

Review: Linear differential equations.

Theorem (Variable coefficients)

Given continuous functions $a, b : (t_1, t_2) \rightarrow \mathbb{R}$, with $t_2 > t_1$, and given constants $t_0 \in (t_1, t_2)$, $y_0 \in \mathbb{R}$, the IVP

$$y' = -a(t) y + b(t), \qquad y(t_0) = y_0,$$

has the unique solution $y:(t_1,t_2) \to \mathbb{R}$ given by

$$y(t) = \frac{1}{\mu(t)} \Big[y_0 + \int_{t_0}^t \mu(s) \, b(s) \, ds \Big], \tag{1}$$

where the integrating factor function is given by

$$\mu(t)=e^{A(t)},\qquad A(t)=\int_{t_0}^ta(s)\,ds.$$

Proof: Based on the integration factor method.

Non-linear differential equations.

Definition

An ordinary differential equation y'(t) = f(t, y(t)) is called non-linear iff the function f is non-linear in the second argument.

Example

- (a) The differential equation $y'(t) = \frac{t^2}{y^3(t)}$ is non-linear, since the function $f(t, u) = t^2/u^3$ is non-linear in the second argument.
- (b) The differential equation $y'(t) = 2ty(t) + \ln(y(t))$ is non-linear, since the function $f(t, u) = 2tu + \ln(u)$ is non-linear in the second argument, due to the term $\ln(u)$.

(c) The differential equation $\frac{y'(t)}{y(t)} = 2t^2$ is linear, since the function $f(t, u) = 2t^2u$ is linear in the second argument.

On linear and non-linear equations. (Sect. 1.6).

- ► Review: Linear differential equations.
- ► Non-linear differential equations.
- ► The Picard-Lindelöf Theorem.
- Properties of solutions to non-linear ODE.
- ► The Proof of Picard-Lindelöf's Theorem.
- Direction Fields.

The Picard-Lindelöf Theorem.

Theorem (Picard-Lindelöf) Consider the initial value problem

$$y'(t) = f(t, y(t)), \quad y(t_0) = y_0.$$

If $f: S \to \mathbb{R}$ is continuous on the square

 $S = [t_0 - a, t_0 + a] \times [y_0 - a, y_0 + a] \subset \mathbb{R}^2,$

for some a > 0, and satisfies the Lipschitz condition that there exists k > 0 such that

$$|f(t, y_2) - f(t, y_1)| < k |y_2 - y_1|,$$

for all (t, y_2) , $(t, y_1) \in S$, then there exists a positive b < a such that there exists a unique solution $y : [t_0 - b, t_0 + b] \rightarrow \mathbb{R}$ to the *IVP* above.

On linear and non-linear equations. (Sect. 1.6).

- Review: Linear differential equations.
- ► Non-linear differential equations.
- ► The Picard-Lindelöf Theorem.
- Properties of solutions to non-linear ODE.
- The Proof of Picard-Lindelöf's Theorem.
- Direction Fields.

Properties of solutions to non-linear ODE.

Example

Given non-zero constants a_1 , a_2 , a_3 , a_4 , find every solution y of

$$y' = \frac{t^2}{\left(y^4 + a_4 \, y^3 + a_3 \, y^2 + a_2 \, y + a_1\right)}$$

Solution: The ODE is separable. So first, rewrite the equation as

$$(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1) y' = t^2,$$

then we integrate in t on both sides of the equation,

$$\int (y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1) y' dt = \int t^2 dt + c.$$

Introduce the substitution u = y(t), so du = y'(t) dt,

$$\int (u^4 + a_4 u^3 + a_3 u^2 + a_2 u + a_1) du = \int t^2 dt + c.$$

Properties of solutions to non-linear ODE. Example Given non-zero constants a_1 , a_2 , a_3 , a_4 , find every solution y of $y' = \frac{t^2}{(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1)}$. Solution: Recall: $\int (u^4 + a_4 u^3 + a_3 u^2 + a_2 u + a_1) du = \int t^2 dt + c$. Integrate, and in the result substitute back the function y: $\frac{1}{5}y^5(t) + \frac{a_4}{4}y^4(t) + \frac{a_3}{3}y^3(t) + \frac{a_2}{2}y^2(t) + a_1y(t) = \frac{t^3}{3} + c$. The solution is in implicit form. It is the root of a polynomial degree five. There is no formula for the roots of a general polynomial degree five or bigger. There is no explicit expression for solutions y of the ODE. \triangleleft

Properties of solutions to non-linear ODE.

Example

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

Remark: The equation above is non-linear, separable, and the function $f(t, u) = u^{1/3}$ has derivative

$$\partial_u f = \frac{1}{3} \frac{1}{u^{2/3}},$$

so $\partial_u f$ is not continuous at u = 0.

The initial condition above is precisely where f is not continuous.

Solution: There are two solutions to the IVP above: The first solution is

 $y_1(t)=0.$

Properties of solutions to non-linear ODE.

Example

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

Solution: The second solution is obtained as follows:

$$\int \left[y(t)\right]^{-1/3} y'(t) \, dt = \int dt + c.$$

Then, the substitution u = y(t), with du = y'(t) dt, implies that

$$\int u^{-1/3} du = \int dt + c \quad \Rightarrow \quad \frac{3}{2} [y(t)]^{2/3} = t + c,$$
$$y(t) = \left[\frac{2}{3}(t+c)\right]^{3/2} \Rightarrow 0 = y(0) = \left(\frac{2}{3}c\right)^{3/2} \Rightarrow c = 0.$$

So, the second solution is: $y_2(t) = \left(\frac{2}{3}t\right)^{3/2}$. Recall $y_1(t) = 0$.

Properties of solutions to non-linear ODE.

Example

Find the solution y to the initial value problem

$$y'(t) = y^2(t), \qquad y(0) = y_0.$$

Solution: This is a separable equation. So,

$$\int \frac{y'\,dt}{y^2} = \int dt + c \quad \Rightarrow \quad -\frac{1}{y} = t + c \quad \Rightarrow \quad y(t) = -\frac{1}{t+c}.$$

Using the initial condition in the expression above,

$$y_0 = y(0) = -rac{1}{c} \quad \Rightarrow \quad c = -rac{1}{y_0} \quad \Rightarrow \quad y(t) = rac{1}{\left(rac{1}{y_0} - t
ight)}.$$

This solution diverges at $t = 1/y_0$, so its domain is $\mathbb{R} - \{y_0\}$.

The solution domain depends on the values of the initial data y_0 .

Example

Use the proof of Picard-Lindelöf's Theorem to find the solution to

 $y' = t y, \qquad y(0) = 1.$

Solution: First notice that the equation is separable. So it is simple to find the solution following Section 1.3,

$$rac{y'}{y} = t \quad \Rightarrow \quad \ln(y) = rac{t^2}{2} + c \quad \Rightarrow \quad y(t) = ilde{c} \ e^{t^2/2}.$$

The initial condition implies,

$$1 = y(0) = \tilde{c} \quad \Rightarrow \quad y(t) = e^{t^2/2}.$$

In the next slide we use Picard-Lindelöf's idea.

Example

Use the proof of Picard-Lindelöf's Theorem to find the solution to

 $y' = t y, \qquad y(0) = 1.$

Solution: We first transform the differential equation into an integral equation.

$$\int_0^t y'(s) \, ds = \int_0^t s \, y(s) \, ds \quad \Rightarrow \quad y(t) - y(0) = \int_0^t s \, y(s) \, ds.$$

Using the initial condition, y(0) = 1,

$$y(t)=1+\int_0^t s\,y(s)\,ds.$$

This is the integral equation.

The Proof of Picard-Lindelöf's Theorem.

Example

Use the proof of Picard-Lindelöf's Theorem to find the solution to

$$y' = t y, \qquad y(0) = 1.$$

Solution: Integral equation: $y(t) = 1 + \int_0^t s y(s) ds$. We now define the sequence of approximate solutions:

$$y_0 = y(0) = 1, \quad y_{n+1}(t) = 1 + \int_0^t s y_n(s) \, ds, \quad n \ge 0$$

We now compute the first elements in the sequence.

$$n = 0$$
, $y_1(t) = 1 + \int_0^t s y_0(s) ds = 1 + \int_0^t s ds = 1 + \frac{t^2}{2}$.
So $y_0 = 1$, and $y_1 = 1 + \frac{t^2}{2}$.

The Proof of Picard-Lindelöf's Theorem. Example Use the proof of Picard-Lindelöf's Theorem to find the solution to y' = t y, y(0) = 1. Solution: Integral equation: $y(t) = 1 + \int_0^t s y(s) ds$. And $y_0 = 1$, and $y_1 = 1 + \frac{t^2}{2}$. Let's compute y_2 , $y_2 = 1 + \int_0^t s y_1(s) ds = 1 + \int_0^t \left(s + \frac{s^3}{2}\right) ds = 1 + \frac{t^2}{2} + \frac{t^4}{8}$. So we've got $y_2(t) = 1 + \left(\frac{t^2}{2}\right) + \frac{1}{2}\left(\frac{t^2}{2}\right)^2$. Show that: $y_3(t) = 1 + \left(\frac{t^2}{2}\right) + \frac{1}{2!}\left(\frac{t^2}{2}\right)^2 + \frac{1}{3!}\left(\frac{t^2}{2}\right)^3$.

The Proof of Picard-Lindelöf's Theorem.

Example

Use the proof of Picard-Lindelöf's Theorem to find the solution to

$$y' = t y, \qquad y(0) = 1.$$

Solution:
$$y_3(t) = 1 + \left(\frac{t^2}{2}\right) + \frac{1}{2!}\left(\frac{t^2}{2}\right)^2 + \frac{1}{3!}\left(\frac{t^2}{2}\right)^3$$
.

By computing few more terms one finds

$$y_n(t) = \sum_{k=0}^n \frac{1}{k!} \left(\frac{t^2}{2}\right)^k.$$

Hence the limit $n \to \infty$ is given by

$$y(t) = \lim_{n \to \infty} y_n(t) = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{t^2}{2}\right)^k = e^{t^2/2},$$

since $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$. We conclude, $y(t) = e^{t^2/2}$.

Sketch of the proof: Integrate on both sides with respect to *t*,

$$\int_{t_0}^t y'(s) \, ds = \int_{t_0}^t f(s, y(s)) \, ds \; \Rightarrow \; y(t) = y_0 + \int_{t_0}^t f(s, y(s)) \, ds,$$

Construct a sequence of continuous functions, $\{y_n\}_{n=0}^{\infty}$,

$$y_0(t) = y_0, \quad y_{n+1}(t) = y_0 + \int_{t_0}^t f(s, y_n(s)) \, ds.$$

This is a Cauchy sequence in a small enough domain $D_b = [t_0 - b, t_0 + b]$. Introduce the norm on the space of continuous functions

$$||u|| = \max_{t\in D_b} |u(t)|.$$

The Proof of Picard-Lindelöf's Theorem.

Sketch of the proof: Two consecutive elements in the sequence satisfy

$$\begin{split} \|y_{n+1} - y_n\| &= \max_{t \in D_b} \left| \int_{t_0}^t f(s, y_n(s)) \, ds - \int_{t_0}^t f(s, y_{n-1}(s)) \, ds \right| \\ &\leqslant \max_{t \in D_b} \int_{t_0}^t \left| f(s, y_n(s)) - f(s, y_{n-1}(s)) \right| \, ds \\ &\leqslant k \, \max_{t \in D_b} \int_{t_0}^t |y_n(s) - y_{n-1}(s)| \, ds \\ &\leqslant kb \, \|y_n - y_{n-1}\|. \end{split}$$

So we have,

$$||y_{n+1} - y_n|| \leq r ||y_n - y_{n-1}|| \Rightarrow ||y_{n+1} - y_n|| \leq r^n ||y_1 - y_0||.$$

Sketch of the proof: Recall: $||y_{n+1} - y_n|| \leq r^n ||y_1 - y_0||$. Using the triangle inequality for norms and and the sum of a geometric series one compute the following,

$$\begin{aligned} \|y_n - y_{n+m}\| &= \|y_n - y_{n+1} + y_{n+1} - y_{n+2} + \dots + y_{n+(m-1)} - y_{n+m}\| \\ &\leq \|y_n - y_{n+1}\| + \|y_{n+1} - y_{n+2}\| + \dots + \|y_{n+(m-1)} - y_{n+m}\| \\ &\leq (r^n + r^{n+1} + \dots + r^{n+m}) \|y_1 - y_0\| \\ &\leq r^n (1 + r + r^2 + \dots + r^m) \|y_1 - y_0\| \\ &\leq r^n \left(\frac{1 - r^m}{1 - r}\right) \|y_1 - y_0\|. \end{aligned}$$

Choose *b* such that $b < \min\{a, 1/k\}$, hence 0 < r < 1. Then $\{y_n\}$ is a Cauchy sequence in the Banach space $C(D_b)$, with norm || ||, hence converges. Then $y = \lim_{n\to\infty} y_n$ exists and satisfy the differential eq.

On linear and non-linear equations. (Sect. 1.6).

- Review: Linear differential equations.
- Non-linear differential equations.
- ► The Picard-Lindelöf Theorem.
- Properties of solutions to non-linear ODE.
- ► The Proof of Picard-Lindelöf's Theorem.
- Direction Fields.

Direction Fields.

Remarks:

- One does not need to solve a differential equation
 y'(t) = f(t, y(t)) to have a qualitative idea of the solution.
- Recall that y'(t) represents the slope of the tangent line to the graph of function y at the point (t, y(t)).
- A differential equation provides these slopes, f(t, y(t)), for every point (t, y(t)).
- Key idea: Graph the function f(t, y) on the yt-plane, not as points, but as slopes of small segments.

Definition

A Direction Field for the differential equation y'(t) = f(t, y(t)) is the graph on the yt-pane of the values f(t, y) as slopes of a small segments.

Direction Fields.

Example

We know that the solution of y' = y are the exponentials $y(t) = y_0 e^t$. The graph of these solution is simple. So is the direction field:

Direction Fields.

Example

The solution of y' = sin(y) is simple to compute. The equation is separable. After some calculations the implicit solution are

$$\ln \Big| \frac{\csc(y_0) + \cot(y)}{\csc(y) + \cot(y)} \Big| = t.$$

for $y_0 \in \mathbb{R}$. The graph of these solution is not simple to do. But the direction field is simple to plot:

Direction Fields.

Example

The solution of $y' = \frac{(1+y^3)}{(1+t^2)}$ could be hard to compute. But the direction field is simple to plot:

						Ý	= (1+	/3) /	(t ² +	1)	Arrow of slope +1.0							7			
	5 -	Ť	t	t	1	Ť	1	1	î	î	Ť	Ť	1	1	1	1	1	1	1	1	1	
¥	4 - 3 -	ţ.		t.	. 1	1	1	1	î.	î.	1	1	1	2	.7	1		1	1	1		
		1	Ţ	1	1	1	Î	1	1	1	1	1	1	1	1	1	1	1	-	1	1	
		1	<u>+</u>	- (- 7	$-\frac{1}{2}$	1	- <u> </u>				li i i i i i i i i i i i i i i i i i i		9	6				6		-		
	2 -	1	ŕ	1	1	1	1	1	1	-	-	-	-	-	ĥ				>			
		1	1	1	1	1	~	~						>	>	>		>	>	>		
	1 -	1		1	~		~~	>	->	->		>	>	>	>	>	-	-	-	-		
		1	^*	~	-	->	>	>	>	>	-	-	-•	-	-•	-	-•	-	-	-	→	
	0 -	4					<u> </u>		-	-				-				-	-			
	-1-		_	-			_	_	_	_	_	_		_	_	_		_	_	_		
		1	1	~										-								
	-2 -	X.	\mathbf{N}	1	~	~	~	~	~>	~	~											
		1	ţ.	¥	N	N	\mathbf{A}	\mathbf{a}	\sim	~	~	\rightarrow	~	~	~	~						
	-3-	4	<u> </u>	4	. Ъ.	¥.	Α.	N	$\sum_{i=1}^{n}$	×.	2	~	\geq	\geq	\sim	~	<u>~</u>	~~	\rightarrow	~		
		4	+	4	1	ų.	7	¥.	$\sum_{i=1}^{n}$	X	7		>	7	~	~	~	~	~	~	~	
	-4-		·-+	÷.	$-\frac{4}{1}$	÷		- ¥-	$-\frac{b}{b}$	<u>.</u>	<u>.</u>	<u>.</u>	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	÷	2	~	2	2	3	$\overline{}$	
		L.	Ť	Ē.	4	4	1	\$	i	i	ž	Ň	Ň	Ň	Ň	Š.	Ň	Ĵ,	1	1	1	
	-5-			1	Z	2	3	-	2	+	-	5	e	5	7	7	5	3	2	-	10	,
о.	798	12,	4.9	975	1						t											