Solving the Heat Equation (Sect. 6.3).

- The Heat Equation.
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.

The Heat Equation.

Review: The Heat Equation describes the temperature distribution in a solid material as function of time and position in space.

Problem: Find the temperature, u, of a bar of length L with insulated horizontal sides and vertical extremes kept at fixed temperatures u_{0}, u_{L}, and with initial temperature $u(0, x)=f(x)$.

$$
\begin{gathered}
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \quad x \in(0, L) \\
u(0)=T_{0}, \quad u(L)=T_{L}, \quad u(0, x)=f(x)
\end{gathered}
$$

Remark: The heat transfer occurs only along the x-axis.

The Heat Equation.

Remarks:

- The unknown of the problem is $u(t, x)$, the temperature of the bar at the time t and position x.
- The temperature does not depend on y or z.
- The one-dimensional Heat Equation is:

$$
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x)
$$

where $k>0$ is the heat conductivity, units: $[k]=\frac{(\text { distance })^{2}}{(\text { time })}$.

- The Heat Equation is a Partial Differential Equation, PDE.

Solving the Heat Equation (Sect. 6.3).

- The Heat Equation.

- The Initial-Boundary Value Problem.

- The separation of variables method.
- An example of separation of variables.

The Initial-Boundary Value Problem.

Definition

The IBVP for the one-dimensional Heat Equation is the following: Given a constant $k>0$ and a function $f:[0, L] \rightarrow \mathbb{R}$ with $f(0)=f(L)=0$, find $u:[0, \infty) \times[0, L] \rightarrow \mathbb{R}$ solution of

$$
\begin{gathered}
\partial_{t} u(t, x)=k \partial_{x}^{2} u(t, x), \\
\text { I.C.: } u(0, x)=f(x),
\end{gathered}
$$

$$
\text { B.C.: } \quad u(t, 0)=0, \quad u(t, L)=0
$$

Solving the Heat Equation (Sect. 6.3).

- The Heat Equation.
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.

The separation of variables method.

Summary: IBVP for the Heat Equation.
The vector Space: (Functions of x.)
$V=\{v$ differentiable functions on $[0, L]$, with $v(0)=v(L)=0\}$.
Remark: The problem B.C. are imbedded in the definition of V.
The orthogonal vector basis: (Functions of x.)
Introduce $\left\{w_{n}\right\}_{n=1}^{\infty} \subset V$, that is, $w_{n}(0)=w_{n}(L)=0$.
Remark: The basis is not known yet. Finding the basis is part of our problem.

Decompose the temperature u in the basis $\left\{w_{n}\right\}$:

$$
u(t, x)=\sum_{n=1}^{\infty} v_{n}(t) w_{n}(x)
$$

We need to find all v_{n} and w_{n}.

The separation of variables method.
Recall: $u(t, x)=\sum_{n=1}^{\infty} v_{n}(t) w_{n}(x)$.
Introduce u into the differential equation.

$$
\sum_{n=1}^{\infty}\left[\partial_{t}\left(v_{n} w_{n}\right)-k \partial_{x}^{2}\left(v_{n} w_{n}\right)\right]=0
$$

A sufficient condition to find a solution is: Each term vanishes.

$$
\partial_{t}\left(v_{n} w_{n}\right)=k \partial_{x}^{2}\left(v_{n} w_{n}\right)
$$

But v_{n} depends on t and w_{n} depends on x.
Denote $\partial_{t} v_{n}=\dot{v}_{n}$, and $\partial_{x} w_{n}=w_{n}^{\prime}$. Then, for each $n \geqslant 1$,

$$
\begin{gathered}
\dot{v}_{n}(t) w_{n}(x)=k v_{n}(t) w_{n}^{\prime \prime}(x) . \\
\frac{1}{k} \frac{\dot{v}_{n}(t)}{v_{n}(t)}=\frac{w_{n}^{\prime \prime}(x)}{w_{n}(x)} .
\end{gathered}
$$

The separation of variables method.
Recall: $\frac{1}{k} \dot{v}_{n}(t) v_{n}(t)=\frac{w_{n}^{\prime \prime}(x)}{w_{n}(x)}$. But:

$$
\frac{1}{k} \frac{\dot{v}_{n}(t)}{d t} \frac{d v_{n}}{d t}(t)=\frac{1}{w_{n}(x)} \frac{d^{2} w_{n}}{d x^{2}}(x) .
$$

Depends only on $t=$ Depends only on x.

- The left-hand side depends only on t, while the right-hand side depends only on x.
- When this happens in a PDE, one can use the separation of variables method on that PDE.
- The conclusion is: Each side must be constant; $-\lambda_{n}$.

$$
\frac{1}{k} \frac{\dot{v}_{n}(t)}{v_{n}(t)}=-\lambda_{n}, \quad \frac{w_{n}^{\prime \prime}(x)}{w_{n}(x)}=-\lambda_{n} .
$$

- The PDE is transformed into infinitely many ODEs.

The separation of variables method.

Recall: $\frac{1}{k} \frac{\dot{v}_{n}(t)}{v_{n}(t)}=-\lambda_{n}, \quad \frac{w_{n}^{\prime \prime}(x)}{w_{n}(x)}=-\lambda_{n}$.
The equation for v_{n} is linear,

$$
\dot{v}_{n}=-k \lambda_{n} v_{n} \quad \Rightarrow \quad v_{n}(t)=v_{n}(0) e^{-k \lambda_{n} t}
$$

The equation for w_{n} is linear too, it is a BVP:

$$
w_{n}^{\prime \prime}+\lambda_{n} w_{n}=0, \quad w_{n}(0)=w_{n}(L)=0
$$

We have solved these eigenfunction problems before:

$$
\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2} \quad w_{n}(x)=\sin \left(\frac{n \pi x}{L}\right)
$$

We have seen that these functions form an orthogonal set.

The separation of variables method.
Conclusion: $u(t, x)=\sum_{n=1}^{\infty} v_{n}(0) e^{-k\left(\frac{n \pi}{L}\right) t} \sin \left(\frac{n \pi x}{L}\right)$.
This function satisfies the Boundary condtions:

$$
u(t, 0)=u(t, L)=0
$$

It must satisfy the initial condition:

$$
f(x)=u(0, x)=\sum_{n=1}^{\infty} v_{n}(0) \sin \left(\frac{n \pi x}{L}\right) .
$$

But w_{n} are orthogonal with: $\int_{0}^{L} \sin ^{2}\left(\frac{n \pi x}{L}\right) d x=\frac{L}{2}$.

$$
\int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x=v_{n}(0) \frac{L}{2}
$$

The separation of variables method.
Conclusion: $u(t, x)=\sum_{n=1}^{\infty} v_{n}(0) e^{-k\left(\frac{n \pi}{L}\right) t} \sin \left(\frac{n \pi x}{L}\right)$.
With the coefficients $v_{n}(0)$ given by:

$$
v_{n}(0)=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

Summary:IBVP for the Heat Equation.
Decompose: $u(t, x)=\sum_{n=1}^{\infty} v_{n}(t) w_{n}(x)$, where:

- v_{n} : Solution of an IVP.
- w_{n} : Solution of a BVP, an eigenvalue-eigenfunction problem.
- $v_{n}(0)$: Fourier Series coefficients.

Remark: Separation of variables does not work for every PDE.

Solving the Heat Equation (Sect. 6.3).

- The Heat Equation.
- The Initial-Boundary Value Problem.
- The separation of variables method.
- An example of separation of variables.

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Let $u_{n}(t, x)=v_{n}(t) w_{n}(x)$. Then

$$
4 w_{n}(x) \frac{d v}{d t}(t)=v_{n}(t) \frac{d^{2} w}{d x^{2}}(x) \quad \Rightarrow \quad \frac{4 v_{n}^{\prime}(t)}{v_{n}(t)}=\frac{w_{n}^{\prime \prime}(x)}{w_{n}(x)}=-\lambda_{n} .
$$

The equations for v_{n} and w_{n} are

$$
v_{n}^{\prime}(t)+\frac{\lambda_{n}}{4} v_{n}(t)=0, \quad w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0
$$

We solve for v_{n} with the initial condition $v_{n}(0)=1$.

$$
e^{\frac{\lambda_{n}}{4} t} v_{n}^{\prime}(t)+\frac{\lambda_{n}}{4} e^{\frac{\lambda_{n}}{4} t} v_{n}(t)=0 \quad \Rightarrow \quad\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\left[e^{\frac{\lambda_{n}}{4} t} v_{n}(t)\right]^{\prime}=0$. Therefore,

$$
v_{n}(t)=c e^{-\frac{\lambda_{n}}{4} t}, \quad 1=v_{n}(0)=c \quad \Rightarrow \quad v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t}
$$

Next the BVP: $w_{n}^{\prime \prime}(x)+\lambda_{n} w_{n}(x)=0$, with $w_{n}(0)=w_{n}(L)=0$.
Since $\lambda_{n}>0$, introduce $\lambda_{n}=\mu_{n}^{2}$. The characteristic polynomial is

$$
p(r)=r^{2}+\mu_{n}^{2}=0 \quad \Rightarrow \quad r_{n \pm}= \pm \mu_{n} i
$$

The general solution, $w_{n}(x)=c_{1} \cos \left(\mu_{n} x\right)+c_{2} \sin \left(\mu_{n} x\right)$.
The boundary conditions imply

$$
0=w_{n}(0)=c_{1}, \quad \Rightarrow \quad w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right)
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $\quad v_{n}(t)=e^{-\frac{\lambda_{n}}{4} t}$, and $w_{n}(x)=c_{2} \sin \left(\mu_{n} x\right)$.

$$
0=w_{n}(2)=c_{2} \sin \left(\mu_{n} 2\right), \quad c_{2} \neq 0, \quad \Rightarrow \quad \sin \left(\mu_{n} 2\right)=0
$$

Then, $\mu_{n} 2=n \pi$, that is, $\mu_{n}=\frac{n \pi}{2}$. Choosing $c_{2}=1$, we conclude,

$$
\begin{gathered}
\lambda_{m}=\left(\frac{n \pi}{2}\right)^{2}, \quad w_{n}(x)=\sin \left(\frac{n \pi x}{2}\right) . \\
u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-\left(\frac{n \pi}{4}\right)^{2} t} \sin \left(\frac{n \pi x}{2}\right) .
\end{gathered}
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: Recall: $u(t, x)=\sum_{n=1}^{\infty} c_{n} e^{-\left(\frac{n \pi}{4}\right)^{2} t} \sin \left(\frac{n \pi x}{2}\right)$.
The initial condition is $3 \sin \left(\frac{\pi x}{2}\right)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{2}\right)$.
The orthogonality of the sine functions implies

$$
3 \int_{0}^{2} \sin \left(\frac{\pi x}{2}\right) \sin \left(\frac{m \pi x}{2}\right) d x=\sum_{n=1}^{\infty} \int_{0}^{2} \sin \left(\frac{n \pi x}{2}\right) \sin \left(\frac{m \pi x}{2}\right) d x
$$

If $m \neq 1$, then $0=c_{m} \frac{2}{2}$, that is, $c_{m}=0$ for $m \neq 1$. Therefore,

$$
3 \sin \left(\frac{\pi x}{2}\right)=c_{1} \sin \left(\frac{\pi x}{2}\right) \quad \Rightarrow \quad c_{1}=3
$$

An example of separation of variables.

Example

Find the solution to the IBVP $4 \partial_{t} u=\partial_{x}^{2} u, \quad t>0, \quad x \in[0,2]$,

$$
u(0, x)=3 \sin (\pi x / 2), \quad u(t, 0)=0, \quad u(t, 2)=0
$$

Solution: We conclude that

$$
u(t, x)=3 e^{-\left(\frac{\pi}{4}\right)^{2} t} \sin \left(\frac{\pi x}{2}\right)
$$

