Boundary Value Problems (Sect. 10.1).

Two-point BVP.
Example from physics.
Comparison: IVP vs BVP.

Existence, uniqueness of solutions to BVP.
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Particular case of BVP: Eigenvalue-eigenfunction problem.



Two-point Boundary Value Problem.

Definition
A two-point BVP is the following: Given functions p, g, g, and
constants x1 < x2, Y1,¥2, bi,ba, by, by,

find a function y solution of the differential equation
Y'+p(x)y +aq(x)y = g(x),
together with the extra, boundary conditions,
bry(x1) + b2 y'(x1) = y1,
b1y(x2) + b2y (x2) = ya.
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evaluated at the same point.



Two-point Boundary Value Problem.

Definition
A two-point BVP is the following: Given functions p, g, g, and
constants

x1<x2, Yi,¥2, bi,ba, by, b,
find a function y solution of the differential equation
Y'+p(x)y +a(x)y = g(x),
together with the extra, boundary conditions,
biy(x1) + b y'(x1) = 1,
biy(x2) + b2 y'(x2) = yo.
Remarks:
» Both y and y’ might appear in the boundary condition,

evaluated at the same point.
» In this notes we only study the case of constant coefficients,

y'+ a1y +agy = g(x).



Two-point Boundary Value Problem.

Example
Examples of BVP.



Two-point Boundary Value Problem.

Example
Examples of BVP. Assume x; # xo.
(1) Find y solution of

Y'+ay +ay=gx), yxi)=y, ylx)=y.



Two-point Boundary Value Problem.

Example
Examples of BVP. Assume x; # xo.
(1) Find y solution of

Y'tay +ay=gx), yla)=y, yle)=y.
(2) Find y solution of

Y'+aiy +ay=gx), y(x1)=y, Y(x)=y.



Two-point Boundary Value Problem.

Example
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(1) Find y solution of

Y'tay +ay=gx), yla)=y, yle)=y.
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(3) Find y solution of

Y'+ay +ay=gx), yxi)=y, yY(e)=y.
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Example from physics.

Problem: The equilibrium (time independent) temperature of a
bar of length L with insulated horizontal sides and the bar vertical
extremes kept at fixed temperatures T, T, is the solution of the
BVP:

T"(x)=0, xe(0,L), T(0)=Ty, T(L)=T,



Example from physics.

Problem: The equilibrium (time independent) temperature of a
bar of length L with insulated horizontal sides and the bar vertical
extremes kept at fixed temperatures T, T, is the solution of the
BVP:

T"(x)=0, xe(0,L), T(0)=Ty, T(L)=T,

y insulation
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Find the function values y(t) solutions of the differential equation
Y'+ay +ay = gl(t),
together with the initial conditions

y(to) =y1, Y'(to) = ye.
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» Initial conditions: Position and velocity at the initial time tp.
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Comparison: IVP vs BVP.

Review: BVP:

Find the function values y(x) solutions of the differential equation
yY'+ay' +ay = g(x),
together with the initial conditions

y(x1) =y1, y(x) =y

Remark: In physics:
» y(x): A physical quantity (temperature) at a position x.

» Boundary conditions: Conditions at the boundary of the
object under study, where x; # x.
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Existence, uniqueness of solutions to BVP.

Review: The initial value problem.

Theorem (IVP)

Consider the homogeneous initial value problem:
YV'tay +ay=0 y(to)=yo, y'(to)=yi,
and let r+ be the roots of the characteristic polynomial
p(r)=r>+ayr+ ap.

If ry # r_, real or complex, then for every choice of y,, y,, there
exists a unique solution y to the initial value problem above.



Existence, uniqueness of solutions to BVP.

Review: The initial value problem.

Theorem (IVP)

Consider the homogeneous initial value problem:
YV'tay +ay=0 y(to)=yo, y'(to)=yi,
and let r+ be the roots of the characteristic polynomial
p(r)=r>+ayr+ ap.
If ry # r_, real or complex, then for every choice of y,, y,, there

exists a unique solution y to the initial value problem above.

Summary: The IVP above always has a unique solution, no matter
what y, and y; we choose.



Existence, uniqueness of solutions to BVP.

Theorem (BVP)

Consider the homogeneous boundary value problem:
Y'tay' +ay=0,  y(0)=y, y(L)=y,
and let ry be the roots of the characteristic polynomial
p(r) =r*+air+ a.

(A) If ry # r—, real, then for every choice of L # 0 and y,, yi,
there exists a unique solution y to the BVP above.

(B) Ifre =a=xiB, with 3 #0, and a, 3 € R, then the solutions
to the BVP above belong to one of these possibilities:

(1) There exists a unique solution.
(2) There exists no solution.
(3) There exist infinitely many solutions.
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Existence, uniqueness of solutions to BVP.
Proof of IVP: We study the case r, # r.. The general solution is

y(t)=ce " "+cget a,6 eR.
The initial conditions determine ¢; and ¢, as follows:
Yo=y(t) =ce” 04 et

n= y/(to) =qre "% 4cr e+
Using matrix notation,

er_ to er+ to a B Yo
ret et |c, an

The linear system above has a unique solution ¢, and ¢, for every
constants y, and y, iff the det(Z) # 0, where

er_ to er+ to G Yo
|:r_ er_ to r. el’+ t0:| = |:C2 Vi
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Proof of IVP: . ,
r- tp r+ 1o
Recall: 7 = { € € ] = 7 H — [y"].

r el’. to r. eh. to ¥i

A simple calculation shows
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Existence, uniqueness of solutions to BVP.

Proof of IVP: . ,
r- tp r+ 1o
Recall: 7 = { € € } = 7 H — [VO].

r el’- to r. eh. to ¥i

A simple calculation shows
det(Z) = (r+ — r_) elrrtr)to #0 & rn#r.

Since r. # r, the matrix Z is invertible and so

G N
We conclude that for every choice of y, and y,, there exist a unique
value of ¢; and ¢, so the IVP above has a unique solution. O
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Existence, uniqueness of solutions to BVP.
Proof of BVP: The general solution is

y(x)=cqe"*+cge™*, a,6 € R.

The boundary conditions determine ¢, and ¢, as follows:
Yo = Y(O) =q+G.
vi=y(l)=ce" Ligert

Using matrix notation,

e e 2=

The linear system above has a unique solution ¢, and ¢, for every
constants y, and y, iff the det(Z) # 0, where

2=l ] = 2=
e e G 34!
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Proof of IVP: Recall: Z = [ rl_L iL] ~ 7 [Cl} _ [}/0]'
e e (e} Vi

A simple calculation shows
det(Z) = et —e"t£0 & eFlse L
(A) If r. # r. and real-valued, then det(Z) # 0.

We conclude: For every choice of y, and y;, there exist a
unique value of ¢; and ¢, so the BVP in (A) above has a
unique solution.
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A simple calculation shows
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Proof of IVP: Recall: Z = [ 1 L ] = Z [ﬂ = [y"].

el‘_ L er+L C2 _yl
A simple calculation shows
det(Z) = et —e"t£0 & eFlse L
(A) If r. # r. and real-valued, then det(Z) # 0.

We conclude: For every choice of y, and y;, there exist a
unique value of ¢; and ¢, so the BVP in (A) above has a
unique solution.

(B) If e =a+ip, with o, € R and 5 # 0, then
det(Z) = et (et — e7PL) = det(Z) = 2i e*tsin(BL).

Since det(Z) = 0 iff 5L = nm, with n integer,
(1) If BL # nm, then BVP has a unique solution.



Existence, uniqueness of solutions to BVP.

Proof of IVP: Recall: Z = [ 1 L ] = Z [Cl} = [y"].

el‘_ L er+ L C2 }/1
A simple calculation shows

det(Z) = et —e"t£0 & eFlse L
(A) If r. # r. and real-valued, then det(Z) # 0.

We conclude: For every choice of y, and y;, there exist a
unique value of ¢; and ¢, so the BVP in (A) above has a
unique solution.

(B) If e =a+ip, with o, € R and 5 # 0, then
det(Z) = et (et — e7PL) = det(Z) = 2i e*tsin(BL).
Since det(Z) = 0 iff 5L = nm, with n integer,
(1) If BL # nm, then BVP has a unique solution.

(2) If BL = nm then BVP either has no solutions or it has infinitely
many solutions. O
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Existence, uniqueness of solutions to BVP.
Example
Find y solution of the BVP
y'+y=0, y(0)=1, y(r)=-1

Solution: The characteristic polynomial is

p(r)=r*4+1 = ri==i
The general solution is

y(x) = c1 cos(x) + ¢ sin(x).
The boundary conditions are

1:y(0):C1, —1:y(7r):—c1 = ca =1,

We conclude: y(x) = cos(x) + ¢ sin(x), with & € R.

The BVP has infinitely many solutions.

¢, free.
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Solution: The characteristic polynomial is
p(r)=r*+1 = r.=+i
The general solution is
y(x) = a1 cos(x) + ¢ sin(x).
The boundary conditions are

1:}/(0):C1,



Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

Y'+y=0 y(0)=1, y(m)=0.
Solution: The characteristic polynomial is
p(r)=r*+1 = r.=+i
The general solution is
y(x) = a1 cos(x) + ¢ sin(x).
The boundary conditions are

l1=y(0)=c, O0=y(r)=—a



Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

Y'+y=0 y(0)=1, y(m)=0.
Solution: The characteristic polynomial is
p(r)=r*+1 = r.=+i
The general solution is
y(x) = a1 cos(x) + ¢ sin(x).
The boundary conditions are
l1=y(0)=c, O0=y(r)=—a

The BVP has no solution.



Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

y'+y=0, y(0)=1, y(x/2)=1



Existence, uniqueness of solutions to BVP.
Example
Find y solution of the BVP
y'+y=0, y(0)=1, y(r/2)=1.
Solution: The characteristic polynomial is

p(r)=r*+1



Existence, uniqueness of solutions to BVP.
Example
Find y solution of the BVP
y'+y=0, y(0)=1, y(r/2)=1.
Solution: The characteristic polynomial is

p(r)=r*4+1 = ri==i



Existence, uniqueness of solutions to BVP.
Example
Find y solution of the BVP
y'+y=0, y(0)=1, y(r/2)=1.
Solution: The characteristic polynomial is
p(r)=r*4+1 = ri==i
The general solution is

y(x) = c1 cos(x) + ¢ sin(x).



Existence, uniqueness of solutions to BVP.
Example
Find y solution of the BVP
y'+y=0, y(0)=1, y(r/2)=1.

Solution: The characteristic polynomial is

p(r)=r*4+1 = ri==i
The general solution is

y(x) = c1 cos(x) + ¢ sin(x).
The boundary conditions are

1= y(O) =,



Existence, uniqueness of solutions to BVP.
Example
Find y solution of the BVP
y'+y=0, y(0)=1, y(r/2)=1.

Solution: The characteristic polynomial is

p(r)=r*4+1 = ri==i
The general solution is

y(x) = c1 cos(x) + ¢ sin(x).
The boundary conditions are

1:y(0):C1, 1:y(7r/2):C2



Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

y'+y=0, y(0)=1, y(r/2)=1
Solution: The characteristic polynomial is
p(r)=r*4+1 = ri==i
The general solution is
y(x) = c1 cos(x) + ¢ sin(x).
The boundary conditions are

1:y(0):c1, 1:y(7r/2):C2 = =0 =1



Existence, uniqueness of solutions to BVP.
Example
Find y solution of the BVP
y'+y=0, y(0)=1, y(r/2)=1.

Solution: The characteristic polynomial is

p(r)=r*4+1 = ri==i
The general solution is

y(x) = c1 cos(x) + ¢ sin(x).
The boundary conditions are

1:y(0):c1, 1:y(7r/2):C2 = =0 =1

We conclude: y(x) = cos(x) + sin(x).



Existence, uniqueness of solutions to BVP.

Example
Find y solution of the BVP

y'+y=0, y(0)=1, y(r/2)=1
Solution: The characteristic polynomial is
p(r)=r*4+1 = ri==i
The general solution is
y(x) = c1 cos(x) + ¢ sin(x).
The boundary conditions are

1:y(0):c1, 1:y(7r/2):C2 = =0 =1

We conclude: y(x) = cos(x) + sin(x).
The BVP has a unique solution.



Boundary Value Problems (Sect. 10.1).

Two-point BVP.
Example from physics.
Comparison: IVP vs BVP.

Existence, uniqueness of solutions to BVP.

vV v v v .Y

Particular case of BVP: Eigenvalue-eigenfunction problem.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number A and a non-zero function y solutions to the
boundary value problem

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number A and a non-zero function y solutions to the
boundary value problem

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Remark: This problem is similar to the eigenvalue-eigenvector
problem in Linear Algebra:



Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number A and a non-zero function y solutions to the
boundary value problem

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Remark: This problem is similar to the eigenvalue-eigenvector
problem in Linear Algebra: Given an n x n matrix A, find A and a
non-zero n-vector v solutions of

Av — v =0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number A and a non-zero function y solutions to the
boundary value problem

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Remark: This problem is similar to the eigenvalue-eigenvector
problem in Linear Algebra: Given an n x n matrix A, find A and a
non-zero n-vector v solutions of

Av — v =0.

Differences:

computing a second derivative and
A — . "
applying the boundary conditions.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Problem:
Find a number A and a non-zero function y solutions to the
boundary value problem

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Remark: This problem is similar to the eigenvalue-eigenvector
problem in Linear Algebra: Given an n x n matrix A, find A and a
non-zero n-vector v solutions of

Av — v =0.

Differences:

computing a second derivative and
A — . "
applying the boundary conditions.

» v. — {a function y}.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.

Remarks: We will show that:



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.

Remarks: We will show that:
(1) If A <0, then the BVP has no solution.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.

Remarks: We will show that:
(1) If A <0, then the BVP has no solution.

(2) If A > 0, then there exist infinitely many eigenvalues A, and
eigenfunctions y,, with n any positive integer,



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.

Remarks: We will show that:
(1) If A <0, then the BVP has no solution.

(2) If A > 0, then there exist infinitely many eigenvalues A, and
eigenfunctions y,, with n any positive integer, given by

= () ) s



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.

Remarks: We will show that:
(1) If A <0, then the BVP has no solution.

(2) If A > 0, then there exist infinitely many eigenvalues A, and
eigenfunctions y,, with n any positive integer, given by

= () ) s

(3) Analogous results can be proven for the same equation but
with different types of boundary conditions.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.

Remarks: We will show that:
(1) If A <0, then the BVP has no solution.

(2) If A > 0, then there exist infinitely many eigenvalues A, and
eigenfunctions y,, with n any positive integer, given by

= () ) s

(3) Analogous results can be proven for the same equation but
with different types of boundary conditions. For example, for

y(0) =0, y'(L) = 0;



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0, y(0)=0, y(L)=0, L>0.

Remarks: We will show that:
(1) If A <0, then the BVP has no solution.

(2) If A > 0, then there exist infinitely many eigenvalues A, and
eigenfunctions y,, with n any positive integer, given by

= () ) s

(3) Analogous results can be proven for the same equation but
with different types of boundary conditions. For example, for
y(0) =0, y'(L) =0; or for y’(0) =0, y/(L) =0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0. The equation is

y/I:O



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0. The equation is

y'=0 = y(x)=c+ox



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0. The equation is
y'=0 = y(x)=c+ox
The boundary conditions imply

0=y(0)



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0. The equation is
y'=0 = y(x)=c+ox
The boundary conditions imply

0=y(0) =q,



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0. The equation is
y'=0 = y(x)=c+ox
The boundary conditions imply

0=y(0)=c, O0=ca+ocl



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0. The equation is
y'=0 = y(x)=c+ox
The boundary conditions imply

0:y(0):c1, O=ca+ol = cg=c=N0



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(xX)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A = 0. The equation is
y'=0 = y(x)=c+ox
The boundary conditions imply
0=y0)=¢ca, O0=ca+al = ca=c=0

Since y = 0, there are NO non-zero solutions for A = 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0. Introduce the notation A = — 2.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0. Introduce the notation A\ = —u2. The
characteristic equation is

p(r)=r*—p?=0



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0. Introduce the notation A\ = —u2. The
characteristic equation is

p(r)=r*—py?>=0 = ri==4u



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0. Introduce the notation A\ = —u2. The
characteristic equation is

p(r)=r*—py?>=0 = ri==4u

The general solution is

y(x)=c e + e M.



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0. Introduce the notation A\ = —u2. The
characteristic equation is

p(r)=r*—py?>=0 = ri==4u
The general solution is
y(x)=c e + e M.
The boundary condition are

0=y(0)



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0. Introduce the notation A\ = —u2. The
characteristic equation is

p(r)=r*—py?>=0 = ri==4u

The general solution is
y(x)=c e + e M.
The boundary condition are

O:y(O) = + O,



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A < 0. Introduce the notation A\ = —u2. The
characteristic equation is

p(r)=r*—py?>=0 = ri==4u
The general solution is
y(x)=c e + e M.
The boundary condition are
0=y(0)=qca + c,

0=y(L)=c et + et



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: y(x) = c; e + ¢ e and

1+ ¢ =0, et +ce =0



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: y(x) = c; e + ¢ e and

1+ ¢ =0, et +ce =0

We need to solve the linear system

AR



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: y(x) = c; e + ¢ e and

a+c =0, aet+cgett=0.

We need to solve the linear system

el [ =1o) = 2[2]= [0



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: y(x) = c; e + ¢ e and

a+c =0, aet+cgett=0.

We need to solve the linear system

oo ] (2] =B = 2 [a] =) 7=l ]



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: y(x) = c; e + ¢ e and

a+c =0, aet+cgett=0.

We need to solve the linear system

oo ] (2] =B = 2 [a] =) 7=l ]

Since det(Z) = e #L —erL £ 0 for L # 0, matrix Z is invertible, so
the linear system above has a unique solution ¢; =0 and ¢ = 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: y(x) = c; e + ¢ e and

a+c =0, aet+cgett=0.

We need to solve the linear system

oo ] (2] =B = 2 [a] =) 7=l ]

Since det(Z) = e #L —erL £ 0 for L # 0, matrix Z is invertible, so
the linear system above has a unique solution ¢; =0 and ¢ = 0.

Since y = 0, there are NO non-zero solutions for \ < 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation \ = i°.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r’+u*=0



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui
The general solution is

y(x) = c1 cos(px) + ¢ sin(px).



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui
The general solution is
y(x) = c1 cos(px) + ¢ sin(px).
The boundary condition are

0=y(0)



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui
The general solution is
y(x) = c1 cos(px) + ¢ sin(px).
The boundary condition are

0= y(O) =,



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP
Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui
The general solution is
y(x) = c1 cos(px) + ¢ sin(px).
The boundary condition are

0=y(0)=c, = y(x)=csin(ux).



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui
The general solution is
y(x) = c1 cos(px) + ¢ sin(px).
The boundary condition are
0=y(0)=c, = y(x)=csin(ux).

0=y(L) = c sin(ul),



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui
The general solution is
y(x) = c1 cos(px) + ¢ sin(px).
The boundary condition are
0=y(0)=c, = y(x)=csin(ux).

0=y(L)=cosin(ul), c#0



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Case A > 0. Introduce the notation A\ = ;2. The
characteristic equation is

p(r)=r*+p>=0 = ro=4pui
The general solution is
y(x) = c1 cos(px) + ¢ sin(px).
The boundary condition are
0=y(0)=c, = y(x)=csin(ux).
0=y(L)=csin(ul), c#0 = sin(ul)=0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y (x) + Ay(x) =0, y(0)=0, y(L)=0, L>0.

Solution: Recall: ¢ =0, & #0, and sin(ul) =0.



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: ¢ =0, & #0, and sin(ul) =0.

The non-zero solution condition is the reason for ¢ # 0.



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: ¢ =0, & #0, and sin(ul) =0.
The non-zero solution condition is the reason for ¢; # 0. Hence

sin(ul) =0



Particular case of BVP: Eigenvalue-eigenfunction problem.
Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: ¢ =0, & #0, and sin(ul) =0.
The non-zero solution condition is the reason for ¢; # 0. Hence

sin(pul) =0 = ppl=nn



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: ¢ =0, & #0, and sin(ul) =0.

The non-zero solution condition is the reason for ¢; # 0. Hence
sin(pl)=0 = ppl=nr = p,= nTﬂ-



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: ¢ =0, & #0, and sin(ul) =0.

The non-zero solution condition is the reason for ¢; # 0. Hence
nm

sin(pl)=0 = pupl=nr = fn =

Recalling that A, = 12, and choosing ¢; = 1,



Particular case of BVP: Eigenvalue-eigenfunction problem.

Example
Find every A € R and non-zero functions y solutions of the BVP

Y'(x)+Ay(x)=0,  y(0)=0, y(L)=0, L>0.

Solution: Recall: ¢ =0, & #0, and sin(ul) =0.

The non-zero solution condition is the reason for ¢; # 0. Hence

sin(pl)=0 = pupl=nr = ,u,,:nTﬂ-.

Recalling that A, = 12, and choosing c; = 1, we conclude

(2 ()



Overview of Fourier Series (Sect. 10.2).

Origins of the Fourier Series.
Periodic functions.

Orthogonality of Sines and Cosines.

vV v v Yy

Main result on Fourier Series.



Origins of the Fourier Series.

Summary:
Daniel Bernoulli (~ 1750) found
solutions to the equation that
describes waves propagating on a
vibrating string.
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Origins of the Fourier Series.

Summary:
Daniel Bernoulli (~ 1750) found y
solutions to the equation that T
describes waves propagating on a o

X \\/ X
The function u, measuring the vertical displacement of the string,
is the solution to the wave equation,

Q2u(t,x) = v?Q2u(t,x), veR, xel0,L], te]0,00),

vibrating string.

with initial conditions,
u(0, x) = f(x), 0:u(0,x) =0,
and boundary conditions,

u(t,0) =0, u(t,L) =0.
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Origins of the Fourier Series.

Summary:
Bernoulli found particular solutions to the wave equation.

If the initial condition is f,(x) = 5in<mTTX>'

o . [ NTX vnrt
then the solution is wuu(t, x) = sm<T> cos( T )

Bernoulli also realized that

N
./ NhTX vntt
UN(t,x):Za,,yn( 1 )cos( T ), ane€R
n=1
is also solution of the wave equation with initial condition
N nmx
Fu(x) = z:l an S|n<T>.
n—=

Remark: The wave equation and its solutions provide a
mathematical description of music.
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Origins of the Fourier Series.

Remarks:

» Bernoulli claimed he had obtained all solutions to the problem
above for the wave equation.

» However, he did not prove that claim.

» A proof is: Given a function F with F(0) = F(L) =0, but
otherwise arbitrary, find N and the coefficients a, such that F
is approximated by an expansion Fy given in the previous slide.

» Joseph Fourier (~ 1800) provided such formula for the
coefficients a,, while studying a different problem:
The heat transport in a solid material.

» Find the temperature function u solution of the heat equation
Oru(t,x) = kd2u(t,x), k>0, xe[0,L], te][0,00),
I.C. wu(0,x) = f(x),
B.C. wu(t,0)=0, u(t,L)=0.
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Remarks:

Fourier found particular solutions to the heat equation.
o L ./ NTX

If the initial condition is f,(x) = ﬂn(T),

L . /nNTX\
then the solution is up(t,x) = sm(T) e kTt
Fourier also realized that

N
Un(t,x) = Zan sin(?) e kTt a, €R
n=1

is also solution of the heat equation with initial condition

N nmx
Fu(x) = nz_; an sin(T).

Remark: The heat equation and its solutions provide a
mathematical description of heat transport in a solid material.
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Origins of the Fourier Series.

Remarks:

» However, Fourier went farther than Bernoulli. Fourier found a
formula for the coefficients a, in terms of the function F.

» Given an initial data function F, satisfying F(0) = F(L) =0,
but otherwise arbitrary, Fourier proved that one can construct
an expansion Fy as follows,

Fu(x) = EN: an sin(nLLX),
n=1

for N any positive integer, where the a, are given by

2 [t . (hTX
an =7 /0 F(x) sm(T) dx.

» To find all solutions to the heat equation problem above one
must prove one more thing: That F, approximates F for large
enough N. That is, limy_ Fy = F. Fourier didn't show this.



Origins of the Fourier Series.

Remarks:

» Based on Bernoulli and Fourier works, people have been able
to prove that.



Origins of the Fourier Series.

Remarks:

» Based on Bernoulli and Fourier works, people have been able
to prove that. Every continuous, 7-periodic function can be
expressed as an infinite linear combination of sine and cosine
functions.



Origins of the Fourier Series.

Remarks:

» Based on Bernoulli and Fourier works, people have been able
to prove that. Every continuous, 7-periodic function can be
expressed as an infinite linear combination of sine and cosine
functions.

» More precisely: Every continuous, T-periodic function F, there
exist constants ag, a,, bp, for n =1,2,--- such that

Fi09 = 3+ o con(%) 4y sin ()]
n=1

T

satisfies Nlim Fu(x) = F(x) for every x € R.



Origins of the Fourier Series.

Remarks:

» Based on Bernoulli and Fourier works, people have been able
to prove that. Every continuous, 7-periodic function can be
expressed as an infinite linear combination of sine and cosine
functions.

» More precisely: Every continuous, T-periodic function F, there
exist constants ag, a,, bp, for n =1,2,--- such that

i) = 23 o cos(27) 50 ().

satisfies Nlim Fu(x) = F(x) for every x € R.

2 T T

. _ Nt 2nmx . (2nTX
Notation: F(x) = — + nz::l{an cos( > + b, sm( ﬂ
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Origins of the Fourier Series.

The main problem in our class:
Given a continuous, T-periodic function f, find the formulas for a,

and b, such that
) + 6y in( 270

(o.]
ao
=5 Z [an cos(
Remarks: We need to review two main concepts:

» The notion of periodic functions.

» The notion of orthogonal functions, in particular the
orthogonality of Sines and Cosines.
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Periodic functions.

Definition
A function f : R — R is called periodic iff there exists 7 > 0 such
that for all x € R holds

f(x+ 1) ="f(x).
Remark: f is invariant under translations by 7.
Definition
A period T of a periodic function f is the smallest value of 7 such

that f(x + 7) = f(x) holds.

Notation:
A periodic function with period T is also called T-periodic.
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f(x 4 i) = sin(ax + ag) = sin(ax + 2)
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Periodic functions.

Example
The following functions are periodic, with period T,
f(x) = sin(x), T =2n7.
f(x) = cos(x), T =2m.
f(x) = tan(x), T=m.
2w

f(x) = sin(ax), T = 'y

The proof of the latter statement is the following:

f(x + 2;) = sin(ax + 32?77) = sin(ax + 27) = sin(ax) = f(x).

<
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Periodic functions.

Example

Show that the function below is periodic, and find its period,

f(x) = ¢, x € [0,2), f(x —2) = f(x).
Solution: We just graph the function,
y y =f(x)
t + + + Py 1 t t t X>




Periodic functions.

Example

Show that the function below is periodic, and find its period,

f(x) = ¢, x € [0,2), f(x —2) = f(x).

Solution: We just graph the function,

A
y y =1(x)

So the function is periodic with period T = 2.
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Periodic functions.

Theorem
A linear combination of T -periodic functions is also T -periodic.

Proof: If f(x+ T) = f(x) and g(x + T) = g(x), then
af(x+ T) + bg(x+ T) = af (x) + bg(x),

so (af + bg) is also T-periodic. O
Example

f(x) = 2sin(3x) + 7 cos(3x) is periodic with period T =27/3. <

Remark: The functions below are periodic with period T = z,
n
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Periodic functions.

Theorem
A linear combination of T -periodic functions is also T -periodic.

Proof: If f(x+ T) = f(x) and g(x + T) = g(x), then
af(x+ T) + bg(x+ T) = af (x) + bg(x),

so (af + bg) is also T-periodic. O

Example
f(x) = 2sin(3x) + 7 cos(3x) is periodic with period T =27/3. <

Remark: The functions below are periodic with period T = z,
n

2mnx

27rnx>

f(x) = cos( >, g(x) = sin(

Since f and g are invariant under translations by 7/n, they are also
invariant under translations by 7.

T T
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Periodic functions.

Corollary
Any function f given by

f(x) = % + i[an cos(2mx> + by, sin(2n;rx)}
n=1

T

is periodic with period T.

Remark: We will show that the converse statement is true.

Theorem
A function f is T-periodic iff holds

f(x)= % + i[an cos(2mrx> + b, sin(znjxﬂ.
n=1

T
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yA

cos (pix/L)




Orthogonality of Sines and Cosines.

Theorem (Orthogonality)
The following relations hold for all n, m € N,

L 0 n#m,
/ cos(niLX) cos(?) dx=<¢ L n=m#0,
-t 2L n=m=0,

[T o=y 77
L

L n=m,




Orthogonality of Sines and Cosines.

Theorem (Orthogonality)
The following relations hold for all n, m € N,

L 0 n#m,
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» The operation f - g = / f(x) g(x) dx is an inner product in
-L

the vector space of functions.



Orthogonality of Sines and Cosines.

Theorem (Orthogonality)
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Orthogonality of Sines and Cosines.

Theorem (Orthogonality)
The following relations hold for all n, m € N,

L 0 n#m,
/_Lcos(mzx) cos(?)dx: L n=m#0,

2L n=m=0,
[n(ZE) an() = {27

/_LL cos(?) sin(mzx) dx = 0.
Remark:

L
» The operation f - g = / f(x) g(x) dx is an inner product in
-L

the vector space of functions. Like the dot product is in R2.

» Two functions f, g, are orthogonal iff f - g = 0.



Orthogonality of Sines and Cosines.

Recall:  cos(6) cos(¢) = % [cos(8 + ¢) + cos(8 — ¢)];

sin(0) sin(¢) = % [cos(8 — ¢) — cos(0 + ¢)];
sin(f) cos(¢) = % [sin(6 + ¢) +sin(0 — ¢)].
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Recall:  cos(6) cos(¢) = % [cos(8 + ¢) + cos(8 — ¢)];

sin(0) sin(¢) = % [cos(f — @) — cos(8 + ¢)];
sin(f) cos(¢) = % [sin(6 + ¢) +sin(0 — ¢)].

Proof: First formula:



Orthogonality of Sines and Cosines.

Recall:  cos(8) cos(¢) = % [cos(8 + ¢) + cos(8 — ¢)];
sin(0) sin(¢) = % [cos(f — @) — cos(8 + ¢)];

sin(0) cos(¢) = % [sin(6 + ¢) +sin(0 — ¢)].

Proof: First formula: If n = m = 0, it is simple to see that

/_LLcos<mLTX> COS(mzrx> dx = /_LL dx = 2L.




Orthogonality of Sines and Cosines.

Recall:  cos(6) cos(¢) = % [cos(8 + ¢) + cos(8 — ¢)];

sin(0) sin(¢) = % [cos(f — @) — cos(8 + ¢)];
sin(6) cos(¢) = % [sin(6 + ¢) +sin(0 — ¢)].
Proof: First formula: If n = m = 0, it is simple to see that

L L
nmwx mmx
/ cos(—) cos( ) dx = / dx = 2L.
L L L L
In the case where one of n or m is non-zero, use the relation

/L cos(mzx> cos(m;_rx) dx = ;/L COS[W} dx
L —L

—I—% /LL cos[(n_Lm)WX} dx.
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Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

L n m)mx . n m)mXx
;/_LCOS[HL)] dx = 2(n+Lm)7r Sm[( +L ) HiL =0




Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

L n m)mx . n m)mXx
;/_LCOS[HL)} dx = 2(n+Lm)7r Sm[( JrL ) ”iL =0

We obtain that

L (n—m)mx

/_icos(mzx> cos(mzrx> dx = ;/_L cos[f} dx.




Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

L n m)mx . n m)mXx
;/_LCOS[HL)} dx = 2(n+Lm)7r Sm[( JrL ) ”iL =0

We obtain that

/_LLCOS<mLTX) Cos(mzx> dx = 2/_Lcos[(”_L m)7x }dx.

If we further restrict n # m, then

2/_L°°5[(n_L i }d - 2(n—Lm)7r Si”[(n_ln)m”; =0




Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

1 [t (n+ m)mx L r(n+m)mxq b
2/_L°°S{ L }dX_Z(n—l—m)w S'”[ L ”_L_O'
We obtain that
/L cos(mrx> cos(mﬁx> dx = / cos[(n — m)rx } dx
] L L 2/, L '
If we further restrict n # m, then

2/_L°°5[(n_L i }d - 2(n—Lm)7r Si”[(n_ln)m”; =0

If n = m # 0, we have that

L B L
1/ cos{m} dx—l/ dx = L.
2], L 2],




Orthogonality of Sines and Cosines.

Proof: Since one of n or m is non-zero, holds

L n m)mx . n m)mXx
;/_LCOS[HL)} dx = 2(n+Lm)7r Sm[( JrL ) ”iL =0

We obtain that

/_LLCOS<mZX) Cos(mzx> dx = 2/_Lcos[(”_L m)7x }dx.

If we further restrict n # m, then

2/_L°°5[(n_L i }d - 2(n—Lm)7r Si”[(n_ln)m”; =0

If n = m # 0, we have that

1t - 1t

/ cos{m} dx—/ dx = L.

2/ L 2/
This establishes the first equation in the Theorem. The remaining
equations are proven in a similar way. ]




Overview of Fourier Series (Sect. 10.2).

Origins of the Fourier Series.
Periodic functions.

Orthogonality of Sines and Cosines.
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Main result on Fourier Series.



Main result on Fourier Series.

Theorem (Fourier Series)
If the function f : [—-L, L] C R — R is continuous, then f can be

expressed as an infinite series
f(x) = +Zl[a,, cos(nLX> + b s|n<n7zx>] (1)

with the constants a, and b, given by

1 [t nm
I >
ap L/L f(x) cos( T )dx n=0,

1 L
bn:L/_Lf(x) sin(mrTX) dx, n>1.

Furthermore, the Fourier series in Eq. (1) provides a 2L-periodic
extension of f from the domain [—L,L] C R to R.



Examples of the Fourier Theorem (Sect. 10.3).

» The Fourier Theorem: Continuous case.
» Example: Using the Fourier Theorem.
» The Fourier Theorem: Piecewise continuous case.

» Example: Using the Fourier Theorem.



The Fourier Theorem: Continuous case.

Theorem (Fourier Series)
If the function f : [—-L, L] C R — R is continuous, then f can be

expressed as an infinite series
f(x) = +Zl[a,, cos(nLX> + b sm(mzxﬂ (2)

with the constants a, and b, given by

1 [t nm
I >
ap L/L f(x) cos( T )dx n=0,

1 L
bn:L/_Lf(x) sin(mrTX) dx, n>1.

Furthermore, the Fourier series in Eq. (2) provides a 2L-periodic
extension of function f from the domain [—L, L] C R to R.
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» Define the partial sum functions

600 = 3+ o0 con(T) -y n (%)



The Fourier Theorem: Continuous case.

Sketch of the Proof:
» Define the partial sum functions

600 = 3+ o con( ) .y 3 ()

with a, and b, given by

1 L
ap = L/—L f(x) cos(mTX) dx,

L
b, = i/_L f(x) sin(n%

X
~—
B



The Fourier Theorem: Continuous case.

Sketch of the Proof:
» Define the partial sum functions

600 = 3+ o con( ) .y 3 ()

with a, and b, given by

1 L
ap = / f(x) cos(mrx> dx, n=0,

L), L
1 L
bn:L/_Lf(x) sin(nLLX) dx, n>1.

» Express fy as a convolution of Sine, Cosine, functions and the
original function f.



The Fourier Theorem: Continuous case.

Sketch of the Proof:
» Define the partial sum functions

600 = 3+ o con( ) .y 3 ()

with a, and b, given by

1 L
a,,:L/_Lf(x) cos(mTX> dx, n>0,

]

1 L
bn:L/_Lf(x) sin(% dx, n>1.

X
~—

» Express fy as a convolution of Sine, Cosine, functions and the
original function f.

» Use the convolution properties to show that

NILmoo fu(x) = f(x), x € [-L,L].



Examples of the Fourier Theorem (Sect. 10.3).

» The Fourier Theorem: Continuous case.
» Example: Using the Fourier Theorem.
» The Fourier Theorem: Piecewise continuous case.

» Example: Using the Fourier Theorem.



Example: Using the Fourier Theorem.

Example
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] 1+x xe€[-1,0),
f(X)_{l—x x € [0,1].
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Example

Find the Fourier series expansion of the function
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f(X)_{l—x x € [0,1].

Solution: In this case L = 1. The Fourier series expansion is
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Example

Find the Fourier series expansion of the function

] 1+x xe€[-1,0),
f(X)_{l—x x € [0,1].

Solution: In this case L = 1. The Fourier series expansion is

f(x) = ? + Z [a,, cos(nmx) + by Sin(mrX)],
n=1

where the a,, b, are given in the Theorem. We start with ag,

aoz/l f(x)dX:/0(1+X)dx+/01(1—x)dx.

-1 -1



Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

] 1+x xe€[-1,0),
f(X)_{l—x x € [0,1].

Solution: In this case L = 1. The Fourier series expansion is

f(x) = ? + Z [a,, cos(nmx) + by Sin(mrX)],
n=1

where the a,, b, are given in the Theorem. We start with ag,

aoz/l f(x)dX:/0(1+X)dx+/01(1—x)dx.

-1 -1
2 2

X 0 X 1
o= ()L )l



Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

] 1+x xe€[-1,0),
f(X)_{l—x x € [0,1].

Solution: In this case L = 1. The Fourier series expansion is

f(x) = ? + Z [a,, cos(nmx) + by Sin(mrX)],
n=1

where the a,, b, are given in the Theorem. We start with ag,

aoz/l f(x)dX:/0(1+X)dx+/01(1—x)dx.

-1 -1
2 2

o= (D (D= (e



Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

] 1+x xe€[-1,0),
f(X)_{l—x x € [0,1].

Solution: In this case L = 1. The Fourier series expansion is

f(x) = ? + Z [a,, cos(nmx) + by Sin(mrX)],
n=1

where the a,, b, are given in the Theorem. We start with ag,

aoz/l f(x)dX:/0(1+X)dx+/01(1—x)dx.

-1 -1
2 2

v (D (D= (e

We obtain: a9 = 1.



Example: Using the Fourier Theorem.
Example
Find the Fourier series expansion of the function

1+x xe€[-1,0),
f(x):{l—x x € [0,1].

Solution: Recall: ag = 1.



Example: Using the Fourier Theorem.
Example
Find the Fourier series expansion of the function

1+x xe€[-1,0),
f(X):{l—x x € [0,1].

Solution: Recall: ap = 1. Similarly, the rest of the a, are given by,

ap = /1 f(x) cos(nmx) dx

-1



Example: Using the Fourier Theorem.
Example
Find the Fourier series expansion of the function

1+x xe€[-1,0),
f(X):{l—x x € [0,1].

Solution: Recall: ap = 1. Similarly, the rest of the a, are given by,

ap = /1 f(x) cos(nmx) dx

-1
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ap = /1(1 + x) cos(nmx) dx +/0 (1 — x) cos(nmx) dx.



Example: Using the Fourier Theorem.
Example
Find the Fourier series expansion of the function

J1+x xe[-1,0),
f(X)_{l—x x € [0,1].

Solution: Recall: ap = 1. Similarly, the rest of the a, are given by,

ap = /1 f(x) cos(nmx) dx

-1

0 1
ap = /1(1 + x) cos(nmx) dx +/0 (1 — x) cos(nmx) dx.

1
Recall the integrals /cos(mrx) dx = — sin(nmx),
nm



Example: Using the Fourier Theorem.
Example
Find the Fourier series expansion of the function

J1+x xe[-1,0),
f(X)_{l—x x € [0,1].

Solution: Recall: ap = 1. Similarly, the rest of the a, are given by,

ap = /1 f(x) cos(nmx) dx

-1

0 1
ap = /1(1 + x) cos(nmx) dx +/0 (1 — x) cos(nmx) dx.

1
Recall the integrals /cos(mrx) dx = — sin(n7x), and
nm

X 1
dx = = s . .
/x cos(nmx) dx — sin(nmx) + o cos(nmx)



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

_J1+x xe[-1,0),
f(X)_{l—x x € [0,1].

Solution: It is not difficult to see that

0 X . 1 0
‘_ + [E sin(nmx) + —— cos(mrx)} ‘_1

1 .
= sin(nmx) 22
1 . 1 X . 1 1
+— sm(mrx)‘0 - [E sin(nmx) + 22 cos(mrx)} ‘0

nm



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

_J1+x xe[-1,0),
f(X)_{l—x x € [0,1].

Solution: It is not difficult to see that

[ 2 sin(nmx) + 5y cos(mx)] |
— SIN{nTX ———F= COS\NTX
nm n?m2 -1

1 0
ap=— sin(mrx)‘

nm -
- sin(nm)| — [ sin(mmx) + 5 cos(nm)] |
— sin(n — | = sin(nmx) + —— cos(nmx
a0\ nr n2m2 0
1 1 1 1
ap = [—nzﬂz ~ 5 cos(—mr)} — [—nzﬂz cos(nm) — n2ﬂ2].



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

_J1+x xe[-1,0),
f(X)_{l—x x € [0,1].

Solution: It is not difficult to see that

[ 2 sin(nmx) + 5y cos(mx)] |
— SIN{nTX ———F= COS\NTX
nm n?m2 -1

1 0
ap=— sin(mrx)‘

nm —
- sin(nm)| — [ sin(mmx) + 5 cos(nm)] |
— SINnyn — | — SINlNTXx ——F= Cos(hmX
nw I 0 nw ! n2m2 0
1 1 1 1
= |5~ o cos(om)| = [y cos(om) = 55,

2
We then conclude that a, = o [1 — cos(n)].



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

| 1+x xe€[-1,0),
f(X)_{l—x x € [0,1].

2
Solution: Recall: a9 =1, and a,= —— [1 — cos(nm)].

n?m



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

| 1+x xe€[-1,0),
f(X)_{l—x x € [0,1].

Solution: Recall: ag =1, and a, = [1 — cos(nm)].

n%m2

Finally, we must find the coefficients b,.



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

| 1+x xe€[-1,0),
f(X)_{l—x x € [0,1].

. 2
Solution: Recall: ag =1, and a, = ) [1 — cos(nm)].

Finally, we must find the coefficients b,.

A similar calculation shows that b, = 0.



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

| 1+x xe€[-1,0),
f(X)_{l—x x € [0,1].

Solution: Recall: ag =1, and a, = [1 — cos(nm)].

n272
Finally, we must find the coefficients b,.
A similar calculation shows that b, = 0.

Then, the Fourier series of f is given by

[y

n?m

N

— 2
- Z 5 [1 — cos(n)] cos(nmx).
n=1



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

| 1+x xe€[-1,0),
f(X)_{l—x x € [0,1].

[e.9]

) 2
Solution: Recall: = = + Z 5 2 — cos(
n=m

nm)| cos(nmx).
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Example
Find the Fourier series expansion of the function

f(X):{l—i-x x € [~1,0),

1-x xe]l0,1].
— 2
Solution: Recall: == .
olution: Reca + Z n27r2 — cos(nm)| cos(nmx)

We can obtain a simpler expression for the Fourier coefficients aj,.



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function
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Solution: Recall: == .
olution: Reca + Z n27r2 — cos(nm)| cos(nmx)

We can obtain a simpler expression for the Fourier coefficients aj,.

Recall the relations cos(nm) = (—1)",



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

f(X):{l—i-x x € [~1,0),

1-x xe]l0,1].
— 2
Solution: Recall: == .
olution: Reca + Z n27r2 — cos(nm)| cos(nmx)

We can obtain a simpler expression for the Fourier coefficients aj,.

Recall the relations cos(nm) = (—1)", then

= % + Z n%wz [1—(—1)"] cos(nmx).
n=1



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

f(X):{l—i-x x € [~1,0),

1-x xe]l0,1].
— 2
Solution: Recall: == .
olution: Reca + Z n27r2 — cos(nm)| cos(nmx)

We can obtain a simpler expression for the Fourier coefficients aj,.

Recall the relations cos(nm) = (—1)", then

f(x) = % + Z n%wz [1—(—1)"] cos(nmx).



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

1+x xe€[-1,0),
f(X):{lx x € [0,1].

[e.9]

1 2
Solution: Recall: f(x) = 5 + Z P [14 (=1)"*] cos(nmx).
n=1



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

1+x xe€[-1,0),
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1 2
Solution: Recall: f(x) = 5 + Z P [14 (=1)"*] cos(nmx).
n=1

If n =2k,



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

1+x x€[-1,0),
f(X):{lx x € [0,1].

[e.9]

1 2
Solution: Recall: f(x) = 5 + Z
n=1

) [14 (=1)"*] cos(nmx).

If n=2k, so nis even,



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

1+x xe€[-1,0),
f(X):{lx x € [0,1].

1 — 2
Solution: Recall: f(x) = 5 + Z P [14 (=1)"*] cos(nmx).
n=1

If n=2k, soniseven,son+1=2k+1is odd,



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

1+x xe€[-1,0),
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Solution: Recall: f(x) = 5 + Z P [14 (=1)"*] cos(nmx).
n=1
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Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

1+x xe€[-1,0),
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1 — 2
Solution: Recall: f(x) = 5 + Z P [14 (=1)"*] cos(nmx).
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2
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Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

1+x xe€[-1,0),
f(X):{lx x € [0,1].

1 — 2
Solution: Recall: f(x) = 5 + Z P [14 (=1)"*] cos(nmx).
n=1

If n=2k, soniseven,son+1=2k+1is odd, then
2y — 2
2K (2k)2m2

If n=2k—1,

(1 — 1) = ay =0.



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

1+x xe€[-1,0),
f(X):{lx x € [0,1].

1 — 2
Solution: Recall: f(x) = 5 + Z P [14 (=1)"*] cos(nmx).
n=1

If n=2k, soniseven,son+1=2k+1is odd, then
2y — 2
2K (2k)2m2

If n=2k —1, so nis odd,

(1 — 1) = ay =0.



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

1+x xe€[-1,0),
f(x):{lx x € [0,1].

1 — 2
Solution: Recall: f(x) = 5 + Z P [14 (=1)"*] cos(nmx).
n=1

If n=2k, soniseven,son+1=2k+1is odd, then
2
=———(1-1 = =0.
a2k (2k)2n2 ( ) a2k

If n=2k —1,s0nisodd, son+1=2kis even,



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

J1+x xe[-1,0),
f(x)_{lx x € [0,1].

1 — 2
Solution: Recall: f(x) = 5 + Z P [14 (=1)"*] cos(nmx).
n=1

If n=2k, soniseven,son+1=2k+1is odd, then

2
=———(1-1 = =0.
A2k (2k)2n2 ( ) a2k
If n=2k —1,so nisodd, so n+1=2k is even, then

2

1= (141
azk—1 (2k—1)27r2( +1)



Example: Using the Fourier Theorem.

Example
Find the Fourier series expansion of the function

J1+x xe[-1,0),
f(x)_{lx x € [0,1].

1 — 2
Solution: Recall: f(x) = 5 + Z P [14 (=1)"*] cos(nmx).
n=1

If n=2k, soniseven,son+1=2k+1is odd, then

2
=———(1-1 = =0.
A2k (2k)2n2 ( ) a2k
If n=2k —1,so nisodd, so n+1=2k is even, then
2 4

1+ ].) = ak—1= (

k1= g )2 2k —1)272°



Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

) {1+x x € [-1,0),

1-x xel0,1].
Solution:
: 1 S 2 n+1
Recall: f(x) = 5T Z_; 32 [1+ (=1)"**] cos(nmx), and
4
ax =0, k-1 = (k- 1)



Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

) {1+x x € [-1,0),

1-x xel0,1].
Solution:
I — 2
Recall: f(x) = 5T ,,Z:; 32 [1+ (=1)""] cos(nmx), and
4
ax =0, k-1 = m
W lude: f(x) = Ly 4 2k —1
e conclude: f(x) = 5t ; k=122 cos((2k — 1)mx). <



Examples of the Fourier Theorem (Sect. 10.3).

» The Fourier Theorem: Continuous case.
» Example: Using the Fourier Theorem.
» The Fourier Theorem: Piecewise continuous case.

» Example: Using the Fourier Theorem.



The Fourier Theorem: Piecewise continuous case.

Recall:
Definition
A function f : [a, b] — R is called piecewise continuous iff holds,

(a) [a, b] can be partitioned in a finite number of sub-intervals
such that f is continuous on the interior of these sub-intervals.

(b) f has finite limits at the endpoints of all sub-intervals.



The Fourier Theorem: Piecewise continuous case.

Theorem (Fourier Series)
Iff:[-L,L] C R — R is piecewise continuous, then the function

B0 = 243 [ cos( ) 4 by sin( )]
n=1

where a, and b, given by

1t nm
= — _— >
an L/—L f(x) cos( T )dx, n=0,

1 L
b,,:L/_Lf(x) sin(?) dx, n>1.

X

satisfies that:

(a) fe(x) = f(x) for all x where f is continuous;

(6) fr(0) = 5

discontinuous.

(x)+ lim f(x)] for all xo where f is

lim f
X—’XJ X*)XO
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Therefore, we conclude that

— 1
fr(x) % Z ok —1) sin((2k — 1)m x).



