

Review and preliminary results.

Operator notation: The differential equation

$$y'' + p(t) y' + q(t) y = f(t)$$

will be written as L(y) = f, with

$$L(y) = y'' + p(t) y' + q(t) y.$$

The homogeneous equation is L(y) = 0.

Remark: The operator L is a linear function of y.

Theorem

For every continuously differentiable functions y_1 , y_2 and every constants c_1 , c_2 holds that

 $L(c_1y_1 + c_2y_2) = c_1 L(y_1) + c_2 L(y_2).$

Review and preliminary results.

Theorem Let L(y) = y'' + p(t)y' + q(t)y. with p and q given functions. If y_1 and y_2 are fundamental solutions of

L(y)=0,

and y_p is any solution of the non-homogeneous equation

$$L(y_p) = f, \tag{1}$$

for a given source f, then any other solution y of the non-homogeneous equation above is given by

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + y_p(t),$$
 (2)

where c_1 , $c_2 \in \mathbb{R}$.

Notation: The expression for y in Eq. (2) is called the general solution of the non-homogeneous Eq. (1).

Review and preliminary results.

Theorem The function $y_p = y_{p_1} + \cdots + y_{p_n}$ is a particular solution to

$$L(y_p) = f$$

where L(y) = y'' + p(t) y' + q(t) y is a linear operator and

$$f(t) = f_1(t) + \cdots + f_n(t),$$

and each function y_{p_1}, \dots, y_{p_n} , is a solution of the equation

$$L(y_{p_i}) = f_i$$
, with $i = 1, \cdots, n$.

Summary of the undetermined coefficients method.

Problem: Given a constant coefficients linear operator $L(y) = y'' + a_1y' + a_0y$, with $a_1, a_2 \in \mathbb{R}$, find every solution of the non-homogeneous differential equation

$$L(y) = f$$
.

Remarks:

- The undetermined coefficients is a method to find solutions to linear, non-homogeneous, constant coefficients, differential equations.
- It consists in guessing the solution y_p of the non-homogeneous equation

$$L(y_p)=f,$$

for particularly simple source functions f.


```
Summary (cont.):
```

$f_i(t)$ (K, m, a, b, given.)	$y_{p_i}(t)$ (Guess) (k not given.)
Ke ^{at}	<i>ke^{at}</i>
Kt ^m	$k_m t^m + k_{m-1} t^{m-1} + \cdots + k_0$
$K\cos(bt)$	$k_1\cos(bt) + k_2\sin(bt)$
K sin(bt)	$k_1\cos(bt) + k_2\sin(bt)$
Kt ^m e ^{at}	$e^{at}(k_mt^m+\cdots+k_0)$
$Ke^{at}\cos(bt)$	$e^{at}[k_1\cos(bt)+k_2\sin(bt)]$
<i>KKe^{at}</i> sin(<i>bt</i>)	$e^{at}[k_1\cos(bt)+k_2\sin(bt)]$
$Kt^m \cos(bt)$	$(k_m t^m + \cdots + k_0) [a_1 \cos(bt) + a_2 \sin(bt)]$
$Kt^m \sin(bt)$	$(k_m t^m + \cdots + k_0) [a_1 \cos(bt) + a_2 \sin(bt)]$

L(y) = f is then given by

 $y(t) = y_h(t) + y_{p_1} + \cdots + y_{p_n}.$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}.$$

Solution: Notice: L(y) = y'' - 3y' - 4y and $f(t) = 3e^{2t}$.

(1) Find all solutions y_h to the homogeneous equation $L(y_h) = 0$. The characteristic equation is

$$r^2-3r-4=0 \quad \Rightarrow \quad \begin{cases} r_1=4, \\ r_2=-1. \end{cases}$$

$$y_h(t) = c_1 e^{4t} + c_2 e^{-t}.$$

(2) Trivial in our case. The source function $f(t) = 3e^{2t}$ cannot be simplified into a sum of simpler functions.

(3) Table says: For $f(t) = 3e^{2t}$ guess $y_p(t) = k e^{2t}$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}.$$

Solution: Recall: $y_p(t) = k e^{2t}$. We need to find k.

(4) Trivial here, since $L(y_p) \neq 0$, we do not modify our guess. (Recall: $L(y_h) = 0$ iff $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.)

(5) Introduce y_p into $L(y_p) = f$ and find k.

$$(2^2-6-4)ke^{2t}=3e^{2t}$$
 \Rightarrow $-6k=3$ \Rightarrow $k=-\frac{1}{2}$

We have obtained that $y_p(t) = -\frac{1}{2} e^{2t}$.

(6) The general solution to the inhomogeneous equation is

$$y(t) = c_1 e^{4t} + c_2 e^{-t} - \frac{1}{2} e^{2t}.$$

 \triangleleft

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

 $y'' - 3y' - 4y = 3e^{4t}.$

Solution: We know that the general solution to homogeneous equation is $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.

Following the table we guess y_p as $y_p = k e^{4t}$.

However, this guess satisfies $L(y_p) = 0$.

So we modify the guess to $y_p = kt e^{4t}$.

Introduce the guess into $L(y_p) = f$. We need to compute

$$y'_{p} = k e^{4t} + 4kt e^{4t}, \qquad y''_{p} = 8k e^{4t} + 16kt e^{4t}.$$

Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}.$$

Solution: Recall:

$$y_p = kt e^{4t}, \quad y'_p = k e^{4t} + 4kt e^{4t}, \quad y''_p = 8k e^{4t} + 16kt e^{4t}.$$

$$\lfloor (8k+16kt) - 3(k+4kt) - 4kt \rfloor e^{4t} = 3e^{4t}.$$

 $\left[(8+16t) - 3(1+4t) - 4t \right] k = 3 \quad \Rightarrow \quad \left[5 + (16-12-4) t \right] k = 3$

We obtain that $k = \frac{3}{5}$. Therefore, $y_p(t) = \frac{3}{5} t e^{4t}$, and

$$y(t) = c_1 e^{4t} + c_2 e^{-t} + \frac{3}{5} t e^{4t}.$$

Using the method in few examples. Example Find all the solutions to the inhomogeneous equation $y'' - 3y' - 4y = 2\sin(t)$. Solution: We know that the general solution to homogeneous equation is $y(t) = c_1 e^{4t} + c_2 e^{-t}$. Following the table: Since $f = 2\sin(t)$, then we guess $y_p = k_1 \sin(t) + k_2 \cos(t)$. This guess satisfies $L(y_p) \neq 0$. Compute: $y'_p = k_1 \cos(t) - k_2 \sin(t)$, $y''_p = -k_1 \sin(t) - k_2 \cos(t)$. $L(y_p) = [-k_1 \sin(t) - k_2 \cos(t)] - 3[k_1 \cos(t) - k_2 \sin(t)] - 4[k_1 \sin(t) + k_2 \cos(t)] = 2\sin(t)$,

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

Solution: Recall:

$$\begin{split} L(y_p) &= [-k_1 \sin(t) - k_2 \cos(t)] - 3[k_1 \cos(t) - k_2 \sin(t)] \\ &- 4[k_1 \sin(t) + k_2 \cos(t)] = 2 \sin(t), \end{split}$$

 $(-5k_1+3k_2)\sin(t)+(-3k_1-5k_2)\cos(t)=2\sin(t).$

This equation holds for all $t \in \mathbb{R}$. In particular, at $t = \frac{\pi}{2}$, t = 0.

$$egin{aligned} -5k_1+3k_2&=2,\ -3k_1-5k_2&=0, \end{aligned} > & \Rightarrow & \begin{cases} k_1=-rac{5}{17}\ k_2=rac{3}{17}. \end{cases}$$

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

Solution: Recall: $k_1 = -\frac{5}{17}$ and $k_2 = \frac{3}{17}$.

So the particular solution to the inhomogeneous equation is

$$y_p(t) = rac{1}{17} \left[-5\sin(t) + 3\cos(t)
ight].$$

The general solution is

$$y(t) = c_1 e^{4t} + c_2 e^{-t} + \frac{1}{17} \left[-5\sin(t) + 3\cos(t) \right].$$

 \triangleleft

Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

$$y'' - 3y' - 4y = 3e^{2t} + 2\sin(t).$$

Solution: We know that the general solution y is given by

$$y(t) = y_h(t) + y_{p_1}(t) + y_{p_2}(t),$$

where $y_h(t) = c_1 e^{4t} + c_2 e^{2t}$, $L(y_{p_1}) = 3e^{2t}$, and $L(y_{p_2}) = 2\sin(t)$. We have just found out that

$$y_p(t) = -\frac{1}{2}e^{2t}, \qquad y_{p_2}(t) = \frac{1}{17}\left[-5\sin(t) + 3\cos(t)\right].$$

We conclude that

$$y(t) = c_1 e^{4t} + c_2 e^{2t} - \frac{1}{2} e^{2t} + \frac{1}{17} \left[-5\sin(t) + 3\cos(t) \right].$$

The	guessing solution ta	ible.
G	uessing Solution Table.	
	$f_i(t)$ (K, m, a, b, given.)	$y_{p_i}(t)$ (Guess) (k not given.)
	Ke ^{at}	ke ^{at}
	Kt ^m	$k_m t^m + k_{m-1} t^{m-1} + \cdots + k_0$
	K cos(bt)	$k_1\cos(bt) + k_2\sin(bt)$
	K sin(bt)	$k_1\cos(bt) + k_2\sin(bt)$
	Kt ^m e ^{at}	$e^{at}(k_mt^m+\cdots+k_0)$
	$Ke^{at}\cos(bt)$	$e^{at}[k_1\cos(bt)+k_2\sin(bt)]$
	<i>KKe^{at}</i> sin(<i>bt</i>)	$e^{at}[k_1\cos(bt)+k_2\sin(bt)]$
	$Kt^m \cos(bt)$	$(k_m t^m + \cdots + k_0)[a_1 \cos(bt) + a_2 \sin(bt)]$
	$Kt^m \sin(bt)$	$(k_m t^m + \cdots + k_0) [a_1 \cos(bt) + a_2 \sin(bt)]$

