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Review: Linear differential equations.

Theorem (Variable coefficients)

Given continuous functions a, b : (t1, t2) → R, with t2 > t1, and
given constants t0 ∈ (t1, t2), y0 ∈ R, the IVP

y ′ = −a(t) y + b(t), y(t0) = y0,

has the unique solution y : (t1, t2) → R given by

y(t) =
1

µ(t)

[
y0 +

∫ t

t0

µ(s) b(s) ds
]
, (1)

where the integrating factor function is given by

µ(t) = eA(t), A(t) =

∫ t

t0

a(s) ds.

Proof: Based on the integration factor method.



Review: Linear differential equations.

Remarks:

I The Theorem above assumes that the coefficients a, b, are
continuous in (t1, t2) ⊂ R.

I The Theorem above implies:

(a) There is an explicit expression for the solutions of a linear IVP,
given in Eq. (1).

(b) For every initial condition y0 ∈ R there exists a unique solution
to a linear IVP.

(c) For every initial condition y0 ∈ R the corresponding solution
y(t) of a linear IVP is defined for all t ∈ (t1, t2).

I None of these properties holds for solutions to non-linear
differential equations.
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Non-linear differential equations.

Definition
An ordinary differential equation y ′(t) = f (t, y(t)) is called
non-linear iff the function f is non-linear in the second argument.

Example

(a) The differential equation y ′(t) =
t2

y3(t)
is non-linear, since the

function f (t, u) = t2/u3 is non-linear in the second argument.

(b) The differential equation y ′(t) = 2ty(t) + ln
(
y(t)

)
is

non-linear, since the function f (t, u) = 2tu + ln(u) is
non-linear in the second argument, due to the term ln(u).

(c) The differential equation
y ′(t)

y(t)
= 2t2 is linear, since the

function f (t, u) = 2t2u is linear in the second argument.
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I Properties of solutions to non-linear ODE.

I The Proof of Picard-Lindelöf’s Theorem.
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The Picard-Lindelöf Theorem.

Theorem (Picard-Lindelöf)

Consider the initial value problem

y ′(t) = f (t, y(t)), y(t0) = y0.

If f : S → R is continuous on the square

S = [t0 − a, t0 + a]× [y0 − a, y0 + a] ⊂ R2,

for some a > 0, and satisfies the Lipschitz condition that there
exists k > 0 such that

|f (t, y2)− f (t, y1)| < k |y2 − y1|,

for all (t, y2), (t, y1) ∈ S, then there exists a positive b < a such
that there exists a unique solution y : [t0 − b, t0 + b] → R to the
IVP above.
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Properties of solutions to non-linear ODE.

Recall: The non-linear initial value problem

y ′(t) = f (t, y(t)), y(t0) = y0.

has a unique solution in a region small enough near the initial data.

Remarks:

(i) There is no general explicit expression for the solution y(t) to
a non-linear ODE.

(ii) Non-uniqueness of solution to the IVP above may happen at
points (t, u) ∈ R2 where ∂uf is not continuous.

(iii) Changing the initial data y0 may change the domain on the
variable t where the solution y(t) is defined.

Properties of solutions to non-linear ODE.

Example

Given non-zero constants a1, a2, a3, a4, find every solution y of

y ′ =
t2(

y4 + a4 y3 + a3 y2 + a2 y + a1

) .

Solution: The ODE is separable. So first, rewrite the equation as(
y4 + a4 y3 + a3 y2 + a2 y + a1

)
y ′ = t2,

then we integrate in t on both sides of the equation,∫ (
y4 + a4 y3 + a3 y2 + a2 y + a1

)
y ′ dt =

∫
t2 dt + c .

Introduce the substitution u = y(t), so du = y ′(t) dt,∫
(u4 + a4 u3 + a3 u2 + a2 u + a1

)
du =

∫
t2 dt + c .



Properties of solutions to non-linear ODE.

Example

Given non-zero constants a1, a2, a3, a4, find every solution y of

y ′ =
t2(

y4 + a4 y3 + a3 y2 + a2 y + a1

) .

Solution:

Recall:

∫
(u4 + a4 u3 + a3 u2 + a2 u + a1

)
du =

∫
t2 dt + c .

Integrate, and in the result substitute back the function y :

1

5
y5(t) +

a4

4
y4(t) +

a3

3
y3(t) +

a2

2
y2(t) + a1 y(t) =

t3

3
+ c .

The solution is in implicit form. It is the root of a polynomial
degree five. There is no formula for the roots of a general
polynomial degree five or bigger.

There is no explicit expression for solutions y of the ODE. C

Properties of solutions to non-linear ODE.
Example

Find every solution y of the initial value problem

y ′(t) = y1/3(t), y(0) = 0.

Remark: The equation above is non-linear, separable, and the
function f (t, u) = u1/3 has derivative

∂uf =
1

3

1

u2/3
,

so ∂uf is not continuous at u = 0.

The initial condition above is precisely where f is not continuous.

Solution: There are two solutions to the IVP above:
The first solution is

y1(t) = 0.



Properties of solutions to non-linear ODE.

Example

Find every solution y of the initial value problem

y ′(t) = y1/3(t), y(0) = 0.

Solution: The second solution is obtained as follows:∫ [
y(t)

]−1/3
y ′(t) dt =

∫
dt + c .

Then, the substitution u = y(t), with du = y ′(t) dt, implies that∫
u−1/3 du =

∫
dt + c ⇒ 3

2

[
y(t)

]2/3
= t + c ,

y(t) =
[2

3
(t + c)

]3/2
⇒ 0 = y(0) =

(2

3
c
)3/2

⇒ c = 0.

So, the second solution is: y2(t) =
(2

3
t
)3/2

. Recall y1(t) = 0. C

Properties of solutions to non-linear ODE.

Example

Find the solution y to the initial value problem

y ′(t) = y2(t), y(0) = y0.

Solution: This is a separable equation. So,∫
y ′ dt

y2
=

∫
dt + c ⇒ −1

y
= t + c ⇒ y(t) = − 1

t + c
.

Using the initial condition in the expression above,

y0 = y(0) = −1

c
⇒ c = − 1

y0
⇒ y(t) =

1( 1

y0
− t

) .

This solution diverges at t = 1/y0, so its domain is R− {y0}.

The solution domain depends on the values of the initial data y0.C



Properties of solutions to non-linear ODE.

Summary:
I Linear ODE:

(a) There is an explicit expression for the solution of a linear IVP.
(b) For every initial condition y0 ∈ R there exists a unique solution

to a linear IVP.
(c) The domain of the solution of a linear IVP is defined for every

initial condition y0 ∈ R.

I Non-linear ODE:

(i) There is no general explicit expression for the solution y(t) to
a non-linear ODE.

(ii) Non-uniqueness of solution to a non-linear IVP may happen at
points (t, u) ∈ R2 where ∂uf is not continuous.

(iii) Changing the initial data y0 may change the domain on the
variable t where the solution y(t) is defined.
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The Proof of Picard-Lindelöf’s Theorem.

Remark: Idea of the proof of Picard-Lindelöf’s Theorem.

(a) Transform the differential equation into an integral equation.

y ′(t) = f (t, y(t)), y(0) = y0 −→ Integral equation.

(b) Use the integral equation to define a sequence {yn(t)}∞n=0 of
approximate solutions.

(c) Show that the sequence of approximate solutions converges to
the solution of the equation.

lim
n→∞

yn(t) = y(t)

(d) The main technique used in the convergence statement is the
Contraction Fixed Point Theorem in Banach Spaces.

The Proof of Picard-Lindelöf’s Theorem.

Example

Use the proof of Picard-Lindelöf’s Theorem to find the solution to

y ′ = t y , y(0) = 1.

Solution: First notice that the equation is separable. So it is simple
to find the solution following Section 1.3,

y ′

y
= t ⇒ ln(y) =

t2

2
+ c ⇒ y(t) = c̃ et2/2.

The initial condition implies,

1 = y(0) = c̃ ⇒ y(t) = et2/2.

In the next slide we use Picard-Lindelöf’s idea.



The Proof of Picard-Lindelöf’s Theorem.

Example

Use the proof of Picard-Lindelöf’s Theorem to find the solution to

y ′ = t y , y(0) = 1.

Solution: We first transform the differential equation into an
integral equation.∫ t

0
y ′(s) ds =

∫ t

0
s y(s) ds ⇒ y(t)− y(0) =

∫ t

0
s y(s) ds.

Using the initial condition, y(0) = 1,

y(t) = 1 +

∫ t

0
s y(s) ds.

This is the integral equation.

The Proof of Picard-Lindelöf’s Theorem.

Example

Use the proof of Picard-Lindelöf’s Theorem to find the solution to

y ′ = t y , y(0) = 1.

Solution: Integral equation: y(t) = 1 +

∫ t

0
s y(s) ds.

We now define the sequence of approximate solutions:

y0 = y(0) = 1, yn+1(t) = 1 +

∫ t

0
s yn(s) ds, n > 0.

We now compute the first elements in the sequence.

n = 0, y1(t) = 1 +

∫ t

0
s y0(s) ds = 1 +

∫ t

0
s ds = 1 +

t2

2
.

So y0 = 1, and y1 = 1 +
t2

2
.



The Proof of Picard-Lindelöf’s Theorem.

Example

Use the proof of Picard-Lindelöf’s Theorem to find the solution to

y ′ = t y , y(0) = 1.

Solution: Integral equation: y(t) = 1 +

∫ t

0
s y(s) ds.

And y0 = 1, and y1 = 1 +
t2

2
. Let’s compute y2,

y2 = 1 +

∫ t

0
s y1(s) ds = 1 +

∫ t

0

(
s +

s3

2

)
ds = 1 +

t2

2
+

t4

8
.

So we’ve got y2(t) = 1 +
( t2

2

)
+

1

2

( t2

2

)2
. Show that:

y3(t) = 1 +
( t2

2

)
+

1

2!

( t2

2

)2
+

1

3!

( t2

2

)3
.

The Proof of Picard-Lindelöf’s Theorem.

Example

Use the proof of Picard-Lindelöf’s Theorem to find the solution to

y ′ = t y , y(0) = 1.

Solution: y3(t) = 1 +
( t2

2

)
+

1

2!

( t2

2

)2
+

1

3!

( t2

2

)3
.

By computng few more terms one finds

yn(t) =
n∑

k=0

1

k!

( t2

2

)k
.

Hence the limit n →∞ is given by

y(t) = lim
n→∞

yn(t) =
∞∑

k=0

1

k!

( t2

2

)k
= et2/2,

since ex =
∞∑

k=0

xk

k!
. We conclude, y(t) = et2/2. C



The Proof of Picard-Lindelöf’s Theorem.

Sketch of the proof: Integrate on both sides with respect to t,∫ t

t0

y ′(s) ds =

∫ t

t0

f (s, y(s)) ds ⇒ y(t) = y0 +

∫ t

t0

f (s, y(s)) ds,

Construct a sequence of continuous functions, {yn}∞n=0,

y0(t) = y0, yn+1(t) = y0 +

∫ t

t0

f (s, yn(s)) ds.

This is a Cauchy sequence in a small enough domain
Db = [t0 − b, t0 + b]. Introduce the norm on the space of
continuous functions

‖u‖ = max
t∈Db

|u(t)|.

The Proof of Picard-Lindelöf’s Theorem.

Sketch of the proof: Two consecutive elements in the sequence
satisfy

‖yn+1 − yn‖ = max
t∈Db

∣∣∣∫ t

t0

f (s, yn(s)) ds −
∫ t

t0

f (s, yn−1(s)) ds
∣∣∣

6 max
t∈Db

∫ t

t0

∣∣f (s, yn(s))− f (s, yn−1(s))
∣∣ ds

6 k max
t∈Db

∫ t

t0

|yn(s)− yn−1(s)| ds

6 kb ‖yn − yn−1‖.
So we have,

‖yn+1 − yn‖ 6 r ‖yn − yn−1‖ ⇒ ‖yn+1 − yn‖ 6 rn ‖y1 − y0‖.



The Proof of Picard-Lindelöf’s Theorem.

Sketch of the proof: Recall: ‖yn+1 − yn‖ 6 rn ‖y1 − y0‖.
Using the triangle inequality for norms and and the sum of a
geometric series one compute the following,

‖yn − yn+m‖ = ‖yn − yn+1 + yn+1 − yn+2 + · · ·+ yn+(m−1) − yn+m‖
6 ‖yn − yn+1‖+ ‖yn+1 − yn+2‖+ · · ·+ ‖yn+(m−1) − yn+m‖
6 (rn + rn+1 + · · ·+ rn+m) ‖y1 − y0‖
6 rn(1 + r + r2 + · · ·+ rm) ‖y1 − y0‖

6 rn
(1− rm

1− r

)
‖y1 − y0‖.

Choose b such that b < min{a, 1/k}, hence 0 < r < 1.
Then {yn} is a Cauchy sequence in the Banach space C (Db), with
norm ‖ ‖, hence converges.
Then y = limn→∞ yn exists and satisfy the differential eq.
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Direction Fields.

Remarks:

I One does not need to solve a differential equation
y ′(t) = f (t, y(t)) to have a qualitative idea of the solution.

I Recall that y ′(t) represents the slope of the tangent line to
the graph of function y at the point (t, y(t)).

I A differential equation provides these slopes, f (t, y(t)), for
every point (t, y(t)).

I Key idea: Graph the function f (t, y) on the yt-plane, not as
points, but as slopes of small segments.

Definition
A Direction Field for the differential equation y ′(t) = f (t, y(t)) is
the graph on the yt-pane of the values f (t, y) as slopes of a small
segments.

Direction Fields.

Example

We know that the solution of y ′ = y are the exponentials
y(t) = y0 et . The graph of these solution is simple.
So is the direction field:



Direction Fields.

Example

The solution of y ′ = sin(y) is simple to compute. The equation is
separable. After some calculations the implicit solution are

ln
∣∣∣csc(y0) + cot(y)

csc(y) + cot(y)

∣∣∣ = t.

for y0 ∈ R. The graph of
these solution is not
simple to do.
But the direction field is
simple to plot:

Direction Fields.

Example

The solution of y ′ =
(1 + y3)

(1 + t2)
could be hard to compute. But the

direction field is simple to plot:


