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according to their eigenvalues.
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Review: Classification of 2 x 2 diagonalizable systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 7.5).

(b) A1 = X2, complex-valued. Hence, A has two non-proportional
eigenvectors vi = Vp, (Section 7.6).

(c-1) A1 = Az real-valued with two non-proportional eigenvectors vy,
v, (Section 7.8).

Remark:

(c-2) A1 = A2 real-valued with only one eigen-direction. Hence, A is
not diagonalizable, (Section 7.8).
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Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If n X n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1,--- ,v,} and corresponding eigenvalues
{A1,-,An}, then the general solution x to the homogeneous,
constant coefficients, linear system

X'(t) = Ax(t)
is given by the expression below, where ¢, ,c, € R,

x(t) = cvy eME 4 -+ cuv, eME
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Review: Classification of 2 x 2 diagonalizable systems.

»
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» Real matrix with a pair of complex eigenvalues.
>

Phase portraits for 2 x 2 systems.



Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.
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Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av=Avand A= A. Then

Av=) v < Av=)\v



Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av=Avand A= A. Then
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Real matrix with a pair of complex eigenvalues.

Theorem

If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av=Avand A= A. Then

Av=)Av & AvV=)\v <& Av=)\w.

Therefore {\,v} is an eigen-pair of matrix A.



Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av=Avand A= A. Then
Av=2Av & AV=)V & AvV=)V
Therefore {\,v} is an eigen-pair of matrix A.

Remark: The Theorem above is equivalent to the following:



Real matrix with a pair of complex eigenvalues.

Theorem
If {\,v} is an eigen-pair of an n X n real-valued matrix A, then
{\,v} also is an eigen-pair of matrix A.

Proof: By hypothesis Av=Avand A= A. Then

Av=Xv & AV=AV & AV=)V
Therefore {\,v} is an eigen-pair of matrix A.

Remark: The Theorem above is equivalent to the following:
If an n x n real-valued matrix A has eigen pairs

AM=a+i3, vi=a+ib,

with o, 3 € R and a,b € R”, then so is

M =a—i3, vy=a—ib.



Real matrix with a pair of complex eigenvalues.

Theorem (Complex pairs)

If an n X n real-valued matrix A has eigen pairs
A =a+if, v =atib,
with a, 3 € R and a,b € R”, then the differential equation
X'(t) = Ax(t)
has a linearly independent set of two complex-valued solutions
x(1) = vy (F) et x(7) = v () At
and it also has a linearly independent set of two real-valued

luti
solutions x(1) — [a cos(ft) — b Sin(ﬁt)] et

x(?) = [a sin(3t) + b cos(Bt)] e**.



Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is



Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is

x(+) — V(-‘r) e>\+t — (a + Ib) e(OH—iﬁ)t



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(.|-) _ V(+) eA+t _ (a + ib) e(a+iﬁ)t _ (a + ib) oot eiﬁt.



Real matrix with a pair of complex eigenvalues.
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Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is
x(+) _ V(+) eA+t _ (a + ib) e(a+iﬁ)t _ (a + ib) oot eiﬁt.
Euler equation implies

xH) = (a + ib) et [cos(St) + isin(Bt)],



Real matrix with a pair of complex eigenvalues.
Proof: We know that one solution to the differential equation is
x(H) = v(H) Mt = (a4 jb) el@HA)t — (a + jb) et &/t
Euler equation implies
x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],

x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is
x(+) _ V(+) eA+t _ (a + ib) e(a+iﬁ)t _ (a + ib) oot eiﬁt.

Euler equation implies
x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],

x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et
A similar calculation done on x(=) implies

x(7) = [a cos(Bt) — b sin(8t)] e** — i [a sin(8t) + b cos(3t)] e**.



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(+) — V(+) Apt (a + Ib) (a+iB)t — (a + Ib) eat el',Bt.
Euler equation implies

x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],
x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et
A similar calculation done on x(=) implies
x(7) = [a cos(ft) — b sin(Bt)] e — i [a sin(5t) + b cos((t)] et

Introduce x() = (x(+) + x(=))/2,



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(+) — V(+) Apt (a + Ib) (a+iB)t — (a + Ib) eat el',Bt.
Euler equation implies

x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],
x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et
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x(7) = [a cos(ft) — b sin(Bt)] e — i [a sin(5t) + b cos((t)] et
Introduce x(1) = (x(+) 4 x(=)) /2, x@ = (x(+) — x(=))/(2),



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(+) — V(+) Apt (a + Ib) (a+iB)t — (a + Ib) eat el',Bt.
Euler equation implies

x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],
x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et
A similar calculation done on x(=) implies
x(7) = [a cos(ft) — b sin(Bt)] e — i [a sin(5t) + b cos((t)] et
Introduce x() = (x(+) + x()) /2, x(@ = (x(+) —x(=))/(2/), then

x(1) = [a cos(t) — b sin(Bt)] et



Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

x(+) — V(+) Apt (a + Ib) (a+iB)t — (a + Ib) eat el',Bt.
Euler equation implies

x(H) = (a + ib) e®* [cos(Bt) + isin(S3t)],
x(H) = [a cos(t) — b sin(Bt)] et + i [a sin(Bt) + b cos((t)] et
A similar calculation done on x(=) implies
x(7) = [a cos(ft) — b sin(Bt)] e — i [a sin(5t) + b cos((t)] et
Introduce x() = (x(+) + x()) /2, x(@ = (x(+) —x(=))/(2/), then
x(1) = [a cos(t) — b sin(Bt)] et
x) = [a sin(Bt) + b cos(3t)] . O



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;L 12 3
x = Ax, A—[_3 2].



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;L 12 3
x = Ax, A—[_3 2].

Solution: (1) Find the eigenvalues of matrix A above,

p(\) = det(A— A1)



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))

MM—daM—AU—'p% QEAJ—(

A—2)2+0.



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))

MM—daM—AU—'p% QEAJ—(

A—2)2+0.

The roots of the characteristic polynomial are

(A=2)24+9=0



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))

MM—daM—AU—'p% QEAJ—(

A—2)2+0.

The roots of the characteristic polynomial are

A=224+9=0 = A —2=43j



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))

p()\)—det(A—)\I)—'(_3 (2EA)’ —

A—2)2+0.

The roots of the characteristic polynomial are

A=22+9=0 = Ap—-2=43/ = A\.=2+3i



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;L 12 3
x = Ax, A—[_3 2].

Solution: (1) Find the eigenvalues of matrix A above,

2-))

p()\)—det(A—)\I)—'(_3 (2EA)’ —

A—2)2+0.

The roots of the characteristic polynomial are
A=2249=0 = AI-2=43i = A\p=2+3]

(2) Find the eigenvectors of matrix A above.



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;L 12 3
x = Ax, A—[_3 2].

Solution: (1) Find the eigenvalues of matrix A above,

2-))

MM—daM—AU—'p% QEAJ—(

A—2)2+0.

The roots of the characteristic polynomial are
A=2249=0 = AI-2=43i = A\p=2+3]

(2) Find the eigenvectors of matrix A above. For Ay,

y



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;L 12 3
x = Ax, A—[_3 2].

Solution: (1) Find the eigenvalues of matrix A above,

2-))

MM—daM—AU—'p% QEAJ—(

A—2)2+0.

The roots of the characteristic polynomial are
A=2249=0 = AI-2=43i = A\p=2+3]

(2) Find the eigenvectors of matrix A above. For Ay,

A=l =A—(2+3i)l



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;L 12 3
x = Ax, A= [_3 NE

Solution: (1) Find the eigenvalues of matrix A above,

2-))

p()\)—det(A—)\I)—‘(_3 (2EA)’ —

A—2)2+0.

The roots of the characteristic polynomial are
A=2249=0 = AI-2=43i = A\p=2+3]
(2) Find the eigenvectors of matrix A above. For Ay,

2—(2+3i) 3 ]

A—)\+I:A—(2+3/)l:[ S 2 (24 3)



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
2 3
r_ _
x = Ax, A—[_3 2].

2~ (2+3i) 3

Solution: Ay = 2 + 3/, (A—)\Jr I) = |: _3 2—(2+3i) :



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation
;o 12 3
x = Ax, A= [_3 NE
2—(2+3i) 3
-3 2—(2+30)|
We need to solve (A — Ay [)v(t) =0 for v(*),

Solution: Ay =2+£3i, (A=A /)= [



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 NE

2~ (2+3i) 3
-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

-3i 3
-3 =3i

Solution: Ay =2+£3i, (A=A /)= [



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 NE

2~ (2+3i) 3
-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

I

Solution: Ay =2+£3i, (A=A /)= [



Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 NE

2~ (2+3i) 3
-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

R R R

Solution: Ay =2+£3i, (A=A /)= [



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 NE

Solution: )\i = 2:‘:3[, (/4_)\+ I) _ |:2 (2+3I) 3 :|

-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

[ e S P B



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: )\i = 2:‘:3[, (/4_)\+ I) _ |:2 (2+3I) 3 :|

-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

[ e S P B

So, the eigenvector v(t) = [Zl]
2



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: )\i = 2:‘:3[, (/4_)\+ I) _ |:2 (2+3I) 3 :|

-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

[ e S P B

So, the eigenvector v(t) = [Zl
2

] is given by v, = —iv,.



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: )\i = 2:‘:3[, (A_)\+ I) _ |:2 (2+3I) 3 :|

-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

[ e S P B

So, the eigenvector v() = [Vl

v] is given by v; = —iv,. Choose
2

V2:1, V1:_i7



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: )\i = 2:‘:3[, (/4_)\+ I) _ |:2 (2+3I) 3 :|

-3 2—(2+30)]

We need to solve (A — Ay /) v(t) = 0 for v(+). Gauss operations

[ e S P B

So, the eigenvector v(t) = [Zl] is given by v; = —iv,. Choose
2
—i

V2:17 V1:_i7 = V(+): |: 1

y Ay =24 3i.



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and v(t) = {_I].

The second eigenvector is v(=) = w(+),



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(7) = (), that is, v(-) = [J



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-
The second eigenvector is v(—) = ¥() that is, v(-) = [1 .

0 -1
Notice that v [1] + [ 0} i



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(—) = ¥() that is, v(-) = [1 .
0 -1

Notice that v [1] + [ 0} I.

The notation Ay =a +3i and v =a+bi



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(—) = ¥() that is, v(-) = [1 .
0 -1

Notice that v [1] + [ 0} I.

The notation Ay =a +3i and v(¥) =a+bi implies

a =2,



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(—) = ¥() that is, v(-) = [1 .
0 -1

Notice that v [1] + [ 0} I.

The notation Ay =a +3i and v(¥) =a+bi implies

=2 [B=3



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(—) = ¥() that is, v(-) = [1 .
0 -1

Notice that v [1] + [ 0} I.

The notation Ay =a +3i and v(¥) =a+bi implies

.



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A—[_3 2].

Solution: Recall: eigenvalues AL =2 + 3/, and vit) = [_ll]-

The second eigenvector is v(—) = ¥() that is, v(-) = [1 .
0 -1

Notice that v [1] + [ 0} I.

The notation Ay =a +3i and v(¥) =a+bi implies

a=2, 8=3, a:m, b:[_ol].



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

x' = Ax, A= [_23 3] )

Solution: Recall: =2, =3, a= [(1)] and b — [01].



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(3t) — b sin(3t)] e*f, and



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(3t) — b sin(3t)] e*f, and
x(2) = [a sin(3t) + b cos(Bt)] e



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(Bt) — b sin(3t)] e**, and
x(2) — [a sin(ft) +b cos(ﬁt)] et That is

X1 — (m cos(3t) — {‘01] sin(31) ) e



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(3t) — b sin(3t)] e*f, and
x(2) = [a sin(3t) + b cos(Bt)] ™. That is

(1) — (m cos(3t) — {‘01] sin(31)) € = x¥) = [z‘(')”s((?;t))} &2t



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(Bt) — b sin(3t)] e**, and
x(2) — [a sin(ft) +b cos(ﬁt)] et That is

(1) — (m cos(3t) — {‘01] sin(31)) € = x¥) = [z‘(')”s((?;t))} &2t

x(? = ([(1)] sin(3t)+ [_Cﬂ cos(3t)> e’



Real matrix with a pair of complex eigenvalues.

Example
Find a real-valued set of fundamental solutions to the equation

;o 12 3
x = Ax, A[_3 2].

Solution: Recall: =2, §=3, a= [(1)] and b = [01]'

Real-valued solutions are x(1) = [a cos(3t) — b sin(3t)] e*f, and
x(2) = [a sin(3t) + b cos(Bt)] ™. That is

(1) — (m cos(3t) — {‘01] sin(31)) € = x¥) = [z‘(')”s((?;t))} &2t

MO (m sin(3t)+ [—01} cos(31)) €% = x2) - [;:(sgfﬂ &2t
<



Complex, distinct eigenvalues (Sect. 7.6)

Review: Classification of 2 x 2 diagonalizable systems.
Review: The case of diagonalizable matrices.

Real matrix with a pair of complex eigenvalues.

vV v . v.Yy

Phase portraits for 2 x 2 systems.



Phase portraits for 2 x 2 systems.

Example
2

Sketch a phase portrait for solutions of X' = Ax, A = [_3



Phase portraits for 2 x 2 systems.

Example

Sketch a phase portrait for solutions of X' = Ax, A = [_

Solution:
The phase portrait of the
vectors

-]



Phase portraits for 2 x 2 systems.

Example

Sketch a phase portrait for solutions of X' = Ax, A = [_

Solution:
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Phase portraits for 2 x 2 systems.

Example

Sketch a phase portrait for solutions of x’ = Ax, A

Solution:
The phase portrait of the
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)~((1) _ sin(3t) ot
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Phase portraits for 2 x 2 systems.

Example

Sketch a phase portrait for solutions of X' = Ax, A = [_2 3].

Solution:
The phase portrait of the @
solutions

K = {_sf:(séf)t)] e,

are outgoing spirals.
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Example
Given any vectors a and b, sketch qualitative phase portraits of

xM) = [a cos(t) — b sin(Bt)] e, x?) = [a sin(Bt) + b cos(Bt)] e**.

for the cases « = 0, a > 0, and o < 0, where 8 > 0.
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Review: Classification of 2 x 2 diagonalizable systems.
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Diagonalizable 2 x 2 matrices A with real coefficients are classified
according to their eigenvalues.
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Review: Classification of 2 x 2 diagonalizable systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified

according to their eigenvalues.

(a) A1 # A2, real-valued. Hence, A has two non-proportional
eigenvectors v1, vo (eigen-directions), (Section 7.5).

(b) A1 = X2, complex-valued. Hence, A has two non-proportional
eigenvectors vi = Vp, (Section 7.6).

(c-1) A1 = Az real-valued with two non-proportional eigenvectors vy,
v, (Section 7.8).

Remark:

(c-2) A1 = A real-valued with only one eigen-direction. Hence, A is
not diagonalizable, (Section 7.8).
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Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If n X n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1,--- ,v,} and corresponding eigenvalues
{A1,-,An}, then the general solution x to the homogeneous,
constant coefficients, linear system

X'(t) = Ax(t)
is given by the expression below, where ¢, ,c, € R,

x(t) = cvy eME 4 -+ cuv, eME
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Review: The case of diagonalizable matrices.
The algebraic multiplicity of an eigenvalue.

Non-diagonalizable matrices with a repeated eigenvalue.
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The algebraic multiplicity of an eigenvalue.

Definition
Let {\1,---, A} be the set of eigenvalues of an n x n matrix,
where 1 < k < n, hence the characteristic polynomial is

PN = (~1)" (A= A1) - (A — A"

The positive integer r;, for i =1,--- , k, is called the algebraic
multiplicity of the eigenvalue \;. The eigenvalue ); is called
repeated iff r; > 1.
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The algebraic multiplicity of an eigenvalue.

Definition
Let {\1,---, A} be the set of eigenvalues of an n x n matrix,
where 1 < k < n, hence the characteristic polynomial is

PN = (~1)" (A= A1) - (A — A"

The positive integer r;, for i =1,--- , k, is called the algebraic
multiplicity of the eigenvalue \;. The eigenvalue ); is called
repeated iff r; > 1.

Remark:

» A matrix with repeated eigenvalues may or may not be
diagonalizable.

» Equivalently: An n X n matrix with repeated eigenvalues may
or may not have a linearly independent set of n eigenvectors.
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Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=10 3 2|, B=1|0 3 2|.
00 1 00 1
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The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=10 3 2|, B=1|0 3 2|.
00 1 00 1

Solution: The eigenvalues of A are the solutions of

3= 0 1
0 (3-2X) 2 | =—-(A=322(\-1)=0,
0 0 (1-2X)

We conclude: A\ =3, 1n =2,and Ao =1, n = 1.

1 0 -1
Verify that the eigenvalues are: { {0] , {1} , {2] }

0 0 2



The algebraic multiplicity of an eigenvalue.

Example
Show that matrix A is diagonalizable but matrix B is not, where
3 01 311
A=10 3 2, B={(0 3 2
0 01 0 01

Solution: The eigenvalues of A are the solutions of

(3—2) 0 1
0 (3-2X) 2 | =—-(A=322(\-1)=0,
0 0 (1-2A)
We conclude: A\ =3, 1n =2,and Ao =1, n = 1.
1 0 -1
Verify that the eigenvalues are: { of, 11, |-2 }
0 0 2

We conclude: A is diagonalizable.
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Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
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The algebraic multiplicity of an eigenvalue.

Example

Show that matrix A is diagonalizable but matrix B is not, where

301 311
A=10 3 2|, B=1|0 3 2|.
00 1 00 1

Solution: The eigenvalues of B are the solutions of

(3-2) 1 1
0 (3-2X) 2 | =—-(A=322(\-1)=0,
0 0 (1-2X)

We conclude: A\ =3, 1n =2,and Ao =1, n = 1.
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The algebraic multiplicity of an eigenvalue.

Example
Show that matrix A is diagonalizable but matrix B is not, where
3 01 311
A=10 3 2, B={(0 3 2
0 01 0 01

Solution: The eigenvalues of B are the solutions of

(3—2) 1 1
0 (3-2X) 2 | =—-(A=322(\-1)=0,
0 0 (1-=2A)
We conclude: A\ =3, 1n =2,and Ao =1, n = 1.
1 0
Verify that the eigenvalues are: { 0, |—-1 }
0 1

We conclude: B is not diagonalizable.



The algebraic multiplicity of an eigenvalue.

Example
Find a fundamental set of solutions to

X'(t)=Ax(t), A=

O O W

01
3 2],
01

Solution: Since matrix A is diagonalizable, with eigen-pairs,

e



The algebraic multiplicity of an eigenvalue.

Example
Find a fundamental set of solutions to

X'(t)=Ax(t), A=

O O W

01
3 2],
01

Solution: Since matrix A is diagonalizable, with eigen-pairs,

B

We conclude that a set of fundamental solutions is

1
{xl(t): 0] €3, xo(t) = [1] €3, x3(t) = |2 ef}.
0



Complex, distinct eigenvalues (Sect. 7.8)

Review: Classification of 2 x 2 diagonalizable systems.
Review: The case of diagonalizable matrices.
The algebraic multiplicity of an eigenvalue.

Non-diagonalizable matrices with a repeated eigenvalue.
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Phase portraits for 2 x 2 systems.



Non-diagonalizable matrices with a repeated eigenvalue.

Theorem (Repeated eigenvalue)

If \ is an eigenvalue of an n X n matrix A having algebraic
multiplicity r = 2 and only one associated eigen-direction, then the
differential equation

X'(t) = Ax(t),

has a linearly independent set of solutions given by
(xB(t)y=veM, xI(t) = (vt+w)e)
where the vector w is solution of
(A= X)w=v

which always has a solution w.



Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation

y//+31y/+30y:0



Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation
y// +ay' +ay=0
with characteristic polynomial

p(r)y=r*>+ar+a



Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation
y// +ay' +ay=0
with characteristic polynomial

p(ry=r*>+ar+a=(r—n)



Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation
1 /
y'tay tay=0
with characteristic polynomial
p(r)=r*4+ar—+a =(r—n)
In this case a fundamental set of solutions is

{yi(t) = e, yo(t) = te"'}.



Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation
/! !
y' +ay +ay=0

with characteristic polynomial

p(r)=r*4+ar—+a =(r—n)
In this case a fundamental set of solutions is

{n(t) =€, yo(t) =te'}.
This is not the case with systems of first order linear equations,

(xB(t)y=v e, x(t)=(vt+w)e]



Non-diagonalizable matrices with a repeated eigenvalue.

Recall: The case of a single second order equation
Y'+ay' +ay=0

with characteristic polynomial
p(ry=r’>+ar+a=(—n)

In this case a fundamental set of solutions is
{yi(t) = e, yo(t) = te"'}.

This is not the case with systems of first order linear equations,

(xB(t)y=v e, x(t)=(vt+w)e]

In general, w # 0.



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A.



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . ; . 11-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol
Solution: Find the eigenvalues of A. Its characteristic polynomial is
(3
p(N) =" 24
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Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
p()) = <_2I)\> 11 z(A+g)(>\+%)+%
ERyE



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
p()) = <_2I)\> 11 z(A+g)(>\+%)+%
ERyE

So p(\) = A2 +22+1



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
p()) = <_2I)\> 11 z(A+g)(>\+%)+%
ERyE

So p(\) = N2 +22+1=(\+1)2



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3

p()) = <_2I)\> 11 z(A+g)(>\+%)+%
SRS

So p(A\) = A2+ 2\ + 1 = (X + 1)2. The roots and multiplicity are

A=-—1, r=2.



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . ; . 1 (-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol
Solution: Find the eigenvalues of A. Its characteristic polynomial is
3
(—* - A) 1 3 1\ 1
= 2 - > - -
p(A) 21 (_1_0 (r+35)(r+3)+ 5
4 2

So p(A\) = A2+ 2\ + 1 = (X + 1)2. The roots and multiplicity are
A=-—1, r=2.

The corresponding eigenvectors are the solutions of (A+ /)v =0,



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1

Find fundamental solutions of X’ = Ax, with A = n [:? _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
(03 e
4 2
So p(A\) = A2+ 2\ + 1 = (X + 1)2. The roots and multiplicity are
A=-—1, r=2.
The corresponding eigenvectors are the solutions of (A+ /)v =0,

EEEERNE

1 (1_‘_1)__7
4 2 4

\
=N
N R -



Non-diagonalizable matrices with a repeated eigenvalue.
Example

1

Find fundamental solutions of X’ = Ax, with A = n [:? _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is

3
p()) = <_2IA> 11 z(A+g)(>\+%)+%
ERyE

So p(A\) = A2+ 2\ + 1 = (X + 1)2. The roots and multiplicity are
A=-—1, r=2.

The corresponding eigenvectors are the solutions of (A+ /)v =0,
3 1
(** + 1) 1 ——= 1 -2

1 1 1 -2
_2 _2 1) 2
4 ( >t 4

N R -



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = n [_613 _42]

Solution: Find the eigenvalues of A. Its characteristic polynomial is
3
(—f - A) 1 3 1, 1
= 2 = > - hd
4 2
So p(A\) = A2+ 2\ + 1 = (X + 1)2. The roots and multiplicity are
A=-—1, r=2.
The corresponding eigenvectors are the solutions of (A+ /)v =0,
3 1
(*5 + 1) 1 ~3 1 -2 1 -2
= % — —

1 -2 0 0

1 ( 1+1> 1
4 2 4

N R -



Non-diagonalizable matrices with a repeated eigenvalue.
Example

1 [—
Find fundamental solutions of x' = Ax, with A = 2 [_? _42]

Solution: Recall: A = —1, with r =2, and (A+ /) — [(1) —02]_



Non-diagonalizable matrices with a repeated eigenvalue.
Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

Solution: Recall: A = —1, with r =2, and (A+ /) — [(1) 02}

The eigenvector components satisfy: v, = 2v,.



Non-diagonalizable matrices with a repeated eigenvalue.
Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 0
The eigenvector components satisfy: v, = 2v,. We obtain,

2
A= -1, v = [1] Vs.

Solution: Recall: A = —1, with r =2, and (A+ /) — [1 2}



Non-diagonalizable matrices with a repeated eigenvalue.
Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 0
The eigenvector components satisfy: v, = 2v,. We obtain,

2
A= -1, v = [1] Vs.

We conclude that this eigenvalue has only one eigen-direction.

Solution: Recall: A = —1, with r =2, and (A+ /) — [1 2}



Non-diagonalizable matrices with a repeated eigenvalue.
Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

2
A= -1, v = [1] Vs.

We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.

Solution: Recall: A = —1, with r =2, and (A+ /) — [1 2}



Non-diagonalizable matrices with a repeated eigenvalue.
Example
. . , . 1[-6 4
Find fundamental solutions of x’ = Ax, with A = 71 _of
0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

2
A= -1, v = [1] Vs.

We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find w solution of (A+ /)w = v.

Solution: Recall: A = —1, with r =2, and (A+ /) — [1 2}



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

A= -1, v = [2] Vs.

Solution: Recall: A = —1, with r =2, and (A+ /) — [1 2}

1
We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find w solution of (A+ /)w = v.

1
=1 | 2
2
11
> - |1
4 2



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

A= -1, v = [2] Vs.

Solution: Recall: A = —1, with r =2, and (A+ /) — {1 2}

1
We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find w solution of (A+ /)w = v.

1
—— 1 2
2 2 —4
L 1 -2 | —4
4 2



Non-diagonalizable matrices with a repeated eigenvalue.

Example

1 [—
Find fundamental solutions of X’ = Ax, with A = 7 [_? _42]

0 O

The eigenvector components satisfy: v, = 2v,. We obtain,

A= -1, v = [2] Vs.

Solution: Recall: A = —1, with r =2, and (A+ /) — {1 2}

1
We conclude that this eigenvalue has only one eigen-direction.
Matrix A is not diagonalizable.
Theorem above says we need to find w solution of (A+ /)w = v.

1

=1 | 2

2 2| -4 12| -4
LN 1 -2 | -4 0 0 0
4 2



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . , ) 1 /-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol
Solution: Recall that:
2 1 -2 —4
A= —1, V—|:1:| v, and (A+I)W—v:>[0 0 } 0].



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . , ) 1 (-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol

Solution: Recall that:

A=-1 v= [2] v,, and (A+I)w=v¢[

1

1 -2 —4
0 0 0]

We obtain wy = 2w, — 4.



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . , ) 1 (-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol

Solution: Recall that:
2 1 -2 —4
A= —1, v—[l] Vv,, and (A+/)W—V:>|:0 0 } 0].

We obtain w, = 2w, — 4. That is, w = m o [—:]'



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . , ) 1 /-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol
Solution: Recall that:
2 1 -2 —4
A= —1, v:[l] Vv,, and (A+/)w:v:>[0 0 } 0].

We obtain w, = 2w, — 4. That is, w = m o [—(ﬂ'

Given a solution w, then cv + w is also a solution, ¢ € R.



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . , ) 1 (-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol

Solution: Recall that:

2 1 -2 —4
A=-1 v= [1] v,, and (A+/)w=v= [0 0 } ]

We obtain w, = 2w, — 4. That is, w = m o [—(ﬂ'
Given a solution w, then cv + w is also a solution, ¢ € R.

. . —4
We choose the simplest solution, w = [ O} .



Non-diagonalizable matrices with a repeated eigenvalue.

Example
. . , ) 1 /-6 4
Find fundamental solutions of x’ = Ax, with A = 7121 ol
Solution: Recall that:
2 1 -2 —4
A= —1, v:[l] Vv,, and (A+/)w:v:>[0 0 } 0].

We obtain w, = 2w, — 4. That is, w = m o [—(ﬂ'

Given a solution w, then cv + w is also a solution, ¢ € R.

O} . We conclude,

We choose the simplest solution, w = [



Non-diagonalizable matrices with a repeated eigenvalue.

Example
Find the solution x to the IVP

x' = Ax, x(O)ZH, A:i[_? 42]



Non-diagonalizable matrices with a repeated eigenvalue.
Example
Find the solution x to the IVP

x' = Ax, x(O)ZH, A:i[_? 42]



Non-diagonalizable matrices with a repeated eigenvalue.
Example
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Solution: The general solution is
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Solution: The general solution is

x(t) = ¢ m et o (m t+ [_ﬂ) e t.

The initial condition is x(0) = [ﬂ =c [ﬂ +a [_Oﬂ



Non-diagonalizable matrices with a repeated eigenvalue.
Example
Find the solution x to the IVP

x' = Ax, x(O)ZH, A:i[_? 42]

Solution: The general solution is

x(t) = ¢ m et o (m t+ [_ﬂ) e t.

The initial condition is x(0) = [ﬂ =q E] +o [_4]
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Example
Find the solution x to the IVP

x' = Ax, x(O)ZH, A:i[_? 42]

Solution: The general solution is

x(t) = ¢ m et o (m t+ [_ﬂ) e t.

The initial condition is x(0) = [ﬂ =c [ﬂ +a [_Oﬂ
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Non-diagonalizable matrices with a repeated eigenvalue.
Example
Find the solution x to the IVP

x' = Ax, x(O)ZH, A:i[_? 42]

Solution: The general solution is

x(t) = ¢ m et o (m t+ [_ﬂ) e t.

The initial condition is x(0) = [ﬂ =c [ﬂ +a [_Oﬂ

1 R I E e R R



Non-diagonalizable matrices with a repeated eigenvalue.
Example
Find the solution x to the IVP

x' = Ax, x(O)ZH, A:i[_? 42]

Solution: The general solution is

x(t) = ¢ m et o (m t+ [_ﬂ) e t.

The initial condition is x(0) = [ﬂ =c [ﬂ +a [_Oﬂ

1 R I E e R R

We conclude: x(t) = m et 4 % (m £+ [_;]) et 4



Complex, distinct eigenvalues (Sect. 7.8)

Review: Classification of 2 x 2 diagonalizable systems.
Review: The case of diagonalizable matrices.
The algebraic multiplicity of an eigenvalue.

Non-diagonalizable matrices with a repeated eigenvalue.

vV v v v .Y

Phase portraits for 2 x 2 systems.



Phase portraits for 2 x 2 systems.

Example
Sketch a phase portrait for solutions of

11-6 4
e ———
x = Ax, A—4 [_1 _2].



Phase portraits for 2 x 2 systems.

Example
Sketch a phase portrait for solutions of

11-6 4
e ———
x = Ax, A—4 [_1 _2].

Solution:
We start plotting the vectors



Phase portraits for 2 x 2 systems.

Example
Sketch a phase portrait for solutions of

11-6 4
e ———
x = Ax, A—4 [_1 _2].

Solution:
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Example
Sketch a phase portrait for solutions of

11-6 4
e ———
x = Ax, A—4 [_1 _2].

Solution:
Now plot the solutions

2
(1) _ —t
" M e



Phase portraits for 2 x 2 systems.

Example
Sketch a phase portrait for solutions of

x' = Ax, A:1 [_6 4].

4 |-1 =2
Solution: .
Now plot the solutions gl )
T @
1 _ |2 -t x
* [J © .4
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Phase portraits for 2 x 2 systems.

Example
Sketch a phase portrait for solutions of

11-6 4
e ———
x = Ax, A—4 [_1 _2].

Solution: X,
Now plot the solutions

Dy

This is the case A < 0.
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the functions



Phase portraits for 2 x 2 systems.

Example

Given any vectors v and w, and any constant A, plot the phase

portraits of the functions

xD(t) = vet, xA(t) = (vt +w) e,

Solution:
The case A < 0. We plot @
the functions




Phase portraits for 2 x 2 systems.

Example

Given any vectors v and w, and any constant A, plot the phase
portraits of the functions

xW(t) =vet, xA(t) = (vt +w) e,

Solution:
The case A > 0. We plot
the functions



Phase portraits for 2 x 2 systems.

Example

Given any vectors v and w, and any constant A, plot the phase
portraits of the functions

xW(t) =vet, xA(t) = (vt +w) e,

Solution:
The case A > 0. We plot
the functions

1
X()

)




Review of Chapter 7.

» Review of Sections 7.5, 7.6, 7.8.
» Const. Coeff., homogeneours linear differential systems:

> Real, different eigenvalues (7.5).
» Complex, different eigenvalues (7.6).
> Repeated eigenvalues (7.8).
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Example

Find the general solution of X' = Ax, where A = [\_/g fi

Solution: Eigenvalues of A:

p(A) = (_‘EA) (—Z\/E)\)‘ =(A+2)(A+3)-2=0
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Example
Find the general solution of X' = Ax, where A = -3 2
g - ’ - \/i _2 .
Solution: Eigenvalues of A:
_(=3-N 0 V2| P
1 1
M450+4=0 = Ap=_[-5+£v25-16] = [543
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Example
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Find the general solution of x Ax, where [ﬁ Q
Solution: Eigenvalues of A:

p(\) = (_‘EA) (—S/EA)‘ =(A+2)A+3)—2=0
N+5A+4=0 = Ai:%[—Si\/25—l6]:%[—5j:3]

Hence Ay = —1, A\_ = —4.
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Example

-3 2
i i ! = A= }
Find the general solution of x Ax, where [ﬁ Q
Solution: Eigenvalues of A:

p(\) = ’(_fé” (—S/EA)‘ =(A+2)A+3)—2=0
N+5A+4=0 = Ai:%[—Si\/25—l6]:%[—5j:3]

Hence A, = —1, A_ = —4. Eigenvector for A;.
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Example

-3 2
i i ! = A= }
Find the general solution of x Ax, where [ﬁ Q
Solution: Eigenvalues of A:

p(A) = ’(_fé” (—S/EA)‘ =(A+2)(A+3)-2=0
N+5A+4=0 = Ai:%[—Si\/25—l6]:%[—5j:3]
Hence A, = —1, A_ = —4. Eigenvector for A;.

2 V3] 2 -2
wen=15z -6 V)
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Example
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i i ! = A= }
Find the general solution of x Ax, where [ﬁ Q
Solution: Eigenvalues of A:

p(\) = ’(_fé” (—S/EA)‘ =(A+2)A+3)—2=0
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Example

Find the general solution of x' = Ax, where A = [\_/g \/i

Solution: Eigenvalues of A:

—3-1) V2

p()) = ’( " (—2—)\)‘ (A +2)(A+3)—2=0

[—5+3]

N =

1
M450+4=0 = A= [-5+V25-16] =

Hence A, = —1, A_ = —4. Eigenvector for A;.
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Example

Find the general solution of x' = Ax, where A = [\_/g \/i

Solution: Eigenvalues of A:

—3-1) V2

p()) = ’( " (—2—)\)‘ (A +2)(A+3)—2=0

[—5+3]

N =

1
M450+4=0 = A= [-5+V25-16] =

Hence A, = —1, A_ = —4. Eigenvector for A;.
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Example

Find the general solution of x' = Ax, where A = [\_/g \/i

Solution: Eigenvalues of A:

—3-1) V2

p()) = ’( " (—2—)\)‘ (A +2)(A+3)—2=0

[—5+3]

N =

1
M450+4=0 = A= [-5+V25-16] =

Hence A, = —1, A_ = —4. Eigenvector for A;.
-2 V2 2 —V2 2 —V2
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2vi = V2. Choosing v; = V2 and v, = 2,
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Example

Find the general solution of x' = Ax, where A = [\_/g \/i

Solution: Eigenvalues of A:

—3-1) V2

p()) = ’( " (—2—)\)‘ (A +2)(A+3)—2=0

[—5+3]

N =

1
M450+4=0 = A= [-5+V25-16] =

Hence A, = —1, A_ = —4. Eigenvector for A;.
-2 V2 2 —V2 2 —V2
wen=[3 =2 2l -l

2vi = V2 v». Choosing v; = v/2 and v = 2, we get v() = {ﬂ
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S

Find the general solution of X' = Ax, where A = [

Solution: Recall: Ay = —1, A_ = —4, and v() =
Eigenvector for A_.
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S

Find the general solution of X' = Ax, where A = [

Solution: Recall: Ay = —1, A_ = —4, and v() =
Eigenvector for A_.

w5 7 4



Exam: November 12, 2008. Problem 4.

Example
-3 \@
. ) ;L B
Find the general solution of X’ = Ax, where A = [ﬁ 5
Solution: Recall: Ay = —1, A_ = —4, and v() = [\?]
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Eigenvector for A_.
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Find the general solution of X’ = Ax, where A = [ﬁ _2}
Solution: Recall: Ay = —1, A_ = —4, and v() = [\?]
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Example
. ) -3 V2
! _
Find the general solution of X’ = Ax, where A = [ﬁ _2}
Solution: Recall: Ay = —1, A_ = —4, and v() = [\?]

Eigenvector for A_.

wvo-(i5 2] - 2]

vi = —vV2v,. Choosing vi = —v/2 and v» = 1, so, vi-) = {_1@]
Fundamental solutions: x() = [ﬂ et x(5) = [_ﬂ e 4,
General solution: x = ¢ [\f} et + o [_1 2] e 4t <
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Solution:
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Plot the phase portrait of several linear combinations of the
fundamental solutions found above,
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X = x(+) + x(_)’
that is,
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Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

() = | V2] gt () = | TV2| g
[ e, <=V

Solution: x,

Recall: A\_ < AL < 0. We \2

plot the solutions ) e
x = x(H) + x5, VO |

that is, ; ‘1\

x = vt et (=) g4t , 777777777 ) R
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for c; = &1 and ¢ = £1.
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Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

Solution: \\? ,,,,,,,,,,,, :

Py
We plot the solutions \\ ,,,,,,,,,,,, .|
x=cxt + e x(f), a At X,
A AN Al
Lo ~.
for c; = +1 and ¢, = +1. R -
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Solution: .
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Let Ay =4, A\_=-1, v(t) = [ﬂ and v(-) = [_ﬂ
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Solution:
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Solution:
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Solution: Eigenvalues of A:
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Example
Find x solution of the IVP

x' = Ax, x(0) = [
Solution: Eigenvalues of A:
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Extra problem.

Example
Find x solution of the IVP

x = Ax, x(O)_B], A_[:‘I’ ﬂ

Solution: Eigenvalues of A:

_(=3-=1) 4 | _
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N422A+1=0 = I\ =
Hence A =A_ = —1.

A=1)(A+3)+4=0
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Example
Find x solution of the IVP

;o 1 -3 4
X = Ax, x(0) = [3], A= [_1 1].
Solution: Eigenvalues of A:
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Example
Find x solution of the IVP

;o 1 -3 4
X = Ax, x(0) = [3], A= [_1 1].
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Example
Find x solution of the IVP
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Example
Find x solution of the IVP

x = Ax, x(O)_B], A_[:‘I’ ﬂ

Solution: Eigenvalues of A:

p(A):'(_ﬁA) (1fk)‘ =(A-1)(A+3)+4=0

N4+2A+1=0 = Ai:%[—zi 4_—4] = —1.
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Extra problem.

Example
Find x solution of the IVP

;o 1 -3 4
X = Ax, x(0) = [3], A= [_1 1].
Solution: Eigenvalues of A:

p(A):'(_ﬁA) (1fk)‘ =(A-1)(A+3)+4=0

N4+2A+1=0 = Ai:%[—zi 4_—4] = —1.

Hence Ay = A_ = —1. Eigenvector for A..
-2 4 1 -2 1 -2
(A+/):|:_1 2:| —>|:1 _2:| —>|:0 0:|.

vi = 2v,. Choosing vi =2 and v» = 1, we get v(t) = [ﬂ



Extra problem.

Example
Find x solution of the IVP

X = Ax,  x(0)= B] ,

Solution: Recall: Ay = —1, and v(t) =



Extra problem.

Example
Find x solution of the IVP

;L |1
x' = Ax, x(0) = [3] ,
Solution: Recall: Ay = —1, and v(t) =

Find w solution of (A+ lw = v.

e



Extra problem.

Example
Find x solution of the IVP

;L |1
x' = Ax, x(0) = [3] ,
Solution: Recall: Ay = —1, and v(t) =
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Example
Find x solution of the IVP

X = Ax,  x(0)= E] ,
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A
Solution: Recall: Ay = —1, and v(t) = [ﬂ
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Example
Find x solution of the IVP

;L |1
x' = Ax, x(0) = [3] ,
Solution: Recall: Ay = —1, and v(t) =
Find w solution of (A+ lw = v.
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Example
Find x solution of the IVP

;o |1 -3 4
x = Ax, x(0) = [3] , A= [_1 1] :

Solution: Recall: Ay = —1, and v(t) = [ﬂ

Find w solution of (A+ lw = v.
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Hence wqy = 2wy — 1, that is, w = [ﬂ wo + [_(ﬂ
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Example
Find x solution of the IVP

; 1 3 4
X = Ax, x(0) = [3] , A= [_1 1] .
Solution: Recall: Ay = —1, and v(t) = [ }
Find w solution of (A+ lw = v.
-2 4| |m 2 -2 4 2 1 -2 -1
= = —
-1 2| |w 1 -1 2 1 0 O 0

Hence wqy = 2wy — 1, that is, w = [ﬂ [ }

Choose w, =0, sow = [ O}
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Extra problem.

Example
Find x solution of the IVP

X = Ax, x(O)ZH, A:[_i ﬂ

Solution: Recall: A\i = —1, v(*) = [ﬂ and w — {_1}

0
2 2 -1
- x(1) — -t (2) — —t
Fundamental sol: x { ] e X ([1] t+ [ 0]) e
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Example
Find x solution of the IVP

X = Ax, x(O):B], A:[j ﬂ
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Initial condition: |L| = ¢ 2| + 2 | 2
ITial condition: 3—C11 C2 ol
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Example
Let A\ = —1 with v = 2 nd w= -1
et \ = wi =] @ = ol
Plot +x(1) = +ve~t and +x(? = j:(v t+ w) e L.
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Let A\ — 1 with v — |2 dw— |}
et A= Twithv= 7| an = ol
Plot +x(1) = +vet and +x(? = :l:(v t+w) et.
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Let A\ =1 with v= and w = .
1 0
Plot +x(1) = +vet and +x(? = :l:(v t+ w) et.
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Extra problem.

Example

Given any vectors a and b, sketch qualitative phase portraits of
xM) = [a cos(t) — b sin(Bt)] e, x?) = [a sin(Bt) + b cos(Bt)] e**.

for the cases . = 0, and « > 0, where 3 > 0.
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