Review for Exam 2.

6 problems, 60 minutes, in CC-415.
5 grading attempts per problem.

Integration table provided in handout.

>
>

» Problems similar to homeworks.

>

» No notes, no books, no calculators.
>

MLC mth 235 Exam 2 review handout:
http://math.msu.edu/mlc/review-handouts/spring-13/mth235-e2.pdf

> Section 2.5 Applications is not covered.
» Exam covers:

» Variation of parameters (2.7).

» Undetermined coefficients (2.6).
Constant coefficients, homogeneous, (2.3), (2.4).
Special second order non-linear equations, (2.2).
Reduction order method, (2.2.3).
Second order variable coefficients, (2.1).

vV v.vy

Review for Exam 2.

Notation for webwork: Consider the equation:
! /
y'+ay +ay=0.

Let r., r- be the roots of the characteristic polynomial.
» If r, > r. real, then

» First fundamental solution: y;(t) = e™*.
» Second fundamental solution: y,(t) = e"*.

» If rr = a =+ i complex, then

» First fundamental solution: y;(t) = e®* cos((t).
» Second fundamental solution: y,(t) = e®* sin((t).

» If r, = r. = r real, then

» First fundamental solution: y;(t) = e™.
» Second fundamental solution: y,(t) = te".




Review for Exam 2.

» Exam covers:

» Variation of parameters (2.7).

» Undetermined coefficients (2.6).

Constant coefficients, homogeneous, (2.3), (2.4).
Special second order non-linear equations, (2.2).
Reduction order method, (2.2.3).

Second order variable coefficients, (2.1).

vV v.vyy

Variation of parameters (2.7).

Example
Find a particular solution of the equation

x? y" —6xy +10y = 2x10,

2

knowing that y; = x> and y, = x? are solutions to the

homogeneous equation.
Solution: We first need to divide the equation by x2,

6 10
y"——y’—l——2y=2x8,
X X

Then the source function is f(x) = 2x8. We now compute the
Wronskian of yy, v,,,

x> x?

5x%  2x

n
/

W=\, = 2x°% — 5x°.
i Y

Hence W = —3x°.




Variation of parameters (2.7).
Example
Find a particular solution of the equation
x?y" —6xy +10y = 2x19,

knowing that y; = x> and y, = x? are solutions to the
homogeneous equation.

Solution: y, = x°, y, = x2, f=2x8, W = —3x5.
Now we find the functions u; and w»,

, f x22x8 2, N 2
u =—— = — = =X uy = —X".
! W (=3)x6 3 t15

,  wnf x2x8 2 5 2 3
u, = =

= =—= = = —— x5,
W~ (3)x6 3" VRS

2 2 2 1 1
yP = Ui + Ly, = 1—5X5X5 — ﬂXSX2 = §X10<g — §>
2 8—5 1
that s, yp = 5% hence, yp = 55 5™ .

Variation of parameters (2.7).

Example
Use the variation of parameters to find the general solution of

y// + 4)// _|_4y — X—2 e_2X.
Solution: We find the solutions of the homogeneous equation,

1
rPt4r+4=0 = rizi[—4:|:\/l6—16] =  ry=-2.

Fundamental solutions of the homogeneous equations are

yi=¢€e 7, y,=Xxe
We now compute their Wronskian,

e—2x X e—2x

o —2e7 (1—2x)e = (1-2)e™ +2xe™™

W =
i Y

Hence W = e,




Variation of parameters (2.7).

Example

Use the variation of parameters to find the general solution of
y// + 4)// + 4y _ X—2 e_2X.

Solution: y; = e 2, y, =xe 2, g=x2e"2, W=e*.

Now we find the functions u; and u»,

—2x ,—2
Vo8 xe K xTe—2x 1
u{:—W:— ix == = u = —In|x]|.
—2x ,,—2
;) g e xTTe—2x ., 1
U= = ix = X = =
1
Yp = Uy + thy, = —In|x| e > — ;Xe_zx = —(1+1In|x|) e .
Since ¥, = — In|x| 2% is solution, y = (¢, + cx — In|x]) e™2*.
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» Exam covers:
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» Undetermined coefficients (2.6).

Constant coefficients, homogeneous, (2.3), (2.4).
Special second order non-linear equations, (2.2).
Reduction order method, (2.2.3).
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Guessing Solution Table.

Undetermined coefficients (2.6).

fi(t) (K, m, a, b, given.) || yp,(t) (Guess) (k not given.)

Ke?* ke’*

Kt™ kmt™ 4 km—1t™ " 4 + ko

K cos(bt) ky cos(bt) + ko sin(bt)

K sin(bt) ky cos(bt) + kz sin(bt)

Ktme™ e (kmt™ + -+ - + ko)

Ke®" cos(bt) e® [ ki cos(bt) + kz sin(bt)]

KKe® sin(bt) e® [ ki cos(bt) + kz sin(bt)]

Kt™ cos(bt) (kmt™ 4+ - - - + ko) [a1 cos(bt) + a2 sin(bt)]
Kt™ sin(bt) (kmt™ + -+ + ko) [a1 cos(bt) + a sin(bt)]

Undetermined coefficients (2.6).

Example

Find all the solutions to the inhomogeneous equation
y" =3y — 4y = 2sin(t).

Solution: We know that the general solution to homogeneous
t

equation is y(t) = ce*t + c,e .

Following the table: Since f = 2sin(t), then we guess
¥p = kq sin(t) + ko cos(t).

This guess satisfies L(y,) # 0.

Compute: y;, = k, cos(t) — kysin(t), y, = —ksin(t) — k, cos(t).

L(yp) = [—kisin(t) — ky cos(t)] — 3]k, cos(t) — k, sin(t)]
—4[k, sin(t) 4 k, cos(t)] = 2sin(t),




Undetermined coefficients (2.6).

Example
Find all the solutions to the inhomogeneous equation

y" =3y —4y = 2sin(t).
Solution: Recall:

L(yp) = [—kisin(t) — ky cos(t)] — 3]k, cos(t) — k, sin(t)]
—4[k, sin(t) 4 k, cos(t)] = 2sin(t),

(—5k, + 3k,)sin(t) + (—3k, — 5k,) cos(t) = 2sin(t).

This equation holds for all t € R. In particular, at t = g t=0.
5
—5k, 4 3k, = 2, k= -1
_3k1_5k2:O, k - 3
2 — -
17

Undetermined coefficients (2.6).

Example
Find all the solutions to the inhomogeneous equation

y" =3y — 4y = 2sin(t).

. 5 3
Solution: Recall: k; = 17 and k, = T2

So the particular solution to the inhomogeneous equation is

yp(t) = 1—17 [—5sin(t) + 3cos(t)].

The general solution is

1
y(t) = e’ + et + = |—5sin(t) + 3cos(t)].




Undetermined coefficients (2.6)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + &>
Solution: Find the solutions of the homogeneous problem,
P+4=0 = r =42
y, = cos(2x), y, = sin(2x).

Start with the first source, fi(x) = 3sin(2x).
The function y, = k; sin(2x) + k, cos(2x) is the wrong guess,
since it is solution of the homogeneous equation. We guess:

Yp = X ki sin(2x) + k, cos(2x)].
vy, = |kisin(2x) + k, cos(2x)] + 2x [k, cos(2x) — k sin(2x)].
vy =4[k cos(2x) — k,sin(2x)| + 4x[—k, sin(2x) — k, cos(2x)].

Undetermined coefficients (2.6)

Example
Use the undetermined coefficients to find the general solution of

y" 4 4y = 3sin(2x) + e3*.
Solution: Recall: y, =sin(2x), and y, = cos(2x).
4| ki cos(2x) — kysin(2x)] + 4x[—k, sin(2x) — k, cos(2x)]+
4x[ ki sin(2x) + k, cos(2x)] = 3sin(2x),
Therefore, 4|k, cos(2x) — k;sin(2x)] = 3sin(2x).
Evaluating at x = 0 and x = 7/4 we get

4k1:O, _4k2:3 = k]_:O, k2:__.

Therefore, y, = ~a x cos(2x).




Undetermined coefficients (2.6)

Example
Use the undetermined coefficients to find the general solution of

y" 4 4y = 3sin(2x) + e3*.

3
Solution: Recall: y, = —Zxcos(2x).

We now compute y,, for (x) = e3*.

We guess: y,, = k e3*. Then, Yoy = 9e3x,

1 1
3x __ 3x _ _ 3x
(9+4)ke™ =€ = k—13 = Y 13e .

Therefore, the general solution is

: 3 1
y(x) = ¢ sin(2x) + <c2 1 x) cos(2x) + 3 e, 4

Undetermined coefficients (2.6).

Example

» For y" — 3y’ — 4y = 3e?tsin(t), guess

Y,D(t) = [k1 Sin(t) + ko COS(t)} o2t

» For y" — 3y’ — 4y = 2t% €3t guess

Yp(t) = (ko + kit + kot®) €F.

» For y"" — 3y’ — 4y = 3t sin(t), guess

yp(t) = (1 + kit) [kosin(t) + k3 cos(t)].




Undetermined coefficients (2.6).

Example
Find a particular solution to
y' 2y -2y = e Mt
Using this solution find particular solutions to the equations
y" 4+ 2y" — 2y = cos(—4t), y" +2y" — 2y = sin(—4t).

Solution: Since the source is and exponential f(t) = e™*, we
guess as particular solution the exponential y,(t) = k e *".
We now check whether y, is solution ot the homogeneous eq.:

-2+ V4+8] = Real roots.

N| —

PP4+2r—2=0 = ry=

Hence y, is not solution of the homogeneous equation.

Undetermined coefficients (2.6).

Example
Find a particular solution to

y// + 2}// 2y = e—4it'
Using this solution find particular solutions to the equations
y" +2y" — 2y = cos(—4t), y" + 2y — 2y = sin(—4t).

Solution: Recall: y,(t) = ke *.

(—4i)? +2(—4i) — 2]ke ¥ =¥ = (-16-8i—2)k=1

B 11 1 (9-4) 1(9-4)
18+8i  2(9+4i)(9—4i)  2(92+42)
1 .
Hence, y,(t) = — =55 (9 — 4i) e *".

T2(92 +42)




Undetermined coefficients (2.6).
Example
Find a particular solution to
y// + 2)// — 2y = e—4it‘
Using this solution find particular solutions to the equations

y" +2y" — 2y = cos(—4t), y" + 2y — 2y = sin(—4t).

1
207+ #)
For the second part of the problem, we need to compute the real
and imaginary parts of or solution:

Solution: Recall: y,(t) = — 9 — 4j) e,

yolt) = —ﬁ(g — 47)[cos(4t) — isin(4t)]
Yp, = —ﬁ 9 cos(4t) — 4sin(4t)]
Vo, = —ﬁ [—4 cos(4t) — 9sin(4t)]
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» Undetermined coefficients (2.6).
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Special second order non-linear equations, (2.2).
Reduction order method, (2.2.3).

Second order variable coefficients, (2.1).
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Special second order non-linear equations, (2.2).

Example
Find the solution y of the IVP

yy"+4/)*=0, y0)=1, y'(0)=T.

Solution: This is an equation of the form y” = f(y,y’), (t missing).

Introduce the function v(t) = y/(t), that implies v/(t) = y”(t), so
.
w+a=0 = Vv =-4—, v(0) =7.
y

The difficulty is that y still appears in the equation.

We now look only for invertible solutions functions t — y(t),
that is, we have the inverse function y — t(y).

For this type of solutions, introduce the function

w(y) = v(t(y))-

Special second order non-linear equations, (2.2).
Example
Find the solution y of the IVP
yy"+4(y)?=0,  y(0)=1, y(0)=T.

2
Solution: Recall: v/ = —4 ~—, with v(0) =7, and w(y) = v(t(y)).
y

The initial conditions for w are obtained as follows:
Wt=0)=1 < ty=1)=0,
wly=1)=v(t(y=1)=v(0)=7 = w(l)=T.
Chain rule on w always implies the equation:

w(y) y w y




Special second order non-linear equations, (2.2).

Example
Find the solution y of the IVP

yy"+4(/)*=0, y0)=1, y'(0)=T.

Solution: Recall: w' = —4 *, with w(l) =7, and w(y) = v(t(y)).
y
w' 4
—=— = | = —4| = In(y™*
W) n(w) n(y) +c=In(y ™) +c
We obtain the solution w(y) = &y~%.
The initial condition implies 7 = w(1) = &, hence w(y) =7y .
We now consider y as function of t, and we recall that

wiy) =v(t(y)) <  wly(t))=v(t) =y'(1).

7 , N
i~ ) =ve) =y = v = G

Special second order non-linear equations, (2.2).

Example
Find the solution y of the IVP

yy"+4/)*=0, y0)=1, y(0)=T.

Solution: Recall: y/(t) = , with y(0) = 1.

.
y*(t)
%
vty =7 = Ez?t—l—c.

The initial condition fixes the integration constant,

1 y2(t) 1
S N 7t
5 © 5 *3

We then obtain the solution of the IVP as

y(t) = V35t +1.
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Special second order non-linear equations, (2.2).
Reduction order method, (2.2.3).

Second order variable coefficients, (2.1).

vV v.vyy

Reduction order method, (2.2.3).

Example
Find a fundamental set of solutions to

t2y" + 2ty — 2y =0,
knowing that y,(t) = t is a solution.

Solution: Express y,(t) = v(t) y1(t). The equation for v comes
from t2y) + 2ty! — 2y, = 0. We need to compute

Y, =V t, vi=tVv +v, vl =tv"'+2V.

So, the equation for v is given by
t?(tv" +2v) +2t(tV +v) —2tv =0
By (22 +2t2)V + (2t —2t) v =0

4
3" + (4t2) V=0 = V'+ EV, = 0.




Reduction order method, (2.2.3).

Example
Find a fundamental set of solutions to

t2y" + 2ty — 2y =0,
knowing that y,(t) = t is a solution.

4
Solution: Recall: v + EV/ = 0.

: : : 4
This is a first order equation for w = v/, given by w’ + W= 0, so

/
w 4
o=y = In(w) = —4In(t) + ¢ = w(t)=at ™ o cR
w
Integrating w we obtain v, that is, v = ot 73 + ¢, with G, G € R.
Recalling that y, = t v we then conclude that y, = Gt 2 + ct.

Choosing ¢, =1 and ¢; = 0 we obtain the fundamental solutions

1
yi(t) =t and y(t) = el <
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Second order variable coefficients, (2.1).

Example
Find the Wronskian of two solutions of the equation

t?y" —t(t+2)y +(t+2)y =0, t > 0.

Solution: Write the equation as in Abel's Theorem,

2 2 1
1 /
y (t+ y+lm+ti)r=

Abel’s Theorem says that the Wronskian satisfies the equation

2
Wypyo(8) = (£ +1) Wynpa(t) = 0.

This is a first order, linear equation for W,,,,. The integrating
factor method implies

A(t) = —/tt<§+1) ds = _2In(t_i,> — (t —t,)

Second order variable coefficients, (2.1).

Example
Find the Wronskian of two solutions of the equation

t?y" —t(t+2)y +(t+2)y =0, t > 0.
o A = 20 (Yt = (5 — (¢t
Solution: A(t) = 2In(t0> (t to)_ln(t2> (t — t).

. . . t2
The integrating factor is ;1 = t_02 e (t=%)  Therefore,

H(OWn()] =0 = w(OWoups (1) — (1) Wysyalts) = 0

2

. t _
so, the solution is W,,,,(t) = W,,,,(t) > o(t—t0)
0

Denoting ¢ = (W,,,,(t)/t2) e ™, then W,,,(t) = c t’e". <




