- Review: Linear differential equations.
- Non-linear differential equations.
- The Picard-Lindelöf Theorem.
- Properties of solutions to non-linear ODE.
- Direction Fields.

Review: Linear differential equations.

Theorem (Variable coefficients)
Given continuous functions $a, b:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$, with $t_{2}>t_{1}$, and given constants $t_{0} \in\left(t_{1}, t_{2}\right), y_{0} \in \mathbb{R}$, the $I V P$

$$
y^{\prime}=-a(t) y+b(t), \quad y\left(t_{0}\right)=y_{0}
$$

has the unique solution $y:\left(t_{1}, t_{2}\right) \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
y(t)=\frac{1}{\mu(t)}\left[y_{0}+\int_{t_{0}}^{t} \mu(s) b(s) d s\right], \tag{1}
\end{equation*}
$$

where the integrating factor function is given by

$$
\mu(t)=e^{A(t)}, \quad A(t)=\int_{t_{0}}^{t} a(s) d s
$$

Proof: Based on the integration factor method.

Review: Linear differential equations.

Remarks:

- The Theorem above assumes that the coefficients a, b, are continuous in $\left(t_{1}, t_{2}\right) \subset \mathbb{R}$.
- The Theorem above implies:
(a) There is an explicit expression for the solutions of a linear IVP, given in Eq. (1).
(b) For every initial condition $y_{0} \in \mathbb{R}$ there exists a unique solution to a linear IVP.
(c) For every initial condition $y_{0} \in \mathbb{R}$ the corresponding solution $y(t)$ of a linear IVP is defined for all $t \in\left(t_{1}, t_{2}\right)$.
- None of these properties holds for solutions to non-linear differential equations.

On linear and non-linear equations. (Sect. 1.6).

- Review: Linear differential equations.
- Non-linear differential equations.
- The Picard-Lindelöf Theorem.
- Properties of solutions to non-linear ODE.
- Direction Fields.

Non-linear differential equations.

Definition

An ordinary differential equation $y^{\prime}(t)=f(t, y(t))$ is called non-linear iff the function f is non-linear in the second argument.

Example

(a) The differential equation $y^{\prime}(t)=\frac{t^{2}}{y^{3}(t)}$ is non-linear, since the function $f(t, u)=t^{2} / u^{3}$ is non-linear in the second argument.
(b) The differential equation $y^{\prime}(t)=2 t y(t)+\ln (y(t))$ is non-linear, since the function $f(t, u)=2 t u+\ln (u)$ is non-linear in the second argument, due to the term $\ln (u)$.
(c) The differential equation $\frac{y^{\prime}(t)}{y(t)}=2 t^{2}$ is linear, since the function $f(t, u)=2 t^{2} u$ is linear in the second argument.

On linear and non-linear equations. (Sect. 1.6).

- Review: Linear differential equations.
- Non-linear differential equations.
- The Picard-Lindelöf Theorem.
- Properties of solutions to non-linear ODE.
- Direction Fields.

The Picard-Lindelöf Theorem.

Theorem (Picard-Lindelöf)

Consider the initial value problem

$$
y^{\prime}(t)=f(t, y(t)), \quad y\left(t_{0}\right)=y_{0}
$$

If $f: S \rightarrow \mathbb{R}$ is continuous on the square

$$
S=\left[t_{0}-a, t_{0}+a\right] \times\left[y_{0}-a, y_{0}+a\right] \subset \mathbb{R}^{2}
$$

for some a >0, and satisfies the Lipschitz condition that there exists $k>0$ such that

$$
\left|f\left(t, y_{2}\right)-f\left(t, y_{1}\right)\right|<k\left|y_{2}-y_{1}\right|,
$$

for all $\left(t, y_{2}\right),\left(t, y_{1}\right) \in S$, then there exists a positive $b<a$ such that there exists a unique solution $y:\left[t_{0}-b, t_{0}+b\right] \rightarrow \mathbb{R}$ to the IVP above.

On linear and non-linear equations. (Sect. 1.6).

- Review: Linear differential equations.
- Non-linear differential equations.
- The Picard-Lindelöf Theorem.
- Properties of solutions to non-linear ODE.
- Direction Fields.

Properties of solutions to non-linear ODE.

Recall: The non-linear initial value problem

$$
y^{\prime}(t)=f(t, y(t)), \quad y\left(t_{0}\right)=y_{0} .
$$

has a unique solution in a region small enough near the initial data.
Remarks:
(i) There is no general explicit expression for the solution $y(t)$ to a non-linear ODE.
(ii) Non-uniqueness of solution to the IVP above may happen at points $(t, u) \in \mathbb{R}^{2}$ where $\partial_{u} f$ is not continuous.
(iii) Changing the initial data y_{0} may change the domain on the variable t where the solution $y(t)$ is defined.

Properties of solutions to non-linear ODE.

Example

Given non-zero constants $a_{1}, a_{2}, a_{3}, a_{4}$, find every solution y of

$$
y^{\prime}=\frac{t^{2}}{\left(y^{4}+a_{4} y^{3}+a_{3} y^{2}+a_{2} y+a_{1}\right)} .
$$

Solution: The ODE is separable. So first, rewrite the equation as

$$
\left(y^{4}+a_{4} y^{3}+a_{3} y^{2}+a_{2} y+a_{1}\right) y^{\prime}=t^{2}
$$

then we integrate in t on both sides of the equation,

$$
\int\left(y^{4}+a_{4} y^{3}+a_{3} y^{2}+a_{2} y+a_{1}\right) y^{\prime} d t=\int t^{2} d t+c
$$

Introduce the substitution $u=y(t)$, so $d u=y^{\prime}(t) d t$,

$$
\int\left(u^{4}+a_{4} u^{3}+a_{3} u^{2}+a_{2} u+a_{1}\right) d u=\int t^{2} d t+c
$$

Properties of solutions to non-linear ODE.

Example

Given non-zero constants $a_{1}, a_{2}, a_{3}, a_{4}$, find every solution y of

$$
y^{\prime}=\frac{t^{2}}{\left(y^{4}+a_{4} y^{3}+a_{3} y^{2}+a_{2} y+a_{1}\right)} .
$$

Solution:
Recall: $\int\left(u^{4}+a_{4} u^{3}+a_{3} u^{2}+a_{2} u+a_{1}\right) d u=\int t^{2} d t+c$.
Integrate, and in the result substitute back the function y :

$$
\frac{1}{5} y^{5}(t)+\frac{a_{4}}{4} y^{4}(t)+\frac{a_{3}}{3} y^{3}(t)+\frac{a_{2}}{2} y^{2}(t)+a_{1} y(t)=\frac{t^{3}}{3}+c
$$

The solution is in implicit form. It is the root of a polynomial degree five. There is no formula for the roots of a general polynomial degree five or bigger.
There is no explicit expression for solutions y of the ODE.

Properties of solutions to non-linear ODE.

Example

Find every solution y of the initial value problem

$$
y^{\prime}(t)=y^{1 / 3}(t), \quad y(0)=0
$$

Remark: The equation above is non-linear, separable, and the function $f(t, u)=u^{1 / 3}$ has derivative

$$
\partial_{u} f=\frac{1}{3} \frac{1}{u^{2 / 3}},
$$

so $\partial_{u} f$ is not continuous at $u=0$.
The initial condition above is precisely where f is not continuous.
Solution: There are two solutions to the IVP above:
The first solution is

$$
y_{1}(t)=0 .
$$

Properties of solutions to non-linear ODE.

Example

Find every solution y of the initial value problem

$$
y^{\prime}(t)=y^{1 / 3}(t), \quad y(0)=0
$$

Solution: The second solution is obtained as follows:

$$
\int[y(t)]^{-1 / 3} y^{\prime}(t) d t=\int d t+c
$$

Then, the substitution $u=y(t)$, with $d u=y^{\prime}(t) d t$, implies that

$$
\begin{gathered}
\int u^{-1 / 3} d u=\int d t+c \Rightarrow \frac{3}{2}[y(t)]^{2 / 3}=t+c \\
y(t)=\left[\frac{2}{3}(t+c)\right]^{3 / 2} \Rightarrow 0=y(0)=\left(\frac{2}{3} c\right)^{3 / 2} \Rightarrow c=0 .
\end{gathered}
$$

So, the second solution is: $y_{2}(t)=\left(\frac{2}{3} t\right)^{3 / 2}$. Recall $y_{1}(t)=0 . \quad \triangleleft$

Properties of solutions to non-linear ODE.

Example

Find the solution y to the initial value problem

$$
y^{\prime}(t)=y^{2}(t), \quad y(0)=y_{0}
$$

Solution: This is a separable equation. So,

$$
\int \frac{y^{\prime} d t}{y^{2}}=\int d t+c \quad \Rightarrow \quad-\frac{1}{y}=t+c \quad \Rightarrow \quad y(t)=-\frac{1}{t+c}
$$

Using the initial condition in the expression above,

$$
y_{0}=y(0)=-\frac{1}{c} \Rightarrow c=-\frac{1}{y_{0}} \Rightarrow y(t)=\frac{1}{\left(\frac{1}{y_{0}}-t\right)} .
$$

This solution diverges at $t=1 / y_{0}$, so its domain is $\mathbb{R}-\left\{y_{0}\right\}$.
The solution domain depends on the values of the initial data $y_{0} . \triangleleft$

Properties of solutions to non-linear ODE.

Summary:

- Linear ODE:
(a) There is an explicit expression for the solution of a linear IVP.
(b) For every initial condition $y_{0} \in \mathbb{R}$ there exists a unique solution to a linear IVP.
(c) The domain of the solution of a linear IVP is defined for every initial condition $y_{0} \in \mathbb{R}$.
- Non-linear ODE:
(i) There is no general explicit expression for the solution $y(t)$ to a non-linear ODE.
(ii) Non-uniqueness of solution to a non-linear IVP may happen at points $(t, u) \in \mathbb{R}^{2}$ where $\partial_{u} f$ is not continuous.
(iii) Changing the initial data y_{0} may change the domain on the variable t where the solution $y(t)$ is defined.

On linear and non-linear equations. (Sect. 1.6).

- Review: Linear differential equations.
- Non-linear differential equations.
- The Picard-Lindelöf Theorem.
- Properties of solutions to non-linear ODE.
- Direction Fields.

Direction Fields.

Remarks:

- One does not need to solve a differential equation $y^{\prime}(t)=f(t, y(t))$ to have a qualitative idea of the solution.
- Recall that $y^{\prime}(t)$ represents the slope of the tangent line to the graph of function y at the point $(t, y(t))$.
- A differential equation provides these slopes, $f(t, y(t))$, for every point $(t, y(t))$.
- Key idea: Graph the function $f(t, y)$ on the $y t$-plane, not as points, but as slopes of small segments.

Definition

A Direction Field for the differential equation $y^{\prime}(t)=f(t, y(t))$ is the graph on the $y t$-pane of the values $f(t, y)$ as slopes of a small segments.

Direction Fields.

Example

We know that the solution of $y^{\prime}=y$ are the exponentials $y(t)=y_{0} e^{t}$. The graph of these solution is simple.
So is the direction field:

Direction Fields.

Example

The solution of $y^{\prime}=\sin (y)$ is simple to compute. The equation is separable. After some calculations the implicit solution are
$\ln \left|\frac{\csc \left(y_{0}\right)+\cot (y)}{\csc (y)+\cot (y)}\right|=t$.
for $y_{0} \in \mathbb{R}$. The graph of these solution is not simple to do. But the direction field is simple to plot:

Direction Fields.

Example

The solution of $y^{\prime}=\frac{\left(1+y^{3}\right)}{\left(1+t^{2}\right)}$ could be hard to compute. But the direction field is simple to plot:

