The Laplace Transform of step functions (Sect. 4.3).

Last Lecture

- Overview and notation.
- The definition of a step function.
- Piecewise discontinuous functions.
- The Laplace Transform of discontinuous functions.
- Properties of the Laplace Transform.

This Lecture

- Differential equations with discontinuous sources.

Equations with discontinuous sources (Sect. 4.3).

- Differential equations with discontinuous sources.
- We solve the IVPs:
(a) Example 1:

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

(b) Example 2:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

(c) Example 3:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} g(t)= \begin{cases}\sin (t), & \\
0, & t \in[0, \pi) \\
0, & t \pi, \infty) .\end{cases}
$$

Equations with discontinuous sources (Sect. 4.3).

- Differential equations with discontinuous sources.
- We solve the IVPs:
(a) Example 1:

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

(b) Example 2:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
& y(0)=0, \\
& y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

(c) Example 3:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} g(t)= \begin{cases}\sin (t), & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Compute the Laplace transform of the whole equation,

$$
\mathcal{L}\left[y^{\prime}\right]+2 \mathcal{L}[y]=\mathcal{L}[u(t-4)]=\frac{e^{-4 s}}{s}
$$

From the previous Section we know that

$$
[s \mathcal{L}[y]-y(0)]+2 \mathcal{L}[y]=\frac{e^{-4 s}}{s} \Rightarrow(s+2) \mathcal{L}[y]=y(0)+\frac{e^{-4 s}}{s}
$$

Introduce the initial condition, $\mathcal{L}[y]=\frac{3}{(s+2)}+e^{-4 s} \frac{1}{s(s+2)}$,
Use the table: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3 .
$$

Solution: Recall: $\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+e^{-4 s} \frac{1}{s(s+2)}$.
We need to invert the Laplace transform on the last term.
Partial fractions:

$$
\frac{1}{s(s+2)}=\frac{a}{s}+\frac{b}{(s+2)}=\frac{a(s+2)+b s}{s(s+2)}=\frac{(a+b) s+(2 a)}{s(s+2)}
$$

We get, $a+b=0,2 a=1$. We obtain: $a=\frac{1}{2}, b=-\frac{1}{2}$. Hence,

$$
\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right] .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

Solution: Recall: $\frac{1}{s(s+2)}=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{(s+2)}\right]$.
The algebraic equation for $\mathcal{L}[y]$ has the form,

$$
\begin{gathered}
\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left[e^{-4 s} \frac{1}{s}-e^{-4 s} \frac{1}{(s+2)}\right] \\
\mathcal{L}[y]=3 \mathcal{L}\left[e^{-2 t}\right]+\frac{1}{2}\left(\mathcal{L}[u(t-4)]-\mathcal{L}\left[u(t-4) e^{-2(t-4)}\right]\right)
\end{gathered}
$$

We conclude that

$$
y(t)=3 e^{-2 t}+\frac{1}{2} u(t-4)\left[1-e^{-2(t-4)}\right]
$$

Equations with discontinuous sources (Sect. 4.3).

- Differential equations with discontinuous sources.
- We solve the IVPs:
(a) Example 1:

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

(b) Example 2:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

(c) Example 3:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} g(t)= \begin{cases}\sin (t), & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution:

Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: The graphs imply: $b(t)=u(t)-u(t-\pi)$
Now is simple to find $\mathcal{L}[b]$, since

$$
\mathcal{L}[b(t)]=\mathcal{L}[u(t)]-\mathcal{L}[u(t-\pi)]=\frac{1}{s}-\frac{e^{-\pi s}}{s} .
$$

So, the source is $\mathcal{L}[b(t)]=\left(1-e^{-\pi s}\right) \frac{1}{s}$, and the equation is

$$
\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s} .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $\quad \mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.
The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$ and $\mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]$.
Therefore, $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s}$.
We arrive at the expression: $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) \frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$.
Denoting: $H(s)=\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}$,
we obtain, $\mathcal{L}[y]=\left(1-e^{-\pi s}\right) H(s)$.
In other words: $y(t)=\mathcal{L}^{-1}[H(s)]-\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]-\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.
Denoting: $h(t)=\mathcal{L}^{-1}[H(s)]$, the $\mathcal{L}[]$ properties imply

$$
\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]=u(t-\pi) h(t-\pi)
$$

Therefore, the solution has the form

$$
y(t)=h(t)-u(t-\pi) h(t-\pi) .
$$

We only need to find $h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $h(t)=\mathcal{L}^{-1}\left[\frac{1}{s\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \quad \Rightarrow \quad \text { Complex roots }
$$

The partial fraction decomposition is:

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+s+\frac{5}{4}\right)}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{a}{s}+\frac{(b s+c)}{\left(s^{2}+s+\frac{5}{4}\right)}$.
The partial fraction decomposition is:

$$
1=a\left(s^{2}+s+\frac{5}{4}\right)+s(b s+c)=(a+b) s^{2}+(a+c) s+\frac{5}{4} a .
$$

This equation implies that a, b, and c, are solutions of

$$
a+b=0, \quad a+c=0, \quad \frac{5}{4} a=1
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $a=\frac{4}{5}, \quad b=-\frac{4}{5}, \quad c=-\frac{4}{5}$.
Hence, we have found that,

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right) s}=\frac{4}{5}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]
$$

We have to compute the inverse Laplace Transform

$$
h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left(s^{2}+s+\frac{5}{4}\right)}\right]$.
In this case we complete the square in the denominator,

$$
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}=\left(s+\frac{1}{2}\right)^{2}+1 .
$$

So: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}-\frac{(s+1)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.
That is, $h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)+\frac{1}{2}}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Solution: Recall: $\quad h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)+\frac{1}{2}}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]$.

$$
h(t)=\frac{4}{5} \mathcal{L}^{-1}\left[\frac{1}{s}\right]-\frac{4}{5} \mathcal{L}^{-1}\left[\frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right]-\frac{2}{5} \mathcal{L}^{-1}\left[\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}\right] .
$$

Recall: $\mathcal{L}^{-1}[F(s-c)]=e^{c t} f(t)$. Hence,

$$
h(t)=\frac{4}{5}\left[1-e^{-t / 2} \cos (t)-\frac{1}{2} e^{-t / 2} \sin (t)\right] .
$$

We conclude: $\quad y(t)=h(t)+u(t-\pi) h(t-\pi)$.

Equations with discontinuous sources (Sect. 4.3).

- Differential equations with discontinuous sources.
- We solve the IVPs:
(a) Example 1:

$$
y^{\prime}+2 y=u(t-4), \quad y(0)=3
$$

(b) Example 2:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=b(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad b(t)= \begin{cases}1, & t \in[0, \pi) \\
0, & t \in[\pi, \infty) .\end{cases}
$$

(c) Example 3:

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} g(t)= \begin{cases}\sin (t), & t \in[0, \pi) \\
0, & t \in[\pi, \infty)\end{cases}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution:
Rewrite the source function using step functions.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: The graphs imply: $g(t)=[u(t)-u(t-\pi)] \sin (t)$.
Recall the identity: $\sin (t)=-\sin (t-\pi)$. Then,

$$
\begin{gathered}
g(t)=u(t) \sin (t)-u(t-\pi) \sin (t) \\
g(t)=u(t) \sin (t)+u(t-\pi) \sin (t-\pi)
\end{gathered}
$$

Now is simple to find $\mathcal{L}[g]$, since

$$
\mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0)=0, \\
y^{\prime}(0)=0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty)\end{cases}
$$

Solution: So: $\quad \mathcal{L}[g(t)]=\mathcal{L}[u(t) \sin (t)]+\mathcal{L}[u(t-\pi) \sin (t-\pi)]$.

$$
\mathcal{L}[g(t)]=\frac{1}{\left(s^{2}+1\right)}+e^{-\pi s} \frac{1}{\left(s^{2}+1\right)}
$$

Recall the Laplace transform of the differential equation

$$
\mathcal{L}\left[y^{\prime \prime}\right]+\mathcal{L}\left[y^{\prime}\right]+\frac{5}{4} \mathcal{L}[y]=\mathcal{L}[g] .
$$

The initial conditions imply: $\mathcal{L}\left[y^{\prime \prime}\right]=s^{2} \mathcal{L}[y]$ and $\mathcal{L}\left[y^{\prime}\right]=s \mathcal{L}[y]$.
Therefore, $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+1\right)}$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $\left(s^{2}+s+\frac{5}{4}\right) \mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+1\right)}$.

$$
\mathcal{L}[y]=\left(1+e^{-\pi s}\right) \frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}
$$

Introduce the function $H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}$.
Then, $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$.

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall: $y(t)=\mathcal{L}^{-1}[H(s)]+\mathcal{L}^{-1}\left[e^{-\pi s} H(s)\right]$, and

$$
H(s)=\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)} .
$$

Partial fractions: Find the zeros of the denominator,

$$
s_{ \pm}=\frac{1}{2}[-1 \pm \sqrt{1-5}] \quad \Rightarrow \quad \text { Complex roots. }
$$

The partial fraction decomposition is:

$$
\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}=\frac{(a s+b)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(c s+d)}{\left(s^{2}+1\right)} .
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0) & =0, \\ y^{\prime}(0) & =0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $\frac{1}{\left(s^{2}+s+\frac{5}{4}\right)\left(s^{2}+1\right)}=\frac{(a s+b)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(c s+d)}{\left(s^{2}+1\right)}$.
Therefore, we get

$$
\begin{gathered}
1=(a s+b)\left(s^{2}+1\right)+(c s+d)\left(s^{2}+s+\frac{5}{4}\right) \\
1=(a+c) s^{3}+(b+c+d) s^{2}+\left(a+\frac{5}{4} c+d\right) s+\left(b+\frac{5}{4} d\right)
\end{gathered}
$$

This equation implies that a, b, c, and d, are solutions of

$$
a+c=0, \quad b+c+d=0, \quad a+\frac{5}{4} c+d=0, \quad b+\frac{5}{4} d=1
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned} y(0)=0, \\ y^{\prime}(0)=0,\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $a=\frac{16}{17}, b=\frac{12}{17}, c=-\frac{16}{17}, d=\frac{4}{17}$.
We have found: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left(s^{2}+s+\frac{5}{4}\right)}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Complete the square in the denominator,

$$
\begin{gathered}
s^{2}+s+\frac{5}{4}=\left[s^{2}+2\left(\frac{1}{2}\right) s+\frac{1}{4}\right]-\frac{1}{4}+\frac{5}{4}=\left(s+\frac{1}{2}\right)^{2}+1 . \\
H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right] .
\end{gathered}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad y(0)=0, \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: So: $H(s)=\frac{4}{17}\left[\frac{(4 s+3)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{(-4 s+1)}{\left(s^{2}+1\right)}\right]$.
Rewrite the polynomial in the numerator,

$$
\begin{gathered}
(4 s+3)=4\left(s+\frac{1}{2}-\frac{1}{2}\right)+3=4\left(s+\frac{1}{2}\right)+1, \\
H(s)=\frac{4}{17}\left[4 \frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}-4 \frac{s}{\left(s^{2}+1\right)}+\frac{1}{\left(s^{2}+1\right)}\right],
\end{gathered}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

$$
y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad \begin{aligned}
y(0) & =0, \\
y^{\prime}(0) & =0,
\end{aligned} \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\
0 & t \in[\pi, \infty) .\end{cases}
$$

Solution:

$$
H(s)=\frac{4}{17}\left[4 \frac{\left(s+\frac{1}{2}\right)}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}+\frac{1}{\left[\left(s+\frac{1}{2}\right)^{2}+1\right]}-4 \frac{s}{\left(s^{2}+1\right)}+\frac{1}{\left(s^{2}+1\right)}\right],
$$

Use the Laplace Transform table to get $H(s)$ equal to

$$
\begin{aligned}
& H(s)=\frac{4}{17}\left[4 \mathcal{L}\left[e^{-t / 2} \cos (t)\right]+\mathcal{L}\left[e^{-t / 2} \sin (t)\right]-4 \mathcal{L}[\cos (t)]+\mathcal{L}[\sin (t)]\right] . \\
& H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right] .
\end{aligned}
$$

Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP
$y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=g(t), \quad y(0)=0, \quad g(t)= \begin{cases}\sin (t) & t \in[0, \pi) \\ 0 & t \in[\pi, \infty) .\end{cases}$
Solution: Recall:

$$
H(s)=\mathcal{L}\left[\frac{4}{17}\left(4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right)\right]
$$

Denote:

$$
h(t)=\frac{4}{17}\left[4 e^{-t / 2} \cos (t)+e^{-t / 2} \sin (t)-4 \cos (t)+\sin (t)\right]
$$

Then, $H(s)=\mathcal{L}[h(t)]$. Recalling: $\mathcal{L}[y(t)]=H(s)+e^{-\pi s} H(s)$,

$$
\mathcal{L}[y(t)]=\mathcal{L}[h(t)]+e^{-\pi s} \mathcal{L}[h(t)] .
$$

We conclude: $y(t)=h(t)+u(t-\pi) h(t-\pi)$.

