Review Exam 4, Chapters 7 and 10.

» Sections 7.1-7.6, 7.8, 10.1-10.5.
» 5 or 6 problems.

» 50 minutes.
» Eigenvalue-Eigenfunction, boundary value probl. (10.1).
» Fourier series expansions (10.2).
» The Fourier Convergence Theorem (10.3).
» Even and Odd functions and extension of functions (10.4).
» The heat equation and on separation of variables (10.5).
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Solution: y(x) = e™ implies that r is solution of
y

p(r)=r*+u>=0 = ry=-=+i

The general solution is y(x) = ¢1 cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)=c = y(x)=c cos(x) +sin(x).

sin(m/3)

0=y(n/3) = ¢ cos(w/3) +sin(w/3) = = ~cos(n/3)"
_V3/2

1/2

1 =



Eigenvalue-Eigenfunction, boundary value problems
Example
Find the solution of the BVP
Y'+y=0, y(0)=1, y(r/3)=0.

Solution: y(x) = e™ implies that r is solution of
y

p(r)=r*+u>=0 = ry=-=+i

The general solution is y(x) = ¢; cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)=c = y(x)=c cos(x) +sin(x).
_ . _ sin(w/3)
0= y(w/i)f; c1 cos(m/3) +sin(n/3) = a = ~cos(n/3)"
3/2
B - 3

1 =



Eigenvalue-Eigenfunction, boundary value problems
Example
Find the solution of the BVP
y'+y=0, y(0)=1, y(r/3)=0.
Solution: y(x) = e™ implies that r is solution of
p(r)=r*+u>=0 = ry=-=+i
The general solution is y(x) = ¢; cos(x) + ¢ sin(x).
Then, y'(x) = —c1 sin(x) 4+ 2 cos(x). The B.C. imply:
1=y'(0)=c = y(x)=c cos(x) +sin(x).

B B _ _ sin(m/3)
0=y(n/3) = ¢ cos(w/3) +sin(w/3) = = ~cos(n/3)"
= —@ = —V3 = y(x) = —V/3 cos(x) + sin(x).

1/2

<



Review Exam 4, Chapters 7 and 10.

» Sections 7.1-7.6, 7.8, 10.1-10.5.
» 5 or 6 problems.

» 50 minutes.
» Eigenvalue-Eigenfunction, boundary value probl. (10.1).
» Fourier series expansions (10.2).
» The Fourier Convergence Theorem (10.3).
» Even, Odd functions and extensions (10.4).
» The heat equation and on separation of variables (10.5).



Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x)= +Z[ancos< )—l—b sm(mLTX)].



Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x)= +Z[ancos< )—l—b sm(mLTX)].

Since f is odd and periodic,



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x) = % + i[an cos(nLLX> + b, sin(?)].
n=1

Since f is odd and periodic, then the Fourier Series is a Sine
Series,



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x) = % + i[an cos(nLLX> + b, sin(?)].
n=1

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x) = % + i[an cos(nLLX> + b, sin(?)].
n=1

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

1 [t . ([ NTX
bn = L/_L f(X) SIh(T) dx



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x) = % + i[an cos(nLLX> + b, sin(?)].
n=1

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

by = i/L F(x) sin(?) dx = i/OL F(x) sin(?) dx.

—L



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x) = % + i[an cos(nLLX> + b, sin(?)].
n=1

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

by = i/f F(x) sin(?) dx = i/OL F(x) sin(?) dx.

L

1
b, = 2/0 (—1) sin(nmx) dx



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x) = % + i[an cos(nLLX> + b, sin(?)].
n=1

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

by = i/f F(x) sin(?) dx = i/OL F(x) sin(?) dx.

L
(=1

1

cos(nmx)|

1
b, = 2/0 (—1) sin(nmx) dx = (—2)



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x) = % + i[an cos(nLLX> + b, sin(?)].
n=1

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

by = i/f F(x) sin(?) dx = i/OL F(x) sin(?) dx.

L
(=1

1

cos(nmx)|

1
b, = 2/0 (—1) sin(nmx) dx = (—2)

b, = % [cos(nm) — 1]



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x) = % + i[an cos(nLLX> + b, sin(?)].
n=1

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.

L nmx L . [ NTX
by = i/_L f(x)sin<T> dx = i/o f(x)sm(T) dx.
=1

nm

1

cos(nmx)|

1
b, = 2/0 (—1) sin(nmx) dx = (—2)

b, = % [cos(nm) —1] = b, = — [(-1)" —1].



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
Solution: Recall: b, = — [(~1)" — 1].

nm



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
Solution: Recall: b, = — [(~1)" — 1].

nm

If n =2k,



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
Solution: Recall: b, = — [(~1)" — 1].

nm

— _ 2 2k
If n =2k, then by = Sk [(-1) 1]



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
Solution: Recall: b, = — [(~1)" — 1].

nm

_ _ 2 2k _ 1] —
If n = 2k, then by, = 5 — [(-1)**—1] =o0.



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
ion: Recall: b, = — [(—1)" —1].
Solution: Reca - [(-1) ]

_ _ 2 2k _ 1] —
If n = 2k, then by, = 5 — [(-1)**—1] =o0.

If n=2k—1,



Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
Solution: Recall: b, = — [(~1)" — 1].

nm

_ _ 2 2k _ 1] —
If n = 2k, then by, = 5 — [(-1)**—1] =o0.

Ifn—2k—1,
_ 2k—1
T R Py [(=1)* " —1]



Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
Solution: Recall: b, = — [(~1)" — 1].

nm

_ _ 2 2k _ 1] —
If n = 2k, then by, = 5 — [(-1)**—1] =o0.

If n=2k—1,
4

biok—1) = 2k—1)r [(—1)? 1t —1] = k=D



Even-periodic, odd-periodic extension of functions.
Example

Graph the odd-periodic extension of f(x) =1 for x € (—1,0), and
then find the Fourier Series of this extension.

2
Solution: Recall: b, = — [(~1)" — 1].

nm
If n = 2k, then by = ~— [(-1)**-1] =0.
' 2km
If n=2k—1, A
S S ) R [ A—
bak-1) 2k — D) (1) ] 2k — D)r
: _ 8 3 i k—1
We conclude: f(x) = - Z k-1 sin[(2k — 1)mx]. <



Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x) = % + i[an cos(nLLX> + b, sin(mrTX)].
n=1



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 >+bn5|n( T )]

Since f is odd and periodic,



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 >+bn5|n( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series,



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 >+bn5|n( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 >+bn5|n( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 >+bn5|n( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 >+bn5|n( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: The Fourier series is
_o v X in (T
f(x) = 5 —i—;[ancos( 1 >+bn5|n( T )]

Since f is odd and periodic, then the Fourier Series is a Sine
Series, that is, a, = 0.



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2 2
Solution: b, = 2/ sin(ﬂ) dx—/ X Sin(ﬂ) dx.
0 2 0 2



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2 2
Solution: b, = 2/ sin<@) dx—/
0 2 0

X sin (?) dx.



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2

2
Solution: b, = 2/ sin(ﬂ) dx—/ X Sin(@) dx.
0 2 0 2
/ in( ") di = 2 cos("2X)
sin{ — = cos| —— ),

The other integral is done by parts,



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2

2
Solution: b, = 2/ sin(@) dx—/ N Sin(@) .
0 2 0 2
/ in( ") di = 2 cos("2X)
Sl 5 X = i Cos 5 R

The other integral is done by parts,

| = /xsin(ngx) dx,



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2 2

Solution: b, = 2/ sin(@) dx—/
0 2 0

. <n7rx> dx — —2 (mrx>

sin( —~ ) dx = — cos(—~ ),

The other integral is done by parts,

| = /xsin(ngx) dx,

X sin (?) dx.

n7rx>

/ .
u=x, Vv :sm<—
2



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2

. 2 /nmx . /NhTXx
Solution: b, = 2/0 sm(T) dx—/0 X sm(T) dx.
/ _n<n7TX)d 2 (mrx>
Si - Ix = P cos )

The other integral is done by parts,
nmx

u=x, Vv :sin<—)
| — . (mrX) d 2
—/xsm — ) 5 -

=1 v=-— cos<B>
nm 2



Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

2 2
Solution: b, = 2/ sin(@) dx—/ N sin(ﬂ) .

0 2 0 2

SInl = —— cos(—= ),

The other integral is done by parts,

, ./ NTX
u=x, VvV =sin -

| = /xsin(”gx) dx, g L 2 Cos<n7rx>
2
- ) ()l



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = — cos(?) — /(;j) cos(%) dx.

nm



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = _n—ix cos(%) — /(;j) cos(%) dx.

2x nmx 2\2 . /nmx
| = —— cos(—) + (*) sm(—).
nm 2 nm 2



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

SO|uti0n: I = ;2X cos(ﬂ) - /<_2> COS(B) dX_
nr 2 o >
2x nmx 2\2 _ /nmx
| = —— cos(—) + (*) sm(—). So, we get
nm 2 nm 2

2

o =22 eos( )]+ [ o], - () s (),



Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

SO|uti0n: I = ;2X cos(ﬂ) - /<_2> COS(B) dX_
nr 2 o >
2x nmx 2\2 _ /nmx
| = —— cos(—) + (*) sm(—). So, we get
nm 2 nm 2

o =22 eos( )]+ [ o], - () s (),

b, = ;—: [cos(nm) — 1] + {ni;r cos(nm) — 0}



Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = _n—ix cos(?) — /(;j) cos(%) dx.

2x nmx 2\2 . /nmx
| = —— cos(—) + (*) sm(T) So, we get

nm 2 nm
=2 eos(5) ]|, [ eos(5) ]|, () s (")
b, = ;—ﬂ[cos(mr) -1] + {ni;r cos(nm) — 0} =  by,= %



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: | = _n—ix cos(?) — /(;j) cos(%) dx.

| = —2—X cos(mr—x> + (£>2 sin(ﬂ) So, we get

nm 2 nm 2
=2 eos(7)| [+ [ ()], - () o)),
b, = ;—ﬂ[cos(mr) -1] + {ni;r cos(nm) — 0} = b,= %
We conclude: f(x) = ; i}) sm(?) <



Even-periodic, odd-periodic extension of functions.

Example

Graph the even-periodic extension of f(x) =2 — x for x € [0,2],
and then find the Fourier Series of this extension.



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0,2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

F(x) = +Z[ancos( =) + basin( ZX)]



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0,2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

F(x) = +Z[ancos( =) + basin( ZX)]

Since f is even and periodic,



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0,2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x)= +Z[ancos< )—I—b sm(erX)].

Since f is even and periodic, then the Fourier Series is a Cosine
Series,



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0,2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x)= +Z[ancos< )—I—b sm(erX)].

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0,2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x)= +Z[ancos< )—I—b sm(erX)].

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

:;/zf(x)dx



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0,2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x)= +Z[ancos< )—I—b sm(erX)].

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

:;/zf(x)dx:/o2(2—x)dx



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0,2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x)= +Z[ancos< )—I—b sm(erX)].

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 [? 2 b height
:/ f(x)dx:/ (2—x)dx:7asex ce
2 /), 0 2



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0,2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x)= +Z[ancos< )—I—b sm(erX)].

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

1 (2 2 b height
:/ f(x)dx:/(2—x)dx:asexzelg:>aoz2.
-2 0



Even-periodic, odd-periodic extension of functions.

Example

Graph the even-periodic extension of f(x) =2 — x for x € [0,2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x)= +Z[ancos< )—I—b sm(erX)].

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

b height
/ f(x dx—/( —x)dx:M = ap = 2.

2
L/_Lf( )cos(mLTX) dx

dn =



Even-periodic, odd-periodic extension of functions.

Example

Graph the even-periodic extension of f(x) =2 — x for x € [0,2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x)= +Z[ancos< )—I—b sm(erX)].

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

b height
/ f(x dx—/( —x)dx:% = ap = 2.

L/_Lf( )cos(mLTX) dx = i/OL f(x)cos(?) dx,

ap =



Even-periodic, odd-periodic extension of functions.

Example

Graph the even-periodic extension of f(x) =2 — x for x € [0,2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x)= +Z[ancos< )—I—b sm(erX)].

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

b height
/ f(x dx—/( —x)dx:% = ap = 2.

L/_Lf( )cos(mLTX>dx:i/0Lf( )cos(nL )dx L=2,

ap =



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0,2],
and then find the Fourier Series of this extension.

Solution: The Fourier series is

f(x)= +Z[ancos< )—I—b sm(erX)].

Since f is even and periodic, then the Fourier Series is a Cosine
Series, that is, b, = 0.

b height
/ f(x dx—/( —x)dx:% = ap = 2.

L/_Lf( )cos(mLTX>dx:i/0Lf( )cos( T )dx L=2,

anp = /02(2 - X) cos(mrTX) dx.

ap =



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2 2
Solution: a, = 2/ cos(ﬂ) dx _/ X cos(w) dx.
0 2 0 2



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2 2
Solution: a, = 2/ cos(?) dx — / X COS(ﬂ) dx.
0 0

2
(n7rx>d - 2 . <n7rx>
cos > X_mr sin > )



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2

2
Solution: an:2/ cos(ﬂ) dx—/ Xcos(ﬂ) dx.
0 2 0 2
(n7rx>d 2 <n7rx>
cos > X—mrsm 5 )

The other integral is done by parts,



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2

2
SO|uti0n: an:2/ COS(B) dX—/ Xcos<ﬂ) dx.
0 2 0 2
(n7rx>d 2 <n7rx>
cos > X_mrsm > )

The other integral is done by parts,

| = /xcos<m2TX> dx,



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2

2
Solution: an:2/ cos(@) dx—/ xcos(ﬂ) dx.
0 2 0 2
(n7rx>d 2 <n7rx>
cos > X—mrsm 5 )

The other integral is done by parts,

| = /xcos<m2TX> dx,



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2

2
Solution: an:2/ cos(@) dx—/ xcos(ﬂ) dx.
0 2 0 2
(n7rx>d 2 <n7rx>
cos > X—mrsm 5 )

The other integral is done by parts,

_ 1 _

nmx
I:/xcos<2> dx, / 2 Snrx
u =1, = — sm(—)



Even-periodic, odd-periodic extension of functions.

Example
Graph the even-periodic extension of f(x) =2 — x for x € [0, 2],
and then find the Fourier Series of this extension.

2

2
Solution: an:2/ cos(ﬂ) dx—/ Xcos<ﬂ> dx.
0 2 0 2
(n7rx>d 2 <n7rx>
cos > X—mrsm 5 )

The other integral is done by parts,

_ 1 _

nmx
I:/xcos<2> dx, / 2 Snrx
u =1, = — sm(—)



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: Recall: | = 2—X sin(ﬂ> /2 Sin(ﬂ) dx.
nr 2 nm 2



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: Recall: | = 2—X sin(m7x> /2 Sin(ﬂ) dx.
nr 2 nm 2

2x . /nmTX 2\2 nmx
| = — sm(—) + (*) cos(—).
nm 2 nmw 2



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: Recall: | = 2—X sin(m7x> /2 Sin(ﬂ) dx.
nr 2 nm 2

2x . /nwXx 2\2 nmx
| =— sm(T) + (—) cos( ) So, we get



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: Recall: | = 2—X sin(m7x> /2 Sin(ﬂ) dx.
nr 2 nm 2

2x . /nwXx 2\2 nmx
| =— sm(T) + (—) cos( ) So, we get



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0, 2),
and then find the Fourier Series of this extension.

Solution: Recall: | = 2—X sin(m7x> /2 Sin(ﬂ) dx.
nr 2 nm 2

2x . /nmTX 2\2 nmx
| =— sm(—) + (*) cos(—). So, we get
2 nm 2

Al (P (I ()

4 4 .
an :0—0—W[cos(nw)—1] = ap= m[l—(—l) |



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ay =2, a, = W[l —(-1)".



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ay =2, a, = W[l —(-1)".

If n =2k,



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ay =2, a, = W[l —(-1)".

4
If n= 2k, then a = W [1 — (—1)2k]



Even-periodic, odd-periodic extension of functions.

Example
Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ay =2, a, = W[l —(-1)".

4
If n= 2k, then a = W [1 — (—1)2k] =0.
™



Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ay =2, a, = W[l —(-1)".

4
If n= 2k, then a = W [1 — (—1)2k] =0.
™

If n=2k—1,



Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ay =2, a, = W[l —(-1)".

4
If n= 2k, then a = W [1 — (—1)2k] =0.
™

If n=2k — 1, then we obtain

4 2k—1
d(2k-1) = (2k — 1)272 [1 - (-1) ]



Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ay =2, a, = W[l —(-1)".

4 2k
If n =2k, then ay, = W [1 - (-1) ] =0.
If n=2k — 1, then we obtain
4 2%k—1 8
A2k = 2k — 122 =0T = (2k — 1)272°



Even-periodic, odd-periodic extension of functions.

Example

Graph the odd-periodic extension of f(x) =2 — x for x € (0,2),
and then find the Fourier Series of this extension.

: 4 n
Solution: Recall: b, =0, ay =2, a, = W[l —(-1)".

4 2k
Ifn:2k, then a2k:W[l_(_1) ] =0.
If n=2k — 1, then we obtain
4 8

S S— G A USSR

a(2k—1) (2k _ 1)27].2 [1 ( ) ] (2/( _ 1)271.2
_ 8 — 1 (2k — 1)mx

We conclude: f(x):1+; g 2k —1)2 cos( 5 >.<

k=1



Review Exam 4, Chapters 7 and 10.

» Sections 7.1-7.6, 7.8, 10.1-10.5.

» 5 or 6 problems.
» 50 minutes.
» Eigenvalue-Eigenfunction, boundary value probl. (10.1).
» Fourier series expansions (10.2).
» The Fourier Convergence Theorem (10.3).
» Even and Odd functions and extension of functions (10.4).
» The heat equation and on separation of variables (10.5).



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d%u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d%u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

Solution: Let un(t,x) = vu(t) wa(x).



Example: Solving a Heat Equation.
Example
Find the solution to the IBVP 40,u = d%u, t>0, x¢€][0,2],
u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.
Solution: Let un(t,x) = vu(t) wp(x). Then

() 22(1) = (1) T2 ()




Example: Solving a Heat Equation.
Example
Find the solution to the IBVP 40,u = d%u, t>0, x¢€][0,2],
u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.
Solution: Let un(t,x) = vu(t) wp(x). Then

Vn 2w, v, w!(x
4wn(x)ci/7f(t) = va(t) ddx2 () = 4vn((tt)) - Wn((X))




Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d%u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.
Solution: Let un(t,x) = vu(t) wp(x). Then
dv, d’w, avi(t)  w)(x)

dwn) GO = w(0) G0 = RS ==




Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d%u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

Solution: Let un(t,x) = vu(t) wp(x). Then

Vn 2w, v/ w,) (x
4Wn(X) %(t) - Vn(t) dC/X2 (X) = 4Vn((13) - Wn((X)) =

The equations for v, and w,, are

vi(t) + % va(t) =0,



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d%u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

Solution: Let un(t,x) = vu(t) wp(x). Then

Vn 2w, v, w,) (x
4Wn(X) %(t) - Vn(t) dC/X2 (X) = 4Vn((13) - Wn((X)) =

The equations for v, and w,, are

vi(t) + % va(t) =0, wl (x) + Ap wiy(x) = 0.



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d%u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.
Solution: Let un(t,x) = vu(t) wp(x). Then

dv, d’w, 4vi(t)  w(x)

() G () =l 2200 = T = k)

=—An

The equations for v, and w,, are

vi(t) + % va(t) =0, wl (x) + Ap wiy(x) = 0.
We solve for v, with the initial condition v,(0) = 1.
An Ang

edty ’()+Ze4 va(t) =0



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d%u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.
Solution: Let un(t,x) = vu(t) wp(x). Then

dv, d’w, 4vi(t)  w(x)

() G () =l 2200 = T = k)

=—An

The equations for v, and w,, are

vi(t) + % va(t) =0, wl (x) + Ap wiy(x) = 0.
We solve for v, with the initial condition v,(0) = 1.
An Ang

edty i)+ T et u() =0 = [e¥tv,(t)] = 0.



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ =0.



Example: Solving a Heat Equation.
Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],
u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

va(t) = ¢ e_%t,



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

An

vo(t) =ce 2% 1=v,(0)



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

An

vp(t)=ce 2%, 1=v,(0)=c



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

An

vn(t)=ce 2% 1=v,(0)=c = v(t)=e



Example: Solving a Heat Equation.
Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],
u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

va(t) =ce FE 1=y (0)=c = v (t)=e +L.

Next the BVP: w//(x) + A, wy(x) = 0, with w,(0) = w,(2) = 0.



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

va(t) =ce FE 1=y (0)=c = v (t)=e +L.

Next the BVP: w//(x) + A, wy(x) = 0, with w,(0) = w,(2) = 0.

Since A, > 0, introduce A\, = ,u%.



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

va(t) =ce FE 1=y (0)=c = v (t)=e +L.

Next the BVP: w//(x) + A, wy(x) = 0, with w,(0) = w,(2) = 0.

Since A, > 0, introduce A\, = 2. The characteristic polynomial is

PUr) = 72+ 4



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

va(t) =ce FE 1=y (0)=c = v (t)=e +L.

Next the BVP: w//(x) + A, wy(x) = 0, with w,(0) = w,(2) = 0.

Since A, > 0, introduce A\, = 2. The characteristic polynomial is

p(r)=r?+ =0



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

va(t) =ce FE 1=y (0)=c = v (t)=e +L.

Next the BVP: w//(x) + A, wy(x) = 0, with w,(0) = w,(2) = 0.

Since A, > 0, introduce A\, = 2. The characteristic polynomial is

p(N=r+p2=0 = 1w =+l



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

va(t) =ce FE 1=y (0)=c = v (t)=e +L.

Next the BVP: w//(x) + A, wy(x) = 0, with w,(0) = w,(2) = 0.

Since A, > 0, introduce A\, = 2. The characteristic polynomial is
p(N=r+p2=0 = 1w =+l

The general solution, w,(x) = ¢ cos(px) + ¢ sin(finx).



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

va(t) =ce FE 1=y (0)=c = v (t)=e +L.

Next the BVP: w//(x) + A, wy(x) = 0, with w,(0) = w,(2) = 0.
Since A, > 0, introduce A\, = 2. The characteristic polynomial is
p(N=r+p2=0 = 1w =+l

The general solution, w,(x) = ¢ cos(px) + ¢ sin(finx).

The boundary conditions imply
0= W,,(O) = (1,



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

va(t) =ce FE 1=y (0)=c = v (t)=e +L.

Next the BVP: w//(x) + A, wy(x) = 0, with w,(0) = w,(2) = 0.
Since A, > 0, introduce A\, = 2. The characteristic polynomial is
p(N=r+p2=0 = 1w =+l

The general solution, w,(x) = ¢ cos(px) + ¢ sin(finx).

The boundary conditions imply

0=wp(0)=c1, = wn(x)=csin(unx).



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

An ¢

Solution: Recall: v,(t) =e™ +°, and w,y(x) = ¢ sin(pnx).



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],
u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

An ¢

Solution: Recall: v,(t) =e™ +°, and w,y(x) = ¢ sin(pnx).

0 = wp(2)



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],
u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

An ¢

Solution: Recall: v,(t) =e™ +°, and w,y(x) = ¢ sin(pnx).

0 = wy(2) = ¢ sin(un2),



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],
u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

An ¢

Solution: Recall: v,(t) =e™ +°, and w,y(x) = ¢ sin(pnx).

0= wy(2) = sin(un2), 2 #0,



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],
u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

An ¢

Solution: Recall: v,(t) =e™ +°, and w,y(x) = ¢ sin(pnx).

0=wy(2) = sin(n2), @ #0, = sin(u,2)=0.



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

An
Solution: Recall: v,(t) =e = °

, and w,(x) = ¢ sin(upx).
0=wy(2) = sin(n2), @ #0, = sin(u,2)=0.

Then, pp2 = nm,



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],
u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

An ¢

Solution: Recall: v,(t) =e™ +°, and w,y(x) = ¢ sin(pnx).

0=wy(2) = sin(n2), @ #0, = sin(u,2)=0.

Then, y1,2 = n, that is, i, = ”777



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

An
Solution: Recall: v,(t) =e = °

, and w,(x) = ¢ sin(upx).
0=wy(2) = sin(n2), @ #0, = sin(u,2)=0.

Then, pp2 = nm, that is, pu, = n77r Choosing ¢, = 1, we conclude,

= (Z)



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

An
Solution: Recall: v,(t) =e = °

, and w,(x) = ¢ sin(upx).
0=wy(2) = sin(n2), @ #0, = sin(u,2)=0.

Then, pp2 = nm, that is, pu, = ng Choosing ¢, = 1, we conclude,

= (5 b= n (72,



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

An
Solution: Recall: v,(t) =e = °

, and w,(x) = ¢ sin(upx).
0=wy(2) = sin(n2), @ #0, = sin(u,2)=0.

Then, pp2 = nm, that is, pu, = ng Choosing ¢, = 1, we conclude,

Am = (%)2, Wy(x) = sin(?), va(t) = e (7).



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.
Solution: Recall: v,(t) = e ¥t and wp(x) = ¢z sin(pinx).

0=wy(2) = sin(n2), @ #0, = sin(u,2)=0.

Then, pp2 = nm, that is, pu, = ng Choosing ¢, = 1, we conclude,

Am = (%)2, Wy(x) = sin(?), va(t) = e (7).

= e an(7).



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, u(t,2)=0.

. n7T 2 . nmx
Solution: Recall: u(t, x) ch 2 )t sm<7>.



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, u(t,2)=0.

. n7T 2 . nmx
Solution: Recall: u(t, x) ch 2 )t sm(T).

The initial condition is 3 sm( ) ch sm(mTX>



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, u(t,2)=0.

. n7T 2 . nmx
Solution: Recall: u(t, x) ch 2 )t sm(T).

The initial condition is 3 sm( ) ch sm(mTX)

The orthogonality of the sine functlons |mpI|es

/023Sin(7T2X) sin(?) dx = 2/02 Cn sin(?) sin(?) dx.



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, u(t,2)=0.

. n7T 2 . nmx
Solution: Recall: u(t, x) ch 2 )t sm(T).

The initial condition is 3 sm( ) ch sm(mTX)

The orthogonality of the sine functlons |mpI|es
2 mxN\ . /mTx = /2 . /NTX\ . [/ MTX
/0 3S|n(7) sm(T) dx = ;/0 Cn sm<7> sm(T) dx.

If m#1, then0:cm%,



Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, u(t,2)=0.

. n7T 2 . nmx
Solution: Recall: u(t, x) ch 2 )t sm(T).
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Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, u(t,2)=0.

. n7T 2 . nmx
Solution: Recall: u(t, x) ch 2 )t sm(T).

The initial condition is 3 sm( ) ch sm(mTX)

The orthogonality of the sine functlons |mpI|es
2 mxN\ . /mTx = /2 . /NTX\ . [/ MTX
/0 3S|n(7) sm(T) dx = ;/0 Cn sm<7> sm(T) dx.

If m#1, then 0 = ¢ % that is, ¢y, = 0 for m £ 1. Therefore,
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Example: Solving a Heat Equation.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: We conclude that

u(t,x) = 3e(3) sin(%x).



Review Exam 4, Chapters 7 and 10.

» Sections 7.1-7.6, 7.8, 10.1-10.5.
» 5 or 6 problems.

» 50 minutes.
» Eigenvalue-Eigenfunction, boundary value probl. (10.1).
» Fourier series expansions (10.2).
» The Fourier Convergence Theorem (10.3).
» Even and Odd functions and extension of functions (10.4).
» The heat equation and on separation of variables (10.5).
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used to solve

(t + g) D2u(t,x) + k?02u(t,x) = 0.
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Not every PDE can be solved with SVM.

Example
Determine whether the Separation of Variables Method can be
used to solve

(t + g) D2u(t,x) + k?02u(t,x) = 0.
Solution: If u(t,x) = v(t) w(x), then
D2u(t,x) = w(x) 0?v(t), d2u(t,x) = v(t) 2w(x).

Therefore, (t + %) w(x) 02v(t) = —k? v(t) D2w(x),

x\ 0%v 5 O2w(x
(t+) v(t()t):_k W(i))'

Function of t and x = Function only of x

We conclude: The SVM can not be used in this equation.



Review Exam 4, Chapters 7 and 10.

» Sections 7.1-7.6, 7.8, 10.1-10.5.
» 5 or 6 problems.

» 50 minutes.
» Eigenvalue-Eigenfunction, boundary value probl. (10.1).
» Fourier series expansions (10.2).
» The Fourier Convergence Theorem (10.3).
» Even and Odd functions and extension of functions (10.4).
» The heat equation and on separation of variables (10.5).
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u(0,x) =sin(x), 0:u(0,x)=0, wu(t,0)=0, u(t,37)=0.
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Example: Solving a Wave Equation.

Example
Find the solution to the IBVP 0?u = c?92u, t >0, x € [0, 37],

u(0,x) =sin(x), 0:u(0,x)=0, wu(t,0)=0, u(t,37)=0.

Remarks:

» The Wave Equation describes waves on a string, waves in the
ocean, sound in air, etc.

» There are two initial conditions:
(1) Initial position of the string.
(2) Initial velocity of the string.

» There are two boundary conditions:
(1) The string is fixed at both the end points.
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Example
Find the solution to the IBVP 0?u = c?d2u, t > 0, x € [0, 3],

u(0,x) =sin(x), 0:u(0,x)=0, u(t,0)=0, u(t,37)=0.
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Example: Solving a Wave Equation.

Example
Find the solution to the IBVP 0?u = c?d2u, t > 0, x € [0, 3],

u(0,x) =sin(x), 0:u(0,x)=0, u(t,0)=0, u(t,37)=0.

Solution: Let up(t,x) = vu(t) wa(x). Then

2Vn 2Wn v w (x

The equations for v, and w,, are

V() + Anc? va(t) = 0, w/ (x) + A\p win(x) = 0.

We first find the solution w, to the BVP:
w) (x) + Ap wa(x) =0, w,(0) =0, w,(37)=0.
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u(0,x) =sin(x), Oru(0,x) =0, u(t,0)=0, u(t,37)=0.
Solution: Recall:  w)/(x) + A, wp(x) =0, w,(0) = w,(37) = 0.
Since A\, > 0, introduce A\, = p2. The characteristic polynomial is

p(r) = r?+ u%, =0 = rpr =Tl

The general solution, w,(x) = ¢ cos(nx) + ¢ sin(finx).
The boundary conditions imply

0=wp(0)=c1, = wp(x)=csin(unx).
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Example
Find the solution to the IBVP 9%u = c?9%u, t > 0, x € [0, 37,
u(0,x) =sin(x), 0:u(0,x)=0, wu(t,0)=0, u(t,37)=0.

Solution: Recall:  w,(x) = ¢ sin(punx) and sin(37p,) = 0.

Then, 3mu, = nw, that is, u, = =. Choosing ¢ = 1, we conclude,

n
3
2
Am = (g) ) wp(x) = sin(%).
We now find the general solution of v/ (t) + c?u2 v,(t) = 0.
Then the solution to the Wave Equation will be

u(t,x) = i va(1) sin(%).

n=



Example: Solving a Wave Equation.

Example
Find the solution to the IBVP 0%u = c?92u, t >0, x € [0, 37],

u(0,x) =sin(x), Oru(0,x) =0, u(t,0)=0, u(t,37)=0.

Solution:

2
Recall: )\, = (g) , Wh(x) = sin(%), VI(t) + ?u2 vy(t) = 0.



Example: Solving a Wave Equation.

Example
Find the solution to the IBVP 0%u = c?92u, t >0, x € [0, 37],

u(0,x) =sin(x), Oru(0,x) =0, u(t,0)=0, u(t,37)=0.
Solution:

2
Recall: )\, = (g) , Wh(x) = sin(%), VI(t) + ?u2 vy(t) = 0.

vn(t) = e



Example: Solving a Wave Equation.

Example
Find the solution to the IBVP 0%u = c?92u, t >0, x € [0, 37],

u(0,x) =sin(x), Oru(0,x) =0, u(t,0)=0, u(t,37)=0.
Solution:
n

Recall: )\, = <§>2 Wh(x) = sin(%), VI(t) + ?u2 vy(t) = 0.

v(t)=e® = p(r)=r*+u2=0



Example: Solving a Wave Equation.

Example
Find the solution to the IBVP 0%u = c?92u, t >0, x € [0, 37],

u(0,x) =sin(x), Oru(0,x) =0, u(t,0)=0, u(t,37)=0.
Solution:
n

Recall: )\, = <§>2 Wh(x) = sin(%), VI(t) + ?u2 vy(t) = 0.

vi(t)=e" = p(N=r+c2=0 = ri=4cu,i



Example: Solving a Wave Equation.

Example
Find the solution to the IBVP 0%u = c?92u, t >0, x € [0, 37],

u(0,x) =sin(x), Oru(0,x) =0, u(t,0)=0, u(t,37)=0.

Solution:

2
Recall: A\, = (g) , wp(x) = sin(%), VvI(t) + 2p va(t) = 0.
vi(t)=e" = p(N=r+c2=0 = ri=4cu,i

A real-valued general solution is

Vn(t) = cn cos(cpnt) + dp sin(cpnt).



Example: Solving a Wave Equation.

Example
Find the solution to the IBVP 0%u = c?92u, t >0, x € [0, 37],

u(0,x) =sin(x), Oru(0,x) =0, u(t,0)=0, u(t,37)=0.
Solution:
n

Recall: )\, = <§>2 Wh(x) = sin(%), VI(t) + ?u2 vy(t) = 0.

vi(t)=e" = p(N=r+c2=0 = ri=4cu,i
A real-valued general solution is
Vn(t) = cn cos(cpnt) + dp sin(cpnt).
o0
nx

u(t,x) = Z[cn cos(cpnt) + dp sin(cpnt)] sin(?)

n=1



Example: Solving a Wave Equation.

Example
Find the solution to the IBVP 0?u = c?92u, t >0, x € [0, 37],

u(0,x) =sin(x), 0:u(0,x)=0, wu(t,0)=0, u(t,37)=0.

Solution: u(t,x) = i[c,, cos(%) + d, sin(?)} sin(%).

n=



Example: Solving a Wave Equation.
Example
Find the solution to the IBVP 0?u = c?92u, t >0, x € [0, 37],
u(0,x) =sin(x), 0:u(0,x)=0, wu(t,0)=0, u(t,37)=0.
: = cnt _/cnt\] . /nx
Solution: u(t,x) = Z[c,, cos<?> + d, sm<?>} sm<?>.

n=

First initial condition: sin(x) = u(0, x)



Example: Solving a Wave Equation.
Example
Find the solution to the IBVP 0?u = c?92u, t >0, x € [0, 37],
u(0,x) =sin(x), 0:u(0,x)=0, wu(t,0)=0, u(t,37)=0.
. = cnt cnt\7 . /nx
Solution: u(t,x) = Z[c,, cos<?> + d, sm( 3 )} sm<?>.

n=

X
First initial condition: = u(0, nsin( ).
irst initial condition: sin(x) = u(0, x) Zc sin 3



Example: Solving a Wave Equation.

Example
Find the solution to the IBVP 0?u = c?92u, t >0, x € [0, 37],

u(0,x) =sin(x), 0:u(0,x)=0, wu(t,0)=0, u(t,37)=0.

Solution: u(t,x) = i[c,, cos<%t> + d, Sln<C3t>} sin(%)-

n=

First initial condition: sin(x) = u(0, x) Z Cn sm(nx>

Multiply by sin(mx/3) on both sides above and integrate



Example: Solving a Wave Equation.

Example
Find the solution to the IBVP 0?u = c?92u, t >0, x € [0, 37],

u(0,x) =sin(x), 0:u(0,x)=0, wu(t,0)=0, u(t,37)=0.

Solution: u(t,x) = i[c,, cos<%t> + d, Sln<C3t>} sin<%>-

First initial condition: sin(x) = u(0, x) Z Cn sm(nx>

Multiply by sin(mx/3) on both sides above and integrate

/037rsin( )sm( dX—ZCn /3’Ts|n nx 5in<n;X)d



Example: Solving a Wave Equation.

Example
Find the solution to the IBVP 0?u = c?92u, t >0, x € [0, 37],

u(0,x) =sin(x), 0:u(0,x)=0, wu(t,0)=0, u(t,37)=0.

Solution: u(t,x) = i[c,, cos(%) + d, Sln<C3t>} sin<%>-

First initial condition: sin(x) = u(0, x) Z Cn sm(nx>

Multiply by sin(mx/3) on both sides above and integrate

/037rsin( )sm( dX—ZCn /3’Ts|n nx 5in<n;X)d

The orthogonality of the sine functions implies:



Example: Solving a Wave Equation.
Example
Find the solution to the IBVP 0?u = c?92u, t >0, x € [0, 37],
u(0,x) =sin(x), 0:u(0,x)=0, wu(t,0)=0, u(t,37)=0.
. = cnt cnt\7 . /nx
Solution: u(t,x) = Z[c,, cos<?> + d, sm( 3 ﬂ sm<?>.

n=

First initial condition: sin(x) = u(0, x) Z Cn sm(nx>

Multiply by sin(mx/3) on both sides above and integrate

/037rsin( )sm( dX—ZCn /37Tsm nx sin<n;X) dx.

The orthogonality of the sine functions implies: If m # 3, then

3

O=cm5,



Example: Solving a Wave Equation.

Example
Find the solution to the IBVP 0?u = c?92u, t >0, x € [0, 37],

u(0,x) =sin(x), 0:u(0,x)=0, wu(t,0)=0, u(t,37)=0.

Solution: u(t,x) = i{c,, cos(%) + d, sun<C3t>} sin<%>-

First initial condition: sin(x) = u(0, x) Z Cn sm(nx>

Multiply by sin(mx/3) on both sides above and integrate

/037rsin( )sm( dX—ZCn /37Tsm nx sin<n;X) dx.

The orthogonality of the sine functions implies: If m # 3, then
Ozcm%”, that is, ¢, = 0 for m # 3.



Example: Solving a Wave Equation.

Example
Find the solution to the IBVP 0?u = c?92u, t >0, x € [0, 37],

u(0,x) =sin(x), 0:u(0,x)=0, wu(t,0)=0, u(t,37)=0.

Solution: u(t,x) = i[c,, cos(%) + d, Sln<C3t>} sin<%>-

First initial condition: sin(x) = u(0, x) Z Cn sm(nx>

Multiply by sin(mx/3) on both sides above and integrate

/037rsin( )sm( dX—ZCn /37Tsm nx sin<n;X) dx.

The orthogonality of the sine functions implies: If m # 3, then
0=cn 37” that is, ¢, = 0 for m # 3. Hence, sin(x) = c3 sin(z%X),



Example: Solving a Wave Equation.

Example
Find the solution to the IBVP 0?u = c?92u, t >0, x € [0, 37],

u(0,x) =sin(x), 0:u(0,x)=0, wu(t,0)=0, u(t,37)=0.

Solution: u(t,x) = i{c,, cos(%) + d, sun<C3t>} sin<%>-

n=

First initial condition: sin(x) = u(0, x) Z Cn sm(nx>

Multiply by sin(mx/3) on both sides above and integrate

/037rsin( )sm( dX—ZCn /37Tsm nx sin<n;X) dx.
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Example: Solving a Wave Equation.

Example
Find the solution to the IBVP §?u = c292u, t >0, x € [0, 37],

u(0,x) =sin(x), Jru(0,x) =0, u(t,0)=0, u(t,37)=0.
Solution: After the first initial condition we get
. nx
u(t, x) = cos(ct) sin(x +Zd sm( ) sm(?)

dn .
Second initial condition: 0 = 0ru(0,x) = Z cn3 sm(,;—x).

Multiply by sin(%) on both sides above, then for m = 1,2, - -,

o:nilc”?)d” /O%sin(n; sm( )dx —~  d,=0.

We conclude: u(t, x) = cos(ct) sin(x).




Review for Final Exam. Chapters 7, 6, 5.

Systems of linear Equations (Chptr. 7).
Laplace transforms (Chptr. 6).
Power series solutions (Chptr. 5).

Second order linear equations (Chptr. 3).

vV v v v Y

First order differential equations (Chptr. 2).



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues ); and the eigenvectors v(7) of A.



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues ); and the eigenvectors v(7) of A.

(a) If A1 # A, real,



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues ); and the eigenvectors v(7) of A.

(a) If A1 # Ao, real, then {v(!) v(?)} are linearly independent,



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues ); and the eigenvectors v(7) of A.

(a) If Ay # Ao, real, then {v(}) v(?)} are linearly independent, and
the general solution is x(x) = ¢ v ghit 4 1)) v(@) ghat



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues ); and the eigenvectors v(7) of A.

(a) If Ay # Ao, real, then {v(}) v(?)} are linearly independent, and
the general solution is x(x) = ¢ v ghit 4 1)) v(@) ghat

(b) If A1 # A2, complex,



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues ); and the eigenvectors v(7) of A.

(a) If Ay # Ao, real, then {v(}) v(?)} are linearly independent, and
the general solution is x(x) = ¢ v ghit 4 1)) v(@) ghat

(b) If Ay # A2, complex, then denoting A+ = o+ i and
v(®) = a+bi,



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues ); and the eigenvectors v(7) of A.
(a) If Ay # Ao, real, then {v(}) v(?)} are linearly independent, and
the general solution is x(x) = ¢ v ghit 4 1)) v(@) ghat

(b) If Ay # A2, complex, then denoting A+ = o+ i and
v —a+ b/, the complex-valued fundamental solutions
x(F) = (a+bi) eloEBt



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues ); and the eigenvectors v(7) of A.
(a) If Ay # Ao, real, then {v(}) v(?)} are linearly independent, and
the general solution is x(x) = ¢ v ghit 4 1)) v(@) ghat

(b) If Ay # A2, complex, then denoting A+ = o+ i and
v —a+ b/, the complex-valued fundamental solutions
x(F) = (a+bi) eloEBt

xE) = e (a £ bi) [cos(Bt) + isin(Bt)].



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues ); and the eigenvectors v(7) of A.

(a) If Ay # Ao, real, then {v(}) v(?)} are linearly independent, and
the general solution is x(x) = ¢ v ghit 4 1)) v(@) ghat

(b) If Ay # A2, complex, then denoting A+ = o+ i and
v —a+ b/, the complex-valued fundamental solutions
x(F) = (a+bi) eloEBt

xE) = e (a £ bi) [cos(Bt) + isin(Bt)].
xE) = et [acos(3t) —bsin(3t)] £ie®* [asin(3t)+b cos(Gt)].



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues ); and the eigenvectors v(7) of A.

(a) If Ay # Ao, real, then {v(}) v(?)} are linearly independent, and
the general solution is x(x) = ¢ v ghit 4 1)) v(@) ghat

(b) If Ay # A2, complex, then denoting A+ = o+ i and
v —a+ b/, the complex-valued fundamental solutions

x(F) = (a+bi) eloEBt
xE) = e (a £ bi) [cos(Bt) + isin(Bt)].
xE) = et [acos(3t) —bsin(3t)] £ie®* [asin(3t)+b cos(Gt)].

Real-valued fundamental solutions are



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues ); and the eigenvectors v(7) of A.
(a) If Ay # Ao, real, then {v(}) v(?)} are linearly independent, and
the general solution is x(x) = ¢ v ghit 4 1)) v(@) ghat

(b) If Ay # A2, complex, then denoting A+ = o+ i and
v —a+ b/, the complex-valued fundamental solutions

x(*) = (a £ bi) elotF)t
xE) = e (a £ bi) [cos(Bt) + isin(Bt)].
xE) = et [acos(3t) —bsin(3t)] £ie®* [asin(3t)+b cos(Gt)].
Real-valued fundamental solutions are
x(1) = e [acos(At) — bsin(t)],



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues ); and the eigenvectors v(7) of A.

(a) If Ay # Ao, real, then {v(}) v(?)} are linearly independent, and
the general solution is x(x) = ¢ v ghit 4 1)) v(@) ghat

(b) If Ay # A2, complex, then denoting A+ = o+ i and
v —a+ b/, the complex-valued fundamental solutions

x(*) = (a £ bi) elotF)t
xE) = e (a £ bi) [cos(Bt) + isin(Bt)].
xE) = et [acos(3t) —bsin(3t)] £ie®* [asin(3t)+b cos(Gt)].
Real-valued fundamental solutions are
x(1) = e [acos(At) — bsin(t)],

x?) = e [asin(Bt) + b cos((t)].



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.

First find the eigenvalues \; and the eigenvectors v() of A.



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.
First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A1 = Ap = A, real,



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.
First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A\t = Ao = ), real, and their eigenvectors {v(}) v(?)} are
linearly independent,



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.
First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A&x = A2 = A, real, and their eigenvectors {v(l),v(2)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.
First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A&x = A2 = A, real, and their eigenvectors {v(l),v(2)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et

(d) If Ay = X2 = A, real,



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.
First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A&x = A2 = A, real, and their eigenvectors {v(l),v(2)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et

(d) If Ay = A2 = A, real, and there is only one eigendirection v,



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.
First find the eigenvalues \; and the eigenvectors v() of A.

(c) If A&x = A2 = A, real, and their eigenvectors {v(l),v(2)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et

(d) If Ay = A2 = A, real, and there is only one eigendirection v,
then find w solution of (A — Al)w = v.



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.
First find the eigenvalues ); and the eigenvectors v(7) of A.

(c) If A&x = A2 = A, real, and their eigenvectors {v(l),v(2)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et

(d) If Ay = A2 = A, real, and there is only one eigendirection v,
then find w solution of (A — Al)w = v. Then fundamental
solutions to the differential equation are given by

x() =y et



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.
First find the eigenvalues ); and the eigenvectors v(7) of A.

(c) If A&x = A2 = A, real, and their eigenvectors {v(l),v(2)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et

(d) If Ay = A2 = A, real, and there is only one eigendirection v,
then find w solution of (A — Al)w = v. Then fundamental
solutions to the differential equation are given by

x =ver  x® = (vt+w)e.



Systems of linear Equations (Chptr. 7).

Summary: Find solutions of X’ = Ax, with A a 2 x 2 matrix.
First find the eigenvalues ); and the eigenvectors v(7) of A.

(c) If A&x = A2 = A, real, and their eigenvectors {v(l),v(2)} are
linearly independent, then the general solution is

x(x) = co vV M 4 v et

(d) If Ay = A2 = A, real, and there is only one eigendirection v,
then find w solution of (A — Al)w = v. Then fundamental
solutions to the differential equation are given by
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x=cve' +o(vt+w)e
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We conclude: x(t) =
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Laplace transforms (Chptr. 6).

Summary:
» Main Properties:
L[] = 5 £IF(0)] - 5D £(0) — -+ — A" D(0); (18)
e < L[f(t)] = Lluc(t) F(t — <)]; (13)
LIFWI| = £l (0] (14)

» Convolutions:
L[(f = g)(t)] = L[f(1)] Lg(1)]-

» Partial fraction decompositions, completing the squares.
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Use L.T. to find the solution to the IVP
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—bs
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e55 H(s) = %(555 Llu(t)] — e~ E[cos(3t)])



Laplace transforms (Chptr. 6). FE June 13, 2008.

Example
Use L.T. to find the solution to the IVP

y'+9y =us(t), y(0)=3, y(0)=2

Solution: So, L[y] = 3 L[cos(3t)] + % L[sin(3t)] + e > H(s), and

H(s) (1+9) = os - ot = 5 (et - creosan)
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Example

Use L.T. to find the solution to the IVP

y" 4+ 9y = us(t),

y(0)=3, y'(0)=2

Solution: So, L[y] = 3 L[cos(3t)] + 2 L[sin(3t)] + e % H(s), and

1

HE) = S 79)

&5 H(s) =

e > H(s) =

:éE 5219}

(E[u( )] - Llcos(31)] )

5 (e clu(e) -

<£[U5(t)]— [u (t)cos(s(t—s))]).

e E[cos(3t)])

Lly] = 3£[cos(3t)]+ L[sin(3t)]+ = (E[u5( )] —L[us(t) cos(3(t—5))]).
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Solution:
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Solution:

L[y] = 3 L[cos(3t)]+ % L[sin(3t)]+ % (E[u5(t)] — L [us(t) cos(3(t—5))] ) )

Therefore, we conclude that,

“59(” [1 - cos(3(t - 5))]

y(t) = 3 cos(3t) + % sin(3t) +
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Summary: Solve: a(x)y” + b(x)y’ + c(x)y = 0 near xp.

oo
(a) If xo is a regular point, then y(x) = Z an (x — xo)".
n=0
Find a recurrence relation for a,.

o0

(b) If xo is a regular-singular point, y(x) = Z an (x — xo)
n=0

n+r)
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Summary: Solve: a(x)y” + b(x)y’ + c(x)y = 0 near xp.

(a) If xo is a regular point, then y(x Za,, x—xp)"

Find a recurrence relation for a,.
(b) If xo is a regular-singular point, y(x E an (x — xp) ”“).
Find a recurrence relation for a,, and |nd|C|aI equation for r.

(c) Euler equation: (x —x0)2y" +a(x —xo)y' + By =0.
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Summary: Solving the Euler equation
(x = x0)*y" +a(x —x)y + By =0.

(i) If r; # o, reals, then the general solution is

y(x) =[x — xo|™ + a2 |x — x0|".

(ii) If r1 # ra, complex, denote them as ri = A & pi. Then, the
real-valued general solution is
y(x) = a1 |x = xo* cos(In |x — xol)
+ o |x — x| sin(pIn [x — xol).
(iii) If 1 = rp = r, real, then the general solution is

y(x) = (c1+ 2 Inlx — xo|) [x — xo!"-
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Find the recurrence relation for the coefficients of the power series
solution centered at xp = 0 of the equation y” — 3y’ + xy = 0.

Solution: xp =0 is a regular point of the dlfferentlal equation.

Therefore, y(x Za,, = xy= Za x(n 1),

= Z nap x> 3y = Z(—fﬂn)an x(n=1),
n=0 n=0

o0

Z (n—1)a, x(1=2),

o0
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Example
Find the recurrence relation for the coefficients of the power series
solution centered at xp = 0 of the equation y” — 3y’ + xy = 0.

Solution:

n(n—1)a,x"=2) + Z:(—3n)a,7 x(n=1) 4 Z apx{m) =0,
n=0 n=0

n=0
[o@)
Zn (n—1)a, x(n= 2)+Z —3n)ap, x(n1=1) —I—Za x(mt1) — 0.
n=2 n=1 n=0
m=n-—2 m=n-—1 m=n-+1
m—n m—n m—n

[e.9]

Z(n+2)(n+ 1)ant2 X”—l—Z(—?))(n—i— 1)ant+1 X”—i—z ap—1x"=0.

n=0 n=0 n=1
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Solution:
o0

Z:(nJr2)(nnL 1)ant2 x’7+z:(—3)(nnL 1)ant1 x”+z ap_1x"=0.
n=0 n=0 n=1
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Example

Find the recurrence relation for the coefficients of the power series
solution centered at xp = 0 of the equation y” — 3y’ + xy = 0.

Solution:
Z:(nJr2)(nnL 1)anyo X”Jrz:(—3)(nnL 1)an+1 X”Jrz ap—1x"=0.
n=0 n=0 n=1

(2)(1)az + (—3)(1)a1+

Z (n+2)(n+1)api2 —3(n+1)apy1 + an_1] x"=0
n=1

We conclude: 2a, —3a; = 0, and

(n+2)(n+1)any2 —3(n+1apt1 +a-1=0, n=>1.
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Example

Find the first two terms on the power series expansion around
xo = 0 of each fundamental solution of y” — 3y’ + xy = 0.

Solution: Recall: 2a, —3a; =0, and

(n+2)(n+1)ap2—3(n+1)apy1 +an—1=0, n>=1

3 . .
Therefore, ar = 5 a1, and n =1 in the other equation implies

a

(3)(2)33 - 3(2)32 +a=0 = a3=a— EO
1 H . 3 ao
Using the equation for a; we obtain a3 = > a; — 5

y(x) = ap + ayx + apx® + azx® + -

(x)=a +ax+§ax2+(§a——)x3+
Y\X)=a4o 1 5 a1 51~ %
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Example
Find the first two terms on the power series expansion around
xo = 0 of each fundamental solution of y” — 3y’ + xy = 0.

3 3
Solution: Recall: y(x) = ap+ aix+ 3 a x>+ (ial — %) X34,

1
y(x):ao<1_6x3+...>+31(X+gx2_’_gx3+...)7

We conclude that:

1
) =1 x4,

3 3
yz(x)zx+ix2+§x3+---
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Second order linear equations (Chptr. 3).
Summary: Solve y" + a1y’ + agy = g(t).

First find fundamental solutions y(t) = e to the case g = 0,
where r is a root of p(r) = r?> + arr + ag.

(a) If n # ry, real, then the general solution is
y(t) = c e + e

(b) If n # r», complex, then denoting ry = o+ f3i,
complex-valued fundamental solutions are

ye(t) = et oy (1) = 2t [cos(Bt) + isin(t)],
and real-valued fundamental solutions are
yi(t) = e** cos(3t), yo(t) = et sin(Bt).
If n = r =r, real, then the general solution is

y(t) = (c1 + ct) e™.
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Example

Find the solution y to the initial value problem
y'=2y'=3y=3e"f, y(0)=1 y'(0)=

3
Solution: Recall: y,(t) = —Zte_t.

3
(4) Find the general solution: y(t) =c1e* + et — "te "

4
(5) Impose the initial conditions. The derivative function is
3
V() =3ae —get~ et —te)

3
y(0)2361—C2—*

el

1=y(0) =c + o,

e
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4
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Example
Find the solution y to the initial value problem

1
y'—=2y' =3y =3¢, y(0)=1, y'(0)= T

Solution: Recall: y(t) =c e + et — %te’t, and
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Second order linear equations (Chptr. 3).

Example
Find the solution y to the initial value problem

1
y'—=2y' =3y =3¢, y(0)=1, y'(0)= T

t

— §te’ , and

4

A= =5 A=l

1 1
Since ¢; = 5 and ¢ = 5 we obtain,

Solution: Recall: y(t) =c €3 + et

y(t) = (e +e7t) - gte_t. 4
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Review for Final Exam. Chapters 3, 2.

Systems of linear Equations (Chptr. 7).
Laplace transforms (Chptr. 6).
Power series solutions (Chptr. 5).

Second order linear equations (Chptr. 3).

vV v v v Y

First order differential equations (Chptr. 2).
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First order differential equations (Chptr. 2).

Summary:
» Linear, first order equations: y’ + p(t)y = q(t).

Use the integrating factor method: p(t) = e/ P()dt.
» Separable, non-linear equations: h(y)y’ = g(t).
Integrate with the substitution: u = y(t), du = y'(t) dt,

that is,
/h(u) du = /g(t) dt + c.

The solution can be found in implicit of explicit form.

» Homogeneous equations can be converted into separable
equations.

Read page 49 in the textbook.

» No modeling problems from Sect. 2.3.
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First order differential equations (Chptr. 2).

Summary:
» Bernoulli equations: y’ + p(t)y = q(t) y", with n € R.

Read page 77 in the textbook, page 11 in the Lecture Notes.
A Bernoulli equation for y can be converted into a linear

equation for v = F

» Exact equations and integrating factors.
N(x,y)y'+ M(x,y) = 0.
The equation is exact iff OxN = 9, M.

If the equation is exact, then there is a potential function 1,
such that N =0,¢ and M = 0,).

The solution of the differential equation is

¥(xy(x) = c.
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Advice: In order to find out what type of equation is the one you
have to solve, check from simple types to the more difficult types:

1. Linear equations.
(Just by looking at it: y' + a(t)y = b(t).)
2. Bernoulli equations.
(Just by looking at it: y' + a(t)y = b(t) y".)
3. Separable equations.
(Few manipulations: h(y)y’ = g(t).)
4. Homogeneous equations.
(Several manipulations: y' = F(y/t).)
5. Exact equations.
(Check one equation: Ny’ + M =0, and 9;N = 0, M.)

6. Exact equation with integrating factor.
(Very complicated to check.)
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Find all solutions of y' = M
Xy
1
Solution: Recall: v/ = i V. This is a separable equation.
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1—|—v(X)V(X x = /1+V(X Vi(x) dx x+c
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