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Review: Second order linear ODE.

Definition

(a) A second order linear differential equation in the unknown y is

L(y) = y ′′ + a1(t) y ′ + a0(t) y = b(t), (1)

(b) Eq. (1) is called homogeneous iff the b = 0.

(c) Eq. (1) is called of constant coefficients iff a1 and a0 are
constants; otherwise is called of variable coefficients.

(d) The functions y1 and y2 are fundamental solutions of L(y) = 0
iff L(y1) = 0, L(y2) = 0 and y1, y2 are linearly independent.

(e) The general solution of the homogeneous equation L(y) = 0
denotes any function ygen that can be written as

ygen(t) = c1 y1(t) + c2 y2(t),

where y1, y2 are fundamental solutions of L(y) = 0 and c1, c2,
are arbitrary constants.
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Idea: Soving constant coefficients equations.

Remark: Just by trial and error one can find solutions to second
order, constant coefficients, homogeneous, linear differential
equations. We present the main ideas with an example.

Example

Find solutions to the equation y ′′ + 5y ′ + 6y = 0.

Solution: We look for solutions proportional to exponentials ert , for
an appropriate constant r ∈ R, since the exponential can be
canceled out from the equation.
If y(t) = ert , then y ′(t) = rert , and y ′′(t) = r2ert . Hence

(r2 + 5r + 6)ert = 0 ⇔ r2 + 5r + 6 = 0.

That is, r must be a root of the polynomial p(r) = r2 + 5r + 6.

This polynomial is called the characteristic polynomial of the
differential equation.



Idea: Soving constant coefficients equations.

Example

Find solutions to the equation y ′′ + 5y ′ + 6y = 0.

Solution: Recall: p(r) = r2 + 5r + 6.

The roots of the characteristic polynomial are

r =
1

2

(
−5±

√
25− 24

)
=

1

2
(−5± 1) ⇒

{
r1 = −2,

r2 = −3.

Therefore, we have found the fundamental solutions

y1(t) = e−2t , y2(t) = e−3t .

Therefore, the general solution is

ygen(t) = c1e
−2t + c2e

−3t , c1, c2 ∈ R. C

Idea: Soving constant coefficients equations.

Summary: The differential equation y ′′ + 5y ′ + 6y = 0 has
infinitely many solutions,

y(t) = c1e
−2t + c2e

−3t , c1, c2 ∈ R.

Remarks:

I There are two free constants in the solution found above.

I The ODE above is second order, so two integrations must be
done to find the solution. This explain the origin of the two
free constant in the solution.

I An IVP for a second order differential equation will have a
unique solution if the IVP contains two initial conditions.
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The characteristic equation.

Definition
Given a second order linear homogeneous differential equation with
constant coefficients

y ′′ + a1y
′ + a0 = 0, (2)

the characteristic polynomial and the characteristic equation
associated with the differential equation in (2) are, respectively,

p(r) = r2 + a1r + a0, p(r) = 0.

Remark: If r1 6= r2 are the solutions of the characteristic equation
and c1, c2 are constants, then the general solution of Eq. (2) is

y(t) = c1e
r1t + c2e

r2t
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Main result for constant coefficients equations.

Theorem (Constant coefficients)

Given real constants a1, a0, consider the homogeneous, linear
differential equation on the unknown y : R→ R given by

y ′′ + a1 y ′ + a0 y = 0.

Let r+, r− be the roots of the characteristic polynomial
p(r) = r2 + a1r + a0, and let c0, c1 be arbitrary constants. Then,
the general solution of the differential eqation is given by:

(a) If r+ 6= r−, real or complex, then y(t) = c0 er+t + c1 er−t .

(b) If r+ = r− = r̂ ∈ R, then is y(t) = c0 e r̂ t + c1 te r̂ t .

Furthermore, given real constants t0, y0 and y1, there is a unique
solution to the initial value problem

y ′′ + a1 y ′ + a0 y = 0, y(t0) = y0, y ′(t0) = y1.



Main result for constant coefficients equations.

Example

Find the solution y of the initial value problem

y ′′ + 5y ′ + 6 = 0, y(0) = 1, y ′(0) = −1.

Solution: A solution of the differential equation above is

y(t) = c1e
−2t + c2e

−3t .

We now find the constants c1 and c2 that satisfy the initial
conditions above:

1 = y(0) = c1 + c2, − 1 = y ′(0) = −2c1 − 3c2.

c1 = 1− c2 ⇒ 1 = 2(1− c2) + 3c2 ⇒ c2 = −1⇒ c1 = 2.

Therefore, the unique solution to the initial value problem is

y(t) = 2e−2t − e−3t . C

Main result for constant coefficients equations.

Example

Find the general solution y of the differential equation

2y ′′ − 3y ′ + y = 0.

Solution: We look for every solution of the form y(t) = ert , where
r is a solution of the characteristic equation

2r2 − 3r + 1 = 0 ⇒ r =
1

4

(
3±
√

9− 8
)
⇒

 r1 = 1,

r2 =
1

2
.

Therefore, the general solution of the equation above is

y(t) = c1e
t + c2e

t/2,

where c1, c2 are arbitrary constants. C
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Characteristic polynomial with complex roots.

Example

Find the general solution of the equation y ′′ − 2y ′ + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

r2−2r +6 = 0 ⇒ r± =
1

2

(
2±
√

4− 24
)

⇒ r± = 1± i
√

5.

A fundamental solution set is

ỹ1(t) = e(1+i
√

5) t , ỹ2(t) = e(1−i
√

5) t .

These are complex-valued functions. The general solution is

y(t) = c̃1 e(1+i
√

5) t + c̃2 e(1−i
√

5) t , c̃1, c̃2 ∈ C. C



Characteristic polynomial with complex roots.

I Complex numbers have the form z = a + ib, where i2 = −1.

I The complex conjugate of z is the number z = a− ib.

I Re(z) = a, Im(z) = b are the real and imaginary parts of z

I Hence: Re(z) =
z + z

2
and Im(z) =

z − z

2i

I ea+ib =
∞∑

n=0

(a + ib)n

n!
. In particular holds ea+ib = ea e ib.

I Euler’s formula: e ib = cos(b) + i sin(b).

I Hence, a complex number of the form ea+ib can be written as

ea+ib = ea
[
cos(b) + i sin(b)

]
, ea−ib = ea

[
cos(b)− i sin(b)

]
.

I From ea+ib and ea−ib we get the real numbers

1

2

(
ea+ib+ea−ib

)
= ea cos(b),

1

2i

(
ea+ib−ea−ib

)
= ea sin(b).

Characteristic polynomial with complex roots.

Remark:

I The solutions found above include real-valued and
complex-valued solutions.

I Since the differential equation is real-valued, it is usually
important in applications to obtain the most general
real-valued solution. (See RLC circuit in Applications.)

I In the expression above it is difficult to take apart real-valued
solutions from complex-valued solutions.

I In other words: It is not simple to see what values of c̃1 and c̃2

make the general solution above to be real-valued.

I One way to find the real-valued general solution is to find
real-valued fundamental solutions.



Characteristic polynomial with complex roots.

Theorem (Complex roots)

If the constants a1, a0 ∈ R satisfy that a2
1 − 4a0 < 0, then the

characteristic polynomial p(r) = r2 + a1r + a0 of the equation

y ′′ + a1 y ′ + a0 y = 0 (3)

has complex roots r+ = α + iβ and r− = α− iβ, where

α = −a1

2
, β =

1

2

√
4a0 − a2

1 .

Furthermore, a fundamental set of solutions to Eq. (3) is

ỹ1(t) = e(α+iβ)t , ỹ2(t) = e(α−iβ)t ,

while another fundamental set of solutions to Eq. (3) is

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).

Characteristic polynomial with complex roots.

Idea of the Proof: Recall that the functions

ỹ1(t) = e(α+iβ)t , ỹ2(t) = e(α−iβ)t ,

are solutions to y ′′ + a1 y ′ + a0 y = 0. Also recall that

ỹ1(t) = eαt
[
cos(βt)+ i sin(βt)

]
, ỹ2(t) = eαt

[
cos(βt)− i sin(βt)

]
.

Then the functions

y1(t) =
1

2

(
ỹ1(t) + ỹ2(t)

)
y2(t) =

1

2i

(
ỹ1(t)− ỹ2(t)

)
are also solutions to the same differential equation. We conclude
that y1 and y2 are real valued and

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).



Characteristic polynomial with complex roots.

Example

Find the real-valued general solution of the equation

y ′′ − 2y ′ + 6y = 0.

Solution: Recall: Complex valued solutions are

ỹ1(t) = e(1+i
√

5) t , ỹ2(t) = e(1−i
√

5) t .

Any linear combination of these functions is solution of the
differential equation. In particular,

y1(t) =
1

2

[
ỹ1(t) + ỹ2(t)

]
, y2(t) =

1

2i

[
ỹ1(t)− ỹ2(t)

]
.

Now, recalling e(1±i
√

5) t = ete±i
√

5 t

y1(t) =
1

2

[
et e i

√
5t +et e−i

√
5t

]
, y2(t) =

1

2i

[
et e i

√
5t−et e−i

√
5t

]
,

Characteristic polynomial with complex roots.

Example

Find the real-valued general solution of the equation

y ′′ − 2y ′ + 6y = 0.

Solution: y1 =
et

2

[
e i
√

5t + e−i
√

5t
]
, y2 =

et

2i

[
e i
√

5t − e−i
√

5t
]
.

The Euler formula and its complex-conjugate formula

e i
√

5t =
[
cos(
√

5 t) + i sin(
√

5 t)
]
,

e−i
√

5 t =
[
cos(
√

5 t)− i sin(
√

5 t)
]
,

imply the inverse relations

e i
√

5t + e−i
√

5t = 2 cos(
√

5t), e i
√

5t − e−i
√

5t = 2i sin(
√

5t).

So functions y1 and y2 can be written as

y1(t) = et cos(
√

5 t), y2(t) = et sin(
√

5 t).



Characteristic polynomial with complex roots.

Example

Find the real-valued general solution of the equation

y ′′ − 2y ′ + 6y = 0.

Solution: Recall: y(t) = c̃1e
(1+i

√
5) t + c̃2e

(1−i
√

5) t , c̃1, c̃2 ∈ C.

The calculation above says that a real-valued fundamental set is

y1(t) = et cos(
√

5 t), y2(t) = et sin(
√

5 t).

Hence, the complex-valued general solution can also be written as

y(t) =
[
c1 cos(

√
5 t) + c2 sin(

√
5 t)

]
et , c1, c2 ∈ C.

The real-valued general solution is simple to obtain:

y(t) =
[
c1 cos(

√
5 t) + c2 sin(

√
5 t)

]
et , c1, c2 ∈ R.

We just restricted the coefficients c1, c2 to be real-valued. C

Characteristic polynomial with complex roots.

Example

Show that y1(t) = et cos(
√

5 t) and y2(t) = et sin(
√

5 t) are
fundamental solutions to the equation y ′′ − 2y ′ + 6y = 0.

Solution: y1(t) = et cos(
√

5 t), y2(t) = et sin(
√

5 t).

Summary:

I These functions are solutions of the differential equation.

I They are not proportional to each other, Hence li.

I Therefore, y1, y2 form a fundamental set.

I The general solution of the equation is

y(t) =
[
c1 cos(

√
5t) + c2 sin(

√
5t)

]
et .

I y is real-valued for c1, c2 ∈ R.

I y is complex-valued for c1, c2 ∈ C.



Characteristic polynomial with complex roots.

Example

Find real-valued fundamental solutions to the equation

y ′′ + 2 y ′ + 6 y = 0.

Solution:
The roots of the characteristic polynomial p(r) = r2 + 2r + 6 are

r± =
1

2

[
−2±

√
4− 24

]
=

1

2

[
−2±

√
−20

]
⇒ r± = −1± i

√
5.

These are complex-valued roots, with

α = −1, β =
√

5.

Real-valued fundamental solutions are

y1(t) = e−t cos(
√

5 t), y2(t) = e−t sin(
√

5 t). C

Characteristic polynomial with complex roots.

Example

Find real-valued fundamental solutions to the equation

y ′′ + 2 y ′ + 6 y = 0.

Solution: y1(t) = e−t cos(
√

5 t), y2(t) = e−t sin(
√

5 t).

1
y

t

e
− t

Differential equations like the one
in this example describe physical
processes related to damped
oscillations. For example
pendulums with friction.



Characteristic polynomial with complex roots.

Example

Find the real-valued general solution of y ′′ + 5 y = 0.

Solution: The characteristic polynomial is p(r) = r2 + 5.

Its roots are r± = ±
√

5 i . This is the case α = 0, and β =
√

5.

Real-valued fundamental solutions are

y1(t) = cos(
√

5 t), y2(t) = sin(
√

5 t).

The real-valued general solution is

y(t) = c1 cos(
√

5 t) + c2 sin(
√

5 t), c1, c2 ∈ R. C

Remark: Equations like the one in this example describe
oscillatory physical processes without dissipation, α = 0.


