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Direction Fields.

Review: Linear differential equations.

Theorem (Variable coefficients)

Given continuous functions a, b : (t1, tp) — R, with t; > t1, and
given constants ty € (t1, t2), Yo € R, the IVP

y'=—a(t)y +b(t),  y(to) = yo,

has the unique solution y : (t1,t2) — R given by

W)= o+ [ n)pts)as]. (1)

where the integrating factor function is given by

Proof: Based on the integration factor method.




Review: Linear differential equations.

Remarks:

» The Theorem above assumes that the coefficients a, b, are
continuous in (t1,t) C R.

» The Theorem above implies:

(a) There is an explicit expression for the solutions of a linear IVP,
given in Eq. (1).

(b) For every initial condition yy € R there exists a unique solution
to a linear IVP.

(c) For every initial condition yp € R the corresponding solution
y(t) of a linear IVP is defined for all t € (t1, t).

» None of these properties holds for solutions to non-linear
differential equations.
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Non-linear differential equations.

Definition
An ordinary differential equation y’(t) = f(t, y(t)) is called
non-linear iff the function f is non-linear in the second argument.

Example

2 . .
(a) The differential equation y’(t) = —— is non-linear, since the

3
y3(t)

function f(t,u) = t?/u® is non-linear in the second argument.
(b) The differential equation y'(t) = 2ty(t) + In(y(t)) is

non-linear, since the function f(t,u) = 2tu + In(u) is

non-linear in the second argument, due to the term In(u).
y'(t)
y(t)

function f(t.u) = 2t%u is linear in the second argument.
; g

—2¢% is linear, since the

(c) The differential equation
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The Picard-Lindelof Theorem.
Theorem (Picard-Lindelof)

Consider the initial value problem
y'(t) =£(t,y(1)), y(to) =yo.
If f : S — R is continuous on the square
S=[to—a,to+a] x [yo —a,yo + a] C R?,

for some a > 0, and satisfies the Lipschitz condition that there
exists k > 0 such that

1F(t,y2) — F(t,y1)| < k|y2 — n1l,

for all (t,y>), (t,y1) € S, then there exists a positive b < a such
that there exists a unique solution y : [ty — b, to + b] — R to the
IVP above.
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Properties of solutions to non-linear ODE.

Recall: The non-linear initial value problem

y'(t) = f(t,y(t), y(to)= o
has a unique solution in a region small enough near the initial data.

Remarks:

(i) There is no general explicit expression for the solution y(t) to
a non-linear ODE.

(ii) Non-uniqueness of solution to the IVP above may happen at
points (t, u) € R? where 9,f is not continuous.

(iii) Changing the initial data yp may change the domain on the
variable t where the solution y(t) is defined.

Properties of solutions to non-linear ODE.

Example
Given non-zero constants aj, ap, as, a4, find every solution y of
I t2
Y = (y*+asy3+asy?+ay+a1)

Solution: The ODE is separable. So first, rewrite the equation as

(V*+ay’+ay’+ay+a)y =t

then we integrate in t on both sides of the equation,
/(y“ tary’ +azy’+ay+a)y dt :/t2 dt + c.
Introduce the substitution u = y(t), so du = y'(t) dt,

/(u4+a4u3+a3u2+agu+al)du:/t2dt+c.




Properties of solutions to non-linear ODE.

Example
Given non-zero constants aj, ap, as, a4, find every solution y of
I t2
Y = (y*+asy3+asy?+ary+a1)

Solution:
Recall: /(u4+a4u3+a3u2+azu+a1) du = /tZdt+c.
Integrate, and in the result substitute back the function y:

L 5 4 4 a3 3 a - t3
—y2(t)+ — y*(t) + = y3(t) + = yo(t t) = — +c.
5y()+4y()+3y()+2y()+aly() 7 T

The solution is in implicit form. It is the root of a polynomial
degree five. There is no formula for the roots of a general
polynomial degree five or bigger.

There is no explicit expression for solutions y of the ODE. <

Properties of solutions to non-linear ODE.

Example
Find every solution y of the initial value problem

y'(t)=y"3(t),  y(0)=0.
Remark: The equation above is non-linear, separable, and the
function f(t, u) = u'/3 has derivative

1 1
auf — = 9

3 y2/3
so J,f is not continuous at u = 0.
The initial condition above is precisely where f is not continuous.

Solution: There are two solutions to the VP above:
The first solution is

yl(t) = 0.




Properties of solutions to non-linear ODE.

Example
Find every solution y of the initial value problem

y'(t) =y*3(t),  y(0)=0.

Solution: The second solution is obtained as follows:

e fose

Then, the substitution u = y(t), with du = y'(t) dt, implies that

/u_1/3du:/dt+c = g[y(t)}2/3:t+c,

2 3/2 2 \3/2
y(O) =[5+ T =0=y0) = (5¢) = c=0.
2 \3/2
So, the second solution is: y»(t) = (§ t) . Recall y1(t) =0. <

Properties of solutions to non-linear ODE.

Example
Find the solution y to the initial value problem

y'(t)=y(t),  y(0)= .

Solution: This is a separable equation. So,

/
y' dt 1 1
= [ dt = ——=t = t)=— :
/ y? / e y e y() t+c

Using the initial condition in the expression above,

This solution diverges at t = 1/yp, so its domain is R — {yp}.

The solution domain depends on the values of the initial data yp.<




Properties of solutions to non-linear ODE.

Summary:
» Linear ODE:

(a) There is an explicit expression for the solution of a linear IVP.

(b) For every initial condition yg € R there exists a unique solution
to a linear IVP.

(c) The domain of the solution of a linear IVP is defined for every
initial condition yy € R.

» Non-linear ODE:

(i) There is no general explicit expression for the solution y(t) to
a non-linear ODE.

(i) Non-uniqueness of solution to a non-linear IVP may happen at
points (t,u) € R? where 9,f is not continuous.

(iii) Changing the initial data yp may change the domain on the
variable t where the solution y(t) is defined.
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The Proof of Picard-Lindelof's Theorem.

Remark: Idea of the proof of Picard-Lindelof's Theorem.

(a) Transform the differential equation into an integral equation.
y'(t) = f(t,y(t)), y(0)=yo — Integral equation.

(b) Use the integral equation to define a sequence {yn(t)}>2, of
approximate solutions.

(c) Show that the sequence of approximate solutions converges to
the solution of the equation.

lim y,(t) = y(t)

n—aoo

(d) The main technique used in the convergence statement is the
Contraction Fixed Point Theorem in Banach Spaces.

The Proof of Picard-Lindelof’'s Theorem.

Example
Use the proof of Picard-Lindelof's Theorem to find the solution to

y' =ty, y(0) = 1.

Solution: First notice that the equation is separable. So it is simple
to find the solution following Section 1.3,

/ t2

—=t = hly)=5+c = y(t)=Ce
y

t2/2

The initial condition implies,

1=y(0)=2¢ = y(t)=e"/2

In the next slide we use Picard-Lindelof’s idea.




The Proof of Picard-Lindelof's Theorem.

Example
Use the proof of Picard-Lindelof's Theorem to find the solution to

y' =ty, y(0) = 1.

Solution: We first transform the differential equation into an
integral equation.

/oty/(s)dSZ/otSY(s)ds = V(f)—y(O):/otsy(S)ds.

Using the initial condition, y(0) =1,

This is the integral equation.

The Proof of Picard-Lindelof’'s Theorem.

Example
Use the proof of Picard-Lindelof's Theorem to find the solution to

y' =ty, y(0) =1.

t
Solution: Integral equation: y(t) =1 +/ sy(s)ds.
0

We now define the sequence of approximate solutions:
t
Yo=y(0)=1, yni(t)=1 +/ syn(s)ds, n>0.
0

We now compute the first elements in the sequence.

t t t2
n =0, yl(t):1+/syo(s)ds:1+/sds:1+§.
0 0

t2

Soyozl,andy1:1+§.




The Proof of Picard-Lindelof's Theorem.

Example
Use the proof of Picard-Lindelof’s Theorem to find the solution to

y' =ty, y(0) = 1.

t
Solution: Integral equation: y(t) = 1+/ sy(s) ds.
t ’
And yp =1, and y1 =1+ OR Let's compute y»,

t t $3 £2 44
y2=1+/ Sy1(5)ds:1+/ <S+—)d5:1+—+—,
0 0 2 2 8

t2\ 1 /t2\2
So we've got yo(t) =1+ (E) +3 <§> . Show that:

y3(t) =1+ (%2> +5(§>2+%(%2>3.

The Proof of Picard-Lindelof’'s Theorem.

Example
Use the proof of Picard-Lindelof's Theorem to find the solution to

y' =ty, y(0) = 1.
t2 1 /t2\2 1 /t2\3
w6 =1+ (5) + (5 (5)’
Solution: y3(t) + > + (5 + T
By computng few more terms one finds

n
I
(=3 5(3)
k=0
Hence the limit n — oo is given by
_ 1 /12K 2
y(e) = fim () =Y () =€,
k=0
. X > Xk t2/2
since ¥ = Z R We conclude, y(t) = e™/=. <
k=0




The Proof of Picard-Lindelof's Theorem.

Sketch of the proof: Integrate on both sides with respect to t,

t

/ )/ (s) ds — / F(s.y(s)ds = y(t) = yo + / £(s,y(s)) ds,

to to to
Construct a sequence of continuous functions, {y,}°°,,
t
yo(t) =yo, Ynt+1(t) = yo +/ f(s, yn(s)) ds.
to

This is a Cauchy sequence in a small enough domain
Dp = [to — b, ty + b]. Introduce the norm on the space of
continuous functions

= t).
Jull = max|u(e)

The Proof of Picard-Lindelof’'s Theorem.

Sketch of the proof: Two consecutive elements in the sequence
satisfy

e /tt f(s,yn(s))ds — /t £(s, yn_1(s)) ds‘

|Yn+1 — Ynll = max
t 0 to

t
< max |f(s,y,,(s)) — f(s,y,,_l(s))‘ ds
teDy to

t
< k max s) — yn—1(s)| ds
ma . Yn(S) — Yn—1(5)]
< kaYn _)/n—lH-
So we have,

||)/n+1 - )/n” <r H)/n - )/n—1|| = H)/n—i—l - )/nH < ||)/1 - )/0”-




The Proof of Picard-Lindelof's Theorem.

Sketch of the proof: Recall: ||yn+1 — yall < 7 |lya — wol|-
Using the triangle inequality for norms and and the sum of a
geometric series one compute the following,

[Yn = Yntmll = [|Yn = Ynt1 + Yot1 — Yor2 + -+ + Yo (m=1) — Yntml|

< o = yosall + [lyn+1 — o2l +-- + ”yn—i-(m—l) — Yntml
(" + e Yy — ol
<L +r+rP 44 ) [y = vl
<r” (1 — rm) Iy1 — yol-
1—r

Choose b such that b < min{a,1/k}, hence 0 < r < 1.

Then {y,} is a Cauchy sequence in the Banach space C(D), with
norm || ||, hence converges.

Then y = lim,_. v, exists and satisfy the differential eq. O
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Direction Fields.

Remarks:

» One does not need to solve a differential equation
y'(t) = f(t, y(t)) to have a qualitative idea of the solution.

> Recall that y/(t) represents the slope of the tangent line to
the graph of function y at the point (t, y(t)).

> A differential equation provides these slopes, f(t, y(t)), for
every point (t, y(t)).

» Key idea: Graph the function f(t,y) on the yt-plane, not as
points, but as slopes of small segments.

Definition
A Direction Field for the differential equation y'(t) = f(t, y(t)) is
the graph on the yt-pane of the values f(t,y) as slopes of a small
segments.

Direction Fields.

Example

We know that the solution of y' = y are the exponentials
y(t) = yo e'. The graph of these solution is simple.

So is the direction field:

W=y Arrow of slope +1.0/

w e

% Tu

2hS
L8

0, 0.34826




Direction Fields.

Example

The solution of y’ = sin(y) is simple to compute. The equation is
separable. After some calculations the implicit solution are

v = siny Arrow of slope +1A0/I

csclyo) +cotly)| _ Wi TToTIIIITIIIIIIN
csc(y) + cot(y) ' NN i R,

for yo € R. The graph of
these solution is not
simple to do.

But the direction field is
simple to plot:

Direction Fields.

Example

(1+y°)
(1+ t?)
direction field is simple to plot:

The solution of y/ = could be hard to compute. But the

W= (14+%7) ft3+ 1) Arrowe of slope +1_0/‘7J'
r AL
N

v
I

0.79812, 4.9751 T




