Sine and Cosine Series (Sect. 10.4).

» Even, odd functions.
» Main properties of even, odd functions.
» Sine and cosine series.

» Even-periodic, odd-periodic extensions of functions.
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» The only function that is both odd and even is f = 0.

» Most functions are neither odd nor even.
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Even, odd functions.

Example
(1) The function f(x) = cos(ax) is even on [—L, L];
(2) The function f(x) = sin(ax) is odd on [—L, L];

(3) The functions f(x) = €< and f(x) = (x — 2)? are neither even
nor odd.
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Even, odd functions.

Example

(1) The function f(x) = cos(ax) is even on [—L, L];

(2) The function f(x) = sin(ax) is odd on [—L, L];

(3) The functions f(x) = €< and f(x) = (x — 2)? are neither even
nor odd.

y f(x) =e*
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Sine and Cosine Series (Sect. 10.4).

» Even, odd functions.
» Main properties of even, odd functions.
» Sine and cosine series.

» Even-periodic, odd-periodic extensions of functions.



Main properties of even, odd functions.

Theorem

(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.

(3) The product of two even functions is even.
(4)
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Main properties of even, odd functions.

Theorem

(1) A linear combination of even (odd) functions is even (odd).
(2)
(3) The product of two even functions is even.
(4)

The product of two odd functions is even.

The product of an even function by an odd function is odd.

Proof:
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Theorem

(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.

(3) The product of two even functions is even.
(4)
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Main properties of even, odd functions.

Theorem

(1) A linear combination of even (odd) functions is even (odd).
(2) The product of two odd functions is even.

(3) The product of two even functions is even.
(4)

4) The product of an even function by an odd function is odd.

Proof:
(2) Let f and g be odd, that is, f(—x) = —f(x),
g(—x) = —g(x). Then, for all a, b € R holds,

(f8)(—x) = f(—x)g(—x) = (—f(x)) (—&(x)) = f(x)g(x) = (fg)(x).

Cases (3), (4) are similar.
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Sine and cosine series.

Theorem (Cosine and Sine Series)

Consider the function f : [—L, L] — R with Fourier expansion

+Z[ancos< =) + busin(75) .

(1) Iff is even, then b, =0 for n=1,2,--- , and the Fourier

series
aog nmx
-2 S ()

is called a Cosine Series.
(2) If f is odd, then a, =0 for n=0,1,---, and the Fourier

series )
./ nmTXx
= g b,ﬁm(—)
L
n=1

is called a Sine Series.
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Sine and cosine series.

Proof:

If f is even, and since the Sine function is odd, then

/ F(x sm )d —0,

since we are integrating an odd function on [—L, L].

If fis odd, and since the Cosine function is even, then
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Sine and cosine series.

Proof:

If f is even, and since the Sine function is odd, then

/ F(x sm )d —0,

since we are integrating an odd function on [—L, L].

If fis odd, and since the Cosine function is even, then

an:i/_LLf( )cos( 1 )d =0,

since we are integrating an odd function on [—L, L].
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Even-periodic, odd-periodic extensions of functions.

(1) Even-periodic case:
A function f : [0, L] — R can be extended as an even function
f:[-L, L] — R requiring for x € [0, L] that

This function f : [-L, L] — R can be further extended as a
periodic function f : R — R requiring for x € [—L, L] that

f(x 4+ 2nL) = f(x).



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of f(x) = x°, with
x € [0,1].
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Even-periodic, odd-periodic extensions of functions.

Example
Sketch the graph of the even-periodic extension of f(x) = x°, with

x € [0,1].

Solution:
y

Even | extension of f(x) = X
1

-1 1 X
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Even-periodic, odd-periodic extensions of functions.

(2) Odd-periodic case:
A function f : (0,L) — R can be extended as an odd function
f:(—L,L) — R requiring for x € (0, L) that

f(-x) = —f(x),  f(0)=0.
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(2) Odd-periodic case:
A function f : (0,L) — R can be extended as an odd function
f:(—L,L) — R requiring for x € (0, L) that

f(—x) = —f(x),  f(0)=0.

This function f : (=L, L) — R can be further extended as a
periodic function f : R — R requiring for x € (—L,L) and n
integer that

f(x+2nL) = f(x), and f(nL)=0.
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(2) Odd-periodic case:
A function f : (0,L) — R can be extended as an odd function
f:(—L,L) — R requiring for x € (0, L) that

f(—x) = —f(x), f(0) =0.
This function f : (=L, L) — R can be further extended as a
periodic function f : R — R requiring for x € (—L,L) and n

integer that
f(x+2nL) = f(x), and f(nL)=0.

Remark: At x = 4L, the extension f must satisfy:
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(2) Odd-periodic case:
A function f : (0,L) — R can be extended as an odd function
f:(—L,L) — R requiring for x € (0, L) that

f(—x) = —f(x),  f(0)=0.

This function f : (=L, L) — R can be further extended as a
periodic function f : R — R requiring for x € (—L,L) and n
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(2) Odd-periodic case:
A function f : (0,L) — R can be extended as an odd function
f:(—L,L) — R requiring for x € (0, L) that

f(—x) = —f(x),  f(0)=0.

This function f : (=L, L) — R can be further extended as a
periodic function f : R — R requiring for x € (—L,L) and n
integer that

f(x+2nL) = f(x), and f(nL)=0.

Remark: At x = 4L, the extension f must satisfy:
(a) fis odd, hence f(—L) = —f(L);
(b) fis periodic, hence f(—L) = f(—L+2L) = f(L).



Even-periodic, odd-periodic extensions of functions.

(2) Odd-periodic case:
A function f : (0,L) — R can be extended as an odd function
f:(—L,L) — R requiring for x € (0, L) that

f(—x) = —f(x),  f(0)=0.

This function f : (=L, L) — R can be further extended as a
periodic function f : R — R requiring for x € (—L,L) and n

integer that
f(x+2nL) = f(x), and f(nL)=0.

Remark: At x = 4L, the extension f must satisfy:
(a) fis odd, hence f(—L) = —f(L);

(b) fis periodic, hence f(—L) = f(—L+2L) = f(L).
We then conclude that —f (L) = (L),



Even-periodic, odd-periodic extensions of functions.

(2) Odd-periodic case:
A function f : (0,L) — R can be extended as an odd function
f:(—L,L) — R requiring for x € (0, L) that

f(—x) = —f(x),  f(0)=0.

This function f : (=L, L) — R can be further extended as a
periodic function f : R — R requiring for x € (—L,L) and n

integer that
f(x+2nL) = f(x), and f(nL)=0.

Remark: At x = 4L, the extension f must satisfy:

(a) fis odd, hence f(—L) = —f(L);

(b) fis periodic, hence f(—L) = f(—L+2L) = f(L).
We then conclude that —f(L) = f(L), hence f(L) = 0.



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f(x) = x>, with
x € (0,1).
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Even-periodic, odd-periodic extensions of functions.

Example
Sketch the graph of the odd-periodic extension of f(x) = x>, with

x € (0,1).

Solution:

Odd | extension of f(x) = X

Odd-periodic | extension of f(x) = x5
1




Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of f(x) = x, with
x € [0,1], and then find its Fourier Series.
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Example
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Even-periodic, odd-periodic extensions of functions.

Example
Sketch the graph of the even-periodic extension of f(x) = x, with
x € [0,1], and then find its Fourier Series.

Solution:

f(x) = x

y

Even-periodic | extension of f(x) = x
1




Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of f(x) = x, with
x € [0,1], and then find its Fourier Series.
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Example
Sketch the graph of the even-periodic extension of f(x) = x, with
x € [0,1], and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a
Cosine Series,



Even-periodic, odd-periodic extensions of functions.

Example
Sketch the graph of the even-periodic extension of f(x) = x, with
x € [0,1], and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a
Cosine Series, that is, b, = 0.



Even-periodic, odd-periodic extensions of functions.

Example
Sketch the graph of the even-periodic extension of f(x) = x, with
x € [0,1], and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a
Cosine Series, that is, b, = 0. From the graph: ag = 1.



Even-periodic, odd-periodic extensions of functions.

Example
Sketch the graph of the even-periodic extension of f(x) = x, with
x € [0,1], and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a
Cosine Series, that is, b, = 0. From the graph: ag = 1.

anp = t/L f(x)cos(?) dx

—L



Even-periodic, odd-periodic extensions of functions.

Example
Sketch the graph of the even-periodic extension of f(x) = x, with
x € [0,1], and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a
Cosine Series, that is, b, = 0. From the graph: ag = 1.
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Even-periodic, odd-periodic extensions of functions.

Example
Sketch the graph of the even-periodic extension of f(x) = x, with
x € [0,1], and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a
Cosine Series, that is, b, = 0. From the graph: ag = 1.

ap = t/_LL f(x)cos(?) dx = i/OL f(x) cos(nLLX> dx.
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Even-periodic, odd-periodic extensions of functions.

Example
Sketch the graph of the even-periodic extension of f(x) = x, with
x € [0,1], and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a
Cosine Series, that is, b, = 0. From the graph: ag = 1.

ap = t/_LL f(x)cos(?) dx = i/OL f(x) cos(nLLX> dx.
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Even-periodic, odd-periodic extensions of functions.

Example
Sketch the graph of the even-periodic extension of f(x) = x, with
x € [0,1], and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a
Cosine Series, that is, b, = 0. From the graph: ag = 1.

ap = t/_LL f(x)cos(?) dx = i/OL f(x) cos(nLLX> dx.

1

Y

X sinn(7rT77rx) CO(SISTIZ;TQX)}

1
an—2/ x cos(nmx) dx:2[
0

[(-D)"—1].

anp = [cos(nm) —1] = a,= (

2 nm)2
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nm)
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Example
Sketch the graph of the even-periodic extension of f(x) = x, with

x € [0,1], and then find its Fourier Series.
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Solution: Recall: b, =0, and a, = (
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Sketch the graph of the even-periodic extension of f(x) = x, with
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Even-periodic, odd-periodic extensions of functions.

Example
Sketch the graph of the even-periodic extension of f(x) = x, with

x € [0,1], and then find its Fourier Series.
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Sketch the graph of the even-periodic extension of f(x) = x, with
x € [0,1], and then find its Fourier Series.
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Even-periodic, odd-periodic extensions of functions.

Example
Sketch the graph of the even-periodic extension of f(x) = x, with
x € [0,1], and then find its Fourier Series.

2

nT)

s[(=1)" —1].

Solution: Recall: b, =0, and a, = (

n=2k = ay= [(2/(2)71']2 [(—1)2k — 1] = ay =0.

B 2[ 1-1] B —4
n=2k—1 = ay_ 1= [(2/( 1) ]2 = agk,l—m.

flx)==— % Z (2ki1)2 cos((2k — 1)mx). 4
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x € (0,1), and then find its Fourier Series.
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Sketch the graph of the odd-periodic extension of f(x) = x, with
x € (0,1), and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series, that is, a, = 0.



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f(x) = x, with
x € (0,1), and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series, that is, a, = 0.
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Example

Sketch the graph of the odd-periodic extension of f(x) = x, with
x € (0,1), and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series, that is, a, = 0.
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Example

Sketch the graph of the odd-periodic extension of f(x) = x, with
x € (0,1), and then find its Fourier Series.
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Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f(x) = x, with
x € (0,1), and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series, that is, a, = 0.
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Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f(x) = x, with
x € (0,1), and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series, that is, a, = 0.

by = i/_LL f(x)sin(?) dx = i/OL f(x)sin(?) dx.

x cos(nmx) sin(mrx)] ’1

1
b, = 2/ xsin(nmx) dx = 2 [— ,
0 0

nm (nm)?
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Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f(x) = x, with
x € (0,1), and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series, that is, a, = 0.

by = i/_LL f(x)sin(?) dx = i/OL f(x)sin(?) dx.

x cos(nmx) sin(mrx)] ’1

1
b, = 2/ xsin(nmx) dx = 2 [— ,
0 0

nm (nm)?

b, = ;—j[cos(mr) -0 = b= ﬂ

nm



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f(x) = x, with
x € (0,1), and then find its Fourier Series.

2 (_1)n+1

nm

Solution: Recall: a, =0, and b, =



Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the odd-periodic extension of f(x) = x, with
€ (0,1), and then find its Fourier Series.

2 (_1)n+1
nm

Solution: Recall: a,=0, and b, = . Therefore,

2 0 (n+1
— Z sin(nmx). 4
T n=1



Solving the Heat Equation (Sect. 10.5).

Review: The Stationary Heat Equation.
The Heat Equation.
The Initial-Boundary Value Problem.

The separation of variables method.
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Review: The Stationary Heat Equation.

Review: The Stationary Heat Equation describes the temperature
distribution in a solid material in thermal equilibrium. The
temperature is time-independent.

Problem: The time-independent temperature, T, of a bar of
length L with insulated horizontal sides and vertical extremes kept
at fixed temperatures Ty, T, is the solution of the BVP:

T"(x)=0, xe(0,L), T(0)=Ty, T(L)=T,

y T insulation

o

z insulation

Remark: The heat transfer occurs only along the x-axis.



Solving the Heat Equation (Sect. 10.5).

Review: The Stationary Heat Equation.
The Heat Equation.
The Initial-Boundary Value Problem.

The separation of variables method.

vV v v v Y

An example of separation of variables.
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The Heat Equation.

Remarks:

» The unknown of the problem is u(t, x), the temperature of
the bar at the time t and position x.

» The temperature does not depend on y or z.
» The one-dimensional Heat Equation is:
Oru(t, x) = k02u(t, x),
(distance)?
(time)
» The Heat Equation is a Partial Differential Equation, PDE.

where k > 0 is the heat conductivity, units: [k] =



The Heat Equation.

Remarks:

» The unknown of the problem is u(t, x), the temperature of
the bar at the time t and position x.

» The temperature does not depend on y or z.
» The one-dimensional Heat Equation is:
Oru(t, x) = k02u(t, x),
(distance)?
(time)
» The Heat Equation is a Partial Differential Equation, PDE.

where k > 0 is the heat conductivity, units: [k] =

u
étU:O Ju<0 B‘U>0

0 L
t is held constant. X
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The Heat Equation.
The Initial-Boundary Value Problem.
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The IBVP for the one-dimensional Heat Equation is the following:
Given a constant k > 0 and a function f : [0, L] — R with
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The Initial-Boundary Value Problem.

Definition

The IBVP for the one-dimensional Heat Equation is the following:
Given a constant k > 0 and a function f : [0, L] — R with

f(0) =f(L) =0, find u: [0,00) x [0, L] — R solution of

Oru(t, x) = k d2u(t, x),

[.C.: u(0,x) = f(x),

B.C.. wu(t,0)=0, u(t,L)=0.

u(t0)= OW (LL)=0

) = f(x) 't
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The Heat Equation.
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Summary: IBVP for the Heat Equation.

Propose:
u(t,x) = Z n Va(t) wi(x).
n=1

where
> v,: Solution of an IVP.
> w,: Solution of a BVP, an eigenvalue-eigenfunction problem.

» c,: Fourier Series coefficients.



The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:
Z Cn Vn n

where
> v,: Solution of an IVP.
> w,: Solution of a BVP, an eigenvalue-eigenfunction problem.
» c,: Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.
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Summary:
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The separation of variables method.

Summary:
» The idea is to transform the PDE into infinitely many ODEs.
» We describe this method in 6 steps.

Step 1:
One looks for solutions u given by an infinite series of simpler
functions, u,, that is,

00
U(t,X) = Z Cn Un(taX)a
n=1

where u, is simpler than u is the sense,
un(t, x) = va(t) wp(x).

Here c, are constants, n=1,2,---.
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The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,
Oru — ka)%u =0 = ch [8tu,, - k@iun} =0.
n=1

A sufficient condition for the equation above is: To find uj, for
n=1,2,---, solutions of

Orlp — k@iun =0.

Step 3:
Find upn(t, x) = vu(t) wp(x) solution of the IBVP

Ortn — k2u, = 0.
.C.: un(0,x) = wp(x),

B.C.: wun(t,0) =0, un(t,L)=0.
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Step 4: (Key step.)
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The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for u, into: (a) IVP for v,; (b) BVP for w,.

Notice: dv
Orup(t, x) = O¢ [va(t) wn(x)] = wa(x) d—tn(t)
2un(t,x) = 02 [Va(t) wa(x)] = va(t) ddXV;n (x).
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» The Heat Equation has the following property:
The left-hand side depends only on t, while the right-hand
side depends only on x.

» When this happens in a PDE, one can use the separation of
variables method on that PDE.

» We conclude that for appropriate constants A, holds

1 dv, 1 d2Wn
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» We have transformed the original PDE into infinitely many
ODEs parametrized by n, positive integer.
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The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE,
can transformed into:

(a) We choose to solve the following IVP for v,,

1 dvy,
kvn(t) dt

(t) =—Xn, LC: v(0)=1.
Remark: This choice of I.C. simplifies the problem.

(b) The BVP for wy,

1 d?w,
Wn(x) dx?

(x)=—=Xn, B.C.: wu(0)=0, wy(L)=0.

Step 5:
(a) Solve the IVP for v,.
(b) Solve the BVP for w,,.
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Step 5(a): Recall: v,(t) = e k.

Step 5(b): Eigenvalue-eigenvector problem for wj:
Find the eigenvalues A, and the non-zero eigenfunctions w;,
solutions of the BVP

W (x) + Apwa(x) =0 B.C.: wy(0) =0, w,(L)=0.

We know that this problem has solution only for A, > 0.
Denote: A, = 2. Proposing w,(x) = e, we get that

plra)=r2+p2=0 = rpe =+
The real-valued general solution is

Wn(x) = c1 cos(pnx) + c2 sin(pnx).
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Recall: v,(t) = e "t w,(x) = c1 cos(unx) + c2 sin(jnx).
The boundary conditions imply,

0=wp(0)=c = wp(x) = c2 sin(ppx).

0=wy(L) = csin(unl), o #0, = sin(u,l)=0.

=~ = ()

nm
pupl=nm = pup=— [

L

Choosing ¢ = 1, we get wy(x) = sin(nLLX).

We conclude that: u,(t, x) = e kTt sin<mr—x>, n=1,2---.
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Step 6: Recall: wu,(t,x) = e KTt sin(nLLX>.
Compute the solution to the IBVP for the Heat Equation,

x) = icn un(t, x).
Zc e KT sm(mLTX).

By construction, this solution satisfies the boundary conditions,
u(t,0) =0, u(t,L) =0.

Given a function f with f(0) = f(L) = 0, the solution u above
satisfies the initial condition f(x) = u(0, x) iff holds

x) = Zc,, sin(?).
n=1
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Recall:
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This is a Sme Series for f. The coefficients ¢, are computed in the
usual way. Recall the orthogonality relation

[ () sin( ) o =
0

L
Multiply the equation for u by sin(%) nd integrate,

ni::lcn /OL sin(mrTX> sin(mzx> dx = /OL f(x) sin(mzx) dx.

o

Y m#”?
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N~
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This is a Sme Series for f. The coefficients ¢, are computed in the
usual way. Recall the orthogonality relation
m # n,

[an() i) - Oé "
n

Multiply the equation for u by sin(%) nd integrate,

ni:o:lcn /OLsin(mrLX> Sin(mwx> dX:/OLf(x) Sin(mﬂ'X) .
/ f(x sin nmx ZC oK) Sin(ﬂLx)_
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The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:
u(t,x) = Z n Va(t) wi(x).
n=1

where
> v,: Solution of an IVP.
> w,: Solution of a BVP, an eigenvalue-eigenfunction problem.

» c,: Fourier Series coefficients.



The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:
Z Cn Vn n

where
> v,: Solution of an IVP.
> w,: Solution of a BVP, an eigenvalue-eigenfunction problem.
» c,: Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.



Solving the Heat Equation (Sect. 10.5).

Review: The Stationary Heat Equation.
The Heat Equation.
The Initial-Boundary Value Problem.

The separation of variables method.

vV v v v .Y

An example of separation of variables.
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An example of separation of variables.
Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],
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Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,
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Next the BVP: w//(x) + A\, wy(x) = 0, with w,(0) = w,(L) = 0.
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Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,
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Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,
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va(t) =ce #t 1=vy(0)=c = v,(t)=e L.

Next the BVP: w//(x) + A\, wy(x) = 0, with w,(0) = w,(L) = 0.
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Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

g

va(t) =ce #t 1=vy(0)=c = v,(t)=e L.

Next the BVP: w//(x) + A\, wy(x) = 0, with w,(0) = w,(L) = 0.

Since A, > 0, introduce A\, = 2. The characteristic polynomial is

p(N=r+p2=0 = 1w =+l



An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

g

va(t) =ce #t 1=vy(0)=c = v,(t)=e L.

Next the BVP: w//(x) + A\, wy(x) = 0, with w,(0) = w,(L) = 0.

Since A, > 0, introduce A\, = 2. The characteristic polynomial is
p(N=r+p2=0 = 1w =+l

The general solution, w,(x) = ¢ cos(px) + ¢ sin(finx).



An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

PYH

v(t)=ce #t, 1=v,(0)=c = v,(t)=e 7.
Next the BVP: w//(x) + A\, wy(x) = 0, with w,(0) = w,(L) = 0.
Since A, > 0, introduce A\, = ,u%. The characteristic polynomial is

p(r)=r* +12=0 = 1=+,
The general solution, w,(x) = ¢ cos(px) + ¢ sin(finx).

The boundary conditions imply
0= W,,(O) = (1,



An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: Recall: [e%t v,,(t)]/ = 0. Therefore,

PYH

v(t)=ce #t, 1=v,(0)=c = v,(t)=e 7.
Next the BVP: w//(x) + A\, wy(x) = 0, with w,(0) = w,(L) = 0.
Since A, > 0, introduce A\, = ,u%. The characteristic polynomial is

p(r)=r* +12=0 = 1=+,
The general solution, w,(x) = ¢ cos(px) + ¢ sin(finx).

The boundary conditions imply
0=wy(0) =c1, = wp(x)=c sin(pnx).
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Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

An ¢

Solution: Recall: v,(t) =e™ +°, and w,y(x) = ¢ sin(pnx).
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Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],
u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

An ¢

Solution: Recall: v,(t) =e™ +°, and w,y(x) = ¢ sin(pnx).

0 = wy(2) = ¢ sin(un2),



An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],
u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

An ¢

Solution: Recall: v,(t) =e™ +°, and w,y(x) = ¢ sin(pnx).

0= wy(2) = sin(un2), 2 #0,



An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],
u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

An ¢

Solution: Recall: v,(t) =e™ +°, and w,y(x) = ¢ sin(pnx).

0=wy(2) = sin(n2), @ #0, = sin(u,2)=0.



An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

Solution: Recall: v,(t) = e ¥t and wp(x) = ¢z sin(pinx).
0=wy(2) = sin(n2), @ #0, = sin(u,2)=0.

Then, pp2 = nm,



An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],
u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

Solution: Recall: v,(t) = e ¥t and wp(x) = ¢z sin(pinx).

0=wy(2) = sin(n2), @ #0, = sin(u,2)=0.

Then, y1,2 = n, that is, i, = ”777



An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.
Solution: Recall: v,(t) = e ¥t and wp(x) = ¢z sin(pinx).

0=wy(2) = sin(n2), @ #0, = sin(u,2)=0.

Then, pup2 = nm, that is, pu, = ng Choosing ¢, = 1, we conclude,

Am = (%)2, wp(x) = sin(?).



An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, wu(t,2)=0.

Solution: Recall: v,(t) = e ¥t and wp(x) = ¢z sin(pinx).
0=wy(2) = sin(n2), @ #0, = sin(u,2)=0.

Then, pup2 = nm, that is, pu, = ng Choosing ¢, = 1, we conclude,
2
Am = (n—ﬂ) , wp(x) = sin(?).

2
Zc,, - sin(?).



An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, wu(t,2)=0.

. nﬂ' 2 . nmx
Solution: Recall: u(t, x) ch 7 )t an(T).
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Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, wu(t,2)=0.

. nﬂ' 2 . nmx
Solution: Recall: u(t, x) ch 7 )t sm<7>.

The initial condition is 3 S|n< ) ch sm(n X)
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Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, wu(t,2)=0.

. nﬂ' 2 . nmx
Solution: Recall: u(t, x) ch 7 )t sm(T).

The initial condition is 3 sm( ) ch sm(n X)

The orthogonality of the sine functlons |mp||es

3/02 sin(%x) sin(mgx> dx = i/oz sin<m2r—x) sin(m;TX> dx.
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Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, wu(t,2)=0.

. nﬂ' 2 . nmx
Solution: Recall: u(t, x) ch 7 )t sm(T).

The initial condition is 3 sm( ) ch sm(n X)

The orthogonality of the sine functlons |mp||es
2 0 2
3/0 sin(%x) sin(mgx> dx = ;/0 sin<m2r—x) sin(m;TX> dx.

If m+# 1, then 0 = ¢, 2,




An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, wu(t,2)=0.

. nﬂ' 2 . nmx
Solution: Recall: u(t, x) ch 7 )t sm(T).

The initial condition is 3 sm( ) ch sm(n X)

The orthogonality of the sine functlons |mp||es
2 0 2
3/0 sin(%x) sin(mgx> dx = ;/0 sin<m2r—x) sin(m;TX> dx.

If m 1, then 0 = ¢ 3, that is, ¢ = 0 for m # 1.




An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, wu(t,2)=0.

. nﬂ' 2 . nmx
Solution: Recall: u(t, x) Zc,, 7 )t sm(T).

The initial condition is 3 sm( ) ch sm(n X)

The orthogonality of the sine functlons |mp||es
2 0 2
3/0 sin(%x) sin(m;X> dx = ;/0 sin<m2r—x) sin(m;TX> dx.

If m#1, then 0 = ¢y % that is, ¢y, = 0 for m £ 1. Therefore,

3sin(7r2—x) = ¢y sin (%)




An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d?u, t>0, x¢c][0,2],

u(0,x) = 3sin(mx/2), wu(t,0)=0, wu(t,2)=0.

. nﬂ' 2 . nmx
Solution: Recall: u(t, x) Zc,, 7 )t sm(T).

The initial condition is 3 sm( ) ch sm(n X)

The orthogonality of the sine functlons |mp||es
2 0 2
3/0 sin(%x) sin(m;X> dx = ;/0 sin<m2r—x) sin(m;TX> dx.

If m#1, then 0 = ¢y % that is, ¢y, = 0 for m £ 1. Therefore,

3sin(7r2—x) =q sin(%) = =3




An example of separation of variables.

Example
Find the solution to the IBVP 40,u = d2u, t>0, x¢€][0,2],

u(0,x) = 3sin(rx/2), u(t,0)=0, u(t,2)=0.

Solution: We conclude that

u(t,x) = 3e(3) sin(%x).



Review Exam 4.

» Sections 7.1-7.6, 7.8, 10.1-10.5.

» 5 or 6 problems.
» 50 minutes.

Overview of linear differential systems (7.1).
Review of Linear Algebra (7.2,7.3).

Basic Theorey of first order systems (7.4).
Homogeneous constant coefficients systems:

vVvy vy

> Real and different eigenvalues (7.5).
» Complex eigenvalues (7.6).
> Real and repeated eigenvalues (7.8).
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Example
Find the real-valued general solution of

X'(t) = Ax(t), A= [_2

Solution: Eigenvalues of A:

(1-x) 2
P =1, (1—)\)'
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Example
Find the real-valued general solution of

N 12
x'(t) = Ax(t), A= [_2 J .
Solution: Eigenvalues of A:
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Example
Find the real-valued general solution of

N 12
x'(t) = Ax(t), A= [_2 1] .
Solution: Eigenvalues of A:

(1-A) 2 ' =(A-12+4=0

P=1" 57 1oy

A=12=—-4 = Ap=1+2i
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Example
Find the real-valued general solution of

N 12
x'(t) = Ax(t), A= [_2 J .
Solution: Eigenvalues of A:

(1-A) 2 ' =(A-12+4=0

P = ’ 2 (1-1)
A=12=—-4 = Ap=1+2i
Eigenvector for A.

1—(1+2) 2
(A_M'):[ —2 1—(1+2i)}
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Example
Find the real-valued general solution of

N 12
x'(t) = Ax(t), A= [_2 J .
Solution: Eigenvalues of A:

(1-A) 2 ' =(A-12+4=0

p(A)_’ 2 (1-1)
A-1P=-4 = I=1+2i

Eigenvector for A.

w0 )]



Exam: November 11, 2008. Problem 4

Example

Find the real-valued general solution of

1 2

X'(t) = Ax(t), A= [_2 1

Solution: Recall: Ay =1+2i, (A—\l)= [_
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Find the real-valued general solution of
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Solution: Recall: Ay =1+2i, (A—\l)= [_
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Example

Find the real-valued general solution of
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X'(t) = Ax(t), A= [_2 1

Solution: Recall: Ay =1+2i, (A—\l)= [_

-2i 2 2 2
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Example

Find the real-valued general solution of

1 2

X'(t) = Ax(t), A= [_2 1

Solution: Recall: Ay =1+2i, (A—\l)= [_

-2 2 2 2 1
— —
[—2 —2/} [—2 —2i] {0 0]

E
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Example

Find the real-valued general solution of

K(t) = Ax(t), A= [_12 ﬂ

Solution: Recall: Ay =1+2i, (A— A\ /)= [21 2 }

-2 =2i|

2 2] [2 2] [r .
Ry 2 _2j 0o — “T—w
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Example

Find the real-valued general solution of

K(t) = Ax(t), A= [_12 ﬂ

Solution: Recall: Ay =1+2i, (A— A\ /)= [21 2 }

o _2i|"
—2i 2] _[2 2] _[ti] _ .
2 i 2 i 0 0 =i

Choosing v» =1,
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Example

Find the real-valued general solution of

K(t) = Ax(t), A= [_12 ﬂ

Solution: Recall: Ay =1+2i, (A=A l)= [_221 _221}.

2 2] [2 2] [r .
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Example

Find the real-valued general solution of

K(t) = Ax(t), A= [_12 ﬂ

Solution: Recall: Ay =1+2i, (A=A l)= [_221 _221}.

2 2] [2 2] [r .
Ry 2 _2j 0o — “T—w

Choosing vo» =1, we get v; = —i, that is,

CON (4) g — |/
=[] = -]
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Example

Find the real-valued general sol. x'(t) = Ax(t), A

Solution: Recall: Ay = 1+2j, and v(¥) = {

Fi
1

|-

Also recalling: If A = a + 3i and vi®) —a+ b/,
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Find the real-valued general sol. x'(t) = Ax(t), A

I
—
-
=N
[I——'

Solution: Recall: Ay =1+£2/, and viE) = {ﬁl] = [0} + [1} i

Also recalling: If A = a + 3i and vi®) —a+ b/, then

x(l)(t) = eo‘t[a cos(ft) — b sin(,@t)],
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Example

Find the real-valued general sol. x'(t) = Ax(t), A

1 1
Also recalling: If A = a + 3i and vi®) —a+ b/, then

x(l)(t) = eo‘t[a cos(ft) — b sin(,@t)],

Solution: Recall: Ay =1+2/, and v(¥) = {$I] = [0

x®)(t) = e“[a sin(Bt) + b cos(3t)].

I
1
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Example

Find the real-valued general sol. x'(t) = Ax(t), A

Solution: Recall: Ay =1+2/, and v(¥) = {$I] = [0

1
Also recalling: If A = a + 3i and vi®) —a+ b/, then

x(l)(t) = eo‘t[a cos(ft) — b sin(,@t)],

x®)(t) = e“[a sin(Bt) + b cos(3t)].

x(1) = ef(m cos(2t) — [_01} sin(2t) )

I
1
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Find the real-valued general sol. x'(t) = Ax(t), A

I
—
-
=N
[I——'

Solution: Recall: Ay = 1+2i, and v(®) = ﬁ’] - m + [1} i

Also recalling: If A = a + 3i and vi®) —a+ b/, then
x(t) = et [a cos(4t) — b sin(6t)],
x®)(t) = e“[a sin(Bt) + b cos(3t)].

x(1) = ef(m cos(2t) — [‘01} sin(2t)) = xV = ¢t an((zz?)} .
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Example

Find the real-valued general sol. x/(t) = Ax(t), A= [_12 ﬂ

1 1 0
Also recalling: If A = a + 3i and vi®) —a+ b/, then

x(l)(t) = eo‘t[a cos(ft) — b sin(,@t)],

Solution: Recall: Ay =1+£2/, and viE) = {$I] = [0} + [1} i

x3)(t) = et [a sin(Bt) + b cos(5t)].
x(1) = ef(m cos(2t) — [_01} sin(2t)) = xV = ¢t an(é?)} .

X — ef<m sin(2t) + [_01] cos(2t))
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Example

Find the real-valued general sol. x/(t) = Ax(t), A= [_12 ﬂ

1 1 0
Also recalling: If A = a + 3i and vi®) —a+ b/, then

x(l)(t) = eo‘t[a cos(ft) — b sin(,@t)],

Solution: Recall: Ay =1+£2/, and viE) = {$I] = [0} + [1} i

x3)(t) = et [a sin(Bt) + b cos(5t)].
x(1) = ef(m cos(2t) — [‘01} sin(2t)) = xV = ¢t an((zz?)} .

X — ef<m sin(2t) + [_01] cos(2t)) = x@) = et {_sf:(sz(f)t)} .
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Remark: The formulas for

x(l)(t) = e"‘t[a cos(ft) — b sin(ﬂt)],
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Remark: The formulas for
x(t) = e [a cos(8t) — b sin(6t)],

x)(t) = e®[a sin(Bt) + b cos(5t)].
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x)(t) = e®[a sin(Bt) + b cos(5t)].

are the real and imaginary part of X(*) = (a+bi) elotBit,



Hint to remember formulas for x(!) and x(?.

Remark: The formulas for
x(t) = e [a cos(8t) — b sin(6t)],
x)(t) = e®[a sin(Bt) + b cos(5t)].
are the real and imaginary part of X(*) = (a+bi) (@0t Indeed,

%) = (a +bi) [cos(Bt) + isin(Bt)] e**.



Hint to remember formulas for x(!) and x(?.

Remark: The formulas for
x(t) = e [a cos(8t) — b sin(6t)],

x)(t) = e®[a sin(Bt) + b cos(5t)].

are the real and imaginary part of X(*) = (a+bi) (@0t Indeed,
%) = (a +bi) [cos(Bt) + isin(Bt)] e**.

%) = [a cos(t) — bsin(Bt)] e** + i[asin(Bt) + bcos(Ft)] .



Exam: November 12, 2008. Problem 4.

Example
2

Find the general solution of X' = Ax, where A = [\_/g _o|"
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Exam: November 12, 2008. Problem 4.

Example
Find the general solution of x’ = Ax, where A = -3 2
g - 1 —_— \/i _2 .

Solution: Eigenvalues of A:

_|3=n V2
P(>\) - ﬂ (_2 o )\)‘



Exam: November 12, 2008. Problem 4.

Example

Find the general solution of X' = Ax, where A = [\_/g fi

Solution: Eigenvalues of A:

p(A) = (_‘EA) (—Z\/E)\)‘ =(A+2)(A+3)-2=0
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Example
-3 V2
. . ;L _
Find the general solution of x’ = Ax, where A = [ﬁ Q
Solution: Eigenvalues of A:
(-=3-2) V2
p(X\) NG (—2— ) (A +2)(A+3) 0

AN 4+5\A+4=0
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Example
Find the general solution of x' = Ax, where A = [\_/g fi
Solution: Eigenvalues of A:
(-3-2) V2
p(X\) NG (—2— ) (A +2)(A+3) 0
1
M450+4=0 = A= [-5+v25-16]
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Example
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Find the general solution of x Ax, where [ﬁ Q
Solution: Eigenvalues of A:
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Hence Ay = —1, A\_ = —4.
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Find the general solution of x Ax, where [ﬁ Q
Solution: Eigenvalues of A:
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Find the general solution of x Ax, where [ﬁ Q
Solution: Eigenvalues of A:

p(A) = ’(_fé” (—S/EA)‘ =(A+2)(A+3)-2=0
N+5A+4=0 = Ai:%[—Si\/25—l6]:%[—5j:3]
Hence A, = —1, A_ = —4. Eigenvector for A;.
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Solution: Eigenvalues of A:
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Find the general solution of x' = Ax, where A = [\_/g \/i

Solution: Eigenvalues of A:

—3-1) V2

p()) = ’( " (—2—)\)‘ (A +2)(A+3)—2=0
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N =

1
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p()) = ’( " (—2—)\)‘ (A +2)(A+3)—2=0

[—5+3]

N =

1
M450+4=0 = A= [-5+V25-16] =
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Example

Find the general solution of x' = Ax, where A = [\_/g \/i

Solution: Eigenvalues of A:

—3-1) V2

p()) = ’( " (—2—)\)‘ (A +2)(A+3)—2=0

[—5+3]

N =

1
M450+4=0 = A= [-5+V25-16] =

Hence A, = —1, A_ = —4. Eigenvector for A;.
-2 V2 2 —V2 2 —V2
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Example

Find the general solution of x' = Ax, where A = [\_/g \/i

Solution: Eigenvalues of A:

—3-1) V2

p()) = ’( " (—2—)\)‘ (A +2)(A+3)—2=0

[—5+3]

N =

1
M450+4=0 = A= [-5+V25-16] =

Hence A, = —1, A_ = —4. Eigenvector for A;.
-2 V2 2 —V2 2 —V2
wen=[3 =2 2l -l

2vi = V2 v». Choosing v; = v/2 and v = 2, we get v() = {ﬂ
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Find the general solution of X' = Ax, where A = [

Solution: Recall: Ay = —1, A_ = —4, and v() =
Eigenvector for A_.
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Solution: Recall: Ay = —1, A_ = —4, and v() = [\?]
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Find the general solution of X’ = Ax, where A = [ﬁ _2}
Solution: Recall: Ay = —1, A_ = —4, and v() = [\?]

Eigenvector for A_.
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. ) -3 V2
! _
Find the general solution of X’ = Ax, where A = [ﬁ _2}
Solution: Recall: Ay = —1, A_ = —4, and v() = [\?]

Eigenvector for A_.

wvo-(i5 2] - 2]

vi = —vV2v,. Choosing vi = —v/2 and v» = 1, so, vi-) = {_1@]
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Solution: x,
Recall: A- < Ay < 0. We \2
plot the solutions PO
X = x(+) + x(_)’ v(i)i 777777777777777
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that is, LT
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X = v(+) et + v(_) e_4t.
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for different values of ¢;
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Solution: X,
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Solution: )
Recall: A > A_ > 0. We /

plot the solutions

~

x = x4 x5, A~ RN S

for different values of ¢; yd -
and cp.




Exam: November 12, 2008. Variation of Problem 4.

Example

Let Ay =4, A_=—-1, v(t) = [\ﬂ and v(©) = [_ﬂ

Plot the phase portrait of several linear combinations of the
fundamental solutions x(1) = () A+t x(=) — (=) A=t



Exam: November 12, 2008. Variation of Problem 4.

Example

Let Ay =4, A_=—-1, v(t) = [\ﬂ and v(©) = [_ﬂ

Plot the phase portrait of several linear combinations of the
fundamental solutions x(+) = () A+t x(=) — (=) A=t

Solution:
Here A\, > 0> A_. We
plot the solutions

<) _x()



Exam: November 12, 2008. Variation of Problem 4.

Example

Let Ay =4, A_=—-1, v(t) = [\ﬂ and v(©) = [_ﬂ
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Solution:
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Extra problem.

Example
Find x solution of the IVP

X =Ax,  x(0) = [

1
3

|l



Extra problem.

Example
Find x solution of the IVP

X =Ax,  x(0) = [

Solution: Eigenvalues of A:

1
3

|l



Extra problem.

Example
Find x solution of the IVP

x' = Ax, x(0) = [
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x' = Ax, x(0) = [
Solution: Eigenvalues of A:
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Find x solution of the IVP

x = Ax, x(O)_B], A_[:‘I’ ﬂ

Solution: Eigenvalues of A:
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N422A+1=0 = I\ =
Hence A =A_ = —1.

A=1)(A+3)+4=0
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;o 1 -3 4
X = Ax, x(0) = [3], A= [_1 1].
Solution: Eigenvalues of A:
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Hence Ay = A_ = —1. Eigenvector for A..
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Find x solution of the IVP

;o 1 -3 4
X = Ax, x(0) = [3], A= [_1 1].
Solution: Eigenvalues of A:

p(A):‘(_ﬁA) (lj/\)‘ =(A-1)(A+3)+4=0

N4+2A+1=0 = /\i:%[—zi 4 — 4] = —1.

Hence Ay = A_ = —1. Eigenvector for A..
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Find x solution of the IVP

;o 1 -3 4
X = Ax, x(0) = [3], A= [_1 1].
Solution: Eigenvalues of A:

p(A):'(_ﬁA) (1fk)‘ =(A-1)(A+3)+4=0

N4+2A+1=0 = Ai:%[—zi 4_—4] = —1.

Hence Ay = A_ = —1. Eigenvector for A..
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Example
Find x solution of the IVP

x = Ax, x(O)_B], A_[:‘I’ ﬂ

Solution: Eigenvalues of A:

p(A):'(_ﬁA) (1fk)‘ =(A-1)(A+3)+4=0

N4+2A+1=0 = Ai:%[—zi 4_—4] = —1.

Hence Ay = A_ = —1. Eigenvector for A..
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x = Ax, x(O)_B], A_[:‘I’ ﬂ

Solution: Eigenvalues of A:
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Example
Find x solution of the IVP

x = Ax, x(O)_B], A_[:‘I’ ﬂ

Solution: Eigenvalues of A:

p(A):'(_ﬁA) (1fk)‘ =(A-1)(A+3)+4=0

N4+2A+1=0 = Ai:%[—zi 4_—4] = —1.

Hence Ay = A_ = —1. Eigenvector for A..
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vi = 2w. Choosing vi =2 and v» =1,



Extra problem.

Example
Find x solution of the IVP

;o 1 -3 4
X = Ax, x(0) = [3], A= [_1 1].
Solution: Eigenvalues of A:

p(A):'(_ﬁA) (1fk)‘ =(A-1)(A+3)+4=0

N4+2A+1=0 = Ai:%[—zi 4_—4] = —1.

Hence Ay = A_ = —1. Eigenvector for A..
-2 4 1 -2 1 -2
(A+/):|:_1 2:| —>|:1 _2:| —>|:0 0:|.

vi = 2v,. Choosing vi =2 and v» = 1, we get v(t) = [ﬂ
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Extra problem.
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Find x solution of the IVP

;L |1
x' = Ax, x(0) = [3] ,
Solution: Recall: Ay = —1, and v(t) =

Find w solution of (A+ lw = v.
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Extra problem.

Example
Find x solution of the IVP

X = Ax,  x(0)= E] ,
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Solution: Recall: Ay = —1, and v(t) = [ﬂ
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Find w solution of (A+ lw = v.
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Extra problem.

Example
Find x solution of the IVP

;L |1
x' = Ax, x(0) = [3] ,
Solution: Recall: Ay = —1, and v(t) =
Find w solution of (A+ lw = v.
-2 4] [w] _[2] _ [-2
-1 2| |wo| |1 -1

Hence wy = 2wy — 1,



Extra problem.

Example
Find x solution of the IVP

;o |1 -3 4
x = Ax, x(0) = [3] , A= [_1 1] :

Solution: Recall: Ay = —1, and v(t) = [ﬂ

Find w solution of (A+ lw = v.

S0 B 10-0 ]

Hence wqy = 2wy — 1, that is, w = [ﬂ wo + [_(ﬂ
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Example
Find x solution of the IVP

; 1 3 4
X = Ax, x(0) = [3] , A= [_1 1] .
Solution: Recall: Ay = —1, and v(t) = [ }
Find w solution of (A+ lw = v.
-2 4| |m 2 -2 4 2 1 -2 -1
= = —
-1 2| |w 1 -1 2 1 0 O 0

Hence wqy = 2wy — 1, that is, w = [ﬂ [ }

Choose w, =0, sow = [ O}
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Solution: Recall: Ay = —1, v() = [ﬂ and w = {_01}

Fundamental sol: x(1) = E] e t,
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Extra problem.

Example
Find x solution of the IVP

X = Ax, x(O)ZH, A:[_i ﬂ

Solution: Recall: A\i = —1, v(*) = [ﬂ and w — {_1}

0
2 2 -1
- x(1) — -t (2) — —t
Fundamental sol: x { ] e X ([1] t+ [ 0]) e
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Solution: Recall: x = ¢ [1] e +a ([1] E+ [ OD ¢
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X = Ax, x(O)ZH, A:[j ﬂ
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