

The Heat Equation.

Review: The Heat Equation describes the temperature distribution in a solid material as function of time and position in space.

Problem: Find the temperature, u, of a bar of length L with insulated horizontal sides and vertical extremes kept at fixed temperatures u_0 , u_L , and with initial temperature u(0, x) = f(x).

Remark: The heat transfer occurs only along the x-axis.

The Heat Equation. Remarks: • The unknown of the problem is u(t, x), the temperature of the bar at the time t and position x. ▶ The temperature does not depend on *y* or *z*. ▶ The one-dimensional Heat Equation is: $\partial_t u(t,x) = k \, \partial_x^2 u(t,x),$ where k > 0 is the heat conductivity, units: $[k] = \frac{(\text{distance})^2}{(\text{time})}$. ▶ The Heat Equation is a Partial Differential Equation, PDE. |u| = 0 $\partial_t u < 0$ 9⁺n > 0 u(t,x) 0 X t is held constant.

Definition

The IBVP for the one-dimensional Heat Equation is the following: Given a constant k > 0 and a function $f : [0, L] \to \mathbb{R}$ with f(0) = f(L) = 0, find $u : [0, \infty) \times [0, L] \to \mathbb{R}$ solution of

The separation of variables method.

Summary: IBVP for the Heat Equation.

The vector Space: (Functions of x.) $V = \{v \text{ differentiable functions on } [0, L], \text{ with } v(0) = v(L) = 0\}.$

Remark: The problem B.C. are imbedded in the definition of V.

The orthogonal vector basis: (Functions of x.) Introduce $\{w_n\}_{n=1}^{\infty} \subset V$, that is, $w_n(0) = w_n(L) = 0$.

Remark: The basis is not known yet. Finding the basis is part of our problem.

Decompose the temperature u in the basis $\{w_n\}$:

$$u(t,x)=\sum_{n=1}^{\infty}v_n(t)w_n(x).$$

We need to find all v_n and w_n .

The separation of variables method.

Recall:
$$u(t,x) = \sum_{n=1}^{\infty} v_n(t) w_n(x)$$
.

Introduce u into the differential equation.

$$\sum_{n=1}^{\infty} \left[\partial_t (v_n w_n) - k \, \partial_x^2 (v_n w_n) \right] = 0.$$

A sufficient condition to find a solution is: Each term vanishes.

$$\partial_t(v_nw_n)=k\,\partial_x^2(v_nw_n).$$

But v_n depends on t and w_n depends on x. Denote $\partial_t v_n = \dot{v}_n$, and $\partial_x w_n = w'_n$. Then, for each $n \ge 1$,

$$\dot{v}_n(t) w_n(x) = k v_n(t) w_n''(x).$$
 $rac{1}{k} rac{\dot{v}_n(t)}{v_n(t)} = rac{w_n''(x)}{w_n(x)}.$

The separation of variables method. Recall: $\frac{1}{k} \frac{\dot{v}_n(t)}{v_n(t)} = \frac{w_n''(x)}{w_n(x)}$. But: $\frac{1}{k} \frac{\dot{v}_n(t)}{dt} \frac{dv_n}{dt}(t) = \frac{1}{w_n(x)} \frac{d^2 w_n}{dx^2}(x)$. Depends only on t = Depends only on x. • The left-hand side depends only on t, while the right-hand side depends only on x. • When this happens in a PDE, one can use the separation of variables method on that PDE. • The conclusion is: Each side must be constant; $-\lambda_n$. $\frac{1}{k} \frac{\dot{v}_n(t)}{v_n(t)} = -\lambda_n$, $\frac{w_n''(x)}{w_n(x)} = -\lambda_n$. • The PDE is transformed into infinitely many ODEs.

The separation of variables method.

Recall:
$$\frac{1}{k} \frac{\dot{v}_n(t)}{v_n(t)} = -\lambda_n, \qquad \frac{w_n''(x)}{w_n(x)} = -\lambda_n.$$

The equation for v_n is linear,

$$\dot{v}_n = -k\lambda_n v_n \quad \Rightarrow \quad v_n(t) = v_n(0) e^{-k\lambda_n t}.$$

The equation for w_n is linear too, it is a BVP:

$$w_n'' + \lambda_n w_n = 0, \quad w_n(0) = w_n(L) = 0.$$

We have solved these eigenfunction problems before:

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2 \quad w_n(x) = \sin\left(\frac{n\pi x}{L}\right).$$

We have seen that these functions form an orthogonal set.

The separation of variables method.

Conclusion:
$$u(t,x) = \sum_{n=1}^{\infty} v_n(0) e^{-k(\frac{n\pi}{L})t} \sin\left(\frac{n\pi x}{L}\right)$$

This function satisfies the Boundary condtions:

$$u(t,0)=u(t,L)=0.$$

It must satisfy the initial condition:

$$f(x) = u(0, x) = \sum_{n=1}^{\infty} v_n(0) \sin\left(\frac{n\pi x}{L}\right)$$

But w_n are orthogonal with: $\int_0^L \sin^2\left(\frac{n\pi x}{L}\right) dx = \frac{L}{2}$.

$$\int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx = v_n(0) \frac{L}{2}.$$

The separation of variables method.

Conclusion: $u(t,x) = \sum_{n=1}^{\infty} v_n(0) e^{-k(\frac{n\pi}{L})t} \sin\left(\frac{n\pi x}{L}\right)$. With the coefficients $v_n(0)$ given by:

$$v_n(0) = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$

Summary: IBVP for the Heat Equation.

Decompose: $u(t,x) = \sum_{n=1}^{\infty} v_n(t) w_n(x)$, where:

- ▶ *v_n*: Solution of an IVP.
- \triangleright w_n: Solution of a BVP, an eigenvalue-eigenfunction problem.
- $v_n(0)$: Fourier Series coefficients.

Remark: Separation of variables does not work for every PDE.

An example of separation of variables.

Example

Find the solution to the IBVP $4\partial_t u = \partial_x^2 u$, t > 0, $x \in [0, 2]$,

$$u(0,x) = 3\sin(\pi x/2), \quad u(t,0) = 0, \quad u(t,2) = 0.$$

Solution: Let $u_n(t,x) = v_n(t) w_n(x)$. Then

$$4w_n(x)\frac{dv}{dt}(t) = v_n(t)\frac{d^2w}{dx^2}(x) \quad \Rightarrow \quad \frac{4v'_n(t)}{v_n(t)} = \frac{w''_n(x)}{w_n(x)} = -\lambda_n.$$

The equations for v_n and w_n are

$$v'_n(t)+rac{\lambda_n}{4}v_n(t)=0,\qquad w''_n(x)+\lambda_n\,w_n(x)=0.$$

We solve for v_n with the initial condition $v_n(0) = 1$.

$$e^{\frac{\lambda_n}{4}t} v'_n(t) + \frac{\lambda_n}{4} e^{\frac{\lambda_n}{4}t} v_n(t) = 0 \quad \Rightarrow \quad \left[e^{\frac{\lambda_n}{4}t} v_n(t)\right]' = 0$$

An example of separation of variables. Example Find the solution to the IBVP $4\partial_t u = \partial_x^2 u$, t > 0, $x \in [0, 2]$, $u(0, x) = 3\sin(\pi x/2)$, u(t, 0) = 0, u(t, 2) = 0. Solution: Recall: $[e^{\frac{\lambda_n}{4}t} v_n(t)]' = 0$. Therefore, $v_n(t) = c e^{-\frac{\lambda_n}{4}t}$, $1 = v_n(0) = c \Rightarrow v_n(t) = e^{-\frac{\lambda_n}{4}t}$. Next the BVP: $w_n''(x) + \lambda_n w_n(x) = 0$, with $w_n(0) = w_n(L) = 0$. Since $\lambda_n > 0$, introduce $\lambda_n = \mu_n^2$. The characteristic polynomial is $p(r) = r^2 + \mu_n^2 = 0 \Rightarrow r_{n\pm} = \pm \mu_n i$. The general solution, $w_n(x) = c_1 \cos(\mu_n x) + c_2 \sin(\mu_n x)$. The boundary conditions imply $0 = w_n(0) = c_1$, $\Rightarrow w_n(x) = c_2 \sin(\mu_n x)$.

An example of separation of variables.

Example

Find the solution to the IBVP $4\partial_t u = \partial_x^2 u$, t > 0, $x \in [0, 2]$, $u(0, x) = 3\sin(\pi x/2)$, u(t, 0) = 0, u(t, 2) = 0. Solution: Recall: $v_n(t) = e^{-\frac{\lambda_n}{4}t}$, and $w_n(x) = c_2 \sin(\mu_n x)$. $0 = w_n(2) = c_2 \sin(\mu_n 2)$, $c_2 \neq 0$, $\Rightarrow \sin(\mu_n 2) = 0$. Then, $\mu_n 2 = n\pi$, that is, $\mu_n = \frac{n\pi}{2}$. Choosing $c_2 = 1$, we conclude, $\lambda_m = \left(\frac{n\pi}{2}\right)^2$, $w_n(x) = \sin\left(\frac{n\pi x}{2}\right)$. $u(t, x) = \sum_{n=1}^{\infty} c_n e^{-(\frac{n\pi}{4})^2 t} \sin\left(\frac{n\pi x}{2}\right)$. An example of separation of variables. Example Find the solution to the IBVP $4\partial_t u = \partial_x^2 u$, t > 0, $x \in [0,2]$, $u(0,x) = 3\sin(\pi x/2)$, u(t,0) = 0, u(t,2) = 0. Solution: Recall: $u(t,x) = \sum_{n=1}^{\infty} c_n e^{-(\frac{n\pi}{4})^2 t} \sin(\frac{n\pi x}{2})$. The initial condition is $3\sin(\frac{\pi x}{2}) = \sum_{n=1}^{\infty} c_n \sin(\frac{n\pi x}{2})$. The orthogonality of the sine functions implies $3\int_0^2 \sin(\frac{\pi x}{2}) \sin(\frac{m\pi x}{2}) dx = \sum_{n=1}^{\infty} \int_0^2 \sin(\frac{n\pi x}{2}) \sin(\frac{m\pi x}{2}) dx$. If $m \neq 1$, then $0 = c_m \frac{2}{2}$, that is, $c_m = 0$ for $m \neq 1$. Therefore, $3\sin(\frac{\pi x}{2}) = c_1 \sin(\frac{\pi x}{2}) \Rightarrow c_1 = 3$.

An example of separation of variables.

Example

Find the solution to the IBVP $4\partial_t u = \partial_x^2 u$, t > 0, $x \in [0, 2]$, $u(0, x) = 3\sin(\pi x/2)$, u(t, 0) = 0, u(t, 2) = 0.

Solution: We conclude that

$$u(t,x) = 3 e^{-(\frac{\pi}{4})^2 t} \sin\left(\frac{\pi x}{2}\right).$$