
Review Exam 4, Chapters 7 and 10.

I Sections 7.1-7.6, 7.8, 10.1-10.5.

I 5 or 6 problems.
I 50 minutes.

I Eigenvalue-Eigenfunction, boundary value probl. (10.1).
I Fourier series expansions (10.2).
I The Fourier Convergence Theorem (10.3).
I Even and Odd functions and extension of functions (10.4).
I The heat equation and on separation of variables (10.5).
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Eigenvalue-Eigenfunction, boundary value problems
Example

Find the positive eigenvalues and their eigenfunctions of

y ′′ + λ y = 0, y(0) = 0, y(8) = 0.

Solution: Since λ > 0, introduce λ = µ2, with µ > 0.

y(x) = erx implies that r is solution of

p(r) = r2 + µ2 = 0 ⇒ r± = ±µi .

The general solution is y(x) = c1 cos(µx) + c2 sin(µx).

The boundary conditions imply:

0 = y(0) = c1 ⇒ y(x) = c2 sin(µx).

0 = y(8) = c2 sin(µ8), c2 6= 0 ⇒ sin(µ8) = 0.

µ =
nπ

8
, λ =

(nπ

8

)2
, yn(x) = sin

(nπx

8

)
, n = 1, 2, · · · C
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Review Exam 4, Chapters 7 and 10.

I Sections 7.1-7.6, 7.8, 10.1-10.5.

I 5 or 6 problems.
I 50 minutes.

I Eigenvalue-Eigenfunction, boundary value probl. (10.1).
I Fourier series expansions (10.2).
I The Fourier Convergence Theorem (10.3).
I Even, Odd functions and extensions (10.4).
I The heat equation and on separation of variables (10.5).
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L
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(nπx

L
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Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, an = 0.

bn =
1

L

∫ L

−L
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(nπx

L

)
dx =

2

L

∫ L

0
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∫ 1
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(−1) sin(nπx) dx = (−2)

(−1)

nπ
cos(nπx)

∣∣∣1
0
,

bn =
2

nπ

[
cos(nπ)− 1

]
⇒ bn =
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nπ

[
(−1)n − 1

]
.
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]
.

If n = 2k, then b2k =
2
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[
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]
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If n = 2k − 1,

b(2k−1) =
2

(2k − 1)π

[
(−1)2k−1 − 1

]
= − 4

(2k − 1)π
.
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π

∞∑
k=1
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(2k − 1)
sin[(2k − 1)πx ]. C
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
and then find the Fourier Series of this extension.
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
and then find the Fourier Series of this extension.
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
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Even-periodic, odd-periodic extension of functions.

Example
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Even-periodic, odd-periodic extension of functions.

Example
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Solution: The Fourier series is

f (x) =
a0

2
+

∞∑
n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]
.

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, an = 0.

bn =
1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx =

2

L

∫ L

0
f (x) sin

(nπx

L

)
dx , L = 2,

bn =

∫ 2

0
(2− x) sin

(nπx

2

)
dx .a



Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
and then find the Fourier Series of this extension.
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Even-periodic, odd-periodic extension of functions.

Example
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−
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
and then find the Fourier Series of this extension.
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
and then find the Fourier Series of this extension.
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
and then find the Fourier Series of this extension.
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
and then find the Fourier Series of this extension.

Solution: bn = 2
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
and then find the Fourier Series of this extension.

Solution: bn = 2
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
and then find the Fourier Series of this extension.
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
and then find the Fourier Series of this extension.
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
and then find the Fourier Series of this extension.
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
and then find the Fourier Series of this extension.
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
and then find the Fourier Series of this extension.

Solution: I =
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Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f (x) = 2− x for x ∈ (0, 2),
and then find the Fourier Series of this extension.

Solution: I =
−2x

nπ
cos
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Even-periodic, odd-periodic extension of functions.

Example

Graph the even-periodic extension of f (x) = 2− x for x ∈ [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

f (x) =
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an cos
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+ bn sin
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Since f is even and periodic, then the Fourier Series is a Cosine
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Even-periodic, odd-periodic extension of functions.

Example

Graph the even-periodic extension of f (x) = 2− x for x ∈ [0, 2],
and then find the Fourier Series of this extension.
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Even-periodic, odd-periodic extension of functions.

Example

Graph the even-periodic extension of f (x) = 2− x for x ∈ [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is
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Even-periodic, odd-periodic extension of functions.

Example

Graph the even-periodic extension of f (x) = 2− x for x ∈ [0, 2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is
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Even-periodic, odd-periodic extension of functions.

Example

Graph the even-periodic extension of f (x) = 2− x for x ∈ [0, 2],
and then find the Fourier Series of this extension.
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Review Exam 4, Chapters 7 and 10.

I Sections 7.1-7.6, 7.8, 10.1-10.5.

I 5 or 6 problems.
I 50 minutes.

I Eigenvalue-Eigenfunction, boundary value probl. (10.1).
I Fourier series expansions (10.2).
I The Fourier Convergence Theorem (10.3).
I Even and Odd functions and extension of functions (10.4).
I The heat equation and on separation of variables (10.5).



Example: Solving a Heat Equation.

Example

Find the solution to the IBVP 4∂tu = ∂2
xu, t > 0, x ∈ [0, 2],

u(0, x) = 3 sin(πx/2), u(t, 0) = 0, u(t, 2) = 0.

Solution: Let un(t, x) = vn(t) wn(x). Then

4wn(x)
dvn

dt
(t) = vn(t)

d2wn

dx2
(x) ⇒ 4v ′n(t)

vn(t)
=

w ′′
n (x)

wn(x)
= −λn.

The equations for vn and wn are

v ′n(t) +
λn

4
vn(t) = 0, w ′′

n (x) + λn wn(x) = 0.

We solve for vn with the initial condition vn(0) = 1.

e
λn
4

t v ′n(t) +
λn

4
e

λn
4

t vn(t) = 0 ⇒
[
e

λn
4

t vn(t)
]′

= 0.
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4

t .

Next the BVP: w ′′
n (x) + λn wn(x) = 0, with wn(0) = wn(2) = 0.

Since λn > 0, introduce λn = µ2
n. The characteristic polynomial is

p(r) = r2 + µ2
n = 0 ⇒ rn± = ±µni .

The general solution, wn(x) = c1 cos(µnx) + c2 sin(µnx).

The boundary conditions imply

0 = wn(0) = c1, ⇒ wn(x) = c2 sin(µnx).
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Review Exam 4, Chapters 7 and 10.

I Sections 7.1-7.6, 7.8, 10.1-10.5.

I 5 or 6 problems.
I 50 minutes.

I Eigenvalue-Eigenfunction, boundary value probl. (10.1).
I Fourier series expansions (10.2).
I The Fourier Convergence Theorem (10.3).
I Even and Odd functions and extension of functions (10.4).
I The heat equation and on separation of variables (10.5).



Not every PDE can be solved with SVM.

Example

Determine whether the Separation of Variables Method can be
used to solve (

t +
x

c

)
∂2

t u(t, x) + k2 ∂2
xu(t, x) = 0.

Solution: If u(t, x) = v(t) w(x), then

∂2
t u(t, x) = w(x) ∂2

t v(t), ∂2
xu(t, x) = v(t) ∂2

xw(x).

Therefore,
(
t +

x

c

)
w(x) ∂2

t v(t) = −k2 v(t) ∂2
xw(x),(

t +
x

c

) ∂2
t v(t)

v(t)
= −k2 ∂

2
xw(x)

w(x)
.

Function of t and x = Function only of x

We conclude: The SVM can not be used in this equation. C
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Review Exam 4, Chapters 7 and 10.

I Sections 7.1-7.6, 7.8, 10.1-10.5.

I 5 or 6 problems.
I 50 minutes.

I Eigenvalue-Eigenfunction, boundary value probl. (10.1).
I Fourier series expansions (10.2).
I The Fourier Convergence Theorem (10.3).
I Even and Odd functions and extension of functions (10.4).
I The heat equation and on separation of variables (10.5).



Example: Solving a Wave Equation.

Example

Find the solution to the IBVP ∂2
t u = c2 ∂2

xu, t > 0, x ∈ [0, 3π],

u(0, x) = sin(x), ∂tu(0, x) = 0, u(t, 0) = 0, u(t, 3π) = 0.

Remarks:

I The Wave Equation describes waves on a string, waves in the
ocean, sound in air, etc.

I There are two initial conditions:

(1) Initial position of the string.
(2) Initial velocity of the string.

I There are two boundary conditions:

(1) The string is fixed at both the end points.
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Solution: Let un(t, x) = vn(t) wn(x). Then

wn(x)
d2vn

dt2
(t) = c2 vn(t)

d2wn

dx2
(x) ⇒ v ′′n (t)

c2 vn(t)
=

w ′′
n (x)

wn(x)
= −λn.

The equations for vn and wn are

v ′′n (t) + λnc
2 vn(t) = 0, w ′′

n (x) + λn wn(x) = 0.

We first find the solution wn to the BVP:

w ′′
n (x) + λn wn(x) = 0, wn(0) = 0, wn(3π) = 0.
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Review for Final Exam. Chapters 7, 6, 5.

I Systems of linear Equations (Chptr. 7).

I Laplace transforms (Chptr. 6).

I Power series solutions (Chptr. 5).

I Second order linear equations (Chptr. 3).

I First order differential equations (Chptr. 2).



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of x′ = A x, with A a 2× 2 matrix.

First find the eigenvalues λi and the eigenvectors v(i) of A.

(a) If λ1 6= λ2, real, then {v(1), v(2)} are linearly independent, and
the general solution is x(x) = c1 v(1) eλ1t + c2 v(2) eλ2t .

(b) If λ1 6= λ2, complex, then denoting λ± = α± βi and
v(±) = a± bi , the complex-valued fundamental solutions

x(±) = (a± bi) e(α±βi)t

x(±) = eαt (a± bi)
[
cos(βt) + i sin(βt)

]
.

x(±) = eαt
[
a cos(βt)−b sin(βt)

]
± ieαt

[
a sin(βt)+b cos(βt)

]
.

Real-valued fundamental solutions are

x(1) = eαt
[
a cos(βt)− b sin(βt)

]
,

x(2) = eαt
[
a sin(βt) + b cos(βt)

]
.
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(c) If λ1 = λ2 = λ, real, and their eigenvectors {v(1), v(2)} are
linearly independent, then the general solution is

x(x) = c1 v(1) eλt + c2 v(2) eλt .

(d) If λ1 = λ2 = λ, real, and there is only one eigendirection v,
then find w solution of (A− λI )w = v. Then fundamental
solutions to the differential equation are given by

x(1) = v eλt , x(2) = (v t + w) eλt .

Then, the general solution is

x = c1 v eλt + c2 (v t + w) eλt .
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Example

Find the solution to: x′ = A x, x(0) =

[
3
2

]
, A =

[
1 4
2 −1

]
.

Solution:

p(λ) =

∣∣∣∣(1− λ) 4
2 (−1− λ)

∣∣∣∣ = (λ− 1)(λ+ 1)− 8 = λ2 − 1− 8,

p(λ) = λ2 − 9 = 0 ⇒ λ± = ±3.

Case λ+ = 3,

A− 3I =

[
−2 4
2 −4

]
→

[
1 −2
0 0

]
⇒ v1 = 2v2 ⇒ v(+) =

[
2
1

]
Case λ− = −3,

A + 3I =

[
4 4
2 2

]
→

[
1 1
0 0

]
⇒ v1 = −v2 ⇒ v(−) =

[
−1
1

]
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Review for Final Exam. Chapters 7, 6, 5.

I Systems of linear Equations (Chptr. 7).

I Laplace transforms (Chptr. 6).

I Power series solutions (Chptr. 5).

I Second order linear equations (Chptr. 3).

I First order differential equations (Chptr. 2).



Laplace transforms (Chptr. 6).

Summary:

I Main Properties:

L
[
f (n)(t)

]
= sn L[f (t)]− s(n−1) f (0)− · · · − f (n−1)(0); (18)

e−cs L[f (t)] = L[uc(t) f (t − c)]; (13)

L[f (t)]
∣∣∣
(s−c)

= L[ect f (t)]. (14)

I Convolutions:

L[(f ∗ g)(t)] = L[f (t)]L[g(t)].

I Partial fraction decompositions, completing the squares.
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Laplace transforms (Chptr. 6). FE June 13, 2008.

Example

Use L.T. to find the solution to the IVP

y ′′ + 9y = u5(t), y(0) = 3, y ′(0) = 2.

Solution: Compute L[y ′′] + 9L[y ] = L[u5(t)] =
e−5s

s
, and recall,

L[y ′′] = s2 L[y ]− s y(0)− y ′(0) ⇒ L[y ′′] = s2 L[y ]− 3s − 2.

(s2 + 9)L[y ]− 3s − 2 =
e−5s

s

L[y ] =
(3s + 2)

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.

L[y ] = 3
s

(s2 + 9)
+

2

3

3

(s2 + 9)
+ e−5s 1

s(s2 + 9)
.
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,

1 = as2 + 9a + bs2 + cs = (a + b) s2 + cs + 9a

a =
1

9
, c = 0, b = −a ⇒ b = −1

9
.
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9
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⇒ b = −1
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Review for Final Exam. Chapters 7, 6, 5.

I Systems of linear Equations (Chptr. 7).

I Laplace transforms (Chptr. 6).

I Power series solutions (Chptr. 5).

I Second order linear equations (Chptr. 3).

I First order differential equations (Chptr. 2).



Power series solutions (Chptr. 5).

Summary: Solve: a(x) y ′′ + b(x) y ′ + c(x) y = 0 near x0.

(a) If x0 is a regular point, then y(x) =
∞∑

n=0

an (x − x0)
n.

Find a recurrence relation for an.

(b) If x0 is a regular-singular point, y(x) =
∞∑

n=0

an (x − x0)
(n+r).

Find a recurrence relation for an and indicial equation for r .

(c) Euler equation: (x − x0)
2 y ′′ + α (x − x0) y ′ + β y = 0.

Solutions: If y(x) = |x − x0|r , then r is solution of the indicial
equation p(r) = r(r − 1) + αr + β = 0.
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Power series solutions (Chptr. 5).

Summary: Solving the Euler equation

(x − x0)
2 y ′′ + α (x − x0) y ′ + β y = 0.

(i) If r1 6= r2, reals, then the general solution is

y(x) = c1 |x − x0|r1 + c2 |x − x0|r2 .

(ii) If r1 6= r2, complex, denote them as r± = λ± µi . Then, the
real-valued general solution is

y(x) = c1 |x − x0|λ cos
(
µ ln |x − x0|

)
+ c2 |x − x0|λ sin

(
µ ln |x − x0|

)
.

(iii) If r1 = r2 = r , real, then the general solution is

y(x) =
(
c1 + c2 ln |x − x0|

)
|x − x0|r .
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Power series solutions (Chptr. 5). FE June 13, 2008.

Example

Find the recurrence relation for the coefficients of the power series
solution centered at x0 = 0 of the equation y ′′ − 3y ′ + xy = 0.

Solution: x0 = 0 is a regular point of the differential equation.

Therefore, y(x) =
∞∑

n=0

an xn ⇒ xy =
∞∑

n=0

an x (n+1).

y ′(x) =
∞∑

n=0

nan x (n−1) ⇒ −3y =
∞∑

n=0

(−3n)an x (n−1).

y ′′(x) =
∞∑

n=0

n(n − 1)an x (n−2).

∞∑
n=0

n(n − 1)an x (n−2) +
∞∑

n=0

(−3n)an x (n−1) +
∞∑

n=0

an x (n+1) = 0.
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Second order linear equations (Chptr. 3).

Summary: Solve y ′′ + a1 y ′ + a0 y = g(t).

First find fundamental solutions y(t) = ert to the case g = 0,
where r is a root of p(r) = r2 + a1r + a0.

(a) If r1 6= r2, real, then the general solution is

y(t) = c1 er1t + c2 er2t .

(b) If r1 6= r2, complex, then denoting r± = α± βi ,
complex-valued fundamental solutions are

y±(t) = e(α±βi)t ⇔ y±(t) = eαt
[
cos(βt)± i sin(βt)

]
,

and real-valued fundamental solutions are

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).

If r1 = r2 = r , real, then the general solution is

y(t) = (c1 + c2t) ert .
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Second order linear equations (Chptr. 3).

Remark: Case (c) is solved using the reduction of order method.

See page 170 in the textbook. Do the extra homework problems
Sect. 3.4: 23, 25, 27.

Summary:
Non-homogeneous equations: g 6= 0.

(i) Undetermined coefficients: Guess the particular solution yp

using the guessing table, g → yp.

(ii) Variation of parameters: If y1 and y2 are fundamental
solutions to the homogeneous equation, and W is their
Wronskian, then yp = u1y1 + u2y2, where

u′1 = −y2g

W
, u′2 =

y1g

W
.
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Second order linear equations (Chptr. 3).

Example

Knowing that y1(x) = x2 solves x2 y ′′ − 4x y ′ + 6y = 0, with
x > 0, find a second solution y2 not proportional to y1.

Solution: Use the reduction of order method. We verify that
y1 = x2 solves the equation,

x2 (2)− 4x (2x) + 6x2 = 0.

Look for a solution y2(x) = v(x) y1(x), and find an equation for v .

y2 = x2v , y ′2 = x2v ′ + 2xv , y ′′2 = x2v ′′ + 4xv ′ + 2v .

x2(x2v ′′ + 4xv ′ + 2v)− 4x (x2v ′ + 2xv) + 6 (x2v) = 0.

x4v ′′ + (4x3 − 4x3) v ′ + (2x2 − 8x2 + 6x2) v = 0.

v ′′ = 0 ⇒ v = c1 + c2x ⇒ y2 = c1y1 + c2x y1.

Choose c1 = 0, c2 = 1. Hence y2(x) = x3, and y1(x) = x2. C
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Second order linear equations (Chptr. 3).

Example

Find the solution y to the initial value problem

y ′′ − 2y ′ − 3y = 3 e−t , y(0) = 1, y ′(0) =
1

4
.

Solution: (1) Solve the homogeneous equation.

y(t) = ert , p(r) = r2 − 2r − 3 = 0.

r± =
1

2

[
2±

√
4 + 12

]
=

1

2

[
2±

√
16

]
= 1± 2 ⇒

{
r+ = 3,

r− = −1.

Fundamental solutions: y1(t) = e3t and y2(t) = e−t .

(2) Guess yp. Since g(t) = 3 e−t ⇒ yp(t) = k e−t .

But this yp = k e−t is solution of the homogeneous equation.

Then propose yp(t) = kt e−t .
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Review for Final Exam. Chapters 3, 2.

I Systems of linear Equations (Chptr. 7).

I Laplace transforms (Chptr. 6).

I Power series solutions (Chptr. 5).

I Second order linear equations (Chptr. 3).

I First order differential equations (Chptr. 2).



First order differential equations (Chptr. 2).

Summary:

I Linear, first order equations: y ′ + p(t) y = q(t).

Use the integrating factor method: µ(t) = e
R

p(t) dt .

I Separable, non-linear equations: h(y) y ′ = g(t).

Integrate with the substitution: u = y(t), du = y ′(t) dt,
that is, ∫

h(u) du =

∫
g(t) dt + c .

The solution can be found in implicit of explicit form.

I Homogeneous equations can be converted into separable
equations.

Read page 49 in the textbook.

I No modeling problems from Sect. 2.3.
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First order differential equations (Chptr. 2).

Summary:

I Linear, first order equations: y ′ + p(t) y = q(t).

Use the integrating factor method: µ(t) = e
R

p(t) dt .

I Separable, non-linear equations: h(y) y ′ = g(t).

Integrate with the substitution: u = y(t), du = y ′(t) dt,
that is, ∫

h(u) du =

∫
g(t) dt + c .

The solution can be found in implicit of explicit form.

I Homogeneous equations can be converted into separable
equations.

Read page 49 in the textbook.

I No modeling problems from Sect. 2.3.



First order differential equations (Chptr. 2).

Summary:

I Linear, first order equations: y ′ + p(t) y = q(t).

Use the integrating factor method: µ(t) = e
R

p(t) dt .

I Separable, non-linear equations: h(y) y ′ = g(t).

Integrate with the substitution: u = y(t), du = y ′(t) dt,

that is, ∫
h(u) du =

∫
g(t) dt + c .

The solution can be found in implicit of explicit form.

I Homogeneous equations can be converted into separable
equations.

Read page 49 in the textbook.

I No modeling problems from Sect. 2.3.



First order differential equations (Chptr. 2).

Summary:

I Linear, first order equations: y ′ + p(t) y = q(t).

Use the integrating factor method: µ(t) = e
R

p(t) dt .

I Separable, non-linear equations: h(y) y ′ = g(t).

Integrate with the substitution: u = y(t), du = y ′(t) dt,
that is, ∫

h(u) du =

∫
g(t) dt + c .

The solution can be found in implicit of explicit form.

I Homogeneous equations can be converted into separable
equations.

Read page 49 in the textbook.

I No modeling problems from Sect. 2.3.



First order differential equations (Chptr. 2).

Summary:

I Linear, first order equations: y ′ + p(t) y = q(t).

Use the integrating factor method: µ(t) = e
R

p(t) dt .

I Separable, non-linear equations: h(y) y ′ = g(t).

Integrate with the substitution: u = y(t), du = y ′(t) dt,
that is, ∫

h(u) du =

∫
g(t) dt + c .

The solution can be found in implicit of explicit form.

I Homogeneous equations can be converted into separable
equations.

Read page 49 in the textbook.

I No modeling problems from Sect. 2.3.



First order differential equations (Chptr. 2).

Summary:

I Linear, first order equations: y ′ + p(t) y = q(t).

Use the integrating factor method: µ(t) = e
R

p(t) dt .

I Separable, non-linear equations: h(y) y ′ = g(t).

Integrate with the substitution: u = y(t), du = y ′(t) dt,
that is, ∫

h(u) du =

∫
g(t) dt + c .

The solution can be found in implicit of explicit form.

I Homogeneous equations can be converted into separable
equations.

Read page 49 in the textbook.

I No modeling problems from Sect. 2.3.



First order differential equations (Chptr. 2).

Summary:

I Linear, first order equations: y ′ + p(t) y = q(t).

Use the integrating factor method: µ(t) = e
R

p(t) dt .

I Separable, non-linear equations: h(y) y ′ = g(t).

Integrate with the substitution: u = y(t), du = y ′(t) dt,
that is, ∫

h(u) du =

∫
g(t) dt + c .

The solution can be found in implicit of explicit form.

I Homogeneous equations can be converted into separable
equations.

Read page 49 in the textbook.

I No modeling problems from Sect. 2.3.



First order differential equations (Chptr. 2).

Summary:

I Linear, first order equations: y ′ + p(t) y = q(t).

Use the integrating factor method: µ(t) = e
R

p(t) dt .

I Separable, non-linear equations: h(y) y ′ = g(t).

Integrate with the substitution: u = y(t), du = y ′(t) dt,
that is, ∫

h(u) du =

∫
g(t) dt + c .

The solution can be found in implicit of explicit form.

I Homogeneous equations can be converted into separable
equations.

Read page 49 in the textbook.

I No modeling problems from Sect. 2.3.



First order differential equations (Chptr. 2).

Summary:
I Bernoulli equations: y ′ + p(t) y = q(t) yn, with n ∈ R.

Read page 77 in the textbook, page 11 in the Lecture Notes.

A Bernoulli equation for y can be converted into a linear

equation for v =
1

yn−1
.

I Exact equations and integrating factors.

N(x , y) y ′ + M(x , y) = 0.

The equation is exact iff ∂xN = ∂yM.

If the equation is exact, then there is a potential function ψ,
such that N = ∂yψ and M = ∂xψ.

The solution of the differential equation is

ψ
(
x , y(x)

)
= c .
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First order differential equations (Chptr. 2).

Advice: In order to find out what type of equation is the one you
have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: y ′ + a(t) y = b(t).)

2. Bernoulli equations.
(Just by looking at it: y ′ + a(t) y = b(t) yn.)

3. Separable equations.
(Few manipulations: h(y) y ′ = g(t).)

4. Homogeneous equations.
(Several manipulations: y ′ = F (y/t).)

5. Exact equations.
(Check one equation: N y ′ + M = 0, and ∂tN = ∂yM.)

6. Exact equation with integrating factor.
(Very complicated to check.)
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First order differential equations (Chptr. 2).

Example

Find all solutions of y ′ =
x2 + xy + y2

xy
.

Solution: The sum of the powers in x and y on every term is the
same number, two in this example. The equation is homogeneous.

y ′ =
x2 + xy + y2

xy

(1/x2)

(1/x2)
⇒ y ′ =

1 + ( y
x ) + ( y

x )2

( y
x )

.

v(x) =
y

x
⇒ y ′ =

1 + v + v2

v
.

y = x v , y ′ = x v ′ + v x v ′ + v =
1 + v + v2

v
.

x v ′ =
1 + v + v2

v
− v =

1 + v + v2 − v2

v
⇒ x v ′ =

1 + v

v
.
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First order differential equations (Chptr. 2).

Example

Find the solution y to the initial value problem

y ′ + y + e2x y3 = 0, y(0) =
1

3
.

Solution: This is a Bernoulli equation, y ′ + y = −e2x yn, n = 3.

Divide by y3. That is,
y ′

y3
+

1

y2
= −e2x .

Let v =
1

y2
. Since v ′ = −2

y ′

y3
, we obtain −1

2
v ′ + v = −e2x .

We obtain the linear equation v ′ − 2v = 2e2x .

Use the integrating factor method. µ(x) = e−2x .

e−2x v ′ − 2 e−2x v = 2 ⇒
(
e−2x v

)′
= 2.
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Example

Find all solutions of 2xy2 + 2y + 2x2y y ′ + 2x y ′ = 0.

Solution: Re-write the equation is a more organized way,

[2x2y + 2x ] y ′ + [2xy2 + 2y ] = 0.

N = [2x2y + 2x ] ⇒ ∂xN = 4xy + 2.

M = [2xy2 + 2y ] ⇒ ∂yM = 4xy + 2.

}
⇒ ∂xN = ∂yM.

The equation is exact. There exists a potential function ψ with

∂yψ = N, ∂xψ = M.

∂yψ = 2x2y + 2x ⇒ ψ(x , y) = x2y2 + 2xy + g(x).

2xy2 + 2y + g ′(x) = ∂xψ = M = 2xy2 + 2y ⇒ g ′(x) = 0.

ψ(x , y) = x2y2 + 2xy + c , x2 y2(x) + 2x y(x) + c = 0. C
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