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The Heat Equation.

Review: The Heat Equation describes the temperature distribution
in a solid material as function of time and position in space.

Problem: Find the temperature, u, of a bar of length L with
insulated horizontal sides and vertical extremes kept at fixed
temperatures u0, uL, and with initial temperature u(0, x) = f (x).

∂tu(t, x) = k ∂2
xu(t, x), x ∈ (0, L),

u(0) = T0, u(L) = TL, u(0, x) = f (x).
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Remark: The heat transfer occurs only along the x-axis.



The Heat Equation.

Remarks:

I The unknown of the problem is u(t, x), the temperature of
the bar at the time t and position x .

I The temperature does not depend on y or z .

I The one-dimensional Heat Equation is:

∂tu(t, x) = k ∂2
xu(t, x),

where k > 0 is the heat conductivity, units: [k] =
(distance)2

(time)
.

I The Heat Equation is a Partial Differential Equation, PDE.

L

u(t,x)

t t t
u = 0 u < 0 u > 0

t  is  held  constant.
x

u

0

Solving the Heat Equation (Sect. 6.3).

I The Heat Equation.

I The Initial-Boundary Value Problem.

I The separation of variables method.

I An example of separation of variables.



The Initial-Boundary Value Problem.

Definition
The IBVP for the one-dimensional Heat Equation is the following:
Given a constant k > 0 and a function f : [0, L]→ R with
f (0) = f (L) = 0, find u : [0,∞)× [0, L]→ R solution of

∂tu(t, x) = k ∂2
xu(t, x),

I.C.: u(0, x) = f (x),

B.C.: u(t, 0) = 0, u(t, L) = 0.
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The separation of variables method.

Summary: IBVP for the Heat Equation.

The vector Space: (Functions of x .)
V = {v differentiable functions on [0, L], with v(0) = v(L) = 0}.

Remark: The problem B.C. are imbedded in the definition of V .

The orthogonal vector basis: (Functions of x .)
Introduce {wn}∞n=1 ⊂ V , that is, wn(0) = wn(L) = 0.

Remark: The basis is not known yet. Finding the basis is part of
our problem.

Decompose the temperature u in the basis {wn}:

u(t, x) =
∞∑

n=1

vn(t) wn(x).

We need to find all vn and wn.

The separation of variables method.

Recall: u(t, x) =
∞∑

n=1

vn(t) wn(x).

Introduce u into the differential equation.
∞∑

n=1

[
∂t(vnwn)− k ∂2

x (vnwn)
]

= 0.

A sufficient condition to find a solution is: Each term vanishes.

∂t(vnwn) = k ∂2
x (vnwn).

But vn depends on t and wn depends on x .
Denote ∂tvn = v̇n, and ∂xwn = w ′

n. Then, for each n > 1,

v̇n(t) wn(x) = k vn(t) w ′′
n (x).

1

k

v̇n(t)

vn(t)
=

w ′′
n (x)

wn(x)
.



The separation of variables method.

Recall:
1

k

v̇n(t)

vn(t)
=

w ′′
n (x)

wn(x)
. But:

1

k

v̇n(t) dvn

dt
(t) =

1

wn(x)

d2wn

dx2
(x).

Depends only on t = Depends only on x .

I The left-hand side depends only on t, while the right-hand
side depends only on x .

I When this happens in a PDE, one can use the separation of
variables method on that PDE.

I The conclusion is: Each side must be constant; −λn.

1

k

v̇n(t)

vn(t)
= −λn,

w ′′
n (x)

wn(x)
= −λn.

I The PDE is transformed into infinitely many ODEs.

The separation of variables method.

Recall:
1

k

v̇n(t)

vn(t)
= −λn,

w ′′
n (x)

wn(x)
= −λn.

The equation for vn is linear,

v̇n = −kλn vn ⇒ vn(t) = vn(0) e−kλn t .

The equation for wn is linear too, it is a BVP:

w ′′
n + λn wn = 0, wn(0) = wn(L) = 0.

We have solved these eigenfunction problems before:

λn =
(nπ

L

)2
wn(x) = sin

(nπx

L

)
.

We have seen that these functions form an orthogonal set.



The separation of variables method.

Conclusion: u(t, x) =
∞∑

n=1

vn(0) e−k( nπ
L

)t sin
(nπx

L

)
.

This function satisfies the Boundary condtions:

u(t, 0) = u(t, L) = 0.

It must satisfy the initial condition:

f (x) = u(0, x) =
∞∑

n=1

vn(0) sin
(nπx

L

)
.

But wn are orthogonal with:

∫ L

0
sin2

(nπx

L

)
dx =

L

2
.

∫ L

0
f (x) sin

(nπx

L

)
dx = vn(0)

L

2
.

The separation of variables method.

Conclusion: u(t, x) =
∞∑

n=1

vn(0) e−k( nπ
L

)t sin
(nπx

L

)
.

With the coefficients vn(0) given by:

vn(0) =
2

L

∫ L

0
f (x) sin

(nπx

L

)
dx .

Summary:IBVP for the Heat Equation.

Decompose: u(t, x) =
∞∑

n=1

vn(t) wn(x), where:

I vn: Solution of an IVP.

I wn: Solution of a BVP, an eigenvalue-eigenfunction problem.

I vn(0): Fourier Series coefficients.

Remark: Separation of variables does not work for every PDE.
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An example of separation of variables.

Example

Find the solution to the IBVP 4∂tu = ∂2
xu, t > 0, x ∈ [0, 2],

u(0, x) = 3 sin(πx/2), u(t, 0) = 0, u(t, 2) = 0.

Solution: Let un(t, x) = vn(t) wn(x). Then

4wn(x)
dv

dt
(t) = vn(t)

d2w

dx2
(x) ⇒ 4v ′n(t)

vn(t)
=

w ′′
n (x)

wn(x)
= −λn.

The equations for vn and wn are

v ′n(t) +
λn

4
vn(t) = 0, w ′′

n (x) + λn wn(x) = 0.

We solve for vn with the initial condition vn(0) = 1.

e
λn
4

t v ′n(t) +
λn

4
e

λn
4

t vn(t) = 0 ⇒
[
e

λn
4

t vn(t)
]′

= 0.



An example of separation of variables.

Example

Find the solution to the IBVP 4∂tu = ∂2
xu, t > 0, x ∈ [0, 2],

u(0, x) = 3 sin(πx/2), u(t, 0) = 0, u(t, 2) = 0.

Solution: Recall:
[
e

λn
4

t vn(t)
]′

= 0. Therefore,

vn(t) = c e−
λn
4

t , 1 = vn(0) = c ⇒ vn(t) = e−
λn
4

t .

Next the BVP: w ′′
n (x) + λn wn(x) = 0, with wn(0) = wn(L) = 0.

Since λn > 0, introduce λn = µ2
n. The characteristic polynomial is

p(r) = r2 + µ2
n = 0 ⇒ rn± = ±µni .

The general solution, wn(x) = c1 cos(µnx) + c2 sin(µnx).

The boundary conditions imply

0 = wn(0) = c1, ⇒ wn(x) = c2 sin(µnx).

An example of separation of variables.

Example

Find the solution to the IBVP 4∂tu = ∂2
xu, t > 0, x ∈ [0, 2],

u(0, x) = 3 sin(πx/2), u(t, 0) = 0, u(t, 2) = 0.

Solution: Recall: vn(t) = e−
λn
4

t , and wn(x) = c2 sin(µnx).

0 = wn(2) = c2 sin(µn2), c2 6= 0, ⇒ sin(µn2) = 0.

Then, µn2 = nπ, that is, µn =
nπ

2
. Choosing c2 = 1, we conclude,

λm =
(nπ

2

)2
, wn(x) = sin

(nπx

2

)
.

u(t, x) =
∞∑

n=1

cn e−( nπ
4

)2t sin
(nπx

2

)
.



An example of separation of variables.

Example

Find the solution to the IBVP 4∂tu = ∂2
xu, t > 0, x ∈ [0, 2],

u(0, x) = 3 sin(πx/2), u(t, 0) = 0, u(t, 2) = 0.

Solution: Recall: u(t, x) =
∞∑

n=1

cn e−( nπ
4

)2t sin
(nπx

2

)
.

The initial condition is 3 sin
(πx

2

)
=

∞∑
n=1

cn sin
(nπx

2

)
.

The orthogonality of the sine functions implies

3

∫ 2

0
sin

(πx

2

)
sin

(mπx

2

)
dx =

∞∑
n=1

∫ 2

0
sin

(nπx

2

)
sin

(mπx

2

)
dx .

If m 6= 1, then 0 = cm
2
2 , that is, cm = 0 for m 6= 1. Therefore,

3 sin
(πx

2

)
= c1 sin

(πx

2

)
⇒ c1 = 3.

An example of separation of variables.

Example

Find the solution to the IBVP 4∂tu = ∂2
xu, t > 0, x ∈ [0, 2],

u(0, x) = 3 sin(πx/2), u(t, 0) = 0, u(t, 2) = 0.

Solution: We conclude that

u(t, x) = 3 e−(π
4
)2t sin

(πx

2

)
.


