
Review for Exam 2.

I 6 problems, 60 minutes, in CC-415.

I 5 grading attempts per problem.

I Problems similar to homeworks.

I Integration table provided in handout.

I No notes, no books, no calculators.

I MLC mth 235 Exam 2 review handout:
http://math.msu.edu/mlc/review-handouts/spring-13/mth235-e2.pdf

I Section 2.5 Applications is not covered.
I Exam covers:

I Variation of parameters (2.7).
I Undetermined coefficients (2.6).
I Constant coefficients, homogeneous, (2.3), (2.4).
I Special second order non-linear equations, (2.2).
I Reduction order method, (2.2.3).
I Second order variable coefficients, (2.1).

Review for Exam 2.

Notation for webwork: Consider the equation:

y ′′ + a1 y ′ + a2 y = 0.

Let r+, r- be the roots of the characteristic polynomial.
I If r+ > r- real, then

I First fundamental solution: y1(t) = er+t .
I Second fundamental solution: y2(t) = er-t .

I If r± = α± iβ complex, then
I First fundamental solution: y1(t) = eαt cos(βt).
I Second fundamental solution: y2(t) = eαt sin(βt).

I If r+ = r- = r real, then
I First fundamental solution: y1(t) = ert .
I Second fundamental solution: y2(t) = t ert .



Review for Exam 2.

I Exam covers:
I Variation of parameters (2.7).
I Undetermined coefficients (2.6).
I Constant coefficients, homogeneous, (2.3), (2.4).
I Special second order non-linear equations, (2.2).
I Reduction order method, (2.2.3).
I Second order variable coefficients, (2.1).

Variation of parameters (2.7).

Example

Find a particular solution of the equation

x2 y ′′ − 6x y ′ + 10 y = 2x10,

knowing that y1 = x5 and y2 = x2 are solutions to the
homogeneous equation.
Solution: We first need to divide the equation by x2,

y ′′ − 6

x
y ′ +

10

x2
y = 2x8,

Then the source function is f (x) = 2x8. We now compute the
Wronskian of y1, y2,,

W =

∣∣∣∣y1 y2

y ′1 y ′2

∣∣∣∣ =

∣∣∣∣ x5 x2

5x4 2x

∣∣∣∣ = 2x6 − 5x6.

Hence W = −3x6.



Variation of parameters (2.7).

Example

Find a particular solution of the equation

x2 y ′′ − 6x y ′ + 10 y = 2x10,

knowing that y1 = x5 and y2 = x2 are solutions to the
homogeneous equation.

Solution: y1 = x5, y2 = x2, f = 2x8, W = −3x6.
Now we find the functions u1 and u2,

u′1 = −y2f

W
= − x2 2x8

(−3)x6
=

2

3
x4 ⇒ u1 =

2

15
x5.

u′2 =
y1f

W
=

x52x8

(−3)x6
= −2

3
x7 ⇒ u2 = − 2

24
x8.

yp = u1y1 + u2y2 =
2

15
x5 x5 − 2

24
x8 x2 =

2

3
x10

(1

5
− 1

8

)
that is, yp =

2

3
x10

(8− 5

40

)
, hence, yp =

1

20
x10. C

Variation of parameters (2.7).

Example

Use the variation of parameters to find the general solution of

y ′′ + 4y ′ + 4y = x−2 e−2x .

Solution: We find the solutions of the homogeneous equation,

r2 + 4r + 4 = 0 ⇒ r± =
1

2

[
−4±

√
16− 16

]
⇒ r± = −2.

Fundamental solutions of the homogeneous equations are

y1 = e−2x , y2 = x e−2x .

We now compute their Wronskian,

W =

∣∣∣∣y1 y2

y ′1 y ′2

∣∣∣∣ =

∣∣∣∣ e−2x x e−2x

−2e−2x (1− 2x) e−2x

∣∣∣∣ = (1− 2x) e−4x + 2x e−4x .

Hence W = e−4x .



Variation of parameters (2.7).

Example

Use the variation of parameters to find the general solution of

y ′′ + 4y ′ + 4y = x−2 e−2x .

Solution: y1 = e−2x , y2 = x e−2x , g = x−2 e−2x , W = e−4x .

Now we find the functions u1 and u2,

u′1 = −y2g

W
= −x e−2x x−2 e−2x

e−4x
= −1

x
⇒ u1 = − ln |x |.

u′2 =
y1g

W
=

e−2x x−2 e−2x

e−4x
= x−2 ⇒ u2 = −1

x
.

yp = u1y1 + u2y2 = − ln |x | e−2x − 1

x
xe−2x = −(1 + ln |x |) e−2x .

Since ỹp = − ln |x | e−2x is solution, y = (c1 + c2x − ln |x |) e−2x . C

Review for Exam 2.

I Exam covers:
I Variation of parameters (2.7).
I Undetermined coefficients (2.6).
I Constant coefficients, homogeneous, (2.3), (2.4).
I Special second order non-linear equations, (2.2).
I Reduction order method, (2.2.3).
I Second order variable coefficients, (2.1).



Undetermined coefficients (2.6).

Guessing Solution Table.

fi (t) (K , m, a, b, given.) ypi (t) (Guess) (k not given.)

Keat keat

Ktm kmtm + km−1t
m−1 + · · · + k0

K cos(bt) k1 cos(bt) + k2 sin(bt)

K sin(bt) k1 cos(bt) + k2 sin(bt)

Ktmeat eat(kmtm + · · · + k0)

Keat cos(bt) eat
ˆ
k1 cos(bt) + k2 sin(bt)

˜
KKeat sin(bt) eat

ˆ
k1 cos(bt) + k2 sin(bt)

˜
Ktm cos(bt)

`
kmtm + · · · + k0

´ˆ
a1 cos(bt) + a2 sin(bt)

˜
Ktm sin(bt)

`
kmtm + · · · + k0

´ˆ
a1 cos(bt) + a2 sin(bt)

˜

Undetermined coefficients (2.6).

Example

Find all the solutions to the inhomogeneous equation

y ′′ − 3y ′ − 4y = 2 sin(t).

Solution: We know that the general solution to homogeneous
equation is y(t) = c1e

4t + c2e
−t .

Following the table: Since f = 2 sin(t), then we guess

yp = k1 sin(t) + k2 cos(t).

This guess satisfies L(yp) 6= 0.

Compute: y ′p = k1 cos(t)− k2 sin(t), y ′′p = −k1 sin(t)− k2 cos(t).

L(yp) = [−k1 sin(t)− k2 cos(t)]− 3[k1 cos(t)− k2 sin(t)]

−4[k1 sin(t) + k2 cos(t)] = 2 sin(t),



Undetermined coefficients (2.6).

Example

Find all the solutions to the inhomogeneous equation

y ′′ − 3y ′ − 4y = 2 sin(t).

Solution: Recall:

L(yp) = [−k1 sin(t)− k2 cos(t)]− 3[k1 cos(t)− k2 sin(t)]

−4[k1 sin(t) + k2 cos(t)] = 2 sin(t),

(−5k1 + 3k2) sin(t) + (−3k1 − 5k2) cos(t) = 2 sin(t).

This equation holds for all t ∈ R. In particular, at t =
π

2
, t = 0.

−5k1 + 3k2 = 2,

−3k1 − 5k2 = 0,

}
⇒


k1 = − 5

17
,

k2 =
3

17
.

Undetermined coefficients (2.6).

Example

Find all the solutions to the inhomogeneous equation

y ′′ − 3y ′ − 4y = 2 sin(t).

Solution: Recall: k1 = − 5

17
and k2 =

3

17
.

So the particular solution to the inhomogeneous equation is

yp(t) =
1

17

[
−5 sin(t) + 3 cos(t)

]
.

The general solution is

y(t) = c1e
4t + c2e

−t +
1

17

[
−5 sin(t) + 3 cos(t)

]
. C



Undetermined coefficients (2.6)

Example

Use the undetermined coefficients to find the general solution of

y ′′ + 4y = 3 sin(2x) + e3x

Solution: Find the solutions of the homogeneous problem,

r2 + 4 = 0 ⇒ r± = ±2i .

y1 = cos(2x), y2 = sin(2x).

Start with the first source, f1(x) = 3 sin(2x).
The function ỹp1 = k1 sin(2x) + k2 cos(2x) is the wrong guess,
since it is solution of the homogeneous equation. We guess:

yp = x
[
k1 sin(2x) + k2 cos(2x)

]
.

y ′p =
[
k1 sin(2x) + k2 cos(2x)

]
+ 2x

[
k1 cos(2x)− k2 sin(2x)

]
.

y ′′p = 4
[
k1 cos(2x)− k2 sin(2x)

]
+ 4x

[
−k1 sin(2x)− k2 cos(2x)

]
.

Undetermined coefficients (2.6)

Example

Use the undetermined coefficients to find the general solution of

y ′′ + 4y = 3 sin(2x) + e3x .

Solution: Recall: y1 = sin(2x), and y2 = cos(2x).

4
[
k1 cos(2x)− k2 sin(2x)

]
+ 4x

[
−k1 sin(2x)− k2 cos(2x)

]
+

4x
[
k1 sin(2x) + k2 cos(2x)

]
= 3 sin(2x),

Therefore, 4
[
k1 cos(2x)− k2 sin(2x)

]
= 3 sin(2x).

Evaluating at x = 0 and x = π/4 we get

4k1 = 0, −4k2 = 3 ⇒ k1 = 0, k2 = −3

4
.

Therefore, yp1 = −3

4
x cos(2x).



Undetermined coefficients (2.6)

Example

Use the undetermined coefficients to find the general solution of

y ′′ + 4y = 3 sin(2x) + e3x .

Solution: Recall: yp1 = −3

4
x cos(2x).

We now compute yp2 for f2(x) = e3x .

We guess: yp2 = k e3x . Then, y ′′p2
= 9 e3x ,

(9 + 4)ke3x = e3x ⇒ k =
1

13
⇒ yp2 =

1

13
e3x .

Therefore, the general solution is

y(x) = c1 sin(2x) +
(
c2 −

3

4
x
)

cos(2x) +
1

13
e3x . C

Undetermined coefficients (2.6).

Example

I For y ′′ − 3y ′ − 4y = 3e2t sin(t), guess

yp(t) =
[
k1 sin(t) + k2 cos(t)

]
e2t .

I For y ′′ − 3y ′ − 4y = 2t2 e3t , guess

yp(t) =
(
k0 + k1t + k2t

2
)
e3t .

I For y ′′ − 3y ′ − 4y = 3t sin(t), guess

yp(t) = (1 + k1t)
[
k2 sin(t) + k3 cos(t)

]
.



Undetermined coefficients (2.6).

Example

Find a particular solution to

y ′′ + 2y ′ − 2y = e−4it .

Using this solution find particular solutions to the equations

y ′′ + 2y ′ − 2y = cos(−4t), y ′′ + 2y ′ − 2y = sin(−4t).

Solution: Since the source is and exponential f (t) = e−4it , we
guess as particular solution the exponential yp(t) = k e−4it .
We now check whether yp is solution ot the homogeneous eq.:

r2 + 2r − 2 = 0 ⇒ r± =
1

2

[
−2±

√
4 + 8

]
⇒ Real roots.

Hence yp is not solution of the homogeneous equation.

Undetermined coefficients (2.6).

Example

Find a particular solution to

y ′′ + 2y ′ − 2y = e−4it .

Using this solution find particular solutions to the equations

y ′′ + 2y ′ − 2y = cos(−4t), y ′′ + 2y ′ − 2y = sin(−4t).

Solution: Recall: yp(t) = k e−4it .[
(−4i)2 + 2(−4i)− 2

]
ke−4it = e−4it ⇒ (−16− 8i − 2)k = 1

k = − 1

18 + 8i
= −1

2

1

(9 + 4i)

(9− 4i)

(9− 4i)
= −1

2

(9− 4i)

(92 + 42)
.

Hence, yp(t) = − 1

2(92 + 42)
(9− 4i) e−4it .



Undetermined coefficients (2.6).
Example

Find a particular solution to

y ′′ + 2y ′ − 2y = e−4it .

Using this solution find particular solutions to the equations

y ′′ + 2y ′ − 2y = cos(−4t), y ′′ + 2y ′ − 2y = sin(−4t).

Solution: Recall: yp(t) = − 1

2(92 + 42)
(9− 4i) e−4it .

For the second part of the problem, we need to compute the real
and imaginary parts of or solution:

yp(t) = − 1

2(92 + 42)
(9− 4i)

[
cos(4t)− i sin(4t)

]
ypr = − 1

2(92 + 42)

[
9 cos(4t)− 4 sin(4t)

]
ypi = − 1

2(92 + 42)

[
−4 cos(4t)− 9 sin(4t)

]

Review for Exam 2.

I Exam covers:
I Variation of parameters (2.7).
I Undetermined coefficients (2.6).
I Constant coefficients, homogeneous, (2.3), (2.4).
I Special second order non-linear equations, (2.2).
I Reduction order method, (2.2.3).
I Second order variable coefficients, (2.1).



Special second order non-linear equations, (2.2).

Example

Find the solution y of the IVP

y y ′′ + 4(y ′)2 = 0, y(0) = 1, y ′(0) = 7.

Solution: This is an equation of the form y ′′ = f (y , y ′), (t missing).
Introduce the function v(t) = y ′(t), that implies v ′(t) = y ′′(t), so

yv ′ + 4v2 = 0 ⇒ v ′ = −4
v2

y
, v(0) = 7.

The difficulty is that y still appears in the equation.
We now look only for invertible solutions functions t 7→ y(t),
that is, we have the inverse function y 7→ t(y).
For this type of solutions, introduce the function

w(y) = v(t(y)).

Special second order non-linear equations, (2.2).

Example

Find the solution y of the IVP

y y ′′ + 4(y ′)2 = 0, y(0) = 1, y ′(0) = 7.

Solution: Recall: v ′ = −4
v2

y
, with v(0) = 7, and w(y) = v(t(y)).

The initial conditions for w are obtained as follows:

y(t = 0) = 1 ⇔ t(y = 1) = 0,

w(y = 1) = v(t(y = 1)) = v(0) = 7 ⇒ w(1) = 7.

Chain rule on w always implies the equation:

w ′(y) =
v ′(t(y))

w(y)
⇒ w ′ = −4

w2

y

1

w
= −4

w

y
.



Special second order non-linear equations, (2.2).

Example

Find the solution y of the IVP

y y ′′ + 4(y ′)2 = 0, y(0) = 1, y ′(0) = 7.

Solution: Recall: w ′ = −4
w

y
, with w(1) = 7, and w(y) = v(t(y)).

w ′

w
= −4

y
⇒ ln(w) = −4 ln(y) + c = ln(y−4) + c

We obtain the solution w(y) = c̃ y−4.
The initial condition implies 7 = w(1) = c̃ , hence w(y) = 7 y−4.
We now consider y as function of t, and we recall that

w(y) = v(t(y)) ⇔ w(y(t)) = v(t) = y ′(t).

7

y4(t)
= w(y(t)) = v(t) = y ′(t) ⇒ y ′(t) =

7

y4(t)
.

Special second order non-linear equations, (2.2).

Example

Find the solution y of the IVP

y y ′′ + 4(y ′)2 = 0, y(0) = 1, y ′(0) = 7.

Solution: Recall: y ′(t) =
7

y4(t)
, with y(0) = 1.

y4 y ′ = 7 ⇒ y5

5
= 7t + c .

The initial condition fixes the integration constant,

1

5
= c , ⇒ y5(t)

5
= 7t +

1

5
.

We then obtain the solution of the IVP as

y(t) = 5
√

35 t + 1.

C



Review for Exam 2.

I Exam covers:
I Variation of parameters (2.7).
I Undetermined coefficients (2.6).
I Constant coefficients, homogeneous, (2.3), (2.4).
I Special second order non-linear equations, (2.2).
I Reduction order method, (2.2.3).
I Second order variable coefficients, (2.1).

Reduction order method, (2.2.3).

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Express y2(t) = v(t) y1(t). The equation for v comes
from t2y ′′2 + 2ty ′2 − 2y2 = 0. We need to compute

y2 = v t, y ′2 = t v ′ + v , y ′′2 = t v ′′ + 2v ′.

So, the equation for v is given by

t2
(
t v ′′ + 2v ′

)
+ 2t

(
t v ′ + v

)
− 2t v = 0

t3 v ′′ + (2t2 + 2t2) v ′ + (2t − 2t) v = 0

t3 v ′′ + (4t2) v ′ = 0 ⇒ v ′′ +
4

t
v ′ = 0.



Reduction order method, (2.2.3).

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′, given by w ′ +
4

t
w = 0, so

w ′

w
= −4

t
⇒ ln(w) = −4 ln(t) + c0 ⇒ w(t) = c1t

−4, c1 ∈ R.

Integrating w we obtain v , that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v we then conclude that y2 = c2t
−2 + c3t.

Choosing c2 = 1 and c3 = 0 we obtain the fundamental solutions

y1(t) = t and y2(t) =
1

t2
. C

Review for Exam 2.

I Exam covers:
I Variation of parameters (2.7).
I Undetermined coefficients (2.6).
I Constant coefficients, homogeneous, (2.3), (2.4).
I Special second order non-linear equations, (2.2).
I Reduction order method, (2.2.3).
I Second order variable coefficients, (2.1).



Second order variable coefficients, (2.1).

Example

Find the Wronskian of two solutions of the equation

t2 y ′′ − t(t + 2) y ′ + (t + 2) y = 0, t > 0.

Solution: Write the equation as in Abel’s Theorem,

y ′′ −
(2

t
+ 1

)
y ′ +

( 2

t2
+

1

t

)
y = 0.

Abel’s Theorem says that the Wronskian satisfies the equation

W ′
y1y2

(t)−
(2

t
+ 1

)
Wy1y2(t) = 0.

This is a first order, linear equation for Wy1y2 . The integrating
factor method implies

A(t) = −
∫ t

t0

(2

s
+ 1

)
ds = −2 ln

( t

t0

)
− (t − t0)

Second order variable coefficients, (2.1).

Example

Find the Wronskian of two solutions of the equation

t2 y ′′ − t(t + 2) y ′ + (t + 2) y = 0, t > 0.

Solution: A(t) = −2 ln
( t

t0

)
− (t − t0) = ln

( t2
0

t2

)
− (t − t0).

The integrating factor is µ =
t2
0

t2
e−(t−t0). Therefore,

[
µ(t)Wy1y2(t)

]′
= 0 ⇒ µ(t)Wy1y2(t)− µ(t0)Wy1y2(t0) = 0

so, the solution is Wy1y2(t) = Wy1y2(t0)
t2

t2
0

e(t−t0).

Denoting c =
(
Wy1y2(t0)/t2

0

)
e−t0 , then Wy1y2(t) = c t2et . C


