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Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
p()) = <_2I)\> 11 z(A+g)(>\+%)+%
ERyE



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
p()) = <_2I)\> 11 z(A+g)(>\+%)+%
ERyE

So p(\) = A2 +22+1



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
p()) = <_2I)\> 11 z(A+g)(>\+%)+%
ERyE

So p(\) = N2 +22+1=(\+1)2



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3

p()) = <_2I)\> 11 z(A+g)(>\+%)+%
SRS

So p(A\) = A2+ 2\ + 1 = (X + 1)2. The roots and multiplicity are

A=-—1, r=2.



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example
. . ; . 1 (-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol
Solution: Find the eigenvalues of A. Its characteristic polynomial is
3
(—* - A) 1 3 1\ 1
= 2 - > - -
p(A) 21 (_1_0 (r+35)(r+3)+ 5
4 2

So p(A\) = A2+ 2\ + 1 = (X + 1)2. The roots and multiplicity are
A=-—1, r=2.

The corresponding eigenvectors are the solutions of (A+ /)v =0,



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

1

Find fundamental solutions of X’ = Ax, with A = n [:? _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
(03 e
4 2
So p(A\) = A2+ 2\ + 1 = (X + 1)2. The roots and multiplicity are
A=—1, r=2.
The corresponding eigenvectors are the solutions of (A+ /)v =0,

EEEERNE

|

|

|

| =

+

—
S~

\

|

[ =N
N R -



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

1

Find fundamental solutions of X’ = Ax, with A = n [:? _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
(03 e
4 2
So p(A\) = A2+ 2\ + 1 = (X + 1)2. The roots and multiplicity are
A=—1, r=2.
The corresponding eigenvectors are the solutions of (A+ /)v =0,

(200 |y g

1 -2

|
By
|
N
+
[
S~
|
ey
N R -



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

1

Find fundamental solutions of X’ = Ax, with A = n [:? _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
(03 e
4 2
So p(A\) = A2+ 2\ + 1 = (X + 1)2. The roots and multiplicity are
A=—1, r=2.
The corresponding eigenvectors are the solutions of (A+ /)v =0,

(21+1) 1 |73 ~ [1 —2] _ [1 —2]

1 -2 0 0

|
By
|
N
+
[
S~
|
ey
N R -



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example
) . ; ) 11-6 4
Find fundamental solutions of x’ = Ax, with A = 71 _of

Solution: Recall: A = —1, with r =2, and (A+ /) — [(1) —02]_



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

Find fundamental solutions of X’ = Ax, with A = % [:? _42]

Solution: Recall: A = —1, with r =2, and (A+ /) — [(1) 02}

The eigenvector components satisfy: v, = 2v,.



Repeated eigenvalue non-diagonalizable 2 x 2 system.
Example

Find fundamental solutions of X’ = Ax, with A = % [:? _42]

0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

A= -1, v = [2] Vs.

Solution: Recall: A = —1, with r =2, and (A+ /) — [1 2}

1



Repeated eigenvalue non-diagonalizable 2 x 2 system.
Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

A= -1, v = [2] Vs.

Solution: Recall: A = —1, with r =2, and (A+ /) — [1 2}

1

We conclude that this eigenvalue has only one eigen-direction.



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

A= -1, v = [2] Vs.

Solution: Recall: A = —1, with r =2, and (A+ /) — [1 2}

1

We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.



Repeated eigenvalue non-diagonalizable 2 x 2 system.
Example
. . , : 1[-6 4
Find fundamental solutions of x’ = Ax, with A = 71 _of
0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

2
A= -1, v = [1] Vs.

We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find w solution of (A+ /)w = v.

Solution: Recall: A = —1, with r =2, and (A+ /) — [1 2}



Repeated eigenvalue non-diagonalizable 2 x 2 system.
Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

A= -1, v = [2] Vs.

Solution: Recall: A = —1, with r =2, and (A+ /) — {1 2}

1
We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find w solution of (A+ /)w = v.

1
=1 | 2
2
11
> - |1
4 2



Repeated eigenvalue non-diagonalizable 2 x 2 system.
Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

A= -1, v = [2] Vs.

Solution: Recall: A = —1, with r =2, and (A+ /) — {1 2}

1
We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find w solution of (A+ /)w = v.

1
—— 1 2
2 2 —4
L 1 -2 | —4
4 2



Repeated eigenvalue non-diagonalizable 2 x 2 system.
Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

A= -1, v = [2] Vs.

Solution: Recall: A = —1, with r =2, and (A+ /) — {1 2}

1
We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find w solution of (A+ /)w = v.

1

=1 | 2

2 2| -4 12| -4
LN 1 -2 | -4 0 0 0
4 2



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example
. . , ) 1 /-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol
Solution: Recall that:
2 1 -2 —4
A= —1, V—|:1:| Vv,, and (A+I)W—v:>[0 0 } 0].



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example
. . , ) 1 /-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol
Solution: Recall that:
2 1 -2 —4
A= —1, V:|:1:| Vv,, and (A+I)w:v:>[0 0 } 0].

We obtain wy = 2w, — 4.



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example
. . , ) 1 /-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol
Solution: Recall that:
2 1 -2 —4
A= —1, v:[l] Vv,, and (A+/)w:v:>[0 0 } 0].

We obtain w, = 2w, — 4. That is, w = m o [—:]'



Repeated eigenvalue non-diagonalizable 2 x 2 system.

Example
. . , ) 1 (-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol

Solution: Recall that:

2 1 -2 —4
A=—-1, v= [1] v,, and (A+/w=v= [0 0 } 0].
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Repeated eigenvalue non-diagonalizable 2 x 2 system.
Example
Find the solution x to the IVP

x' = Ax, x(O)ZH, A:i[_? 42]

Solution: The general solution is

x(t) = ¢ m et o (m t+ [_ﬂ) e t.
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Real, repeated eigenvalues (Sect. 5.9)

Review: Classification of 2 x 2 diagonalizable systems.
Repeated eigenvalue diagonalizable 2 x 2 system.

Repeated eigenvalue non-diagonalizable 2 x 2 system.
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Phase portraits for 2 x 2 systems.
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