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Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If n × n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1, · · · , vn} and corresponding eigenvalues
{λ1, · · · , λn}, then the general solution x to the homogeneous,
constant coefficients, linear system

x′(t) = A x(t)

is given by the expression below, where c1, · · · , cn ∈ R,

x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt .

Theorem
If an n × n matrix A has n distinct eigenvalues, then matrix A is
diagonalizable.
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Review: Classification of 2× 2 systems.

Remark:
Diagonalizable 2× 2 matrices A with real coefficients are classified
according to their eigenvalues.

(a) λ1 6= λ2, real-valued. Hence, A has two non-proportional
eigenvectors v1, v2 (eigen-directions), (Section 5.7).

(b) λ1 = λ2, complex-valued. Hence, A has two non-proportional
eigenvectors v1 = v2, (Section 5.8).

(c-1) λ1 = λ2 real-valued with two non-proportional eigenvectors v1,
v2, (Section 5.9).

Remark:

(c-2) λ1 = λ2 real-valued with only one eigen-direction. Hence, A is
not diagonalizable, (Section 5.9).
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Real matrix with a pair of complex eigenvalues.

Theorem
If {λ, v} is an eigen-pair of an n × n real-valued matrix A, then
{λ, v} also is an eigen-pair of matrix A.

Proof: By hypothesis A v = λ v and A = A. Then

A v = λ v ⇔ A v = λ v ⇔ A v = λ v.

Therefore {λ, v} is an eigen-pair of matrix A.

Remark: The Theorem above is equivalent to the following:
If an n × n real-valued matrix A has eigen pairs

λ1 = α + iβ, v1 = a + ib,

with α, β ∈ R and a,b ∈ Rn, then so is

λ2 = α− iβ, v2 = a− ib.
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Real matrix with a pair of complex eigenvalues.

Theorem (Complex pairs)

If an n × n real-valued matrix A has eigen pairs

λ± = α± iβ, v(±) = a± ib,

with α, β ∈ R and a,b ∈ Rn, then the differential equation

x′(t) = A x(t)

has a linearly independent set of two complex-valued solutions

x(+) = v (+) eλ+t , x(−) = v (−) eλ−t ,

and it also has a linearly independent set of two real-valued
solutions

x(1) =
[
a cos(βt)− b sin(βt)

]
eαt ,

x(2) =
[
a sin(βt) + b cos(βt)

]
eαt .



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(+) = v (+) eλ+t

= (a + ib) e(α+iβ)t = (a + ib) eαt e iβt .

Euler equation implies

x(+) = (a + ib) eαt
[
cos(βt) + i sin(βt)

]
,

x(+) =
[
a cos(βt)− b sin(βt)

]
eαt + i

[
a sin(βt) + b cos(βt)

]
eαt

A similar calculation done on x(−) implies

x(−) =
[
a cos(βt)− b sin(βt)

]
eαt − i

[
a sin(βt) + b cos(βt)

]
eαt .

Introduce x(1) = (x(+) + x(−))/2, x(2) = (x(+) − x(−))/(2i), then

x(1) =
[
a cos(βt)− b sin(βt)

]
eαt ,

x(2) =
[
a sin(βt) + b cos(βt)

]
eαt .
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Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: (1) Find the eigenvalues of matrix A above,

p(λ) = det(A− λ I ) =

∣∣∣∣ (2− λ) 3
−3 (2− λ)

∣∣∣∣ = (λ− 2)2 + 9.

The roots of the characteristic polynomial are

(λ− 2)2 + 9 = 0 ⇒ λ± − 2 = ±3i ⇒ λ± = 2± 3i .

(2) Find the eigenvectors of matrix A above. For λ+,

A− λ+I = A− (2 + 3i)I =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: (1) Find the eigenvalues of matrix A above,

p(λ) = det(A− λ I ) =

∣∣∣∣ (2− λ) 3
−3 (2− λ)

∣∣∣∣ = (λ− 2)2 + 9.

The roots of the characteristic polynomial are

(λ− 2)2 + 9 = 0 ⇒ λ± − 2 = ±3i ⇒ λ± = 2± 3i .

(2) Find the eigenvectors of matrix A above. For λ+,

A− λ+I = A− (2 + 3i)I =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: (1) Find the eigenvalues of matrix A above,

p(λ) = det(A− λ I )

=

∣∣∣∣ (2− λ) 3
−3 (2− λ)

∣∣∣∣ = (λ− 2)2 + 9.

The roots of the characteristic polynomial are

(λ− 2)2 + 9 = 0 ⇒ λ± − 2 = ±3i ⇒ λ± = 2± 3i .

(2) Find the eigenvectors of matrix A above. For λ+,

A− λ+I = A− (2 + 3i)I =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: (1) Find the eigenvalues of matrix A above,

p(λ) = det(A− λ I ) =

∣∣∣∣ (2− λ) 3
−3 (2− λ)

∣∣∣∣

= (λ− 2)2 + 9.

The roots of the characteristic polynomial are

(λ− 2)2 + 9 = 0 ⇒ λ± − 2 = ±3i ⇒ λ± = 2± 3i .

(2) Find the eigenvectors of matrix A above. For λ+,

A− λ+I = A− (2 + 3i)I =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: (1) Find the eigenvalues of matrix A above,

p(λ) = det(A− λ I ) =

∣∣∣∣ (2− λ) 3
−3 (2− λ)

∣∣∣∣ = (λ− 2)2 + 9.

The roots of the characteristic polynomial are

(λ− 2)2 + 9 = 0 ⇒ λ± − 2 = ±3i ⇒ λ± = 2± 3i .

(2) Find the eigenvectors of matrix A above. For λ+,

A− λ+I = A− (2 + 3i)I =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: (1) Find the eigenvalues of matrix A above,

p(λ) = det(A− λ I ) =

∣∣∣∣ (2− λ) 3
−3 (2− λ)

∣∣∣∣ = (λ− 2)2 + 9.

The roots of the characteristic polynomial are

(λ− 2)2 + 9 = 0

⇒ λ± − 2 = ±3i ⇒ λ± = 2± 3i .

(2) Find the eigenvectors of matrix A above. For λ+,

A− λ+I = A− (2 + 3i)I =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: (1) Find the eigenvalues of matrix A above,

p(λ) = det(A− λ I ) =

∣∣∣∣ (2− λ) 3
−3 (2− λ)

∣∣∣∣ = (λ− 2)2 + 9.

The roots of the characteristic polynomial are

(λ− 2)2 + 9 = 0 ⇒ λ± − 2 = ±3i

⇒ λ± = 2± 3i .

(2) Find the eigenvectors of matrix A above. For λ+,

A− λ+I = A− (2 + 3i)I =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: (1) Find the eigenvalues of matrix A above,

p(λ) = det(A− λ I ) =

∣∣∣∣ (2− λ) 3
−3 (2− λ)

∣∣∣∣ = (λ− 2)2 + 9.

The roots of the characteristic polynomial are

(λ− 2)2 + 9 = 0 ⇒ λ± − 2 = ±3i ⇒ λ± = 2± 3i .

(2) Find the eigenvectors of matrix A above. For λ+,

A− λ+I = A− (2 + 3i)I =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: (1) Find the eigenvalues of matrix A above,

p(λ) = det(A− λ I ) =

∣∣∣∣ (2− λ) 3
−3 (2− λ)

∣∣∣∣ = (λ− 2)2 + 9.

The roots of the characteristic polynomial are

(λ− 2)2 + 9 = 0 ⇒ λ± − 2 = ±3i ⇒ λ± = 2± 3i .

(2) Find the eigenvectors of matrix A above.

For λ+,

A− λ+I = A− (2 + 3i)I =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: (1) Find the eigenvalues of matrix A above,

p(λ) = det(A− λ I ) =

∣∣∣∣ (2− λ) 3
−3 (2− λ)

∣∣∣∣ = (λ− 2)2 + 9.

The roots of the characteristic polynomial are

(λ− 2)2 + 9 = 0 ⇒ λ± − 2 = ±3i ⇒ λ± = 2± 3i .

(2) Find the eigenvectors of matrix A above. For λ+,

A− λ+I

= A− (2 + 3i)I =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: (1) Find the eigenvalues of matrix A above,

p(λ) = det(A− λ I ) =

∣∣∣∣ (2− λ) 3
−3 (2− λ)

∣∣∣∣ = (λ− 2)2 + 9.

The roots of the characteristic polynomial are

(λ− 2)2 + 9 = 0 ⇒ λ± − 2 = ±3i ⇒ λ± = 2± 3i .

(2) Find the eigenvectors of matrix A above. For λ+,

A− λ+I = A− (2 + 3i)I

=

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: (1) Find the eigenvalues of matrix A above,

p(λ) = det(A− λ I ) =

∣∣∣∣ (2− λ) 3
−3 (2− λ)

∣∣∣∣ = (λ− 2)2 + 9.

The roots of the characteristic polynomial are

(λ− 2)2 + 9 = 0 ⇒ λ± − 2 = ±3i ⇒ λ± = 2± 3i .

(2) Find the eigenvectors of matrix A above. For λ+,

A− λ+I = A− (2 + 3i)I =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: λ± = 2± 3i , (A− λ+ I ) =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.

We need to solve (A− λ+ I ) v(+) = 0 for v(+). Gauss operations[
−3i 3
−3 −3i

]
→

[
−i 1
−1 −i

]
→

[
1 i
−1 −i

]
→

[
1 i
0 0

]
.

So, the eigenvector v(+) =

[
v1

v2

]
is given by v1 = −iv2. Choose

v2 = 1, v1 = −i , ⇒ v(+) =

[
−i
1

]
, λ+ = 2 + 3i .



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: λ± = 2± 3i , (A− λ+ I ) =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.

We need to solve (A− λ+ I ) v(+) = 0 for v(+).

Gauss operations[
−3i 3
−3 −3i

]
→

[
−i 1
−1 −i

]
→

[
1 i
−1 −i

]
→

[
1 i
0 0

]
.

So, the eigenvector v(+) =

[
v1

v2

]
is given by v1 = −iv2. Choose

v2 = 1, v1 = −i , ⇒ v(+) =

[
−i
1

]
, λ+ = 2 + 3i .



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: λ± = 2± 3i , (A− λ+ I ) =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.

We need to solve (A− λ+ I ) v(+) = 0 for v(+). Gauss operations[
−3i 3
−3 −3i

]

→
[
−i 1
−1 −i

]
→

[
1 i
−1 −i

]
→

[
1 i
0 0

]
.

So, the eigenvector v(+) =

[
v1

v2

]
is given by v1 = −iv2. Choose

v2 = 1, v1 = −i , ⇒ v(+) =

[
−i
1

]
, λ+ = 2 + 3i .



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: λ± = 2± 3i , (A− λ+ I ) =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.

We need to solve (A− λ+ I ) v(+) = 0 for v(+). Gauss operations[
−3i 3
−3 −3i

]
→

[
−i 1
−1 −i

]

→
[

1 i
−1 −i

]
→

[
1 i
0 0

]
.

So, the eigenvector v(+) =

[
v1

v2

]
is given by v1 = −iv2. Choose

v2 = 1, v1 = −i , ⇒ v(+) =

[
−i
1

]
, λ+ = 2 + 3i .



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: λ± = 2± 3i , (A− λ+ I ) =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.

We need to solve (A− λ+ I ) v(+) = 0 for v(+). Gauss operations[
−3i 3
−3 −3i

]
→

[
−i 1
−1 −i

]
→

[
1 i
−1 −i

]

→
[
1 i
0 0

]
.

So, the eigenvector v(+) =

[
v1

v2

]
is given by v1 = −iv2. Choose

v2 = 1, v1 = −i , ⇒ v(+) =

[
−i
1

]
, λ+ = 2 + 3i .



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: λ± = 2± 3i , (A− λ+ I ) =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.

We need to solve (A− λ+ I ) v(+) = 0 for v(+). Gauss operations[
−3i 3
−3 −3i

]
→

[
−i 1
−1 −i

]
→

[
1 i
−1 −i

]
→

[
1 i
0 0

]
.

So, the eigenvector v(+) =

[
v1

v2

]
is given by v1 = −iv2. Choose

v2 = 1, v1 = −i , ⇒ v(+) =

[
−i
1

]
, λ+ = 2 + 3i .



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: λ± = 2± 3i , (A− λ+ I ) =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.

We need to solve (A− λ+ I ) v(+) = 0 for v(+). Gauss operations[
−3i 3
−3 −3i

]
→

[
−i 1
−1 −i

]
→

[
1 i
−1 −i

]
→

[
1 i
0 0

]
.

So, the eigenvector v(+) =

[
v1

v2

]

is given by v1 = −iv2. Choose

v2 = 1, v1 = −i , ⇒ v(+) =

[
−i
1

]
, λ+ = 2 + 3i .



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: λ± = 2± 3i , (A− λ+ I ) =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.

We need to solve (A− λ+ I ) v(+) = 0 for v(+). Gauss operations[
−3i 3
−3 −3i

]
→

[
−i 1
−1 −i

]
→

[
1 i
−1 −i

]
→

[
1 i
0 0

]
.

So, the eigenvector v(+) =

[
v1

v2

]
is given by v1 = −iv2.

Choose

v2 = 1, v1 = −i , ⇒ v(+) =

[
−i
1

]
, λ+ = 2 + 3i .



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: λ± = 2± 3i , (A− λ+ I ) =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.

We need to solve (A− λ+ I ) v(+) = 0 for v(+). Gauss operations[
−3i 3
−3 −3i

]
→

[
−i 1
−1 −i

]
→

[
1 i
−1 −i

]
→

[
1 i
0 0

]
.

So, the eigenvector v(+) =

[
v1

v2

]
is given by v1 = −iv2. Choose

v2 = 1, v1 = −i ,

⇒ v(+) =

[
−i
1

]
, λ+ = 2 + 3i .



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: λ± = 2± 3i , (A− λ+ I ) =

[
2− (2 + 3i) 3

−3 2− (2 + 3i)

]
.

We need to solve (A− λ+ I ) v(+) = 0 for v(+). Gauss operations[
−3i 3
−3 −3i

]
→

[
−i 1
−1 −i

]
→

[
1 i
−1 −i

]
→

[
1 i
0 0

]
.

So, the eigenvector v(+) =

[
v1

v2

]
is given by v1 = −iv2. Choose

v2 = 1, v1 = −i , ⇒ v(+) =

[
−i
1

]
, λ+ = 2 + 3i .



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Recall: eigenvalues λ± = 2± 3i , and v(+) =

[
−i
1

]
.

The second eigenvector is v(−) = v(+), that is, v(−) =

[
i
1

]
.

Notice that v(±) =

[
0
1

]
±

[
−1
0

]
i .

The notation λ± = α± βi and v(±) = a± bi implies

α = 2, β = 3, a =

[
0
1

]
, b =

[
−1
0

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Recall: eigenvalues λ± = 2± 3i , and v(+) =

[
−i
1

]
.

The second eigenvector is v(−) = v(+),

that is, v(−) =

[
i
1

]
.

Notice that v(±) =

[
0
1

]
±

[
−1
0

]
i .

The notation λ± = α± βi and v(±) = a± bi implies

α = 2, β = 3, a =

[
0
1

]
, b =

[
−1
0

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Recall: eigenvalues λ± = 2± 3i , and v(+) =

[
−i
1

]
.

The second eigenvector is v(−) = v(+), that is, v(−) =

[
i
1

]
.

Notice that v(±) =

[
0
1

]
±

[
−1
0

]
i .

The notation λ± = α± βi and v(±) = a± bi implies

α = 2, β = 3, a =

[
0
1

]
, b =

[
−1
0

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Recall: eigenvalues λ± = 2± 3i , and v(+) =

[
−i
1

]
.

The second eigenvector is v(−) = v(+), that is, v(−) =

[
i
1

]
.

Notice that v(±) =

[
0
1

]
±

[
−1
0

]
i .

The notation λ± = α± βi and v(±) = a± bi implies

α = 2, β = 3, a =

[
0
1

]
, b =

[
−1
0

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Recall: eigenvalues λ± = 2± 3i , and v(+) =

[
−i
1

]
.

The second eigenvector is v(−) = v(+), that is, v(−) =

[
i
1

]
.

Notice that v(±) =

[
0
1

]
±

[
−1
0

]
i .

The notation λ± = α± βi and v(±) = a± bi

implies

α = 2, β = 3, a =

[
0
1

]
, b =

[
−1
0

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Recall: eigenvalues λ± = 2± 3i , and v(+) =

[
−i
1

]
.

The second eigenvector is v(−) = v(+), that is, v(−) =

[
i
1

]
.

Notice that v(±) =

[
0
1

]
±

[
−1
0

]
i .

The notation λ± = α± βi and v(±) = a± bi implies

α = 2,

β = 3, a =

[
0
1

]
, b =

[
−1
0

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Recall: eigenvalues λ± = 2± 3i , and v(+) =

[
−i
1

]
.

The second eigenvector is v(−) = v(+), that is, v(−) =

[
i
1

]
.

Notice that v(±) =

[
0
1

]
±

[
−1
0

]
i .

The notation λ± = α± βi and v(±) = a± bi implies

α = 2, β = 3,

a =

[
0
1

]
, b =

[
−1
0

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Recall: eigenvalues λ± = 2± 3i , and v(+) =

[
−i
1

]
.

The second eigenvector is v(−) = v(+), that is, v(−) =

[
i
1

]
.

Notice that v(±) =

[
0
1

]
±

[
−1
0

]
i .

The notation λ± = α± βi and v(±) = a± bi implies

α = 2, β = 3, a =

[
0
1

]
,

b =

[
−1
0

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Recall: eigenvalues λ± = 2± 3i , and v(+) =

[
−i
1

]
.

The second eigenvector is v(−) = v(+), that is, v(−) =

[
i
1

]
.

Notice that v(±) =

[
0
1

]
±

[
−1
0

]
i .

The notation λ± = α± βi and v(±) = a± bi implies

α = 2, β = 3, a =

[
0
1

]
, b =

[
−1
0

]
.



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Recall: α = 2, β = 3, a =

[
0
1

]
, and b =

[
−1
0

]
.

Real-valued solutions are x(1) =
[
a cos(βt)− b sin(βt)

]
eαt , and

x(2) =
[
a sin(βt) + b cos(βt)

]
eαt . That is

x(1) =
([

0
1

]
cos(3t)−

[
−1
0

]
sin(3t)

)
e2t ⇒ x(1) =

[
sin(3t)
cos(3t)

]
e2t .

x(2) =
([

0
1

]
sin(3t)+

[
−1
0

]
cos(3t)

)
e2t ⇒ x(2) =

[
− cos(3t)
sin(3t)

]
e2t .

C



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Recall: α = 2, β = 3, a =

[
0
1

]
, and b =

[
−1
0

]
.

Real-valued solutions are x(1) =
[
a cos(βt)− b sin(βt)

]
eαt , and

x(2) =
[
a sin(βt) + b cos(βt)

]
eαt . That is

x(1) =
([

0
1

]
cos(3t)−

[
−1
0

]
sin(3t)

)
e2t ⇒ x(1) =

[
sin(3t)
cos(3t)

]
e2t .

x(2) =
([

0
1

]
sin(3t)+

[
−1
0

]
cos(3t)

)
e2t ⇒ x(2) =

[
− cos(3t)
sin(3t)

]
e2t .

C



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Recall: α = 2, β = 3, a =

[
0
1

]
, and b =

[
−1
0

]
.

Real-valued solutions are x(1) =
[
a cos(βt)− b sin(βt)

]
eαt , and

x(2) =
[
a sin(βt) + b cos(βt)

]
eαt .

That is

x(1) =
([

0
1

]
cos(3t)−

[
−1
0

]
sin(3t)

)
e2t ⇒ x(1) =

[
sin(3t)
cos(3t)

]
e2t .

x(2) =
([

0
1

]
sin(3t)+

[
−1
0

]
cos(3t)

)
e2t ⇒ x(2) =

[
− cos(3t)
sin(3t)

]
e2t .

C



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Recall: α = 2, β = 3, a =

[
0
1

]
, and b =

[
−1
0

]
.

Real-valued solutions are x(1) =
[
a cos(βt)− b sin(βt)

]
eαt , and

x(2) =
[
a sin(βt) + b cos(βt)

]
eαt . That is

x(1) =
([

0
1

]
cos(3t)−

[
−1
0

]
sin(3t)

)
e2t

⇒ x(1) =

[
sin(3t)
cos(3t)

]
e2t .

x(2) =
([

0
1

]
sin(3t)+

[
−1
0

]
cos(3t)

)
e2t ⇒ x(2) =

[
− cos(3t)
sin(3t)

]
e2t .

C



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Recall: α = 2, β = 3, a =

[
0
1

]
, and b =

[
−1
0

]
.

Real-valued solutions are x(1) =
[
a cos(βt)− b sin(βt)

]
eαt , and

x(2) =
[
a sin(βt) + b cos(βt)

]
eαt . That is

x(1) =
([

0
1

]
cos(3t)−

[
−1
0

]
sin(3t)

)
e2t ⇒ x(1) =

[
sin(3t)
cos(3t)

]
e2t .

x(2) =
([

0
1

]
sin(3t)+

[
−1
0

]
cos(3t)

)
e2t ⇒ x(2) =

[
− cos(3t)
sin(3t)

]
e2t .

C



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

x′ = Ax, A =

[
2 3
−3 2

]
.

Solution: Recall: α = 2, β = 3, a =

[
0
1

]
, and b =

[
−1
0

]
.
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Complex, distinct eigenvalues (Sect. 5.8)

I Review: The case of diagonalizable matrices.

I Classification of 2× 2 systems.

I Real matrix with a pair of complex eigenvalues.

I Phase portraits for 2× 2 systems.



Phase portraits for 2× 2 systems.

Example

Sketch a phase portrait for solutions of x′ = Ax, A =

[
2 3
−3 2

]
.

Solution:
The phase portrait of the
vectors

x̃(1) =

[
sin(3t)
cos(3t)

]
,

x̃(2) =

[
− cos(3t)
sin(3t)

]
,

is a radius one circle.

1b

a

x
(2)

x
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x

x

2
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Phase portraits for 2× 2 systems.

Example
Given any vectors a and b, sketch qualitative phase portraits of

x(1) =
[
a cos(βt)− b sin(βt)

]
eαt , x(2) =

[
a sin(βt) + b cos(βt)

]
eαt .

for the cases α = 0, α > 0, and α < 0, where β > 0.

Solution:

x

x 2

x1

a
b

(2)
(1)x

(2)x 2

x (1)

x

b
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x 1
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x
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a
b

x
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Real, repeated eigenvalues (Sect. 5.9)

I Review: Classification of 2× 2 diagonalizable systems.

I Repeated eigenvalue diagonalizable 2× 2 system.

I Repeated eigenvalue non-diagonalizable 2× 2 system.

I Phase portraits for 2× 2 systems.



Review: Classification of 2× 2 systems.

Remark:
Diagonalizable 2× 2 matrices A with real coefficients are classified
according to their eigenvalues.

(a) λ1 6= λ2, real-valued. Hence, A has two non-proportional
eigenvectors v1, v2 (eigen-directions), (Section 5.7).

(b) λ1 = λ2, complex-valued. Hence, A has two non-proportional
eigenvectors v1 = v2, (Section 5.8).

(c-1) λ1 = λ2 real-valued with two non-proportional eigenvectors v1,
v2, (Section 5.9).

Remark:

(c-2) λ1 = λ2 real-valued with only one eigen-direction. Hence, A is
not diagonalizable, (Section 5.9).
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(c-1) λ1 = λ2 real-valued with two non-proportional eigenvectors v1,
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(c-2) λ1 = λ2 real-valued with only one eigen-direction. Hence, A is
not diagonalizable, (Section 5.9).
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Real, repeated eigenvalues (Sect. 5.9)

I Review: Classification of 2× 2 diagonalizable systems.

I Repeated eigenvalue diagonalizable 2× 2 system.

I Repeated eigenvalue non-diagonalizable 2× 2 system.

I Phase portraits for 2× 2 systems.



Repeated eigenvalue diagonalizable 2× 2 system.

Remark: For 2× 2 systems the situation is fairly simple.

Theorem
Every 2× 2 diagonalizable matrix A with repeated eigenvalue λ
has the form A = λI .

Proof: Since A is diagonalizable, exists P invertible such that

A = P

[
λ 0
0 λ

]
P−1 = PλIP−1 = λP P−1 = λI .

Remark: The x general solution for x′ = λI x is simple

x(t) =

[
c1

c2

]
eλt ⇔ x(t) = c1

[
1
0

]
eλt + c2

[
0
1

]
eλt .

Remark: The solution phase portraits are always straight lines
passing through the origin.
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Real, repeated eigenvalues (Sect. 5.9)

I Review: Classification of 2× 2 diagonalizable systems.

I Repeated eigenvalue diagonalizable 2× 2 system.

I Repeated eigenvalue non-diagonalizable 2× 2 system.

I Phase portraits for 2× 2 systems.



Repeated eigenvalue non-diagonalizable 2× 2 system.

Remark:
Diagonalizable 2× 2 matrices A with real coefficients are classified
according to their eigenvalues.

(a) λ1 6= λ2, real-valued. Hence, A has two non-proportional
eigenvectors v1, v2 (eigen-directions), (Section 5.7).

(b) λ1 = λ2, complex-valued. Hence, A has two non-proportional
eigenvectors v1 = v2, (Section 5.8).

(c-1) λ1 = λ2 real-valued with two non-proportional eigenvectors v1,
v2, (Section 5.9).

Remark:

(c-2) λ1 = λ2 real-valued with only one eigen-direction. Hence, A is
not diagonalizable, (Section 5.9). Next Class.
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Repeated eigenvalue non-diagonalizable 2× 2 system.
Example

Show that matrix B =
1

2

[
3 1
−1 5

]
is not diagonalizable.

Solution: We need to show that all eigenvectors of matrix B are
proportional to each other. We start computing the eigenvalues,

p(λ) = det(B − λI ) =

∣∣∣∣3
2 − λ 1

2
−1

2
5
2 − λ

∣∣∣∣ =
(3

2
− λ

)(5

2
− λ

)
+

1

4

p(λ) = λ2 − 4λ + 4 = 0 ⇒ λ± = 2.

We now compute the corresponding eigenvectors,

(B − 2I ) = =

[
3
2 − 2 1

2
−1

2
5
2 − 2

]
=

[
−1

2
1
2

−1
2

1
2

]
→

[
1 −1
0 0

]
.

Hence all eigenvectors are proportional to v =

[
1
1

]
C
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Repeated eigenvalue non-diagonalizable 2× 2 system.

Theorem (Repeated eigenvalue)

If λ is an eigenvalue of an n × n matrix A having algebraic
multiplicity r = 2 and only one associated eigen-direction, then the
differential equation

x′(t) = A x(t),

has a linearly independent set of solutions given by{
x(1)(t) = v eλt , x(2)(t) =

(
v t + w

)
eλt

}
.

where the vector w is solution of

(A− λI )w = v

which always has a solution w.



Repeated eigenvalue non-diagonalizable 2× 2 system.

Recall: The case of a single second order equation

y ′′ + a1 y ′ + a0 y = 0

with characteristic polynomial

p(r) = r2 + a1 r + a0 = (r − r1)
2.

In this case a fundamental set of solutions is{
y1(t) = er1t , y2(t) = t er1t

}
.

This is not the case with systems of first order linear equations,{
x(1)(t) = v eλt , x(2)(t) =

(
v t + w

)
eλt

}
.

In general, w 6= 0.
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Repeated eigenvalue non-diagonalizable 2× 2 system.

Example

Find fundamental solutions of x′ = A x, with A =
1

4

[
−6 4
−1 −2

]
.

Solution: Find the eigenvalues of A. Its characteristic polynomial is

p(λ) =

∣∣∣∣∣∣∣
(
−3

2
− λ

)
1

−1

4

(
−1

2
− λ

)
∣∣∣∣∣∣∣ =

(
λ +

3

2

)(
λ +

1

2

)
+

1

4
.

So p(λ) = λ2 + 2λ + 1 = (λ + 1)2. The roots and multiplicity are

λ = −1, r = 2.

The corresponding eigenvectors are the solutions of (A + I )v = 0,
(
−3

2
+ 1

)
1

−1

4

(
−1

2
+ 1

)
 =

−1

2
1

−1

4

1

2

 →
[
1 −2
1 −2

]
→

[
1 −2
0 0

]
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I Review: Classification of 2× 2 diagonalizable systems.

I Repeated eigenvalue diagonalizable 2× 2 system.

I Repeated eigenvalue non-diagonalizable 2× 2 system.

I Phase portraits for 2× 2 systems.
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