Mechanical and electrical oscillations (Sect. 2.5)

» Review: On solutions of y”" +a,y' +a,y =0.
» Application: Mechanical Oscillations.

» Application: The RLC electrical circuit.

Remark:
Different physical systems may be mathematically identical.

Review: On solutions of y”" 4+ a,y' +a,y = 0.

Summary of solutions of the differential equation
v+ ay' + ay =0, a,a € R,
and characteristic roots ry = —% + % \/ a2 — 4a,.
(1) Over damped systems: If a> — 4a, > 0, then,
n(t)=e"  y(t)=e€""
(2) Critically damped systems: If a2 — 4a, = 0, then,
wt)=e 2% y(t)=te 7L
(3) Under damped systems: If a?> —4a, < 0, then
yi(t) = et cos(Bt), y(t) = e*tsin(Bt).

1
with a = —%, B = 5\/4a0 — a2. Not damped: If a, = 0.




Mechanical and electrical oscillations (Sect. 2.5)

» Review: On solutions of y”" +a,y' +a,y =0.
» Application: Mechanical Oscillations.

» Application: The RLC electrical circuit.

Application: Mechanical Oscillations.

Consider a spring attached to the
ceiling, having rest length /, with

an attached mass m. A e A
> (I + Al) is called equilibrium [ %
position of the spring loaded ¢
. all
with a mass m. i
=z

» The coordinate y measures
vertical deviations from the
equilibrium position.
Forces acting on the system:
» Weight: F; = mg.
» Spring: Fs = —k(Al + y). Hooke's Law. (Small oscillations.)
» Damping: F4(t) = —d y’(t). Fluid Resistance.

Newton's Law: my”(t) = Fz + Fs(t) + Fq(t).




Application: Mechanical Oscillations.

Recall: F; = mg, Fs=—k(Al+y), Fq(t)=—dy'(t).
my"(t) = Fg + Fs(t) + Fa(t).

That s, my"(t) = mg — k(A + y(t)) — d y'(t).
At equilibrium, y =0, y' =0, then kK Al = mg. Hence

my"(t) = —ky(t) — dy'(t)
my”" +dy' +ky=0.
To solve for the function y, we need the characteristic equation

mrP+dr+k=0 = ri:%[—d:t\/d2—4mk}.

m

Application: Mechanical Oscillations.

1
Recall: my” +dy’+ ky =0, and ri:%[—di\/d2—4mk}.

Not damped oscillations: d = 0. No fluid friction.

|k | k
r- = + —E, wo = E, r = :|:le

y(t) = ¢ cos(wpt) + ¢, sin(wot).

Remarks:
. 2T
» Fundamental Frequency: wq; Period: T = —.
wo
» Equivalent expression: y(t) = A cos(wot — ¢).

» Amplitude: A; Phase shift: ¢.




Application: Mechanical Oscillations.

Recall: Not damped oscillations:
y(t) = ¢, cos(wot) + c;sin(wpt) < y(t) = A cos(wot — ¢).

where wg = \/k/m is the fundamental frequency, A is the

amplitude, and ¢ the initial phase shift of the oscillations.

2
(Recall that the oscillation period is T = —W)
wo

Proof: Recall the trigonometric identity:
Acos(wot — ¢) = Acos(wpt) cos(¢) + Asin(wot) sin(¢).
Therefore, comparing the first and last expressions above,

¢ = Acos(qﬁ)} - A=/ +c

¢, = Asin(¢) Q= arctan(%). ]

1

Application: Mechanical Oscillations.

Damped Oscillations

1
Recal: my” +dy' +ky =0, and ry = 2—[—di\/d2—4mk}.
m
d d\2 k
Rewrite: rp = —— + \/(—) — —.
2m 2m m

| k d
Introduce: wg = \/ —, and wy = —. Hence
m 2m

rQ = —wq £ wfj —w%.

Remark: We have three cases of damped oscillations:
(a) Over damped: wy > wo.

(b) Critically damped: wg = wp.

(c) Under damped: wyg < wp.




Application: Mechanical Oscillations.
Recall: my” +dy' +ky =0, and ry = —wg £ /w3 — wj.
(a) Over damped: wy > wp. Two distinct real roots:
y(t) = et + et
(b) Critically damped: wg = wp. Repeated real root r, = r. = F:
y(t) = (¢ + ot) €.
(c) Under damped: wg < wp. Complex roots:
y(t) = [ cos(Bt) + ¢, sin(Bt)] e "
y(t) = A cos(Bt — ¢) et

where rp = —wg £ i, and 8 = \/wi — w3.

Application: Mechanical Oscillations.

Example

Find the movement of a 5Kg mass attached to a spring with
constant kK = 5Kg/Secs2 moving in a medium with damping
constant d = 5Kg/Secs, with initial conditions y(0) = v/3 and

y'(0) = 0.

Solution: The equation is: my” + dy’ + ky = 0, with m = 5,
k =5, d = 5. The characteristic roots are

d 1 | k
r+ = —wg wczl—w(z), Wed =5 =73 W= E:L

—1=—==+i—. Under damped oscillations.

y(t)=A cos<§ t— qb) e /2,




Application: Mechanical Oscillations.

Example

Find the movement of a 5Kg mass attached to a spring with
constant k = 5Kg/Secs® moving in a medium with damping
constant d = 5Kg/Secs, with initial conditions y(0) = v/3 and

y'(0) = 0.
Solution: Recall: y(t) = Acos(? t— ¢) e /2. Hence,

y'(t) = —? Asin(? t— (b) e t/2 _ %Acos(? t— gb) e t/2

The initial conditions:

V3 =y(0) = Acos(¢), 0=y'(0)= ?Asin(cb) - %Acos(gb).
1 7
tan(¢)=% = gb:g, = A=2
We conclude: y(t) =2c (73 — %) e t/2 <

Mechanical and electrical oscillations (Sect. 2.5)

» Review: On solutions of y” +a,y' +a,y =0.
» Application: Mechanical Oscillations.
» Application: The RLC electrical circuit.




The RLC electrical circuit.

Consider an electric circuit with _/\/\/\/_| I_m_
L

resistance R, non-zero capacitor
C, and non-zero inductance L, as -

in the figure. | (t) : electric current.

Kirchhoff's Law: The electric current flowing in the circuit satisfies:

LI'(t)+ RI(t) /

Derivate both sides above: L/"(t) + RI'(t) + —é I(t) = 0.
R 1
. . 17
Divide by L: [1"(t )+2<2L>/( )-l-—LC/( ) =0.

R 1
Introduce o = T and w = ——— then " +2al' +w?l =0.

VLC

The RLC electrical circuit.

Example

Find real-valued fundamental solutions to I” +2a !’ +w? 1 =0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r? + 2ar + w?.
The roots are:

ri:%{—2a:|: 4a2—4w2] = =

|
|
o
H_
o
N
|
€

Case (a) R =0. This implies &« = 0, so ry = fiw. Therefore,

l,(t) = cos(wt), L(t) = sin(wt).

Remark: When the circuit has no resistance, the current oscillates
without dissipation.




The RLC electrical circuit.

Example

Find real-valued fundamental solutions to I” + 2a ' + w? | = 0,
where o = R/(2L), w? = 1/(LC), in the cases (a) (b) below.

Solution: Recall: ri = —a + Va2 — w2,

Case (b) R < y/4L/C. This implies
4L R? 1

2 _“L ~ L 2

R<C & 4L2<LC &S ot <wh.

Therefore, r = —a £ ivw? — a2. The fundamental solutions are

L(t) = e " cos(Vw? —a?t), h(t)=e " sin(Vw?—a?t).

VRV v c MLj ‘ The resistance R damps
~— BAVE 2 the current oscillations.

| (t) : electric current.




