Boundary Value Problems (Sect. 10.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- ▶ Particular case of BVP: Eigenvalue-eigenfunction problem.

Definition

A *two-point BVP* is the following: Given functions p, q, g, and constants $x_1 < x_2, y_1, y_2, b_1, b_2, \tilde{b}_1, \tilde{b}_2,$

find a function y solution of the differential equation

$$y'' + p(x)y' + q(x)y = g(x),$$

together with the extra, boundary conditions,

$$b_1 y(x_1) + b_2 y'(x_1) = y_1,$$

$$\tilde{b}_1 y(x_2) + \tilde{b}_2 y'(x_2) = y_2.$$

Definition

A two-point BVP is the following: Given functions p, q, g, and constants $x_1 < x_2, y_1, y_2, b_1, b_2, \tilde{b}_1, \tilde{b}_2,$

find a function y solution of the differential equation

$$y'' + p(x)y' + q(x)y = g(x),$$

together with the extra, boundary conditions,

$$b_1 y(x_1) + b_2 y'(x_1) = y_1,$$

 $\tilde{b}_1 y(x_2) + \tilde{b}_2 y'(x_2) = y_2.$

Remarks:

▶ Both y and y' might appear in the boundary condition, evaluated at the same point.

Definition

A two-point BVP is the following: Given functions p, q, g, and constants $x_1 < x_2, y_1, y_2, b_1, b_2, \tilde{b}_1, \tilde{b}_2,$

find a function y solution of the differential equation

$$y'' + p(x) y' + q(x) y = g(x),$$

together with the extra, boundary conditions,

$$b_1 y(x_1) + b_2 y'(x_1) = y_1,$$

 $\tilde{b}_1 y(x_2) + \tilde{b}_2 y'(x_2) = y_2.$

Remarks:

- ▶ Both y and y' might appear in the boundary condition, evaluated at the same point.
- ▶ In this notes we only study the case of constant coefficients,

$$y'' + a_1 y' + a_0 y = g(x).$$

Example

Examples of BVP.

Example

Examples of BVP. Assume $x_1 \neq x_2$.

(1) Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y(x_1) = y_1, \quad y(x_2) = y_2.$$

Example

Examples of BVP. Assume $x_1 \neq x_2$.

(1) Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y(x_1) = y_1, \quad y(x_2) = y_2.$$

(2) Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y'(x_1) = y_1, \quad y'(x_2) = y_2.$$

Example

Examples of BVP. Assume $x_1 \neq x_2$.

(1) Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y(x_1) = y_1, \quad y(x_2) = y_2.$$

(2) Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y'(x_1) = y_1, \quad y'(x_2) = y_2.$$

(3) Find y solution of

$$y'' + a_1 y' + a_0 y = g(x), \quad y(x_1) = y_1, \quad y'(x_2) = y_2.$$

Boundary Value Problems (Sect. 10.1).

- Two-point BVP.
- **Example from physics.**
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- ▶ Particular case of BVP: Eigenvalue-eigenfunction problem.

Example from physics.

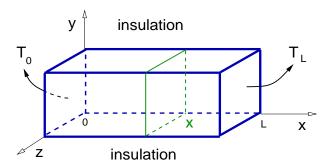
Problem: The equilibrium (time independent) temperature of a bar of length L with insulated horizontal sides and the bar vertical extremes kept at fixed temperatures T_0 , T_L is the solution of the BVP:

$$T''(x) = 0, \quad x \in (0, L), \quad T(0) = T_0, \quad T(L) = T_L,$$

Example from physics.

Problem: The equilibrium (time independent) temperature of a bar of length L with insulated horizontal sides and the bar vertical extremes kept at fixed temperatures T_0 , T_L is the solution of the BVP:

$$T''(x) = 0, \quad x \in (0, L), \quad T(0) = T_0, \quad T(L) = T_L,$$



Boundary Value Problems (Sect. 10.1).

- Two-point BVP.
- Example from physics.
- ► Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- ▶ Particular case of BVP: Eigenvalue-eigenfunction problem.

Review: IVP:

Find the function values y(t) solutions of the differential equation

$$y'' + a_1 y' + a_0 y = g(t),$$

together with the initial conditions

$$y(t_0) = y_1, \quad y'(t_0) = y_2.$$

Review: IVP:

Find the function values y(t) solutions of the differential equation

$$y'' + a_1 y' + a_0 y = g(t),$$

together with the initial conditions

$$y(t_0) = y_1, \quad y'(t_0) = y_2.$$

Remark: In physics:

 \triangleright y(t): Position at time t.

Review: IVP:

Find the function values y(t) solutions of the differential equation

$$y'' + a_1 y' + a_0 y = g(t),$$

together with the initial conditions

$$y(t_0) = y_1, \quad y'(t_0) = y_2.$$

Remark: In physics:

- \triangleright y(t): Position at time t.
- ▶ Initial conditions: Position and velocity at the initial time t_0 .

Review: BVP:

Find the function values y(x) solutions of the differential equation

$$y'' + a_1 y' + a_0 y = g(x),$$

together with the initial conditions

$$y(x_1) = y_1, \quad y(x_2) = y_2.$$

Review: BVP:

Find the function values y(x) solutions of the differential equation

$$y'' + a_1 y' + a_0 y = g(x),$$

together with the initial conditions

$$y(x_1) = y_1, \quad y(x_2) = y_2.$$

Remark: In physics:

 \triangleright y(x): A physical quantity (temperature) at a position x.

Review: BVP:

Find the function values y(x) solutions of the differential equation

$$y'' + a_1 y' + a_0 y = g(x),$$

together with the initial conditions

$$y(x_1) = y_1, \quad y(x_2) = y_2.$$

Remark: In physics:

- \triangleright y(x): A physical quantity (temperature) at a position x.
- ▶ Boundary conditions: Conditions at the boundary of the object under study, where $x_1 \neq x_2$.

Boundary Value Problems (Sect. 10.1).

- ► Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- ► Existence, uniqueness of solutions to BVP.
- ▶ Particular case of BVP: Eigenvalue-eigenfunction problem.

Review: The initial value problem.

Theorem (IVP)

Consider the homogeneous initial value problem:

$$y'' + a_1 y' + a_0 y = 0,$$
 $y(t_0) = y_0,$ $y'(t_0) = y_1,$

and let r_{\pm} be the roots of the characteristic polynomial

$$p(r) = r^2 + a_1 r + a_0.$$

If $r_+ \neq r_-$, real or complex, then for every choice of y_0 , y_1 , there exists a unique solution y to the initial value problem above.

Review: The initial value problem.

Theorem (IVP)

Consider the homogeneous initial value problem:

$$y'' + a_1 y' + a_0 y = 0,$$
 $y(t_0) = y_0,$ $y'(t_0) = y_1,$

and let r_{\pm} be the roots of the characteristic polynomial

$$p(r) = r^2 + a_1 r + a_0.$$

If $r_{+} \neq r_{-}$, real or complex, then for every choice of y_{0} , y_{1} , there exists a unique solution y to the initial value problem above.

Summary: The IVP above always has a unique solution, no matter what y_0 and y_1 we choose.

Theorem (BVP)

Consider the homogeneous boundary value problem:

$$y'' + a_1 y' + a_0 y = 0,$$
 $y(0) = y_0,$ $y(L) = y_1,$

and let r_{\pm} be the roots of the characteristic polynomial

$$p(r) = r^2 + a_1 r + a_0.$$

- (A) If $r_+ \neq r_-$, real, then for every choice of $L \neq 0$ and y_0 , y_1 , there exists a unique solution y to the BVP above.
- (B) If $r_{\pm}=\alpha\pm i\beta$, with $\beta\neq 0$, and $\alpha,\beta\in\mathbb{R}$, then the solutions to the BVP above belong to one of these possibilities:
 - (1) There exists a unique solution.
 - (2) There exists no solution.
 - (3) There exist infinitely many solutions.

Proof of IVP: We study the case $r_+ \neq r_-$.

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t},$$

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \qquad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \qquad c_1, c_2 \in \mathbb{R}.$$

$$y_0=y(t_0)$$

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \qquad c_1, c_2 \in \mathbb{R}.$$

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \qquad c_1, c_2 \in \mathbb{R}.$$

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

 $y_1 = y'(t_0)$

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \qquad c_1, c_2 \in \mathbb{R}.$$

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

$$y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}$$

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \qquad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

 $y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}$

Using matrix notation,

$$\begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \qquad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

 $y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}$

Using matrix notation,

$$\begin{bmatrix} e^{r_-t_0} & e^{r_+t_0} \\ r_-e^{r_-t_0} & r_+e^{r_+t_0} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 iff

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \qquad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

 $y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}$

Using matrix notation,

$$\begin{bmatrix} e^{r_-t_0} & e^{r_+t_0} \\ r_-e^{r_-t_0} & r_+e^{r_+t_0} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 iff the $det(Z) \neq 0$,

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \qquad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

 $y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}$

Using matrix notation,

$$\begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 iff the $det(Z) \neq 0$, where

$$Z = \begin{bmatrix} e^{r_{-}t_{0}} & e^{r_{+}t_{0}} \\ r_{-}e^{r_{-}t_{0}} & r_{+}e^{r_{+}t_{0}} \end{bmatrix}$$

Proof of IVP: We study the case $r_+ \neq r_-$. The general solution is

$$y(t) = c_1 e^{r_- t} + c_2 e^{r_+ t}, \qquad c_1, c_2 \in \mathbb{R}.$$

The initial conditions determine c_1 and c_2 as follows:

$$y_0 = y(t_0) = c_1 e^{r_- t_0} + c_2 e^{r_+ t_0}$$

 $y_1 = y'(t_0) = c_1 r_- e^{r_- t_0} + c_2 r_+ e^{r_+ t_0}$

Using matrix notation,

$$\begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 iff the $det(Z) \neq 0$, where

$$Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \quad \Rightarrow \quad Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

Proof of IVP: Recall:
$$Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \quad \Rightarrow \quad Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

Proof of IVP: Recall: $Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \quad \Rightarrow \quad Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$

$$\det(Z) = (r_{+} - r_{-}) e^{(r_{+} + r_{-}) t_{0}}$$

Proof of IVP: Recall: $Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \quad \Rightarrow \quad Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$

$$\det(Z) = (r_{\scriptscriptstyle{+}} - r_{\scriptscriptstyle{-}}) e^{(r_{\scriptscriptstyle{+}} + r_{\scriptscriptstyle{-}}) t_0} \neq 0 \quad \Leftrightarrow \quad r_{\scriptscriptstyle{+}} \neq r_{\scriptscriptstyle{-}}.$$

Proof of IVP: Recall: $Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$

A simple calculation shows

$$\det(Z) = (r_+ - r_-) e^{(r_+ + r_-) t_0} \neq 0 \quad \Leftrightarrow \quad r_+ \neq r_-.$$

Since $r_{+} \neq r_{-}$, the matrix Z is invertible

Proof of IVP: Recall: $Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$

A simple calculation shows

$$\det(Z) = (r_+ - r_-) e^{(r_+ + r_-) t_0} \neq 0 \quad \Leftrightarrow \quad r_+ \neq r_-.$$

Since $r_{+} \neq r_{-}$, the matrix Z is invertible and so

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = Z^{-1} \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

Proof of IVP: Recall:
$$Z = \begin{bmatrix} e^{r_- t_0} & e^{r_+ t_0} \\ r_- e^{r_- t_0} & r_+ e^{r_+ t_0} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

A simple calculation shows

$$\det(Z) = (r_{+} - r_{-}) e^{(r_{+} + r_{-}) t_{0}} \neq 0 \quad \Leftrightarrow \quad r_{+} \neq r_{-}.$$

Since $r_{+} \neq r_{-}$, the matrix Z is invertible and so

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = Z^{-1} \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

We conclude that for every choice of y_0 and y_1 , there exist a unique value of c_1 and c_2 , so the IVP above has a unique solution.

Proof of BVP: The general solution is

$$y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x},$$

Proof of BVP: The general solution is

$$y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \qquad c_1, c_2 \in \mathbb{R}.$$

Proof of BVP: The general solution is

$$y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \qquad c_1, c_2 \in \mathbb{R}.$$

The boundary conditions determine c_1 and c_2

Proof of BVP: The general solution is

$$y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \qquad c_1, c_2 \in \mathbb{R}.$$

$$y_0=y(0)$$

Proof of BVP: The general solution is

$$y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \qquad c_1, c_2 \in \mathbb{R}.$$

$$y_0 = y(0) = c_1 + c_2.$$

Proof of BVP: The general solution is

$$y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \qquad c_1, c_2 \in \mathbb{R}.$$

$$y_0 = y(0) = c_1 + c_2.$$

$$y_1 = y(L)$$

Proof of BVP: The general solution is

$$y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \qquad c_1, c_2 \in \mathbb{R}.$$

$$y_0 = y(0) = c_1 + c_2$$
.

$$y_1 = y(L) = c_1 e^{r-L} + c_2 e^{r+L}$$

Proof of BVP: The general solution is

$$y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \qquad c_1, c_2 \in \mathbb{R}.$$

The boundary conditions determine c_1 and c_2 as follows:

$$y_0 = y(0) = c_1 + c_2$$
.

$$y_1 = y(L) = c_1 e^{r_- L} + c_2 e^{r_+ L}$$

Using matrix notation,

$$\begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

Proof of BVP: The general solution is

$$y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \qquad c_1, c_2 \in \mathbb{R}.$$

The boundary conditions determine c_1 and c_2 as follows:

$$y_0 = y(0) = c_1 + c_2$$
.

$$y_1 = y(L) = c_1 e^{r-L} + c_2 e^{r+L}$$

Using matrix notation,

$$\begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 iff

Proof of BVP: The general solution is

$$y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \qquad c_1, c_2 \in \mathbb{R}.$$

The boundary conditions determine c_1 and c_2 as follows:

$$y_0 = y(0) = c_1 + c_2.$$

$$y_1 = y(L) = c_1 e^{r_- L} + c_2 e^{r_+ L}$$

Using matrix notation,

$$\begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 iff the $det(Z) \neq 0$,

Proof of BVP: The general solution is

$$y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \qquad c_1, c_2 \in \mathbb{R}.$$

The boundary conditions determine c_1 and c_2 as follows:

$$y_0 = y(0) = c_1 + c_2.$$

$$y_1 = y(L) = c_1 e^{r_- L} + c_2 e^{r_+ L}$$

Using matrix notation,

$$\begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 iff the $det(Z) \neq 0$, where

$$Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix}$$

Proof of BVP: The general solution is

$$y(x) = c_1 e^{r_- x} + c_2 e^{r_+ x}, \qquad c_1, c_2 \in \mathbb{R}.$$

The boundary conditions determine c_1 and c_2 as follows:

$$y_0 = y(0) = c_1 + c_2$$
.

$$y_1 = y(L) = c_1 e^{r_- L} + c_2 e^{r_+ L}$$

Using matrix notation,

$$\begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

The linear system above has a unique solution c_1 and c_2 for every constants y_0 and y_1 iff the $det(Z) \neq 0$, where

$$Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \quad \Rightarrow \quad Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}.$$

Proof of IVP: Recall:
$$Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$
.

Proof of IVP: Recall:
$$Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$
. A simple calculation shows

$$\det(Z) = e^{r_+ L} - e^{r_- L}$$

Proof of IVP: Recall:
$$Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$
.

$$\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \quad \Leftrightarrow \quad e^{r_+ L} \neq e^{r_- L}.$$

Proof of IVP: Recall:
$$Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$
.

A simple calculation shows

$$\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \quad \Leftrightarrow \quad e^{r_+ L} \neq e^{r_- L}.$$

(A) If $r_+ \neq r_-$ and real-valued,

Proof of IVP: Recall:
$$Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$
.

A simple calculation shows

$$\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \quad \Leftrightarrow \quad e^{r_+ L} \neq e^{r_- L}.$$

(A) If $r_{+} \neq r_{-}$ and real-valued, then $det(Z) \neq 0$.

Proof of IVP: Recall:
$$Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$
.

A simple calculation shows

$$\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \quad \Leftrightarrow \quad e^{r_+ L} \neq e^{r_- L}.$$

(A) If $r_{+} \neq r_{-}$ and real-valued, then $det(Z) \neq 0$.

We conclude: For every choice of y_0 and y_1 , there exist a unique value of c_1 and c_2 , so the BVP in (A) above has a unique solution.

Proof of IVP: Recall:
$$Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$
.

$$\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \quad \Leftrightarrow \quad e^{r_+ L} \neq e^{r_- L}.$$

- (A) If $r_{+} \neq r_{-}$ and real-valued, then $det(Z) \neq 0$.
 - We conclude: For every choice of y_0 and y_1 , there exist a unique value of c_1 and c_2 , so the BVP in (A) above has a unique solution.
- (B) If $r_{\pm} = \alpha \pm i\beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$,

Proof of IVP: Recall:
$$Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$
.

$$\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \quad \Leftrightarrow \quad e^{r_+ L} \neq e^{r_- L}.$$

- (A) If $r_{+} \neq r_{-}$ and real-valued, then $det(Z) \neq 0$.
 - We conclude: For every choice of y_0 and y_1 , there exist a unique value of c_1 and c_2 , so the BVP in (A) above has a unique solution.
- (B) If $r_\pm=lpha\pm ieta$, with $lpha,eta\in\mathbb{R}$ and eta
 eq 0, then $\det(Z)=e^{lpha L}\big(e^{ieta L}-e^{-ieta L}\big)$

Proof of IVP: Recall:
$$Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$
.

$$\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \quad \Leftrightarrow \quad e^{r_+ L} \neq e^{r_- L}.$$

- (A) If $r_{+} \neq r_{-}$ and real-valued, then $det(Z) \neq 0$.
 - We conclude: For every choice of y_0 and y_1 , there exist a unique value of c_1 and c_2 , so the BVP in (A) above has a unique solution.
- (B) If $r_{\pm} = \alpha \pm i\beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$, then $\det(Z) = e^{\alpha L} \left(e^{i\beta L} e^{-i\beta L} \right) \ \Rightarrow \ \det(Z) = 2i \, e^{\alpha L} \sin(\beta L).$

Proof of IVP: Recall:
$$Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$
.

A simple calculation shows

$$\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \quad \Leftrightarrow \quad e^{r_+ L} \neq e^{r_- L}.$$

(A) If $r_{+} \neq r_{-}$ and real-valued, then $det(Z) \neq 0$.

We conclude: For every choice of y_0 and y_1 , there exist a unique value of c_1 and c_2 , so the BVP in (A) above has a unique solution.

(B) If $r_{\pm} = \alpha \pm i\beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$, then $\det(Z) = e^{\alpha L} \left(e^{i\beta L} - e^{-i\beta L} \right) \implies \det(Z) = 2i e^{\alpha L} \sin(\beta L).$ Since $\det(Z) = 0$ iff $\beta L = n\pi$, with n integer,

Proof of IVP: Recall:
$$Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$
.

A simple calculation shows

$$\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \quad \Leftrightarrow \quad e^{r_+ L} \neq e^{r_- L}.$$

(A) If $r_+ \neq r_-$ and real-valued, then $det(Z) \neq 0$.

We conclude: For every choice of y_0 and y_1 , there exist a unique value of c_1 and c_2 , so the BVP in (A) above has a unique solution.

(B) If $r_{\pm} = \alpha \pm i\beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$, then $\det(Z) = e^{\alpha L} \left(e^{i\beta L} - e^{-i\beta L} \right) \ \Rightarrow \ \det(Z) = 2i \, e^{\alpha L} \sin(\beta L).$

Since det(Z) = 0 iff $\beta L = n\pi$, with n integer,

(1) If $\beta L \neq n\pi$, then BVP has a unique solution.

Proof of IVP: Recall:
$$Z = \begin{bmatrix} 1 & 1 \\ e^{r_- L} & e^{r_+ L} \end{bmatrix} \Rightarrow Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$
.

A simple calculation shows

$$\det(Z) = e^{r_+ L} - e^{r_- L} \neq 0 \quad \Leftrightarrow \quad e^{r_+ L} \neq e^{r_- L}.$$

(A) If $r_+ \neq r_-$ and real-valued, then $det(Z) \neq 0$.

We conclude: For every choice of y_0 and y_1 , there exist a unique value of c_1 and c_2 , so the BVP in (A) above has a unique solution.

(B) If $r_{\pm} = \alpha \pm i\beta$, with $\alpha, \beta \in \mathbb{R}$ and $\beta \neq 0$, then $\det(Z) = e^{\alpha L} \left(e^{i\beta L} - e^{-i\beta L} \right) \ \Rightarrow \ \det(Z) = 2i \, e^{\alpha L} \sin(\beta L).$

Since det(Z) = 0 iff $\beta L = n\pi$, with n integer,

- (1) If $\beta L \neq n\pi$, then BVP has a unique solution.
- (2) If $\beta L = n\pi$ then BVP either has no solutions or it has infinitely many solutions.

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = -1$.

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = -1$.

Solution: The characteristic polynomial is

$$p(r)=r^2+1$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = -1$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = -1$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = -1$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1=y(0)=c_1,$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = -1$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad -1 = y(\pi) = -c_1$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = -1$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad -1 = y(\pi) = -c_1 \quad \Rightarrow \quad c_1 = 1, \quad c_2 \text{ free.}$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = -1$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad -1 = y(\pi) = -c_1 \quad \Rightarrow \quad c_1 = 1, \quad c_2 \text{ free.}$$

We conclude: $y(x) = \cos(x) + c_2 \sin(x)$, with $c_2 \in \mathbb{R}$.

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = -1$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad -1 = y(\pi) = -c_1 \quad \Rightarrow \quad c_1 = 1, \quad c_2 \text{ free.}$$

We conclude: $y(x) = \cos(x) + c_2 \sin(x)$, with $c_2 \in \mathbb{R}$.

The BVP has infinitely many solutions.

 \leq

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = 0$.

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = 0$.

Solution: The characteristic polynomial is

$$p(r)=r^2+1$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = 0$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = 0$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = 0$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

$$1=y(0)=c_1,$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = 0$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

$$1 = y(0) = c_1, \quad 0 = y(\pi) = -c_1$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi) = 0$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad 0 = y(\pi) = -c_1$$

The BVP has no solution.

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi/2) = 1$.

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi/2) = 1$.

Solution: The characteristic polynomial is

$$p(r)=r^2+1$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi/2) = 1$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi/2) = 1$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi/2) = 1$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

$$1=y(0)=c_1,$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi/2) = 1$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

$$1 = y(0) = c_1, \quad 1 = y(\pi/2) = c_2$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi/2) = 1$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

$$1 = y(0) = c_1, \quad 1 = y(\pi/2) = c_2 \quad \Rightarrow \quad c_1 = c_2 = 1.$$

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi/2) = 1$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad 1 = y(\pi/2) = c_2 \quad \Rightarrow \quad c_1 = c_2 = 1.$$

We conclude: $y(x) = \cos(x) + \sin(x)$.

Example

Find y solution of the BVP

$$y'' + y = 0$$
, $y(0) = 1$, $y(\pi/2) = 1$.

Solution: The characteristic polynomial is

$$p(r) = r^2 + 1 \quad \Rightarrow \quad r_{\pm} = \pm i.$$

The general solution is

$$y(x) = c_1 \cos(x) + c_2 \sin(x).$$

The boundary conditions are

$$1 = y(0) = c_1, \quad 1 = y(\pi/2) = c_2 \quad \Rightarrow \quad c_1 = c_2 = 1.$$

We conclude: $y(x) = \cos(x) + \sin(x)$.

The BVP has a unique solution.

Boundary Value Problems (Sect. 10.1).

- Two-point BVP.
- Example from physics.
- Comparison: IVP vs BVP.
- Existence, uniqueness of solutions to BVP.
- ► Particular case of BVP: **Eigenvalue-eigenfunction problem.**

Problem:

Find a number λ and a non-zero function y solutions to the boundary value problem

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Problem:

Find a number λ and a non-zero function y solutions to the boundary value problem

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra:

Problem:

Find a number λ and a non-zero function y solutions to the boundary value problem

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector \mathbf{v} solutions of

$$A\mathbf{v} - \lambda \mathbf{v} = \mathbf{0}.$$

Problem:

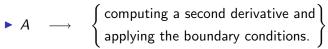
Find a number λ and a non-zero function y solutions to the boundary value problem

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector \mathbf{v} solutions of

$$A\mathbf{v} - \lambda \mathbf{v} = \mathbf{0}.$$

Differences:



Problem:

Find a number λ and a non-zero function y solutions to the boundary value problem

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Remark: This problem is similar to the eigenvalue-eigenvector problem in Linear Algebra: Given an $n \times n$ matrix A, find λ and a non-zero n-vector v solutions of

$$A\mathbf{v} - \lambda \mathbf{v} = \mathbf{0}.$$

Differences:

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Remarks: We will show that:

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Remarks: We will show that:

(1) If $\lambda \leq 0$, then the BVP has no solution.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Remarks: We will show that:

- (1) If $\lambda \leq 0$, then the BVP has no solution.
- (2) If $\lambda > 0$, then there exist infinitely many eigenvalues λ_n and eigenfunctions y_n , with n any positive integer,

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Remarks: We will show that:

- (1) If $\lambda \leq 0$, then the BVP has no solution.
- (2) If $\lambda > 0$, then there exist infinitely many eigenvalues λ_n and eigenfunctions y_n , with n any positive integer, given by

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2, \quad y_n(x) = \sin\left(\frac{n\pi x}{L}\right),$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Remarks: We will show that:

- (1) If $\lambda \leq 0$, then the BVP has no solution.
- (2) If $\lambda > 0$, then there exist infinitely many eigenvalues λ_n and eigenfunctions y_n , with n any positive integer, given by

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2, \quad y_n(x) = \sin\left(\frac{n\pi x}{L}\right),$$

(3) Analogous results can be proven for the same equation but with different types of boundary conditions.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Remarks: We will show that:

- (1) If $\lambda \leq 0$, then the BVP has no solution.
- (2) If $\lambda > 0$, then there exist infinitely many eigenvalues λ_n and eigenfunctions y_n , with n any positive integer, given by

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2, \qquad y_n(x) = \sin\left(\frac{n\pi x}{L}\right),$$

(3) Analogous results can be proven for the same equation but with different types of boundary conditions. For example, for y(0) = 0, y'(L) = 0;

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Remarks: We will show that:

- (1) If $\lambda \leq 0$, then the BVP has no solution.
- (2) If $\lambda > 0$, then there exist infinitely many eigenvalues λ_n and eigenfunctions y_n , with n any positive integer, given by

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2, \qquad y_n(x) = \sin\left(\frac{n\pi x}{L}\right),$$

(3) Analogous results can be proven for the same equation but with different types of boundary conditions. For example, for y(0) = 0, y'(L) = 0; or for y'(0) = 0, y'(L) = 0.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda = 0$.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda = 0$. The equation is

$$y''=0 \quad \Rightarrow \quad y(x)=c_1+c_2x.$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda = 0$. The equation is

$$y''=0 \quad \Rightarrow \quad y(x)=c_1+c_2x.$$

$$0 = y(0)$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda = 0$. The equation is

$$y''=0 \quad \Rightarrow \quad y(x)=c_1+c_2x.$$

$$0 = y(0) = c_1,$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda = 0$. The equation is

$$y''=0 \quad \Rightarrow \quad y(x)=c_1+c_2x.$$

$$0 = y(0) = c_1, \quad 0 = c_1 + c_2 L$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda = 0$. The equation is

$$y'' = 0 \quad \Rightarrow \quad y(x) = c_1 + c_2 x.$$

$$0 = y(0) = c_1, \quad 0 = c_1 + c_2 L \quad \Rightarrow \quad c_1 = c_2 = 0.$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda = 0$. The equation is

$$y''=0 \quad \Rightarrow \quad y(x)=c_1+c_2x.$$

The boundary conditions imply

$$0 = y(0) = c_1, \quad 0 = c_1 + c_2 L \quad \Rightarrow \quad c_1 = c_2 = 0.$$

Since y = 0, there are NO non-zero solutions for $\lambda = 0$.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda < 0$.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu.$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu.$$

The general solution is

$$y(x) = c_1 e^{\mu x} + c_2 e^{-\mu x}$$
.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu.$$

The general solution is

$$y(x) = c_1 e^{\mu x} + c_2 e^{-\mu x}$$
.

$$0 = y(0)$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu.$$

The general solution is

$$y(x) = c_1 e^{\mu x} + c_2 e^{-\mu x}$$
.

$$0 = y(0) = c_1 + c_2$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda < 0$. Introduce the notation $\lambda = -\mu^2$. The characteristic equation is

$$p(r) = r^2 - \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu.$$

The general solution is

$$y(x) = c_1 e^{\mu x} + c_2 e^{-\mu x}$$
.

$$0 = y(0) = c_1 + c_2,$$

$$0 = y(L) = c_1 e^{\mu L} + c_2 e^{-\mu L}.$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Recall:
$$y(x)=c_1\,e^{\mu x}+c_2\,e^{\mu x}$$
 and
$$c_1+c_2=0, \qquad c_1\,e^{\mu L}+c_2\,e^{-\mu L}=0.$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Recall:
$$y(x)=c_1\,e^{\mu x}+c_2\,e^{\mu x}$$
 and $c_1+c_2=0, \qquad c_1\,e^{\mu L}+c_2\,e^{-\mu L}=0.$

We need to solve the linear system

$$\begin{bmatrix} 1 & 1 \\ e^{\mu L} & e^{-\mu L} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Recall:
$$y(x)=c_1\,e^{\mu x}+c_2\,e^{\mu x}$$
 and
$$c_1+c_2=0, \qquad c_1\,e^{\mu L}+c_2\,e^{-\mu L}=0.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & 1 \\ e^{\mu L} & e^{-\mu L} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \; \Leftrightarrow \; Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Recall:
$$y(x)=c_1\,e^{\mu x}+c_2\,e^{\mu x}$$
 and
$$c_1+c_2=0, \qquad c_1\,e^{\mu L}+c_2\,e^{-\mu L}=0.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & 1 \\ e^{\mu L} & e^{-\mu L} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 1 \\ e^{\mu L} & e^{-\mu L} \end{bmatrix}$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Recall:
$$y(x)=c_1\,e^{\mu x}+c_2\,e^{\mu x}$$
 and
$$c_1+c_2=0, \qquad c_1\,e^{\mu L}+c_2\,e^{-\mu L}=0.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & 1 \\ e^{\mu L} & e^{-\mu L} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \; \Leftrightarrow \; Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 1 \\ e^{\mu L} & e^{-\mu L} \end{bmatrix}$$

Since $det(Z) = e^{-\mu L} - e^{\mu L} \neq 0$ for $L \neq 0$, matrix Z is invertible, so the linear system above has a unique solution $c_1 = 0$ and $c_2 = 0$.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Recall:
$$y(x)=c_1\,e^{\mu x}+c_2\,e^{\mu x}$$
 and
$$c_1+c_2=0, \qquad c_1\,e^{\mu L}+c_2\,e^{-\mu L}=0.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & 1 \\ e^{\mu L} & e^{-\mu L} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff Z \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 1 \\ e^{\mu L} & e^{-\mu L} \end{bmatrix}$$

Since $det(Z) = e^{-\mu L} - e^{\mu L} \neq 0$ for $L \neq 0$, matrix Z is invertible, so the linear system above has a unique solution $c_1 = 0$ and $c_2 = 0$.

Since y = 0, there are NO non-zero solutions for $\lambda < 0$.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda > 0$.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^2$. The characteristic equation is

$$p(r)=r^2+\mu^2=0$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda>0$. Introduce the notation $\lambda=\mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

$$0 = y(0)$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

$$0 = y(0) = c_1$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

$$0 = y(0) = c_1, \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

$$0 = y(0) = c_1, \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

$$0 = y(L) = c_2 \sin(\mu L),$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

$$0 = y(0) = c_1, \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

$$0 = y(L) = c_2 \sin(\mu L), \quad c_2 \neq 0$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Case $\lambda > 0$. Introduce the notation $\lambda = \mu^2$. The characteristic equation is

$$p(r) = r^2 + \mu^2 = 0 \quad \Rightarrow \quad r_{\pm} = \pm \mu i.$$

The general solution is

$$y(x) = c_1 \cos(\mu x) + c_2 \sin(\mu x).$$

$$0 = y(0) = c_1, \quad \Rightarrow \quad y(x) = c_2 \sin(\mu x).$$

$$0 = y(L) = c_2 \sin(\mu L), \quad c_2 \neq 0 \quad \Rightarrow \quad \sin(\mu L) = 0.$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $sin(\mu L) = 0$.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$. Hence

$$sin(\mu L) = 0$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$. Hence

$$sin(\mu L) = 0 \Rightarrow \mu_n L = n\pi$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$. Hence

$$\sin(\mu L) = 0 \quad \Rightarrow \quad \mu_n L = n\pi \quad \Rightarrow \quad \mu_n = \frac{n\pi}{I}.$$

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$. Hence

$$\sin(\mu L) = 0 \quad \Rightarrow \quad \mu_n L = n\pi \quad \Rightarrow \quad \mu_n = \frac{n\pi}{L}.$$

Recalling that $\lambda_n = \mu_n^2$, and choosing $c_2 = 1$,

Particular case of BVP: Eigenvalue-eigenfunction problem.

Example

Find every $\lambda \in \mathbb{R}$ and non-zero functions y solutions of the BVP

$$y''(x) + \lambda y(x) = 0,$$
 $y(0) = 0,$ $y(L) = 0,$ $L > 0.$

Solution: Recall: $c_1 = 0$, $c_2 \neq 0$, and $\sin(\mu L) = 0$.

The non-zero solution condition is the reason for $c_2 \neq 0$. Hence

$$\sin(\mu L) = 0 \quad \Rightarrow \quad \mu_n L = n\pi \quad \Rightarrow \quad \mu_n = \frac{n\pi}{L}.$$

Recalling that $\lambda_n = \mu_n^2$, and choosing $c_2 = 1$, we conclude

$$\lambda_n = \left(\frac{n\pi}{I}\right)^2, \qquad y_n(x) = \sin\left(\frac{n\pi x}{I}\right).$$

Overview of Fourier Series (Sect. 10.2).

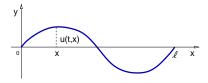
- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.

Summary:

Daniel Bernoulli (\sim 1750) found solutions to the equation that describes waves propagating on a vibrating string.

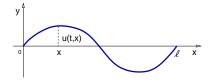
Summary:

Daniel Bernoulli (\sim 1750) found solutions to the equation that describes waves propagating on a vibrating string.



Summary:

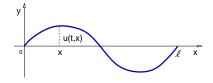
Daniel Bernoulli (\sim 1750) found solutions to the equation that describes waves propagating on a vibrating string.



The function u, measuring the vertical displacement of the string,

Summary:

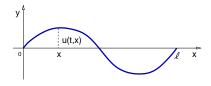
Daniel Bernoulli (\sim 1750) found solutions to the equation that describes waves propagating on a vibrating string.



The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

Summary:

Daniel Bernoulli (\sim 1750) found solutions to the equation that describes waves propagating on a vibrating string.

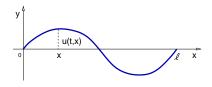


The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

$$\partial_t^2 u(t,x) = v^2 \, \partial_x^2 u(t,x), \quad v \in \mathbb{R}, \quad x \in [0,L], \quad t \in [0,\infty),$$

Summary:

Daniel Bernoulli (\sim 1750) found solutions to the equation that describes waves propagating on a vibrating string.



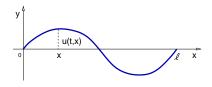
The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

$$\partial_t^2 u(t,x) = v^2 \, \partial_x^2 u(t,x), \quad v \in \mathbb{R}, \quad x \in [0,L], \quad t \in [0,\infty),$$
 with initial conditions,

$$u(0,x) = f(x), \qquad \partial_t u(0,x) = 0,$$

Summary:

Daniel Bernoulli (\sim 1750) found solutions to the equation that describes waves propagating on a vibrating string.



The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

$$\partial_t^2 u(t,x) = v^2 \, \partial_x^2 u(t,x), \quad v \in \mathbb{R}, \quad x \in [0,L], \quad t \in [0,\infty),$$

with initial conditions,

$$u(0,x)=f(x), \qquad \partial_t u(0,x)=0,$$

and boundary conditions,

$$u(t,0) = 0,$$
 $u(t,L) = 0.$

Summary:

Bernoulli found particular solutions to the wave equation.

Summary:

Bernoulli found particular solutions to the wave equation.

If the initial condition is
$$f_n(x) = \sin\left(\frac{n\pi x}{L}\right)$$
,

Summary:

Bernoulli found particular solutions to the wave equation.

If the initial condition is
$$f_n(x) = \sin\left(\frac{n\pi x}{L}\right)$$
,

then the solution is
$$u_n(t,x) = \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{vn\pi t}{L}\right)$$
.

Summary:

Bernoulli found particular solutions to the wave equation.

If the initial condition is
$$f_n(x) = \sin\left(\frac{n\pi x}{L}\right)$$
,

then the solution is
$$u_n(t,x) = \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{vn\pi t}{L}\right)$$
.

Bernoulli also realized that

$$U_N(t,x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{vn\pi t}{L}\right), \qquad a_n \in \mathbb{R}$$

Summary:

Bernoulli found particular solutions to the wave equation.

If the initial condition is
$$f_n(x) = \sin\left(\frac{n\pi x}{L}\right)$$
,

then the solution is
$$u_n(t,x) = \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{vn\pi t}{L}\right)$$
.

Bernoulli also realized that

$$U_N(t,x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{vn\pi t}{L}\right), \qquad a_n \in \mathbb{R}$$

is also solution of the wave equation with initial condition

$$F_N(x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right).$$

Summary:

Bernoulli found particular solutions to the wave equation.

If the initial condition is
$$f_n(x) = \sin\left(\frac{n\pi x}{L}\right)$$
,

then the solution is
$$u_n(t,x) = \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{vn\pi t}{L}\right)$$
.

Bernoulli also realized that

$$U_N(t,x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{vn\pi t}{L}\right), \qquad a_n \in \mathbb{R}$$

is also solution of the wave equation with initial condition

$$F_N(x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right).$$

Remark: The wave equation and its solutions provide a mathematical description of music.

Remarks:

Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- ▶ However, he did not prove that claim.
- ▶ A proof is: Given a function F with F(0) = F(L) = 0, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- ▶ However, he did not prove that claim.
- ▶ A proof is: Given a function F with F(0) = F(L) = 0, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- ▶ Joseph Fourier (\sim 1800) provided such formula for the coefficients a_n , while studying a different problem:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- ▶ However, he did not prove that claim.
- ▶ A proof is: Given a function F with F(0) = F(L) = 0, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- ▶ Joseph Fourier (\sim 1800) provided such formula for the coefficients a_n , while studying a different problem: The heat transport in a solid material.

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- ▶ However, he did not prove that claim.
- ▶ A proof is: Given a function F with F(0) = F(L) = 0, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- ▶ Joseph Fourier (\sim 1800) provided such formula for the coefficients a_n , while studying a different problem: The heat transport in a solid material.
- ▶ Find the temperature function *u* solution of the heat equation

$$\partial_t u(t,x) = k \, \partial_x^2 u(t,x),$$

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- ▶ However, he did not prove that claim.
- ▶ A proof is: Given a function F with F(0) = F(L) = 0, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- ▶ Joseph Fourier (\sim 1800) provided such formula for the coefficients a_n , while studying a different problem: The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$\partial_t u(t,x) = k \, \partial_x^2 u(t,x), \quad k > 0,$$

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- ▶ However, he did not prove that claim.
- ▶ A proof is: Given a function F with F(0) = F(L) = 0, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- ▶ Joseph Fourier (\sim 1800) provided such formula for the coefficients a_n , while studying a different problem: The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$\partial_t u(t,x) = k \, \partial_x^2 u(t,x), \quad k > 0, \quad x \in [0,L],$$

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- ▶ However, he did not prove that claim.
- ▶ A proof is: Given a function F with F(0) = F(L) = 0, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- ▶ Joseph Fourier (\sim 1800) provided such formula for the coefficients a_n , while studying a different problem: The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$\partial_t u(t,x) = k \, \partial_x^2 u(t,x), \quad k > 0, \quad x \in [0,L], \quad t \in [0,\infty),$$

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- ▶ However, he did not prove that claim.
- ▶ A proof is: Given a function F with F(0) = F(L) = 0, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- ▶ Joseph Fourier (\sim 1800) provided such formula for the coefficients a_n , while studying a different problem: The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$\partial_t u(t,x) = k \, \partial_x^2 u(t,x), \quad k > 0, \quad x \in [0,L], \quad t \in [0,\infty),$$
I.C. $u(0,x) = f(x),$

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- ▶ However, he did not prove that claim.
- ▶ A proof is: Given a function F with F(0) = F(L) = 0, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- ▶ Joseph Fourier (\sim 1800) provided such formula for the coefficients a_n , while studying a different problem: The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$\partial_t u(t,x) = k \, \partial_x^2 u(t,x), \quad k > 0, \quad x \in [0,L], \quad t \in [0,\infty),$$

I.C. $u(0,x) = f(x),$

B.C. $u(t,0) = 0, \quad u(t,L) = 0.$

Remarks:

Fourier found particular solutions to the heat equation.

Remarks:

Fourier found particular solutions to the heat equation.

If the initial condition is
$$f_n(x) = \sin\left(\frac{n\pi x}{L}\right)$$
,

Remarks:

Fourier found particular solutions to the heat equation.

If the initial condition is
$$f_n(x) = \sin\left(\frac{n\pi x}{L}\right)$$
,

then the solution is
$$u_n(t,x) = \sin\left(\frac{n\pi x}{L}\right) e^{-k(\frac{n\pi}{L})^2 t}$$
.

Remarks:

Fourier found particular solutions to the heat equation.

If the initial condition is
$$f_n(x) = \sin\left(\frac{n\pi x}{L}\right)$$
,

then the solution is
$$u_n(t,x) = \sin\left(\frac{n\pi x}{L}\right) e^{-k(\frac{n\pi}{L})^2 t}$$
.

Fourier also realized that

$$U_N(t,x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right) e^{-k(\frac{n\pi}{L})^2 t}, \qquad a_n \in \mathbb{R}$$

Remarks:

Fourier found particular solutions to the heat equation.

If the initial condition is
$$f_n(x) = \sin\left(\frac{n\pi x}{L}\right)$$
,

then the solution is
$$u_n(t,x) = \sin\left(\frac{n\pi x}{L}\right) e^{-k(\frac{n\pi}{L})^2 t}$$
.

Fourier also realized that

$$U_N(t,x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right) e^{-k(\frac{n\pi}{L})^2 t}, \qquad a_n \in \mathbb{R}$$

is also solution of the heat equation with initial condition

$$F_N(x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right).$$

Remarks:

Fourier found particular solutions to the heat equation.

If the initial condition is
$$f_n(x) = \sin\left(\frac{n\pi x}{L}\right)$$
,

then the solution is
$$u_n(t,x) = \sin\left(\frac{n\pi x}{L}\right) e^{-k(\frac{n\pi}{L})^2 t}$$
.

Fourier also realized that

$$U_N(t,x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right) e^{-k(\frac{n\pi}{L})^2 t}, \qquad a_n \in \mathbb{R}$$

is also solution of the heat equation with initial condition

$$F_N(x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right).$$

Remark: The heat equation and its solutions provide a mathematical description of heat transport in a solid material.

Remarks:

▶ However, Fourier went farther than Bernoulli.

Remarks:

▶ However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.

- ▶ However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.
- ▶ Given an initial data function F, satisfying F(0) = F(L) = 0, but otherwise arbitrary,

- ▶ However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.
- ▶ Given an initial data function F, satisfying F(0) = F(L) = 0, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N

Remarks:

- ▶ However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.
- ▶ Given an initial data function F, satisfying F(0) = F(L) = 0, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

$$F_N(x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right),$$

Remarks:

- ▶ However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.
- ▶ Given an initial data function F, satisfying F(0) = F(L) = 0, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

$$F_N(x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right),$$

for N any positive integer,

Remarks:

- ▶ However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.
- ▶ Given an initial data function F, satisfying F(0) = F(L) = 0, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

$$F_N(x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right),$$

for N any positive integer, where the a_n are given by

$$a_n = \frac{2}{L} \int_0^L F(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$

Remarks:

- ▶ However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.
- ▶ Given an initial data function F, satisfying F(0) = F(L) = 0, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

$$F_N(x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right),$$

for N any positive integer, where the a_n are given by

$$a_n = \frac{2}{L} \int_0^L F(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$

► To find all solutions to the heat equation problem above one must prove one more thing:

Remarks:

- ▶ However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.
- ▶ Given an initial data function F, satisfying F(0) = F(L) = 0, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

$$F_N(x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right),$$

for N any positive integer, where the a_n are given by

$$a_n = \frac{2}{L} \int_0^L F(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$

▶ To find all solutions to the heat equation problem above one must prove one more thing: That F_N approximates F for large enough N.

Remarks:

- ▶ However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.
- ▶ Given an initial data function F, satisfying F(0) = F(L) = 0, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

$$F_N(x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right),$$

for N any positive integer, where the a_n are given by

$$a_n = \frac{2}{L} \int_0^L F(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$

▶ To find all solutions to the heat equation problem above one must prove one more thing: That F_N approximates F for large enough N. That is, $\lim_{N\to\infty} F_N = F$.

Remarks:

- ▶ However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.
- ▶ Given an initial data function F, satisfying F(0) = F(L) = 0, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

$$F_N(x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right),$$

for N any positive integer, where the a_n are given by

$$a_n = \frac{2}{L} \int_0^L F(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$

▶ To find all solutions to the heat equation problem above one must prove one more thing: That F_N approximates F for large enough N. That is, $\lim_{N\to\infty} F_N = F$. Fourier didn't show this.

Remarks:

▶ Based on Bernoulli and Fourier works, people have been able to prove that.

Remarks:

Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, τ-periodic function can be expressed as an infinite linear combination of sine and cosine functions.

Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, τ-periodic function can be expressed as an infinite linear combination of sine and cosine functions.
- More precisely: Every continuous, τ -periodic function F, there exist constants a_0 , a_n , b_n , for $n = 1, 2, \cdots$ such that

$$F_N(x) = \frac{a_0}{2} + \sum_{n=1}^N \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right],$$

satisfies $\lim_{N\to\infty} F_N(x) = F(x)$ for every $x\in\mathbb{R}$.

Remarks:

- Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, τ-periodic function can be expressed as an infinite linear combination of sine and cosine functions.
- More precisely: Every continuous, τ -periodic function F, there exist constants a_0 , a_n , b_n , for $n = 1, 2, \cdots$ such that

$$F_N(x) = \frac{a_0}{2} + \sum_{n=1}^N \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right],$$

satisfies $\lim_{N\to\infty} F_N(x) = F(x)$ for every $x\in\mathbb{R}$.

Notation:
$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right].$$

The main problem in our class:

Given a continuous, τ -periodic function f, find the formulas for a_n and b_n such that

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right].$$

The main problem in our class:

Given a continuous, τ -periodic function f, find the formulas for a_n and b_n such that

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right].$$

Remarks: We need to review two main concepts:

The main problem in our class:

Given a continuous, τ -periodic function f, find the formulas for a_n and b_n such that

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right].$$

Remarks: We need to review two main concepts:

► The notion of periodic functions.

The main problem in our class:

Given a continuous, τ -periodic function f, find the formulas for a_n and b_n such that

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right].$$

Remarks: We need to review two main concepts:

- ▶ The notion of periodic functions.
- The notion of orthogonal functions, in particular the orthogonality of Sines and Cosines.

Fourier Series (Sect. 10.2).

- Origins of the Fourier Series.
- ► Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.

Definition

A function $f: \mathbb{R} \to \mathbb{R}$ is called *periodic* iff there exists $\tau > 0$ such that for all $x \in \mathbb{R}$ holds

$$f(x+\tau)=f(x).$$

Definition

A function $f: \mathbb{R} \to \mathbb{R}$ is called *periodic* iff there exists $\tau > 0$ such that for all $x \in \mathbb{R}$ holds

$$f(x+\tau)=f(x).$$

Remark: f is invariant under translations by τ .

Definition

A function $f: \mathbb{R} \to \mathbb{R}$ is called *periodic* iff there exists $\tau > 0$ such that for all $x \in \mathbb{R}$ holds

$$f(x+\tau)=f(x).$$

Remark: f is invariant under translations by τ .

Definition

A *period* T of a periodic function f is the smallest value of τ such that $f(x + \tau) = f(x)$ holds.

Definition

A function $f: \mathbb{R} \to \mathbb{R}$ is called *periodic* iff there exists $\tau > 0$ such that for all $x \in \mathbb{R}$ holds

$$f(x+\tau)=f(x).$$

Remark: f is invariant under translations by τ .

Definition

A *period* T of a periodic function f is the smallest value of τ such that $f(x + \tau) = f(x)$ holds.

Notation:

A periodic function with period T is also called T-periodic.

Example

The following functions are periodic, with period T,

$$f(x) = \sin(x), \qquad T = 2\pi.$$

$$f(x) = \cos(x), \qquad T = 2\pi.$$

$$f(x) = \tan(x), \qquad T = \pi.$$

$$f(x) = \sin(ax), \qquad T = \frac{2\pi}{a}.$$

Example

The following functions are periodic, with period T,

$$f(x) = \sin(x), \qquad T = 2\pi.$$

$$f(x) = \cos(x), \qquad T = 2\pi.$$

$$f(x) = \tan(x), \qquad T = \pi.$$

$$f(x) = \sin(ax), \qquad T = \frac{2\pi}{a}.$$

Example

The following functions are periodic, with period T,

$$f(x) = \sin(x), \qquad T = 2\pi.$$

$$f(x) = \cos(x), \qquad T = 2\pi.$$

$$f(x) = \tan(x), \qquad T = \pi.$$

$$f(x) = \sin(ax), \qquad T = \frac{2\pi}{a}.$$

$$f\left(x + \frac{2\pi}{a}\right)$$

Example

The following functions are periodic, with period T,

$$f(x) = \sin(x), \qquad T = 2\pi.$$

$$f(x) = \cos(x), \qquad T = 2\pi.$$

$$f(x) = \tan(x), \qquad T = \pi.$$

$$f(x) = \sin(ax), \qquad T = \frac{2\pi}{a}.$$

$$f\left(x + \frac{2\pi}{a}\right) = \sin\left(ax + a\frac{2\pi}{a}\right)$$

Example

The following functions are periodic, with period T,

$$f(x) = \sin(x), \qquad T = 2\pi.$$

$$f(x) = \cos(x), \qquad T = 2\pi.$$

$$f(x) = \tan(x), \qquad T = \pi.$$

$$f(x) = \sin(ax), \qquad T = \frac{2\pi}{a}.$$

$$f\left(x + \frac{2\pi}{a}\right) = \sin\left(ax + a\frac{2\pi}{a}\right) = \sin(ax + 2\pi)$$

Example

The following functions are periodic, with period T,

$$f(x) = \sin(x), \qquad T = 2\pi.$$

$$f(x) = \cos(x), \qquad T = 2\pi.$$

$$f(x) = \tan(x), \qquad T = \pi.$$

$$f(x) = \sin(ax), \qquad T = \frac{2\pi}{a}.$$

$$f\left(x + \frac{2\pi}{a}\right) = \sin\left(ax + a\frac{2\pi}{a}\right) = \sin(ax + 2\pi) = \sin(ax)$$

Example

The following functions are periodic, with period T,

$$f(x) = \sin(x), \qquad T = 2\pi.$$

$$f(x) = \cos(x), \qquad T = 2\pi.$$

$$f(x) = \tan(x), \qquad T = \pi.$$

$$f(x) = \sin(ax), \qquad T = \frac{2\pi}{a}.$$

$$f\left(x + \frac{2\pi}{a}\right) = \sin\left(ax + a\frac{2\pi}{a}\right) = \sin(ax + 2\pi) = \sin(ax) = f(x).$$

Example

Show that the function below is periodic, and find its period,

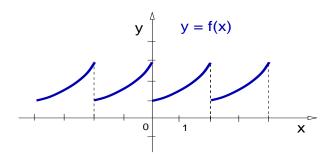
$$f(x) = e^x$$
, $x \in [0, 2)$, $f(x - 2) = f(x)$.

Example

Show that the function below is periodic, and find its period,

$$f(x) = e^x$$
, $x \in [0, 2)$, $f(x - 2) = f(x)$.

Solution: We just graph the function,

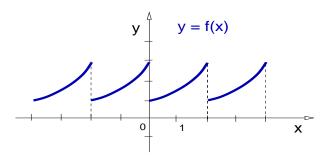


Example

Show that the function below is periodic, and find its period,

$$f(x) = e^x$$
, $x \in [0, 2)$, $f(x - 2) = f(x)$.

Solution: We just graph the function,



So the function is periodic with period T=2.

Theorem

A linear combination of T-periodic functions is also T-periodic.

Theorem

A linear combination of T-periodic functions is also T-periodic.

Proof: If
$$f(x + T) = f(x)$$
 and $g(x + T) = g(x)$, then

$$af(x+T)+bg(x+T)=af(x)+bg(x),$$

so
$$(af + bg)$$
 is also T -periodic.

Theorem

A linear combination of T-periodic functions is also T-periodic.

Proof: If
$$f(x + T) = f(x)$$
 and $g(x + T) = g(x)$, then

$$af(x+T)+bg(x+T)=af(x)+bg(x),$$

so
$$(af + bg)$$
 is also T -periodic.

Example

$$f(x) = 2\sin(3x) + 7\cos(3x)$$
 is periodic with period $T = 2\pi/3$.

Theorem

A linear combination of T-periodic functions is also T-periodic.

Proof: If
$$f(x + T) = f(x)$$
 and $g(x + T) = g(x)$, then

$$af(x+T)+bg(x+T)=af(x)+bg(x),$$

so
$$(af + bg)$$
 is also T -periodic.

Example

$$f(x) = 2\sin(3x) + 7\cos(3x)$$
 is periodic with period $T = 2\pi/3$.

Remark: The functions below are periodic with period $T = \frac{\tau}{n}$,

$$f(x) = \cos\left(\frac{2\pi nx}{\tau}\right), \quad g(x) = \sin\left(\frac{2\pi nx}{\tau}\right),$$

Theorem

A linear combination of T-periodic functions is also T-periodic.

Proof: If
$$f(x + T) = f(x)$$
 and $g(x + T) = g(x)$, then

$$af(x+T)+bg(x+T)=af(x)+bg(x),$$

so
$$(af + bg)$$
 is also T -periodic.

Example

$$f(x) = 2\sin(3x) + 7\cos(3x)$$
 is periodic with period $T = 2\pi/3$. \triangleleft

Remark: The functions below are periodic with period $T = \frac{\tau}{n}$,

$$f(x) = \cos\left(\frac{2\pi nx}{\tau}\right), \quad g(x) = \sin\left(\frac{2\pi nx}{\tau}\right),$$

Since f and g are invariant under translations by τ/n , they are also invariant under translations by τ .

Corollary

Any function f given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right]$$

is periodic with period au.

Periodic functions.

Corollary

Any function f given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right]$$

is periodic with period au.

Remark: We will show that the converse statement is true.

Periodic functions.

Corollary

Any function f given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right]$$

is periodic with period τ .

Remark: We will show that the converse statement is true.

Theorem

A function f is τ -periodic iff holds

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right].$$

Fourier Series (Sect. 10.2).

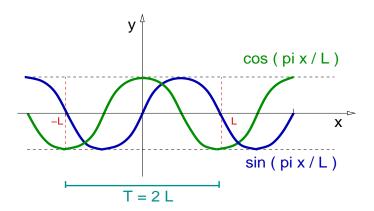
- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- Main result on Fourier Series.

Remark:

From now on we work on the following domain: [-L, L].

Remark:

From now on we work on the following domain: [-L, L].



Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0 & n \neq m, \\ L & n = m \neq 0, \\ 2L & n = m = 0, \end{cases}$$

$$\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0 & n \neq m, \\ L & n = m, \end{cases}$$

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = 0.$$

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0 & n \neq m, \\ L & n = m \neq 0, \\ 2L & n = m = 0, \end{cases}$$

$$\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0 & n \neq m, \\ L & n = m, \end{cases}$$

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = 0.$$

Remark:

► The operation $f \cdot g = \int_{-L}^{L} f(x) g(x) dx$ is an inner product in the vector space of functions.

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0 & n \neq m, \\ L & n = m \neq 0, \\ 2L & n = m = 0, \end{cases}$$

$$\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0 & n \neq m, \\ L & n = m, \end{cases}$$

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = 0.$$

Remark:

▶ The operation $f \cdot g = \int_{-L}^{L} f(x) g(x) dx$ is an inner product in the vector space of functions. Like the dot product is in \mathbb{R}^2 .

Theorem (Orthogonality)

The following relations hold for all $n, m \in \mathbb{N}$,

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0 & n \neq m, \\ L & n = m \neq 0, \\ 2L & n = m = 0, \end{cases}$$

$$\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0 & n \neq m, \\ L & n = m, \end{cases}$$

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = 0.$$

Remark:

- ▶ The operation $f \cdot g = \int_{-L}^{L} f(x) g(x) dx$ is an inner product in the vector space of functions. Like the dot product is in \mathbb{R}^2 .
- ▶ Two functions f, g, are orthogonal iff $f \cdot g = 0$.

Recall:
$$\cos(\theta) \cos(\phi) = \frac{1}{2} \left[\cos(\theta + \phi) + \cos(\theta - \phi) \right];$$

 $\sin(\theta) \sin(\phi) = \frac{1}{2} \left[\cos(\theta - \phi) - \cos(\theta + \phi) \right];$
 $\sin(\theta) \cos(\phi) = \frac{1}{2} \left[\sin(\theta + \phi) + \sin(\theta - \phi) \right].$

Recall:
$$\cos(\theta) \cos(\phi) = \frac{1}{2} \left[\cos(\theta + \phi) + \cos(\theta - \phi) \right];$$

 $\sin(\theta) \sin(\phi) = \frac{1}{2} \left[\cos(\theta - \phi) - \cos(\theta + \phi) \right];$
 $\sin(\theta) \cos(\phi) = \frac{1}{2} \left[\sin(\theta + \phi) + \sin(\theta - \phi) \right].$

Proof: First formula:

Recall:
$$\cos(\theta) \cos(\phi) = \frac{1}{2} \left[\cos(\theta + \phi) + \cos(\theta - \phi) \right];$$

 $\sin(\theta) \sin(\phi) = \frac{1}{2} \left[\cos(\theta - \phi) - \cos(\theta + \phi) \right];$
 $\sin(\theta) \cos(\phi) = \frac{1}{2} \left[\sin(\theta + \phi) + \sin(\theta - \phi) \right].$

Proof: First formula: If n = m = 0, it is simple to see that

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \int_{-L}^{L} dx = 2L.$$

Recall:
$$\cos(\theta) \cos(\phi) = \frac{1}{2} \left[\cos(\theta + \phi) + \cos(\theta - \phi) \right];$$

 $\sin(\theta) \sin(\phi) = \frac{1}{2} \left[\cos(\theta - \phi) - \cos(\theta + \phi) \right];$
 $\sin(\theta) \cos(\phi) = \frac{1}{2} \left[\sin(\theta + \phi) + \sin(\theta - \phi) \right].$

Proof: First formula: If n = m = 0, it is simple to see that

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \int_{-L}^{L} dx = 2L.$$

In the case where one of n or m is non-zero, use the relation

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n+m)\pi x}{L}\right] dx + \frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n-m)\pi x}{L}\right] dx.$$

Proof: Since one of n or m is non-zero,

Proof: Since one of *n* or *m* is non-zero, holds

$$\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m)\pi x}{L} \right] dx = \frac{L}{2(n+m)\pi} \sin \left[\frac{(n+m)\pi x}{L} \right] \Big|_{-L}^{L} = 0.$$

Proof: Since one of *n* or *m* is non-zero, holds

$$\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m)\pi x}{L} \right] dx = \frac{L}{2(n+m)\pi} \sin \left[\frac{(n+m)\pi x}{L} \right] \Big|_{-L}^{L} = 0.$$

We obtain that

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n-m)\pi x}{L}\right] dx.$$

Proof: Since one of *n* or *m* is non-zero, holds

$$\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m)\pi x}{L} \right] dx = \frac{L}{2(n+m)\pi} \sin \left[\frac{(n+m)\pi x}{L} \right] \Big|_{-L}^{L} = 0.$$

We obtain that

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \, \cos\left(\frac{m\pi x}{L}\right) \, dx = \frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n-m)\pi x}{L}\right] \, dx.$$

If we further restrict $n \neq m$, then

$$\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m)\pi x}{L} \right] dx = \frac{L}{2(n-m)\pi} \sin \left[\frac{(n-m)\pi x}{L} \right] \Big|_{-L}^{L} = 0.$$

Proof: Since one of *n* or *m* is non-zero, holds

$$\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m)\pi x}{L} \right] dx = \frac{L}{2(n+m)\pi} \sin \left[\frac{(n+m)\pi x}{L} \right] \Big|_{-L}^{L} = 0.$$

We obtain that

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \, \cos\left(\frac{m\pi x}{L}\right) \, dx = \frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n-m)\pi x}{L}\right] \, dx.$$

If we further restrict $n \neq m$, then

$$\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m)\pi x}{L} \right] dx = \frac{L}{2(n-m)\pi} \sin \left[\frac{(n-m)\pi x}{L} \right] \Big|_{-L}^{L} = 0.$$

If $n = m \neq 0$, we have that

$$\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m)\pi x}{L} \right] dx = \frac{1}{2} \int_{-L}^{L} dx = L.$$

Proof: Since one of *n* or *m* is non-zero, holds

$$\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n+m)\pi x}{L} \right] dx = \frac{L}{2(n+m)\pi} \sin \left[\frac{(n+m)\pi x}{L} \right] \Big|_{-L}^{L} = 0.$$

We obtain that

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \, \cos\left(\frac{m\pi x}{L}\right) \, dx = \frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n-m)\pi x}{L}\right] \, dx.$$

If we further restrict $n \neq m$, then

$$\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m)\pi x}{L} \right] dx = \frac{L}{2(n-m)\pi} \sin \left[\frac{(n-m)\pi x}{L} \right] \Big|_{-L}^{L} = 0.$$

If $n = m \neq 0$, we have that

$$\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m)\pi x}{L} \right] dx = \frac{1}{2} \int_{-L}^{L} dx = L.$$

This establishes the first equation in the Theorem. The remaining equations are proven in a similar way.

Overview of Fourier Series (Sect. 10.2).

- Origins of the Fourier Series.
- Periodic functions.
- Orthogonality of Sines and Cosines.
- ► Main result on Fourier Series.

Main result on Fourier Series.

Theorem (Fourier Series)

If the function $f:[-L,L]\subset\mathbb{R}\to\mathbb{R}$ is continuous, then f can be expressed as an infinite series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$
 (1)

with the constants a_n and b_n given by

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \qquad n \geqslant 0,$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \qquad n \geqslant 1.$$

Furthermore, the Fourier series in Eq. (1) provides a 2L-periodic extension of f from the domain $[-L, L] \subset \mathbb{R}$ to \mathbb{R} .

Examples of the Fourier Theorem (Sect. 10.3).

- ▶ The Fourier Theorem: Continuous case.
- ► Example: Using the Fourier Theorem.
- ▶ The Fourier Theorem: Piecewise continuous case.
- ► Example: Using the Fourier Theorem.

Theorem (Fourier Series)

If the function $f:[-L,L]\subset\mathbb{R}\to\mathbb{R}$ is continuous, then f can be expressed as an infinite series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$
 (2)

with the constants a_n and b_n given by

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \qquad n \geqslant 0,$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \qquad n \geqslant 1.$$

Furthermore, the Fourier series in Eq. (2) provides a 2L-periodic extension of function f from the domain $[-L, L] \subset \mathbb{R}$ to \mathbb{R} .

Sketch of the Proof:

▶ Define the partial sum functions

$$f_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$

Sketch of the Proof:

Define the partial sum functions

$$f_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$

with a_n and b_n given by

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \qquad n \geqslant 0,$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \qquad n \geqslant 1.$$

Sketch of the Proof:

Define the partial sum functions

$$f_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$

with a_n and b_n given by

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \qquad n \geqslant 0,$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \qquad n \geqslant 1.$$

Express f_N as a convolution of Sine, Cosine, functions and the original function f.

Sketch of the Proof:

Define the partial sum functions

$$f_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$

with a_n and b_n given by

$$a_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \qquad n \geqslant 0,$$

$$b_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \qquad n \geqslant 1.$$

- Express f_N as a convolution of Sine, Cosine, functions and the original function f.
- Use the convolution properties to show that

$$\lim_{N\to\infty} f_N(x) = f(x), \qquad x\in [-L,L].$$

Examples of the Fourier Theorem (Sect. 10.3).

- ▶ The Fourier Theorem: Continuous case.
- ► Example: Using the Fourier Theorem.
- ▶ The Fourier Theorem: Piecewise continuous case.
- ► Example: Using the Fourier Theorem.

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: In this case L = 1.

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: In this case L=1. The Fourier series expansion is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right],$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: In this case L=1. The Fourier series expansion is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right],$$

where the a_n , b_n are given in the Theorem.

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: In this case L=1. The Fourier series expansion is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right],$$

$$a_0 = \int_{-1}^1 f(x) \, dx$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: In this case L=1. The Fourier series expansion is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right],$$

$$a_0 = \int_{-1}^1 f(x) \, dx = \int_{-1}^0 (1+x) \, dx + \int_0^1 (1-x) \, dx.$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: In this case L=1. The Fourier series expansion is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right],$$

$$a_0 = \int_{-1}^1 f(x) \, dx = \int_{-1}^0 (1+x) \, dx + \int_0^1 (1-x) \, dx.$$
$$a_0 = \left(x + \frac{x^2}{2}\right)\Big|_{-1}^0 + \left(x - \frac{x^2}{2}\right)\Big|_0^1$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: In this case L=1. The Fourier series expansion is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right],$$

$$a_0 = \int_{-1}^1 f(x) \, dx = \int_{-1}^0 (1+x) \, dx + \int_0^1 (1-x) \, dx.$$

$$a_0 = \left(x + \frac{x^2}{2}\right)\Big|_{-1}^0 + \left(x - \frac{x^2}{2}\right)\Big|_{0}^1 = \left(1 - \frac{1}{2}\right) + \left(1 - \frac{1}{2}\right)$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: In this case L=1. The Fourier series expansion is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right],$$

where the a_n , b_n are given in the Theorem. We start with a_0 ,

$$a_0 = \int_{-1}^1 f(x) dx = \int_{-1}^0 (1+x) dx + \int_0^1 (1-x) dx.$$

$$a_0 = \left(x + \frac{x^2}{2}\right)\Big|_{-1}^0 + \left(x - \frac{x^2}{2}\right)\Big|_{0}^1 = \left(1 - \frac{1}{2}\right) + \left(1 - \frac{1}{2}\right)$$

We obtain: $a_0 = 1$.

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall: $a_0 = 1$.

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

$$a_n = \int_{-1}^1 f(x) \cos(n\pi x) dx$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

$$a_n = \int_{-1}^1 f(x) \cos(n\pi x) dx$$

$$a_n = \int_{-1}^0 (1+x) \cos(n\pi x) dx + \int_0^1 (1-x) \cos(n\pi x) dx.$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

$$a_n = \int_{-1}^1 f(x) \cos(n\pi x) dx$$

$$a_n = \int_{-1}^0 (1+x) \cos(n\pi x) dx + \int_0^1 (1-x) \cos(n\pi x) dx.$$

Recall the integrals
$$\int \cos(n\pi x) dx = \frac{1}{n\pi} \sin(n\pi x)$$
,

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

$$a_n = \int_{-1}^1 f(x) \cos(n\pi x) dx$$

$$a_n = \int_{-1}^0 (1+x) \cos(n\pi x) dx + \int_0^1 (1-x) \cos(n\pi x) dx.$$

Recall the integrals
$$\int \cos(n\pi x) dx = \frac{1}{n\pi} \sin(n\pi x)$$
, and
$$\int x \cos(n\pi x) dx = \frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^2\pi^2} \cos(n\pi x).$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: It is not difficult to see that

$$a_{n} = \frac{1}{n\pi} \sin(n\pi x) \Big|_{-1}^{0} + \left[\frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^{2}\pi^{2}} \cos(n\pi x) \right] \Big|_{-1}^{0}$$
$$+ \frac{1}{n\pi} \sin(n\pi x) \Big|_{0}^{1} - \left[\frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^{2}\pi^{2}} \cos(n\pi x) \right] \Big|_{0}^{1}$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: It is not difficult to see that

$$a_{n} = \frac{1}{n\pi} \sin(n\pi x) \Big|_{-1}^{0} + \Big[\frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^{2}\pi^{2}} \cos(n\pi x) \Big] \Big|_{-1}^{0}$$

$$+ \frac{1}{n\pi} \sin(n\pi x) \Big|_{0}^{1} - \Big[\frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^{2}\pi^{2}} \cos(n\pi x) \Big] \Big|_{0}^{1}$$

$$a_{n} = \Big[\frac{1}{n^{2}\pi^{2}} - \frac{1}{n^{2}\pi^{2}} \cos(-n\pi) \Big] - \Big[\frac{1}{n^{2}\pi^{2}} \cos(n\pi) - \frac{1}{n^{2}\pi^{2}} \Big].$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: It is not difficult to see that

$$a_{n} = \frac{1}{n\pi} \sin(n\pi x) \Big|_{-1}^{0} + \left[\frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^{2}\pi^{2}} \cos(n\pi x) \right] \Big|_{-1}^{0}$$
$$+ \frac{1}{n\pi} \sin(n\pi x) \Big|_{0}^{1} - \left[\frac{x}{n\pi} \sin(n\pi x) + \frac{1}{n^{2}\pi^{2}} \cos(n\pi x) \right] \Big|_{0}^{1}$$

$$a_n = \left[\frac{1}{n^2\pi^2} - \frac{1}{n^2\pi^2}\cos(-n\pi)\right] - \left[\frac{1}{n^2\pi^2}\cos(n\pi) - \frac{1}{n^2\pi^2}\right].$$

We then conclude that $a_n = \frac{2}{n^2 \pi^2} [1 - \cos(n\pi)].$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$a_0 = 1$$
, and $a_n = \frac{2}{n^2 \pi^2} [1 - \cos(n\pi)]$.

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall: $a_0 = 1$, and $a_n = \frac{2}{n^2 \pi^2} [1 - \cos(n\pi)]$.

Finally, we must find the coefficients b_n .

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall: $a_0 = 1$, and $a_n = \frac{2}{n^2\pi^2} [1 - \cos(n\pi)]$.

Finally, we must find the coefficients b_n .

A similar calculation shows that $b_n = 0$.

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall: $a_0 = 1$, and $a_n = \frac{2}{n^2\pi^2} [1 - \cos(n\pi)]$.

Finally, we must find the coefficients b_n .

A similar calculation shows that $b_n = 0$.

Then, the Fourier series of f is given by

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 - \cos(n\pi)] \cos(n\pi x).$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 - \cos(n\pi) \right] \cos(n\pi x).$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 - \cos(n\pi)] \cos(n\pi x)$$
.

We can obtain a simpler expression for the Fourier coefficients a_n .

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 - \cos(n\pi) \right] \cos(n\pi x).$$

We can obtain a simpler expression for the Fourier coefficients a_n .

Recall the relations $\cos(n\pi) = (-1)^n$,

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 - \cos(n\pi) \right] \cos(n\pi x).$$

We can obtain a simpler expression for the Fourier coefficients a_n .

Recall the relations $\cos(n\pi) = (-1)^n$, then

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 - (-1)^n] \cos(n\pi x).$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[1 - \cos(n\pi) \right] \cos(n\pi x).$$

We can obtain a simpler expression for the Fourier coefficients a_n .

Recall the relations $\cos(n\pi) = (-1)^n$, then

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 - (-1)^n] \cos(n\pi x).$$

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x).$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x).$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x).$$

If
$$n = 2k$$
,

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x)$$
.

If n = 2k, so n is even,

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x).$$

If n = 2k, so n is even, so n + 1 = 2k + 1 is odd,

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x)$$
.

If n = 2k, so n is even, so n + 1 = 2k + 1 is odd, then

$$a_{2k} = \frac{2}{(2k)^2 \pi^2} (1 - 1)$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x).$$

If n = 2k, so n is even, so n + 1 = 2k + 1 is odd, then

$$a_{2k} = \frac{2}{(2k)^2\pi^2}(1-1) \quad \Rightarrow \quad a_{2k} = 0.$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x)$$
.

If n = 2k, so n is even, so n + 1 = 2k + 1 is odd, then

$$a_{2k} = \frac{2}{(2k)^2\pi^2}(1-1) \quad \Rightarrow \quad a_{2k} = 0.$$

If n = 2k - 1,

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x)$$
.

If n = 2k, so n is even, so n + 1 = 2k + 1 is odd, then

$$a_{2k} = \frac{2}{(2k)^2\pi^2}(1-1) \quad \Rightarrow \quad a_{2k} = 0.$$

If n = 2k - 1, so n is odd,

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x).$$

If n = 2k, so n is even, so n + 1 = 2k + 1 is odd, then

$$a_{2k} = \frac{2}{(2k)^2\pi^2}(1-1) \quad \Rightarrow \quad a_{2k} = 0.$$

If n = 2k - 1, so n is odd, so n + 1 = 2k is even,

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x)$$
.

If n = 2k, so n is even, so n + 1 = 2k + 1 is odd, then

$$a_{2k} = \frac{2}{(2k)^2\pi^2}(1-1) \quad \Rightarrow \quad a_{2k} = 0.$$

If n = 2k - 1, so n is odd, so n + 1 = 2k is even, then

$$a_{2k-1} = \frac{2}{(2k-1)^2\pi^2} (1+1)$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution: Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x)$$
.

If n = 2k, so n is even, so n + 1 = 2k + 1 is odd, then

$$a_{2k} = \frac{2}{(2k)^2\pi^2}(1-1) \quad \Rightarrow \quad a_{2k} = 0.$$

If n = 2k - 1, so n is odd, so n + 1 = 2k is even, then

$$a_{2k-1} = rac{2}{(2k-1)^2\pi^2} (1+1) \quad \Rightarrow \quad a_{2k-1} = rac{4}{(2k-1)^2\pi^2}.$$

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution:

Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x)$$
, and $a_{2k} = 0$, $a_{2k-1} = \frac{4}{(2k-1)^2 \pi^2}$.

Example

Find the Fourier series expansion of the function

$$f(x) = \begin{cases} 1+x & x \in [-1,0), \\ 1-x & x \in [0,1]. \end{cases}$$

Solution:

Recall:
$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} [1 + (-1)^{n+1}] \cos(n\pi x)$$
, and $a_{2k} = 0$, $a_{2k-1} = \frac{4}{(2k-1)^2 \pi^2}$.

We conclude:
$$f(x) = \frac{1}{2} + \sum_{k=1}^{\infty} \frac{4}{(2k-1)^2 \pi^2} \cos((2k-1)\pi x)$$
.

Examples of the Fourier Theorem (Sect. 10.3).

- ▶ The Fourier Theorem: Continuous case.
- ▶ Example: Using the Fourier Theorem.
- ▶ The Fourier Theorem: Piecewise continuous case.
- ► Example: Using the Fourier Theorem.

The Fourier Theorem: Piecewise continuous case.

Recall:

Definition

A function $f:[a,b] \to \mathbb{R}$ is called *piecewise continuous* iff holds,

- (a) [a, b] can be partitioned in a finite number of sub-intervals such that f is continuous on the interior of these sub-intervals.
- (b) f has finite limits at the endpoints of all sub-intervals.

The Fourier Theorem: Piecewise continuous case.

Theorem (Fourier Series)

If $f: [-L, L] \subset \mathbb{R} \to \mathbb{R}$ is piecewise continuous, then the function

$$f_F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$

where a_n and b_n given by

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \qquad n \geqslant 0,$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \qquad n \geqslant 1.$$

satisfies that:

- (a) $f_F(x) = f(x)$ for all x where f is continuous;
- (b) $f_F(x_0) = \frac{1}{2} \left[\lim_{x \to x_0^+} f(x) + \lim_{x \to x_0^-} f(x) \right]$ for all x_0 where f is discontinuous.

Examples of the Fourier Theorem (Sect. 10.3).

- ▶ The Fourier Theorem: Continuous case.
- ▶ Example: Using the Fourier Theorem.
- ▶ The Fourier Theorem: Piecewise continuous case.
- ► Example: Using the Fourier Theorem.

Example

Find the Fourier series of
$$f(x) = \begin{cases} -1 & x \in [-1, 0), \\ 1 & x \in [0, 1). \end{cases}$$
 and periodic with period $T = 2$.

Example

Find the Fourier series of $f(x) = \begin{cases} -1 & x \in [-1,0), \\ 1 & x \in [0,1). \end{cases}$ and periodic with period T = 2.

Example

Find the Fourier series of
$$f(x) = \begin{cases} -1 & x \in [-1,0), \\ 1 & x \in [0,1). \end{cases}$$
 and periodic with period $T = 2$.

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx,$$

Example

Find the Fourier series of
$$f(x) = \begin{cases} -1 & x \in [-1,0), \\ 1 & x \in [0,1). \end{cases}$$
 and periodic with period $T = 2$.

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \qquad L = 1,$$

Example

Find the Fourier series of $f(x)=\left\{ egin{array}{ll} -1 & x\in [-1,0), \\ 1 & x\in [0,1). \end{array}
ight.$ and periodic with period T=2.

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \qquad L = 1,$$

$$b_n = \int_{-1}^0 (-1) \sin(n\pi x) dx + \int_0^1 (1) \sin(n\pi x) dx,$$

Example

Find the Fourier series of $f(x) = \begin{cases} -1 & x \in [-1,0), \\ 1 & x \in [0,1). \end{cases}$ and periodic with period T=2.

$$b_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \qquad L = 1,$$

$$b_{n} = \int_{-1}^{0} (-1) \sin(n\pi x) dx + \int_{0}^{1} (1) \sin(n\pi x) dx,$$

$$b_{n} = \frac{(-1)}{n\pi} \left[-\cos(n\pi x) \Big|_{-1}^{0} \right] + \frac{1}{n\pi} \left[-\cos(n\pi x) \Big|_{0}^{1} \right],$$

Example

Find the Fourier series of $f(x) = \begin{cases} -1 & x \in [-1,0), \\ 1 & x \in [0,1). \end{cases}$ and periodic with period T = 2.

$$b_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \qquad L = 1,$$

$$b_{n} = \int_{-1}^{0} (-1) \sin(n\pi x) dx + \int_{0}^{1} (1) \sin(n\pi x) dx,$$

$$b_{n} = \frac{(-1)}{n\pi} \left[-\cos(n\pi x) \Big|_{-1}^{0} \right] + \frac{1}{n\pi} \left[-\cos(n\pi x) \Big|_{0}^{1} \right],$$

$$b_{n} = \frac{(-1)}{n\pi} \left[-1 + \cos(-n\pi) \right] + \frac{1}{n\pi} \left[-\cos(n\pi) + 1 \right].$$

Example

Solution:
$$b_n = \frac{(-1)}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1].$$

Example

Solution:
$$b_n = \frac{(-1)}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1].$$

$$b_n = \frac{1}{n\pi} [1 - \cos(-n\pi) - \cos(n\pi) + 1]$$

Example

Solution:
$$b_n = \frac{(-1)}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1].$$

 $b_n = \frac{1}{n\pi} [1 - \cos(-n\pi) - \cos(n\pi) + 1] = \frac{2}{n\pi} [1 - \cos(n\pi)],$

Example

Solution:
$$b_n = \frac{(-1)}{n\pi} \left[-1 + \cos(-n\pi) \right] + \frac{1}{n\pi} \left[-\cos(n\pi) + 1 \right].$$

$$b_n = \frac{1}{n\pi} \left[1 - \cos(-n\pi) - \cos(n\pi) + 1 \right] = \frac{2}{n\pi} \left[1 - \cos(n\pi) \right],$$
We obtain: $b_n = \frac{2}{n\pi} \left[1 - (-1)^n \right].$

Example

Solution:
$$b_n = \frac{(-1)}{n\pi} \left[-1 + \cos(-n\pi) \right] + \frac{1}{n\pi} \left[-\cos(n\pi) + 1 \right].$$

$$b_n = \frac{1}{n\pi} \left[1 - \cos(-n\pi) - \cos(n\pi) + 1 \right] = \frac{2}{n\pi} \left[1 - \cos(n\pi) \right],$$
We obtain: $b_n = \frac{2}{n\pi} \left[1 - (-1)^n \right].$

If
$$n = 2k$$
,

Example

Solution:
$$b_n = \frac{(-1)}{n\pi} \left[-1 + \cos(-n\pi) \right] + \frac{1}{n\pi} \left[-\cos(n\pi) + 1 \right].$$

$$b_n = \frac{1}{n\pi} \left[1 - \cos(-n\pi) - \cos(n\pi) + 1 \right] = \frac{2}{n\pi} \left[1 - \cos(n\pi) \right],$$
We obtain: $b_n = \frac{2}{n\pi} \left[1 - (-1)^n \right].$
If $n = 2k$, then $b_{2k} = \frac{2}{2k\pi} \left[1 - (-1)^{2k} \right],$

Example

Solution:
$$b_n = \frac{(-1)}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1].$$

$$b_n = \frac{1}{n\pi} [1 - \cos(-n\pi) - \cos(n\pi) + 1] = \frac{2}{n\pi} [1 - \cos(n\pi)],$$
We obtain: $b_n = \frac{2}{n\pi} [1 - (-1)^n].$

If
$$n = 2k$$
, then $b_{2k} = \frac{2}{2k\pi} [1 - (-1)^{2k}]$, hence $b_{2k} = 0$.

Example

Solution:
$$b_n = \frac{(-1)}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1].$$

 $b_n = \frac{1}{n\pi} [1 - \cos(-n\pi) - \cos(n\pi) + 1] = \frac{2}{n\pi} [1 - \cos(n\pi)],$

We obtain:
$$b_n = \frac{2}{n\pi} [1 - (-1)^n].$$

If
$$n = 2k$$
, then $b_{2k} = \frac{2}{2k\pi} [1 - (-1)^{2k}]$, hence $b_{2k} = 0$.

If
$$n = 2k - 1$$
,

Example

Solution:
$$b_n = \frac{(-1)}{n\pi} \left[-1 + \cos(-n\pi) \right] + \frac{1}{n\pi} \left[-\cos(n\pi) + 1 \right].$$
 $b_n = \frac{1}{n\pi} \left[1 - \cos(-n\pi) - \cos(n\pi) + 1 \right] = \frac{2}{n\pi} \left[1 - \cos(n\pi) \right],$ We obtain: $b_n = \frac{2}{n\pi} \left[1 - (-1)^n \right].$ If $n = 2k$, then $b_{2k} = \frac{2}{2k\pi} \left[1 - (-1)^{2k} \right]$, hence $b_{2k} = 0$.

If
$$n = 2k - 1$$
, then $b_{2k-1} = \frac{2}{(2k-1)\pi} [1 - (-1)^{2k-1}],$

Example

Solution:
$$b_n = \frac{(-1)}{n\pi} [-1 + \cos(-n\pi)] + \frac{1}{n\pi} [-\cos(n\pi) + 1].$$

$$b_n = \frac{1}{n\pi} [1 - \cos(-n\pi) - \cos(n\pi) + 1] = \frac{2}{n\pi} [1 - \cos(n\pi)],$$
We obtain: $b_n = \frac{2}{n\pi} [1 - (-1)^n].$

If
$$n = 2k$$
, then $b_{2k} = \frac{2}{2k\pi} [1 - (-1)^{2k}]$, hence $b_{2k} = 0$.

If
$$n = 2k - 1$$
, then $b_{2k-1} = \frac{2}{(2k-1)\pi} [1 - (-1)^{2k-1}]$,

hence
$$b_{2k} = \frac{4}{(2k-1)\pi}$$
.

Example

Solution: Recall:
$$b_{2k} = 0$$
, and $b_{2k} = \frac{4}{(2k-1)\pi}$.

Find the Fourier series of
$$f(x) = \begin{cases} -1 & x \in [-1,0), \\ 1 & x \in [0,1). \end{cases}$$
 and periodic with period $T = 2$.

Solution: Recall:
$$b_{2k}=0$$
, and $b_{2k}=\frac{4}{(2k-1)\pi}$.
$$a_n=\frac{1}{L}\int_{-L}^L f(x)\,\cos\Bigl(\frac{n\pi x}{L}\Bigr)\,dx,$$

Find the Fourier series of
$$f(x) = \begin{cases} -1 & x \in [-1,0), \\ 1 & x \in [0,1). \end{cases}$$
 and periodic with period $T = 2$.

Solution: Recall:
$$b_{2k}=0$$
, and $b_{2k}=\frac{4}{(2k-1)\pi}$.
$$a_n=\frac{1}{L}\int_{-L}^L f(x)\,\cos\Bigl(\frac{n\pi x}{L}\Bigr)\,dx,\qquad L=1,$$

Find the Fourier series of
$$f(x) = \begin{cases} -1 & x \in [-1,0), \\ 1 & x \in [0,1). \end{cases}$$
 and periodic with period $T = 2$.

Solution: Recall:
$$b_{2k}=0$$
, and $b_{2k}=\frac{4}{(2k-1)\pi}$.
$$a_n=\frac{1}{L}\int_{-L}^L f(x)\,\cos\Bigl(\frac{n\pi x}{L}\Bigr)\,dx, \qquad L=1,$$

$$a_n=\int_{-1}^0 (-1)\,\cos\bigl(n\pi x\bigr)\,dx+\int_0^1 (1)\,\cos\bigl(n\pi x\bigr)\,dx,$$

Find the Fourier series of
$$f(x) = \begin{cases} -1 & x \in [-1,0), \\ 1 & x \in [0,1). \end{cases}$$
 and periodic with period $T = 2$.

Solution: Recall:
$$b_{2k} = 0$$
, and $b_{2k} = \frac{4}{(2k-1)\pi}$.
$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \qquad L = 1,$$

$$a_n = \int_{-1}^{0} (-1) \cos(n\pi x) dx + \int_{0}^{1} (1) \cos(n\pi x) dx,$$

$$a_n = \frac{(-1)}{n\pi} \Big[\sin(n\pi x) \Big|_{-1}^{0} \Big] + \frac{1}{n\pi} \Big[\sin(n\pi x) \Big|_{0}^{1} \Big],$$

Find the Fourier series of
$$f(x) = \begin{cases} -1 & x \in [-1,0), \\ 1 & x \in [0,1). \end{cases}$$
 and periodic with period $T = 2$.

Solution: Recall:
$$b_{2k} = 0$$
, and $b_{2k} = \frac{4}{(2k-1)\pi}$.
$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \qquad L = 1,$$

$$a_n = \int_{-1}^{0} (-1) \cos(n\pi x) dx + \int_{0}^{1} (1) \cos(n\pi x) dx,$$

$$a_n = \frac{(-1)}{n\pi} \Big[\sin(n\pi x) \Big|_{-1}^{0} \Big] + \frac{1}{n\pi} \Big[\sin(n\pi x) \Big|_{0}^{1} \Big],$$

$$a_n = \frac{(-1)}{n\pi} \Big[0 - \sin(-n\pi) \Big] + \frac{1}{n\pi} \Big[\sin(n\pi) - 0 \Big]$$

Find the Fourier series of
$$f(x) = \begin{cases} -1 & x \in [-1,0), \\ 1 & x \in [0,1). \end{cases}$$
 and periodic with period $T = 2$.

Solution: Recall:
$$b_{2k} = 0$$
, and $b_{2k} = \frac{4}{(2k-1)\pi}$.

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \qquad L = 1,$$

$$a_n = \int_{-1}^{0} (-1) \cos(n\pi x) dx + \int_{0}^{1} (1) \cos(n\pi x) dx,$$

$$a_n = \frac{(-1)}{n\pi} \left[\sin(n\pi x) \Big|_{-1}^{0} \right] + \frac{1}{n\pi} \left[\sin(n\pi x) \Big|_{0}^{1} \right],$$

$$a_n = \frac{(-1)}{n\pi} \left[0 - \sin(-n\pi) \right] + \frac{1}{n\pi} \left[\sin(n\pi) - 0 \right] \quad \Rightarrow \quad a_n = 0.$$

Example

Solution: Recall:
$$b_{2k} = 0$$
, $b_{2k} = \frac{4}{(2k-1)\pi}$, and $a_n = 0$.

Example

Find the Fourier series of $f(x) = \begin{cases} -1 & x \in [-1,0), \\ 1 & x \in [0,1). \end{cases}$ and periodic with period T = 2.

Solution: Recall: $b_{2k} = 0$, $b_{2k} = \frac{4}{(2k-1)\pi}$, and $a_n = 0$. Therefore, we conclude that

$$f_F(x) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2k-1)} \sin((2k-1)\pi x).$$

