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Convolution of two functions.

Definition
The convolution of piecewise continuous functions f, g : R — R is
the function f x g : R — R given by

(fxg)(t) = /Ot f(r)g(t—T7)dr.

Remarks:
» f x g is also called the generalized product of f and g.

» The definition of convolution of two functions also holds in
the case that one of the functions is a generalized function,

like Dirac’s delta.

Convolution of two functions.
Example

Find the convolution of f(t) = e~ and g(t) = sin(t).

t
Solution: By definition: (f % g)(t) = / e "sin(t—7)drT.
0

t
Integrate by parts twice: / e "sin(t—7)dT =
0

t t

t
—/ e " sin(t —7)dT,
0

— [e_T sin(t — T)}

{e‘T cos(t — T)}

0 0

t t

)
0

— {e_T sin(t — T)}

2 /Ot e Tsin(t—17)dT = {e_T cos(t — 7')}

2(f x g)(t) = et — cos(t) — 0 + sin(t).

We conclude: (f = g)(t) = = |e” " +sin(t) — cos(t)]. <

N| —
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Properties of convolutions.

Theorem (Properties)

For every piecewise continuous functions f, g, and h, hold:

(i

Commutativity:

(i) Associativity:

fxg=gxf,;
fx(gxh)=(fxg)x*h;
fx(g+h)=Ffxg+fxh;

(iv) Neutral element: f 0 =0,

)
)
(iii) Distributivity:
)
)

(v) Identity element: f % = f.

Proof:
(v):

(F +8)(t) = /Ot F(r)8(t — 1) dr = /Ot F(r)8(r — t) dr = £(1)




Properties of convolutions.

Proof:
(1): Commutativity: fxg =g f.

The definition of convolution is,

(f x g)(t) = /Ot f(r)g(t—7)dr.

Change the integration variable: ¥ =t — 7, hence d7 = —dr,
0
(Fx8)(t) = [ flc- -V
t

()0 = | g(R) F(t - 7)d

We conclude: (f % g)(t) = (g * )(t).
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Laplace Transform of a convolution.

Theorem (Laplace Transform)
If f, g have well-defined Laplace Transforms L[f], L[g], then

L[f x g] = L[f] L[g]-

Proof: The key step is to interchange two integrals. We start we
the product of the Laplace transforms,

£l clg] = | /0 T emst (1) d] | /0 T estg(h) d].

L] £lg] = /0 " estg(d) ( /O T emst(h) dt) i,

L[f] Lg] = / T 2(d) ( / T st () dt) di.

Laplace Transform of a convolution.

Proof: Recall: L[f] L[g] = / b g(%)( / T emster b () dt) di.

Change variables: 7=t +t, hence dr = dt;

CIf] Llg] = / (9 ( /t T e T — 1) dr) df

L[] £lg] = / / F(r — 7) dr di. P

The key step: Switch the order of integration.

LIf) lg] = / / f(r — ) di dr.




Laplace Transform of a convolution.

Proof: Recall: L[f] L[g] = / / e " g(t)f(r —t)dtdr.
0 0

Then, is straightforward to check that
CIf] Llg] = /O T ( /0 " g(®) F(r — F) dF) dr.
i) clel = | e (g x F)(r) dr
£1f) £lg] = Ll +

We conclude: L[f % g| = L[f] L[g].

Laplace Transform of a convolution.

Example
Use convolutions to find the inverse Laplace Transform of
3
F(s) = 55—
(s) s3(s?2 — 3)

Solution: We express F as a product of two Laplace Transforms,

=35y (5) )

3 (52 _ 3) 2 \/g s3 s2
i nI a
Recalling that L[t"] = ——= and L[sinh(at)] = 22
V3 V3

F(s) =~ L[t?] L[sinh(V3 t)] = = L[t2 xsin(V3t)].

We conclude that 7(t \/_/ 72 sinh \/§(t —7))] d7.




Laplace Transform of a convolution.

Example

t
Compute L[f(t)] where f(t) = / e 3(t=7) cos(27) dr.
0

Solution: The function f is the convolution of two functions,
f(t) = (g = h)(t),  g(t) =cos(2t), h(t)=e">"
Since L[(g = h)(t)] = L[g(t)] L[h(t)], then,

F(s) = E[/ot e 3(t=7) cos(27) dT} = L[e "] L[cos(2t)].

(s+3)(s?+4)

We conclude that F(s) =

Laplace Transform of a convolution.
Example
Solve the IVP
y" =5y +6y=g(t), y(0)=0, y'(0)=0.

Solution: Denote G(s) = L[g(t)] and compute LT of the equation,

1
(s> — 55+ 6)

,and h(t) = £} [H(s)], then

(s> — 55+ 6) LIy(8)] = LIg()] = LIy(t)] =

1
Denoting H(S) = m

G(s).

Lly(t)]=H(s) G(s) = y(t) = (h=g)(t).

Function h is simple to compute:
1 a_ b a(s—3)+b(s—2)
C(s—2)(s—3) (s-2) (s—=3)  (s—2)(s—3)




Laplace Transform of a convolution.

Example
Solve the IVP

y" =5y’ +6y =g(t), y(0)=0, y'(0)=0.
Solution: Then: 1 = a(s — 3) + b(s — 2). Evaluate at s =2, 3.

s=2 = a=-1. s=3 = b=1.

1 1
Therefore H(s) = -2 -+ G-3) Then

h(t) = —e®t 4 .

Recalling the formula y(t) = (h* g)(t), we get

y(t) = /Ot(—ezf + ) g(t —7) dr.
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Impulse response solution.

Definition
The impulse response solution is the solution ys to the IVP

yg’ +a yé +ays = 0(t), ys(0) =0, yé(O) = 0.

Computing Laplace Transforms,

1
2 _ -1
(THast+a) L] =1 = ylt) =L {52+als+ao}'

Denoting the characteristic polynomial by p(s) = s? + a;s + ay,

Summary: The impulse reponse solution is the inverse Laplace
Transform of the reciprocal of the equation characteristic
polynomial.

Impulse response solution.

Recall: The impulse response solution is ys solution of the IVP

v§ +arys+ays =0(t), ys(0)=0, y5(0)=0.

Example
Find the solution (impulse response at t = ¢) of the IVP

i +2y; 42y, =0(t—c), ¥.(0)=0, y;(0)=0, ceR

Solution: L[ys.] +2 L[ys.] + 2 L[ys.] = L[5(t — c)].

e—CS

(s2+2s+2)

(s> +25s+2)L[ys]=e = Lly.]=




Impulse response solution.

Example
Find the solution (impulse response at t = ¢) of the IVP

i +2y; 42y, =0(t—c), ¥.(0)=0, y;(0)=0, ceR

—CS

. e
Solution: Recall:  Llys. | = (2125 +2)
Find the roots of the denominator,
1
P +25+2=0 = Si:i [—2i\/4—8]

Complex roots. We complete the square:
2
2425 42= {524—2(5)5—#1} 142=(s+1)2+1.

e—CS

(s+1)2+1

Therefore, Llys.] =

Impulse response solution.

Example
Find the solution (impulse response at t = ¢) of the IVP

i+ 2y5 +2ys, =0(t—c), y5.(0)=0, y;(0)=0, ceR.

—CS

Solution: Recall:  Llys.] = G +e1)2 1
Recall: Lfsin(t)] = - 1+ —, and £[f](s — ) = £[e F()].
1 —t _ _—cs —t
Gr12+1 = Lle""sin(t)] = Llys.]=e < L]e" " sin(t)].

Since e~ L[f](s) = L[u(t — ¢) f(t — )],

we conclude ys_ (t) = u(t — ¢) e =) sin(t — ¢). <
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Solution decomposition theorem.

Theorem (Solution decomposition)
The solution y to the IVP

Y'+ay +ay=g(t), y(0)=ys y'(0)=y,
can be decomposed as
y(t) = yn(t) + (ys * g)(1),

where yy, is the solution of the homogeneous IVP

1

Yh4+ayh+ayn=0, yn(0)=yo, yh(0)=y,

and ys is the impulse response solution, that is,

yg’ + a yg +aoys = 0(t), ys(0) =0, yé(O) = 0.




Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y'+2y +2y =sin(at), y(0)=1, y'(0)=-1.
Solution: L[y"] + 2 L[y'] + 2 L[y] = L]sin(at)], and recall,

Ly N=sLly]| -s(1) - (-1), LYT=sLl] -1

(s +25+2) L[y] — s + 1 —2 = L][sin(at)].

(s+1) N 1
(s2+25s+2)  (s24+2s5s+2)

Lly] = L[sin(at)].

Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y' 42y 42y = sin(at), y(0) =1, y’(O) = —1.

. _ o (s+1) 1 .
Solution: Recall: L[y] = (2125 +2) (212542 Ll[sin(at)].
_  (s+1)  (s+1)
But: Ll = @25+~ rigs1 Lle cosol
and: Llys] = ! = ! = L[e " sin(t)]. So,

(s2+2s+2) (s+1)2+1

Lly]l = Llyn] + Llys] Llg(t)] = y(t) = yn(t) + (v5 * g)(1),

So: y(t) = e * cos(t) +/0 e "sin(7) sin[a(t — 7)] dT. <




Solution decomposition theorem.

Proof: Compute: L[y"] + a; L[y'] + a, L[y] = L[g(t)], and recall,
Ly =Ll =svo =y, LIYT=5L] - w.

(52 + as + ao) E[y] - S_yo - )/1 - alyo — E[g(t)]

(sta)yntwn 1
Lly| = :
i (s2+a;s+a,) (s2+ as+ a) Llg(t)]
(s+a)yo +x 1
Recall: - _ |
ecall: L) (s2+ a;s + a)’ and Llys] (s2 4 a5 + a)

Since, Lly] = L[yn] + Lys] L[g(t)], so y(t) = yn(t) + (v5 = &)(1).

Equivalently: y(t) = yp(t) + /Oty5(7)g(t —7)dT. O




