
Sine and Cosine Series (Sect. 10.4).

I Even, odd functions.

I Main properties of even, odd functions.

I Sine and cosine series.

I Even-periodic, odd-periodic extensions of functions.



Even, odd functions.

Definition
A function f : [−L, L]→ R is even iff for all x ∈ [−L, L] holds

f (−x) = f (x).

A function f : [−L, L]→ R is odd iff for all x ∈ [−L, L] holds

f (−x) = −f (x).

Remarks:

I The only function that is both odd and even is f = 0.

I Most functions are neither odd nor even.
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Even, odd functions.

Example

Show that the function f (x) = x2 is even on [−L, L].

Solution: The function is even, since

f (−x) = (−x)2 = x2 = f (x).
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Even, odd functions.

Example

Show that the function f (x) = x3 is odd on [−L, L].

Solution: The function is odd, since

f (−x) = (−x)3 = −x3 = −f (x).
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Even, odd functions.

Example

(1) The function f (x) = cos(ax) is even on [−L, L];

(2) The function f (x) = sin(ax) is odd on [−L, L];

(3) The functions f (x) = ex and f (x) = (x − 2)2 are neither even
nor odd.
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Main properties of even, odd functions.

Theorem

(1) A linear combination of even (odd) functions is even (odd).

(2) The product of two odd functions is even.

(3) The product of two even functions is even.

(4) The product of an even function by an odd function is odd.

Proof:
(1) Let f and g be even, that is, f (−x) = f (x), g(−x) = g(x).
Then, for all a, b ∈ R holds,

(af +bg)(−x) = af (−x)+bg(−x) = af (x)+bg(x) = (af +bg)(x).

Case ”odd” is similar.
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Main properties of even, odd functions.

Theorem

If f : [−L, L]→ R is even, then
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f (x) dx = 2
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0
f (x) dx.

If f : [−L, L]→ R is odd, then
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f (x) dx = 0.
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Main properties of even, odd functions.

Proof:

I =

∫ L

−L
f (x) dx

=

∫ 0

−L
f (x) dx +

∫ L

0
f (x) dx y = −x , dy = −dx .

I =

∫ 0

L
f (−y) (−dy) +

∫ L

0
f (x) dx =

∫ L

0
f (−y) dy +

∫ L

0
f (x) dx .

Even case: f (−y) = f (y), therefore,

I =

∫ L

0
f (y) dy +

∫ L

0
f (x) dx ⇒

∫ L

−L
f (x) dx = 2

∫ L

0
f (x) dx .

Odd case: f (−y) = −f (y), therefore,

I = −
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0
f (y) dy +
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0
f (x) dx ⇒
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I Main properties of even, odd functions.
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I Even-periodic, odd-periodic extensions of functions.



Sine and cosine series.

Theorem (Cosine and Sine Series)
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f (x) =
a0

2
+

∞∑
n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]
.

(1) If f is even, then bn = 0 for n = 1, 2, · · · , and the Fourier
series

f (x) =
a0

2
+

∞∑
n=1

an cos
(nπx

L

)
is called a Cosine Series.

(2) If f is odd, then an = 0 for n = 0, 1, · · · , and the Fourier
series

f (x) =
∞∑

n=1

bn sin
(nπx

L

)
is called a Sine Series.



Sine and cosine series.
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If f is even, and since the Sine function is odd,
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since we are integrating an odd function on [−L, L].

If f is odd, and since the Cosine function is even, then
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1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx = 0,

since we are integrating an odd function on [−L, L].
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Even-periodic, odd-periodic extensions of functions.

(1) Even-periodic case:
A function f : [0, L]→ R can be extended as an even function
f : [−L, L]→ R requiring for x ∈ [0, L] that

f (−x) = f (x).

This function f : [−L, L]→ R can be further extended as a
periodic function f : R → R requiring for x ∈ [−L, L] that

f (x + 2nL) = f (x).
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Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of f (x) = x5, with
x ∈ [0, 1].

Solution:
y
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1−1

f(x) = x
5

x x−1

Even   extension of  f(x) = x
5

y

1

1

5

y

1

−1 x1

Even−periodic    extension of  f(x) = x

C
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Even-periodic, odd-periodic extensions of functions.

(2) Odd-periodic case:
A function f : (0, L)→ R can be extended as an odd function
f : (−L, L)→ R requiring for x ∈ (0, L) that

f (−x) = −f (x), f (0) = 0.

This function f : (−L, L)→ R can be further extended as a
periodic function f : R → R requiring for x ∈ (−L, L) and n
integer that

f (x + 2nL) = f (x), and f (nL) = 0.

Remark: At x = ±L, the extension f must satisfy:

(a) f is odd, hence f (−L) = −f (L);

(b) f is periodic, hence f (−L) = f (−L + 2L) = f (L).

We then conclude that −f (L) = f (L), hence f (L) = 0.
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Even-periodic, odd-periodic extensions of functions.
Example
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Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of f (x) = x , with
x ∈ [0, 1], and then find its Fourier Series.
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Even-periodic, odd-periodic extensions of functions.

Example

Sketch the graph of the even-periodic extension of f (x) = x , with
x ∈ [0, 1], and then find its Fourier Series.

Solution: Since f is even and periodic, then the Fourier Series is a
Cosine Series, that is, bn = 0. From the graph: a0 = 1.

an =
1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx =

2

L

∫ L

0
f (x) cos

(nπx

L

)
dx .

an = 2

∫ 1

0
x cos(nπx) dx = 2

[x sin(nπx)

nπ
+

cos(nπx)

(nπ)2

]∣∣∣1
0
,

an =
2

(nπ)2
[
cos(nπ)− 1

]
⇒ an =

2

(nπ)2
[
(−1)n − 1

]
.
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Example

Sketch the graph of the odd-periodic extension of f (x) = x , with
x ∈ (0, 1), and then find its Fourier Series.

Solution: Since f is odd and periodic, then the Fourier Series is a
Sine Series, that is, an = 0.
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Solving the Heat Equation (Sect. 10.5).

I Review: The Stationary Heat Equation.

I The Heat Equation.

I The Initial-Boundary Value Problem.

I The separation of variables method.

I An example of separation of variables.



Review: The Stationary Heat Equation.

Review: The Stationary Heat Equation describes the temperature
distribution in a solid material in thermal equilibrium. The
temperature is time-independent.

Problem: The time-independent temperature, T , of a bar of
length L with insulated horizontal sides and vertical extremes kept
at fixed temperatures T0, TL, is the solution of the BVP:

T ′′(x) = 0, x ∈ (0, L), T (0) = T0, T (L) = TL,

y

x0

z insulation

insulation

T  
0

T  L

L x

Remark: The heat transfer occurs only along the x-axis.
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The Heat Equation.

Remarks:

I The unknown of the problem is u(t, x), the temperature of
the bar at the time t and position x .

I The temperature does not depend on y or z .

I The one-dimensional Heat Equation is:

∂tu(t, x) = k ∂2
xu(t, x),

where k > 0 is the heat conductivity, units: [k] =
(distance)2

(time)
.

I The Heat Equation is a Partial Differential Equation, PDE.

L

u(t,x)

t t t
u = 0 u < 0 u > 0

t  is  held  constant.
x

u

0
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Solving the Heat Equation (Sect. 10.5).

I Review: The Stationary Heat Equation.

I The Heat Equation.

I The Initial-Boundary Value Problem.

I The separation of variables method.

I An example of separation of variables.



The Initial-Boundary Value Problem.

Definition
The IBVP for the one-dimensional Heat Equation is the following:
Given a constant k > 0 and a function f : [0, L]→ R with
f (0) = f (L) = 0, find u : [0,∞)× [0, L]→ R solution of

∂tu(t, x) = k ∂2
xu(t, x),

I.C.: u(0, x) = f (x),

B.C.: u(t, 0) = 0, u(t, L) = 0.

2
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u ( t, 0 ) = 0 u ( t, L ) = 0
d u  =  k d   u
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The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

u(t, x) =
∞∑

n=1

cn vn(t) wn(x).

where

I vn: Solution of an IVP.

I wn: Solution of a BVP, an eigenvalue-eigenfunction problem.

I cn: Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.
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The separation of variables method.

Summary:

I The idea is to transform the PDE into infinitely many ODEs.

I We describe this method in 6 steps.

Step 1:
One looks for solutions u given by an infinite series of simpler
functions, un, that is,

u(t, x) =
∞∑

n=1

cn un(t, x),

where un is simpler than u is the sense,

un(t, x) = vn(t) wn(x).

Here cn are constants, n = 1, 2, · · · .
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The separation of variables method.

Step 2:
Introduce the series expansion for u into the Heat Equation,

∂tu − k ∂2
xu = 0

⇒
∞∑

n=1

cn

[
∂tun − k ∂2

xun

]
= 0.

A sufficient condition for the equation above is: To find un, for
n = 1, 2, · · · , solutions of

∂tun − k ∂2
xun = 0.

Step 3:
Find un(t, x) = vn(t) wn(x) solution of the IBVP

∂tun − k ∂2
xun = 0.

I.C.: un(0, x) = wn(x),

B.C.: un(t, 0) = 0, un(t, L) = 0.
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The separation of variables method.

Step 4: (Key step.)
Transform the IBVP for un into:

(a) IVP for vn; (b) BVP for wn.

Notice:
∂tun(t, x) = ∂t

[
vn(t) wn(x)

]
= wn(x)

dvn

dt
(t).

∂2
xun(t, x) = ∂2

x

[
vn(t) wn(x)

]
= vn(t)

d2wn

dx2
(x).

Therefore, the equation ∂tun = k∂2
xun is given by

wn(x)
dvn

dt
(t) = k vn(t)

d2wn

dx2
(x)

1

k vn(t)

dvn

dt
(t) =

1

wn(x)

d2wn

dx2
(x).

Depends only on t = Depends only on x .
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The separation of variables method.

Summary Step 4: The original IBVP for the Heat Equation, PDE,
can transformed into:

(a) We choose to solve the following IVP for vn,

1

k vn(t)

dvn

dt
(t) = −λn, I.C.: vn(0) = 1.

Remark: This choice of I.C. simplifies the problem.

(b) The BVP for wn,

1

wn(x)

d2wn

dx2
(x) = −λn, B.C.: wn(0) = 0, wn(L) = 0.

Step 5:

(a) Solve the IVP for vn.

(b) Solve the BVP for wn.
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The separation of variables method.

Step 5(a): Solving the IVP for vn.

v ′n(t) + kλn vn(t) = 0,

I.C.: vn(0) = 1.

The integrating factor method implies that µ(t) = ekλnt .

ekλntv ′n(t) + kλn ekλnt vn(t) = 0 ⇒
[
ekλntvn(t)

]′
= 0.

ekλntvn(t) = cn ⇒ vn(t) = cn e−kλnt .

1 = vn(0) = c ⇒ vn(t) = e−kλnt .
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The separation of variables method.

Step 5(a): Recall: vn(t) = e−kλnt .

Step 5(b): Eigenvalue-eigenvector problem for wn:
Find the eigenvalues λn and the non-zero eigenfunctions wn

solutions of the BVP

w ′′
n (x) + λn wn(x) = 0 B.C.: wn(0) = 0, wn(L) = 0.

We know that this problem has solution only for λn > 0.
Denote: λn = µ2

n. Proposing wn(x) = ernx , we get that

p(rn) = r2
n + µ2

n = 0 ⇒ rn± = ±µni

The real-valued general solution is

wn(x) = c1 cos(µnx) + c2 sin(µnx).
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The separation of variables method.

Recall: vn(t) = e−kλnt , wn(x) = c1 cos(µnx) + c2 sin(µnx).

The boundary conditions imply,

0 = wn(0) = c1 ⇒ wn(x) = c2 sin(µnx).

0 = wn(L) = c2 sin(µnL), c2 6= 0, ⇒ sin(µnL) = 0.

µnL = nπ ⇒ µn =
nπ

L
⇒ λn =

(nπ

L

)2
.

Choosing c2 = 1, we get wn(x) = sin
(nπx

L

)
.

We conclude that: un(t, x) = e−k( nπ
L

)2t sin
(nπx

L

)
, n = 1, 2, · · · .
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The separation of variables method.

Step 6: Recall: un(t, x) = e−k( nπ
L

)2t sin
(nπx

L

)
.

Compute the solution to the IBVP for the Heat Equation,

u(t, x) =
∞∑

n=1

cn un(t, x).

u(t, x) =
∞∑

n=1

cn e−k( nπ
L

)2t sin
(nπx

L

)
.

By construction, this solution satisfies the boundary conditions,

u(t, 0) = 0, u(t, L) = 0.

Given a function f with f (0) = f (L) = 0, the solution u above
satisfies the initial condition f (x) = u(0, x) iff holds

f (x) =
∞∑

n=1

cn sin
(nπx

L

)
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(mπx

L

)
dx =
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2
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The separation of variables method.

Summary: IBVP for the Heat Equation.

Propose:

u(t, x) =
∞∑

n=1

cn vn(t) wn(x).

where

I vn: Solution of an IVP.

I wn: Solution of a BVP, an eigenvalue-eigenfunction problem.

I cn: Fourier Series coefficients.

Remark:
The separation of variables method does not work for every PDE.
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Solving the Heat Equation (Sect. 10.5).

I Review: The Stationary Heat Equation.

I The Heat Equation.

I The Initial-Boundary Value Problem.

I The separation of variables method.

I An example of separation of variables.



An example of separation of variables.

Example

Find the solution to the IBVP 4∂tu = ∂2
xu, t > 0, x ∈ [0, 2],

u(0, x) = 3 sin(πx/2), u(t, 0) = 0, u(t, 2) = 0.

Solution: Let un(t, x) = vn(t) wn(x). Then

4wn(x)
dv

dt
(t) = vn(t)

d2w

dx2
(x) ⇒ 4v ′n(t)

vn(t)
=

w ′′
n (x)

wn(x)
= −λn.

The equations for vn and wn are

v ′n(t) +
λn

4
vn(t) = 0, w ′′

n (x) + λn wn(x) = 0.

We solve for vn with the initial condition vn(0) = 1.

e
λn
4

t v ′n(t) +
λn

4
e

λn
4

t vn(t) = 0 ⇒
[
e

λn
4

t vn(t)
]′

= 0.
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Exam: November 11, 2008. Problem 4

Example

Find the real-valued general solution of

x′(t) = A x(t), A =

[
1 2
−2 1

]
.

Solution: Eigenvalues of A:

p(λ) =

∣∣∣∣(1− λ) 2
−2 (1− λ)

∣∣∣∣ = (λ− 1)2 + 4 = 0

(λ− 1)2 = −4 ⇒ λ± = 1± 2i .

Eigenvector for λ+.

(A− λ+I ) =

[
1− (1 + 2i) 2

−2 1− (1 + 2i)

]
=

[
−2i 2
−2 −2i

]
.
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Extra problem.

Example

Find x solution of the IVP

x′ = A x, x(0) =

[
1
3

]
, A =

[
−3 4
−1 1

]
.

Solution: Eigenvalues of A:

p(λ) =

∣∣∣∣(−3− λ) 4
−1 (1− λ)

∣∣∣∣ = (λ− 1)(λ + 3) + 4 = 0

λ2 + 2λ + 1 = 0 ⇒ λ± =
1

2

[
−2±

√
4− 4

]
= −1.

Hence λ+ = λ− = −1. Eigenvector for λ±.

(A + I ) =

[
−2 4
−1 2

]
→

[
1 −2
1 −2

]
→

[
1 −2
0 0

]
.

v1 = 2 v2. Choosing v1 = 2 and v2 = 1, we get v(+) =

[
2
1

]
.
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Extra problem.

Example

Let λ = −1 with v =
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Extra problem.

Example
Given any vectors a and b, sketch qualitative phase portraits of

x(1) =
[
a cos(βt)− b sin(βt)

]
eαt , x(2) =

[
a sin(βt) + b cos(βt)

]
eαt .

for the cases α = 0, and α > 0, where β > 0.
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