
Mechanical and electrical oscillations (Sect. 2.5)

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.

I Application: Mechanical Oscillations.

I Application: The RLC electrical circuit.

Remark:
Different physical systems may be mathematically identical.

Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Summary of solutions of the differential equation

y ′′ + a1y
′ + a0y = 0, a1, a2 ∈ R,

and characteristic roots r± = −a1

2
± 1

2

√
a2

1 − 4a0.

(1) Over damped systems: If a2
1 − 4a0 > 0, then,

y1(t) = er+t , y2(t) = er-t .

(2) Critically damped systems: If a2
1 − 4a0 = 0, then,

y1(t) = e−
a1
2

t , y2(t) = t e−
a1
2

t .

(3) Under damped systems: If a2
1 − 4a0 < 0, then

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).

with α = −a1

2
, β =

1

2

√
4a0 − a2

1 . Not damped: If a1 = 0.
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Application: Mechanical Oscillations.

Consider a spring attached to the
ceiling, having rest length l , with
an attached mass m.

I (l + ∆l) is called equilibrium
position of the spring loaded
with a mass m.

I The coordinate y measures
vertical deviations from the
equilibrium position.

Forces acting on the system:

I Weight: Fg = mg .

I Spring: Fs = −k(∆l + y). Hooke’s Law. (Small oscillations.)

I Damping: Fd(t) = −d y ′(t). Fluid Resistance.

Newton’s Law: m y ′′(t) = Fg + Fs(t) + Fd(t).



Application: Mechanical Oscillations.

Recall: Fg = mg , Fs = −k(∆l + y), Fd(t) = −d y ′(t).

m y ′′(t) = Fg + Fs(t) + Fd(t).

That is, m y ′′(t) = mg − k(∆l + y(t))− d y ′(t).

At equilibrium, y = 0, y ′ = 0, then k ∆l = mg . Hence

m y ′′(t) = −k y(t)− d y ′(t)

m y ′′ + d y ′ + k y = 0.

To solve for the function y , we need the characteristic equation

m r2 + d r + k = 0 ⇒ r± =
1

2m

[
−d ±

√
d2 − 4mk

]
.

Application: Mechanical Oscillations.

Recall: m y ′′ + d y ′ + k y = 0, and r± =
1

2m

[
−d ±

√
d2 − 4mk

]
.

Not damped oscillations: d = 0. No fluid friction.

r± = ±
√
− k

m
, ω0 =

√
k

m
, r± = ±iω0.

y(t) = c1 cos(ω0t) + c2 sin(ω0t).

Remarks:

I Fundamental Frequency: ω0; Period: T =
2π

ω0
.

I Equivalent expression: y(t) = A cos(ω0t − φ).

I Amplitude: A; Phase shift: φ.



Application: Mechanical Oscillations.

Recall: Not damped oscillations:

y(t) = c1 cos(ω0t) + c2 sin(ω0t) ⇔ y(t) = A cos(ω0t − φ).

where ω0 =
√

k/m is the fundamental frequency, A is the
amplitude, and φ the initial phase shift of the oscillations.

(Recall that the oscillation period is T =
2π

ω0
.)

Proof: Recall the trigonometric identity:

A cos(ω0t − φ) = A cos(ω0t) cos(φ) + A sin(ω0t) sin(φ).

Therefore, comparing the first and last expressions above,

c1 = A cos(φ)

c2 = A sin(φ)

}
⇔


A =

√
c2

1 + c2
2

φ = arctan
(c2

c1

)
.

Application: Mechanical Oscillations.

Damped Oscillations

Recall: m y ′′ + d y ′ + k y = 0, and r± =
1

2m

[
−d ±

√
d2 − 4mk

]
.

Rewrite: r± = − d

2m
±

√( d

2m

)2
− k

m
.

Introduce: ω0 =

√
k

m
, and ωd =

d

2m
. Hence

r± = −ωd ±
√

ω2
d − ω2

0.

Remark: We have three cases of damped oscillations:

(a) Over damped: ωd > ω0.

(b) Critically damped: ωd = ω0.

(c) Under damped: ωd < ω0.



Application: Mechanical Oscillations.

Recall: m y ′′ + d y ′ + k y = 0, and r± = −ωd ±
√

ω2
d − ω2

0.

(a) Over damped: ωd > ω0. Two distinct real roots:

y(t) = c1e
r+t + c2 er-t .

(b) Critically damped: ωd = ω0. Repeated real root r+ = r- = r̂ :

y(t) = (c1 + c2t) e r̂ t .

(c) Under damped: ωd < ω0. Complex roots:

y(t) =
[
c1 cos(βt) + c2 sin(βt)

]
e−ωd t

y(t) = A cos(βt − φ) e−ωd t

where r± = −ωd ± iβ, and β =
√

ω2
0 − ω2

d .

Application: Mechanical Oscillations.

Example

Find the movement of a 5Kg mass attached to a spring with
constant k = 5Kg/Secs2 moving in a medium with damping
constant d = 5Kg/Secs, with initial conditions y(0) =

√
3 and

y ′(0) = 0.

Solution: The equation is: my ′′ + dy ′ + ky = 0, with m = 5,
k = 5, d = 5. The characteristic roots are

r± = −ωd ±
√

ω2
d − ω2

0, ωd =
d

2m
=

1

2
, ω0 =

√
k

m
= 1.

r± = −1

2
±

√
1

4
− 1 = −1

2
± i

√
3

2
. Under damped oscillations.

y(t) = A cos
(√3

2
t − φ

)
e−t/2.



Application: Mechanical Oscillations.

Example

Find the movement of a 5Kg mass attached to a spring with
constant k = 5Kg/Secs2 moving in a medium with damping
constant d = 5Kg/Secs, with initial conditions y(0) =

√
3 and

y ′(0) = 0.

Solution: Recall: y(t) = A cos
(√3

2
t − φ

)
e−t/2. Hence,

y ′(t) = −
√

3

2
A sin

(√3

2
t − φ

)
e−t/2 − 1

2
A cos

(√3

2
t − φ

)
e−t/2.

The initial conditions:
√

3 = y(0) = A cos(φ), 0 = y ′(0) =

√
3

2
A sin(φ)− 1

2
A cos(φ).

tan(φ) =
1√
3

⇒ φ =
π

6
, ⇒ A = 2.

We conclude: y(t) = 2 cos
(√3

2
t − π

6

)
e−t/2. C
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The RLC electrical circuit.

Consider an electric circuit with
resistance R, non-zero capacitor
C , and non-zero inductance L, as
in the figure. I (t) : electric current.

R C L

Kirchhoff’s Law: The electric current flowing in the circuit satisfies:

L I ′(t) + R I (t) +
1

C

∫ t

t0

I (s) ds = 0.

Derivate both sides above: L I ′′(t) + R I ′(t) +
1

C
I (t) = 0.

Divide by L: I ′′(t) + 2
( R

2L

)
I ′(t) +

1

LC
I (t) = 0.

Introduce α =
R

2L
and ω =

1√
LC

, then I ′′ + 2α I ′ + ω2 I = 0.

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r2 + 2αr + ω2.
The roots are:

r± =
1

2

[
−2α±

√
4α2 − 4ω2

]
⇒ r± = −α±

√
α2 − ω2.

Case (a) R = 0. This implies α = 0, so r± = ±iω. Therefore,

I1(t) = cos(ωt), I2(t) = sin(ωt).

Remark: When the circuit has no resistance, the current oscillates
without dissipation.



The RLC electrical circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: Recall: r± = −α±
√

α2 − ω2.

Case (b) R <
√

4L/C . This implies

R2 <
4L

C
⇔ R2

4L2
<

1

LC
⇔ α2 < ω2.

Therefore, r± = −α± i
√

ω2 − α2. The fundamental solutions are

I1(t) = e−αt cos
(√

ω2 − α2 t
)
, I2(t) = e−αt sin

(√
ω2 − α2 t

)
.

I (t) : electric current.

R C L

I

t

e
− t

1

The resistance R damps
the current oscillations.


