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Convolution of two functions.

Definition
The convolution of piecewise continuous functions f , g : R → R is
the function f ∗ g : R → R given by

(f ∗ g)(t) =

∫ t

0

f (τ)g(t − τ) dτ.

Remarks:

I f ∗ g is also called the generalized product of f and g .

I The definition of convolution of two functions also holds in
the case that one of the functions is a generalized function,
like Dirac’s delta.

Convolution of two functions.

Example

Find the convolution of f (t) = e−t and g(t) = sin(t).

Solution: By definition: (f ∗ g)(t) =

∫ t

0

e−τ sin(t − τ) dτ .

Integrate by parts twice:

∫ t

0

e−τ sin(t − τ) dτ =[
e−τ cos(t − τ)

]∣∣∣t
0

−
[
e−τ sin(t − τ)

]∣∣∣t
0

−
∫ t

0

e−τ sin(t − τ) dτ,

2

∫ t

0

e−τ sin(t − τ) dτ =
[
e−τ cos(t − τ)

]∣∣∣t
0

−
[
e−τ sin(t − τ)

]∣∣∣t
0

,

2(f ∗ g)(t) = e−t − cos(t)− 0 + sin(t).

We conclude: (f ∗ g)(t) =
1

2

[
e−t + sin(t)− cos(t)

]
. C
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Properties of convolutions.

Theorem (Properties)

For every piecewise continuous functions f , g , and h, hold:

(i) Commutativity: f ∗ g = g ∗ f ;

(ii) Associativity: f ∗ (g ∗ h) = (f ∗ g) ∗ h;

(iii) Distributivity: f ∗ (g + h) = f ∗ g + f ∗ h;

(iv) Neutral element: f ∗ 0 = 0;

(v) Identity element: f ∗ δ = f .

Proof:
(v):

(f ∗ δ)(t) =

∫ t

0

f (τ) δ(t − τ) dτ =

∫ t

0

f (τ) δ(τ − t) dτ = f (t).



Properties of convolutions.

Proof:
(1): Commutativity: f ∗ g = g ∗ f .

The definition of convolution is,

(f ∗ g)(t) =

∫ t

0

f (τ) g(t − τ) dτ.

Change the integration variable: τ̂ = t − τ , hence d τ̂ = −dτ ,

(f ∗ g)(t) =

∫ 0

t
f (t − τ̂) g(τ̂)(−1) d τ̂

(f ∗ g)(t) =

∫ t

0

g(τ̂) f (t − τ̂) d τ̂

We conclude: (f ∗ g)(t) = (g ∗ f )(t).
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Laplace Transform of a convolution.

Theorem (Laplace Transform)

If f , g have well-defined Laplace Transforms L[f ], L[g ], then

L[f ∗ g ] = L[f ]L[g ].

Proof: The key step is to interchange two integrals. We start we
the product of the Laplace transforms,

L[f ]L[g ] =
[∫ ∞

0

e−st f (t) dt
] [∫ ∞

0

e−st̃g(t̃) dt̃
]
,

L[f ]L[g ] =

∫ ∞

0

e−st̃g(t̃)
(∫ ∞

0

e−st f (t) dt
)

dt̃,

L[f ]L[g ] =

∫ ∞

0

g(t̃)
(∫ ∞

0

e−s(t+t̃)f (t) dt
)

dt̃.

Laplace Transform of a convolution.

Proof: Recall: L[f ]L[g ] =

∫ ∞

0

g(t̃)
(∫ ∞

0

e−s(t+t̃)f (t) dt
)

dt̃.

Change variables: τ = t + t̃, hence dτ = dt;

L[f ]L[g ] =

∫ ∞

0

g(t̃)
(∫ ∞

t̃
e−sτ f (τ − t̃) dτ

)
dt̃.

L[f ]L[g ] =

∫ ∞

0

∫ ∞

t̃
e−sτ g(t̃) f (τ − t̃) dτ dt̃.

The key step: Switch the order of integration.

t = tau

tau

t

0

L[f ]L[g ] =

∫ ∞

0

∫ τ

0
e−sτ g(t̃) f (τ − t̃) dt̃ dτ.



Laplace Transform of a convolution.

Proof: Recall: L[f ]L[g ] =

∫ ∞

0

∫ τ

0
e−sτ g(t̃) f (τ − t̃) dt̃ dτ .

Then, is straightforward to check that

L[f ]L[g ] =

∫ ∞

0

e−sτ
(∫ τ

0
g(t̃) f (τ − t̃) dt̃

)
dτ,

L[f ]L[g ] =

∫ ∞

0

e−sτ (g ∗ f )(τ) dτ

L[f ]L[g ] = L[g ∗ f ]

We conclude: L[f ∗ g ] = L[f ]L[g ].

Laplace Transform of a convolution.

Example

Use convolutions to find the inverse Laplace Transform of

F (s) =
3

s3(s2 − 3)
.

Solution: We express F as a product of two Laplace Transforms,

F (s) = 3
1

s3

1

(s2 − 3)
=

3

2

1√
3

( 2

s3

) ( √
3

s2 − 3

)
Recalling that L[tn] =

n!

sn+1
and L[sinh(at)] =

a

s2 − a2
,

F (s) =

√
3

2
L[t2]L

[
sinh(

√
3 t)

]
=

√
3

2
L

[
t2 ∗ sin(

√
3 t)

]
.

We conclude that f (t) =

√
3

2

∫ t

0
τ2 sinh

[√
3(t − τ))

]
dτ . C



Laplace Transform of a convolution.

Example

Compute L[f (t)] where f (t) =

∫ t

0
e−3(t−τ) cos(2τ) dτ .

Solution: The function f is the convolution of two functions,

f (t) = (g ∗ h)(t), g(t) = cos(2t), h(t) = e−3t .

Since L[(g ∗ h)(t)] = L[g(t)]L[h(t)], then,

F (s) = L
[∫ t

0
e−3(t−τ) cos(2τ) dτ

]
= L

[
e−3t

]
L

[
cos(2t)

]
.

We conclude that F (s) =
s

(s + 3)(s2 + 4)
. C

Laplace Transform of a convolution.

Example

Solve the IVP

y ′′ − 5y ′ + 6y = g(t), y(0) = 0, y ′(0) = 0.

Solution: Denote G (s) = L[g(t)] and compute LT of the equation,

(s2 − 5s + 6)L[y(t)] = L[g(t)] ⇒ L[y(t)] =
1

(s2 − 5s + 6)
G (s).

Denoting H(s) =
1

s2 − 5s + 6
, and h(t) = L−1

[
H(s)

]
, then

L[y(t)] = H(s) G (s) ⇒ y(t) = (h ∗ g)(t).

Function h is simple to compute:

H(s) =
1

(s − 2)(s − 3)
=

a

(s − 2)
+

b

(s − 3)
=

a(s − 3) + b(s − 2)

(s − 2)(s − 3)



Laplace Transform of a convolution.

Example

Solve the IVP

y ′′ − 5y ′ + 6y = g(t), y(0) = 0, y ′(0) = 0.

Solution: Then: 1 = a(s − 3) + b(s − 2). Evaluate at s = 2, 3.

s = 2 ⇒ a = −1. s = 3 ⇒ b = 1.

Therefore H(s) = − 1

(s − 2)
+

1

(s − 3)
. Then

h(t) = −e2t + e3t .

Recalling the formula y(t) = (h ∗ g)(t), we get

y(t) =

∫ t

0

(
−e2τ + e3τ

)
g(t − τ) dτ. C
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Impulse response solution.

Definition
The impulse response solution is the solution yδ to the IVP

y ′′δ + a1 y ′δ + a0 yδ = δ(t), yδ(0) = 0, y ′δ(0) = 0.

Computing Laplace Transforms,

(s2 + a1s + a0)L[yδ] = 1 ⇒ yδ(t) = L−1
[ 1

s2 + a1s + a0

]
.

Denoting the characteristic polynomial by p(s) = s2 + a1s + a0,

yδ = L−1
[ 1

p(s)

]
.

Summary: The impulse reponse solution is the inverse Laplace
Transform of the reciprocal of the equation characteristic
polynomial.

Impulse response solution.

Recall: The impulse response solution is yδ solution of the IVP

y ′′δ + a1 y ′δ + a0 yδ = δ(t), yδ(0) = 0, y ′δ(0) = 0.

Example

Find the solution (impulse response at t = c) of the IVP

y ′′δc
+ 2 y ′δc

+ 2 yδc = δ(t − c), yδc (0) = 0, y ′δc
(0) = 0, c ∈ R.

Solution: L[y ′′δc
] + 2L[y ′δc

] + 2L[yδc ] = L[δ(t − c)].

(s2 + 2s + 2)L[yδc ] = e−cs ⇒ L[yδc ] =
e−cs

(s2 + 2s + 2)
.



Impulse response solution.

Example

Find the solution (impulse response at t = c) of the IVP

y ′′δc
+ 2 y ′δc

+ 2 yδc = δ(t − c), yδc (0) = 0, y ′δc
(0) = 0, c ∈ R.

Solution: Recall: L[yδc ] =
e−cs

(s2 + 2s + 2)
.

Find the roots of the denominator,

s2 + 2s + 2 = 0 ⇒ s± =
1

2

[
−2±

√
4− 8

]
Complex roots. We complete the square:

s2 + 2s + 2 =
[
s2 + 2

(2

2

)
s + 1

]
− 1 + 2 = (s + 1)2 + 1.

Therefore, L[yδc ] =
e−cs

(s + 1)2 + 1
.

Impulse response solution.

Example

Find the solution (impulse response at t = c) of the IVP

y ′′δc
+ 2 y ′δc

+ 2 yδc = δ(t − c), yδc (0) = 0, y ′δc
(0) = 0, c ∈ R.

Solution: Recall: L[yδc ] =
e−cs

(s + 1)2 + 1
.

Recall: L[sin(t)] =
1

s2 + 1
, and L[f ](s − c) = L[ect f (t)].

1

(s + 1)2 + 1
= L[e−t sin(t)] ⇒ L[yδc ] = e−cs L[e−t sin(t)].

Since e−cs L[f ](s) = L[u(t − c) f (t − c)],

we conclude yδc (t) = u(t − c) e−(t−c) sin(t − c). C
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Solution decomposition theorem.

Theorem (Solution decomposition)

The solution y to the IVP

y ′′ + a1 y ′ + a0 y = g(t), y(0) = y0, y ′(0) = y1,

can be decomposed as

y(t) = yh(t) + (yδ ∗ g)(t),

where yh is the solution of the homogeneous IVP

y ′′h + a1 y ′h + a0 yh = 0, yh(0) = y0, y ′h(0) = y1,

and yδ is the impulse response solution, that is,

y ′′δ + a1 y ′δ + a0 yδ = δ(t), yδ(0) = 0, y ′δ(0) = 0.



Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

y ′′ + 2 y ′ + 2 y = sin(at), y(0) = 1, y ′(0) = −1.

Solution: L[y ′′] + 2L[y ′] + 2L[y ] = L[sin(at)], and recall,

L[y ′′] = s2 L[y ]− s (1)− (−1), L[y ′] = s L[y ]− 1.

(s2 + 2s + 2)L[y ]− s + 1− 2 = L[sin(at)].

L[y ] =
(s + 1)

(s2 + 2s + 2)
+

1

(s2 + 2s + 2)
L[sin(at)].

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

y ′′ + 2 y ′ + 2 y = sin(at), y(0) = 1, y ′(0) = −1.

Solution: Recall: L[y ] =
(s + 1)

(s2 + 2s + 2)
+

1

(s2 + 2s + 2)
L[sin(at)].

But: L[yh] =
(s + 1)

(s2 + 2s + 2)
=

(s + 1)

(s + 1)2 + 1
= L[e−t cos(t)],

and: L[yδ] =
1

(s2 + 2s + 2)
=

1

(s + 1)2 + 1
= L[e−t sin(t)]. So,

L[y ] = L[yh] + L[yδ]L[g(t)] ⇒ y(t) = yh(t) + (yδ ∗ g)(t),

So: y(t) = e−t cos(t) +

∫ t

0
e−τ sin(τ) sin[a(t − τ)] dτ . C



Solution decomposition theorem.

Proof: Compute: L[y ′′] + a1 L[y ′] + a0 L[y ] = L[g(t)], and recall,

L[y ′′] = s2 L[y ]− sy0 − y1, L[y ′] = s L[y ]− y0.

(s2 + a1s + a0)L[y ]− sy0 − y1 − a1y0 = L[g(t)].

L[y ] =
(s + a1)y0 + y1

(s2 + a1s + a0)
+

1

(s2 + a1s + a0)
L[g(t)].

Recall: L[yh] =
(s + a1)y0 + y1

(s2 + a1s + a0)
, and L[yδ] =

1

(s2 + a1s + a0)
.

Since, L[y ] = L[yh] + L[yδ]L[g(t)], so y(t) = yh(t) + (yδ ∗ g)(t).

Equivalently: y(t) = yh(t) +

∫ t

0
yδ(τ)g(t − τ) dτ .


