Review of Linear Algebra (Sect. 7.3)

- ► Eigenvalues, eigenvectors of a matrix.
- Computing eigenvalues and eigenvectors.
- Diagonalizable matrices.
- ▶ The case of Hermitian matrices.

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Example

Verify that the pair
$$\lambda_1=4$$
, $\mathbf{v}_1=\begin{bmatrix}1\\1\end{bmatrix}$ and $\lambda_2=-2$, $\mathbf{v}_2=\begin{bmatrix}-1\\1\end{bmatrix}$ are eigenvalue and eigenvector pairs of matrix $A=\begin{bmatrix}1&3\\3&1\end{bmatrix}$.

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Example

Verify that the pair
$$\lambda_1=4$$
, $\mathbf{v}_1=\begin{bmatrix}1\\1\end{bmatrix}$ and $\lambda_2=-2$, $\mathbf{v}_2=\begin{bmatrix}-1\\1\end{bmatrix}$ are eigenvalue and eigenvector pairs of matrix $A=\begin{bmatrix}1&3\\3&1\end{bmatrix}$.

Solution: Av₁

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Example

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Example

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Example

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Example

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \mathbf{v}_1.$$

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Example

Verify that the pair $\lambda_1=4$, $\mathbf{v}_1=\begin{bmatrix}1\\1\end{bmatrix}$ and $\lambda_2=-2$, $\mathbf{v}_2=\begin{bmatrix}-1\\1\end{bmatrix}$ are eigenvalue and eigenvector pairs of matrix $A=\begin{bmatrix}1&3\\3&1\end{bmatrix}$.

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \mathbf{v}_1.$$

 Av_2

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Example

$$\text{Solution: } A \textbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \textbf{v}_1.$$

$$A\mathbf{v}_2 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Example

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \mathbf{v}_1.$$

$$A\mathbf{v}_2 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Example

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \mathbf{v}_1.$$

$$A\mathbf{v}_2 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Definition

A number λ and a non-zero n-vector \mathbf{v} are respectively called an eigenvalue and eigenvector of an $n \times n$ matrix A iff the following equation holds,

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Example

Solution:
$$A\mathbf{v}_1 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \mathbf{v}_1.$$

$$A\mathbf{v}_2 = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \lambda_2 \mathbf{v}_2.$$

Remarks:

▶ If we interpret an $n \times n$ matrix A as a function $A : \mathbb{R}^n \to \mathbb{R}^n$, then the eigenvector \mathbf{v} determines a particular *direction* on \mathbb{R}^n where the action of A is *simple*:

Remarks:

▶ If we interpret an $n \times n$ matrix A as a function $A : \mathbb{R}^n \to \mathbb{R}^n$, then the eigenvector \mathbf{v} determines a particular *direction* on \mathbb{R}^n where the action of A is *simple*: $A\mathbf{v}$ is proportional to \mathbf{v} .

Remarks:

- ▶ If we interpret an $n \times n$ matrix A as a function $A : \mathbb{R}^n \to \mathbb{R}^n$, then the eigenvector \mathbf{v} determines a particular *direction* on \mathbb{R}^n where the action of A is *simple*: $A\mathbf{v}$ is proportional to \mathbf{v} .
- Matrices usually change the direction of the vector,

Remarks:

- ▶ If we interpret an $n \times n$ matrix A as a function $A : \mathbb{R}^n \to \mathbb{R}^n$, then the eigenvector \mathbf{v} determines a particular *direction* on \mathbb{R}^n where the action of A is *simple*: $A\mathbf{v}$ is proportional to \mathbf{v} .
- ▶ Matrices usually change the direction of the vector, like

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Remarks:

- ▶ If we interpret an $n \times n$ matrix A as a function $A : \mathbb{R}^n \to \mathbb{R}^n$, then the eigenvector \mathbf{v} determines a particular *direction* on \mathbb{R}^n where the action of A is *simple*: $A\mathbf{v}$ is proportional to \mathbf{v} .
- ▶ Matrices usually change the direction of the vector, like

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}.$$

Remarks:

- ▶ If we interpret an $n \times n$ matrix A as a function $A : \mathbb{R}^n \to \mathbb{R}^n$, then the eigenvector \mathbf{v} determines a particular *direction* on \mathbb{R}^n where the action of A is *simple*: $A\mathbf{v}$ is proportional to \mathbf{v} .
- Matrices usually change the direction of the vector, like

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}.$$

▶ This is not the case for eigenvectors,

Remarks:

- ▶ If we interpret an $n \times n$ matrix A as a function $A : \mathbb{R}^n \to \mathbb{R}^n$, then the eigenvector \mathbf{v} determines a particular *direction* on \mathbb{R}^n where the action of A is *simple*: $A\mathbf{v}$ is proportional to \mathbf{v} .
- Matrices usually change the direction of the vector, like

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}.$$

▶ This is not the case for eigenvectors, like

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Remarks:

- ▶ If we interpret an $n \times n$ matrix A as a function $A : \mathbb{R}^n \to \mathbb{R}^n$, then the eigenvector \mathbf{v} determines a particular *direction* on \mathbb{R}^n where the action of A is *simple*: $A\mathbf{v}$ is proportional to \mathbf{v} .
- Matrices usually change the direction of the vector, like

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}.$$

▶ This is not the case for eigenvectors, like

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}.$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

The function $A: \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

The function $A: \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

$$\mathbf{v}_1 = egin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

The function $A: \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

$$\textbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

The function $A: \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

The function $A: \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

$$\textbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \lambda_1 = 1.$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution:

The function $A: \mathbb{R}^2 \to \mathbb{R}^2$ is a reflection along $x_1 = x_2$ axis.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

The line $x_1 = x_2$ is invariant under A. Hence,

$$\textbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \lambda_1 = 1.$$

An eigenvalue eigenvector pair is: $\lambda_1=1$, $\mathbf{v}_1=\begin{bmatrix}1\\1\end{bmatrix}$.

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

$$\lambda_1=1,\quad \mathbf{v}_1=egin{bmatrix}1\1\end{bmatrix}.$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

$$\lambda_1=1,\quad \mathbf{v}_1=egin{bmatrix}1\1\end{bmatrix}.$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

$$\lambda_1=1,\quad \mathbf{v}_1=egin{bmatrix}1\\1\end{bmatrix}.$$

A second eigenvector eigenvalue pair is:

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

$$\lambda_1=1,\quad \mathbf{v}_1=egin{bmatrix}1\\1\end{bmatrix}.$$

A second eigenvector eigenvalue pair is:

$$\mathbf{v}_{\scriptscriptstyle 2} = egin{bmatrix} -1 \ 1 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

$$\lambda_1=1,\quad \mathbf{v}_1=egin{bmatrix}1\\1\end{bmatrix}.$$

$$\mathbf{v}_2 = egin{bmatrix} -1 \ 1 \end{bmatrix} \, \Rightarrow egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} egin{bmatrix} -1 \ 1 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

$$\lambda_1=1,\quad \mathbf{v}_1=egin{bmatrix}1\\1\end{bmatrix}.$$

$$\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \, \Rightarrow \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \, = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

$$\lambda_1=1,\quad \mathbf{v}_1=egin{bmatrix}1\\1\end{bmatrix}.$$

$$\mathbf{v}_2 = egin{bmatrix} -1 \ 1 \end{bmatrix} \ \Rightarrow egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} egin{bmatrix} -1 \ 1 \end{bmatrix} \ = egin{bmatrix} 1 \ -1 \end{bmatrix} \ = (-1) \begin{bmatrix} -1 \ 1 \end{bmatrix}$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

$$\lambda_{\scriptscriptstyle 1}=1, \quad {f v}_{\scriptscriptstyle 1}=egin{bmatrix}1\1\end{bmatrix}.$$

$$\mathbf{v}_2 = egin{bmatrix} -1 \ 1 \end{bmatrix} \ \Rightarrow egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} egin{bmatrix} -1 \ 1 \end{bmatrix} \ = egin{bmatrix} 1 \ -1 \end{bmatrix} \ = egin{bmatrix} -1 \ 1 \end{bmatrix} \ \Rightarrow \lambda_2 = -1.$$

Example

Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution: Eigenvalue eigenvector pair:

$$\lambda_{\scriptscriptstyle 1}=1, \quad {f v}_{\scriptscriptstyle 1}=egin{bmatrix}1\1\end{bmatrix}.$$

A second eigenvector eigenvalue pair is:

$$\mathbf{v}_2 = egin{bmatrix} -1 \ 1 \end{bmatrix} \ \Rightarrow egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} egin{bmatrix} -1 \ 1 \end{bmatrix} \ = egin{bmatrix} 1 \ -1 \end{bmatrix} \ = egin{bmatrix} -1 \ 1 \end{bmatrix} \ \Rightarrow \lambda_2 = -1.$$

A second eigenvalue eigenvector pair: $\lambda_2=-1$, $\mathbf{v}_2=egin{bmatrix} -1\\1 \end{bmatrix}$. <

Remark: Not every $n \times n$ matrix has real eigenvalues.

Remark: Not every $n \times n$ matrix has real eigenvalues.

Example

Fix
$$\theta \in (0, \pi)$$
 and define $A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.

Show that \boldsymbol{A} has no real eigenvalues.

Remark: Not every $n \times n$ matrix has real eigenvalues.

Example

Fix
$$\theta \in (0, \pi)$$
 and define $A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.

Show that A has no real eigenvalues.

Solution: Matrix $A: \mathbb{R}^2 \to \mathbb{R}^2$ is a rotation by θ counterclockwise.

Remark: Not every $n \times n$ matrix has real eigenvalues.

Example

Fix
$$\theta \in (0, \pi)$$
 and define $A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.

Show that A has no real eigenvalues.

Solution: Matrix $A: \mathbb{R}^2 \to \mathbb{R}^2$ is a rotation by θ counterclockwise. There is no direction left invariant by the function A.

Remark: Not every $n \times n$ matrix has real eigenvalues.

Example

Fix
$$\theta \in (0, \pi)$$
 and define $A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.

Show that A has no real eigenvalues.

Solution: Matrix $A:\mathbb{R}^2\to\mathbb{R}^2$ is a rotation by θ counterclockwise. There is no direction left invariant by the function A.

Remark: Not every $n \times n$ matrix has real eigenvalues.

Example

Fix
$$\theta \in (0, \pi)$$
 and define $A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.

Show that A has no real eigenvalues.

Solution: Matrix $A: \mathbb{R}^2 \to \mathbb{R}^2$ is a rotation by θ counterclockwise. There is no direction left invariant by the function A.

We conclude: Matrix A has no eigenvalues eigenvector pairs.

Remark: Not every $n \times n$ matrix has real eigenvalues.

Example

Fix
$$\theta \in (0, \pi)$$
 and define $A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.

Show that A has no real eigenvalues.

Solution: Matrix $A:\mathbb{R}^2\to\mathbb{R}^2$ is a rotation by θ counterclockwise. There is no direction left invariant by the function A.

We conclude: Matrix A has no eigenvalues eigenvector pairs.

Remark:

Matrix A has complex-values eigenvalues and eigenvectors.

Review of Linear Algebra (Sect. 7.3)

- ► Eigenvalues, eigenvectors of a matrix.
- ► Computing eigenvalues and eigenvectors.
- Diagonalizable matrices.
- ▶ The case of Hermitian matrices.

Problem:

Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Problem:

Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Remark:

This is more complicated than solving a linear system $A\mathbf{v} = \mathbf{b}$,

Problem:

Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Remark:

This is more complicated than solving a linear system $A\mathbf{v} = \mathbf{b}$, since in our case we do not know the source vector $\mathbf{b} = \lambda \mathbf{v}$.

Problem:

Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Remark:

This is more complicated than solving a linear system $A\mathbf{v} = \mathbf{b}$, since in our case we do not know the source vector $\mathbf{b} = \lambda \mathbf{v}$.

Solution:

(a) First solve for λ .

Problem:

Given an $n \times n$ matrix A, find, if possible, λ and $\mathbf{v} \neq \mathbf{0}$ solution of

$$A\mathbf{v} = \lambda \mathbf{v}$$
.

Remark:

This is more complicated than solving a linear system $A\mathbf{v} = \mathbf{b}$, since in our case we do not know the source vector $\mathbf{b} = \lambda \mathbf{v}$.

Solution:

- (a) First solve for λ .
- (b) Having λ , then solve for \mathbf{v} .

Theorem (Eigenvalues-eigenvectors)

(a) The number λ is an eigenvalue of an $n \times n$ matrix A iff

$$\det(A - \lambda I) = 0.$$

(b) Given an eigenvalue λ of matrix A, the corresponding eigenvectors ${\bf v}$ are the non-zero solutions to the homogeneous linear system

$$(A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Theorem (Eigenvalues-eigenvectors)

(a) The number λ is an eigenvalue of an $n \times n$ matrix A iff

$$\det(A - \lambda I) = 0.$$

(b) Given an eigenvalue λ of matrix A, the corresponding eigenvectors ${\bf v}$ are the non-zero solutions to the homogeneous linear system

$$(A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Notation:

 $p(\lambda) = \det(A - \lambda I)$ is called the *characteristic polynomial*.

Theorem (Eigenvalues-eigenvectors)

(a) The number λ is an eigenvalue of an $n \times n$ matrix A iff

$$\det(A - \lambda I) = 0.$$

(b) Given an eigenvalue λ of matrix A, the corresponding eigenvectors ${\bf v}$ are the non-zero solutions to the homogeneous linear system

$$(A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Notation:

 $p(\lambda) = \det(A - \lambda I)$ is called the *characteristic polynomial*. If A is $n \times n$, then p is degree n.

Theorem (Eigenvalues-eigenvectors)

(a) The number λ is an eigenvalue of an $n \times n$ matrix A iff

$$\det(A - \lambda I) = 0.$$

(b) Given an eigenvalue λ of matrix A, the corresponding eigenvectors ${\bf v}$ are the non-zero solutions to the homogeneous linear system

$$(A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Notation:

 $p(\lambda) = \det(A - \lambda I)$ is called the *characteristic polynomial*. If A is $n \times n$, then p is degree n.

Remark: An eigenvalue is a root of the characteristic polynomial.

Proof:

Find λ such that for a non-zero vector ${\bf v}$ holds,

$$A\mathbf{v} = \lambda \mathbf{v}$$

Proof:

Find λ such that for a non-zero vector ${\bf v}$ holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Proof:

Find λ such that for a non-zero vector \mathbf{v} holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Recall, $\mathbf{v} \neq \mathbf{0}$.

Proof:

Find λ such that for a non-zero vector \mathbf{v} holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Recall, $\mathbf{v} \neq \mathbf{0}$.

This last condition implies that matrix $(A - \lambda I)$ is not invertible.

Proof:

Find λ such that for a non-zero vector \mathbf{v} holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Recall, $\mathbf{v} \neq \mathbf{0}$.

This last condition implies that matrix $(A - \lambda I)$ is not invertible.

(Proof: If $(A - \lambda I)$ invertible,

Proof:

Find λ such that for a non-zero vector \mathbf{v} holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Recall, $\mathbf{v} \neq \mathbf{0}$.

This last condition implies that matrix $(A - \lambda I)$ is not invertible.

(Proof: If
$$(A - \lambda I)$$
 invertible, then $(A - \lambda I)^{-1}(A - \lambda I)\mathbf{v} = \mathbf{0}$,

Proof:

Find λ such that for a non-zero vector \mathbf{v} holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Recall, $\mathbf{v} \neq \mathbf{0}$.

This last condition implies that matrix $(A - \lambda I)$ is not invertible.

(Proof: If
$$(A - \lambda I)$$
 invertible, then $(A - \lambda I)^{-1}(A - \lambda I)\mathbf{v} = \mathbf{0}$, that is, $\mathbf{v} = \mathbf{0}$.)

Proof:

Find λ such that for a non-zero vector \mathbf{v} holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Recall, $\mathbf{v} \neq \mathbf{0}$.

This last condition implies that matrix $(A - \lambda I)$ is not invertible.

(Proof: If
$$(A - \lambda I)$$
 invertible, then $(A - \lambda I)^{-1}(A - \lambda I)\mathbf{v} = \mathbf{0}$, that is, $\mathbf{v} = \mathbf{0}$.)

Since $(A - \lambda I)$ is not invertible, then $det(A - \lambda I) = 0$.

Proof:

Find λ such that for a non-zero vector \mathbf{v} holds,

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Leftrightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}.$$

Recall, $\mathbf{v} \neq \mathbf{0}$.

This last condition implies that matrix $(A - \lambda I)$ is not invertible.

(Proof: If
$$(A - \lambda I)$$
 invertible, then $(A - \lambda I)^{-1}(A - \lambda I)\mathbf{v} = \mathbf{0}$, that is, $\mathbf{v} = \mathbf{0}$.)

Since $(A - \lambda I)$ is not invertible, then $det(A - \lambda I) = 0$.

Once λ is known, the original eigenvalue-eigenvector equation $A\mathbf{v} = \lambda \mathbf{v}$ is equivalent to $(A - \lambda I)\mathbf{v} = \mathbf{0}$.

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

$$A - \lambda I$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

The characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I)$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

The characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{vmatrix}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

The characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{vmatrix} = (\lambda - 1)^2 - 9$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

The characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{vmatrix} = (\lambda - 1)^2 - 9$$

The roots are $\lambda_+ = 4$ and $\lambda_- = -2$.

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

The characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{vmatrix} = (\lambda - 1)^2 - 9$$

The roots are $\lambda_+ = 4$ and $\lambda_- = -2$.

Compute the eigenvector for $\lambda_+ = 4$.

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

The characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{vmatrix} = (\lambda - 1)^2 - 9$$

The roots are $\lambda_+ = 4$ and $\lambda_- = -2$.

Compute the eigenvector for $\lambda_+ = 4$. Solve $(A - 4I)\mathbf{v}_+ = \mathbf{0}$.

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

The characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{vmatrix} = (\lambda - 1)^2 - 9$$

The roots are $\lambda_+ = 4$ and $\lambda_- = -2$.

Compute the eigenvector for $\lambda_+ = 4$. Solve $(A - 4I)\mathbf{v}_+ = \mathbf{0}$.

$$A - 4I = \begin{bmatrix} 1 - 4 & 3 \\ 3 & 1 - 4 \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution:

The eigenvalues are the roots of the characteristic polynomial.

$$A - \lambda I = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{bmatrix}$$

The characteristic polynomial is

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (1 - \lambda) & 3 \\ 3 & (1 - \lambda) \end{vmatrix} = (\lambda - 1)^2 - 9$$

The roots are $\lambda_+ = 4$ and $\lambda_- = -2$.

Compute the eigenvector for $\lambda_+ = 4$. Solve $(A - 4I)\mathbf{v}_+ = \mathbf{0}$.

$$A - 4I = \begin{bmatrix} 1 - 4 & 3 \\ 3 & 1 - 4 \end{bmatrix} = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}.$$

Example

Solution: Recall:
$$\lambda_+ = 4$$
, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

Example

Solution: Recall:
$$\lambda_+ = 4$$
, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$. We solve $(A - 4I)\mathbf{v}_+ = \mathbf{0}$,

Example

Solution: Recall:
$$\lambda_+ = 4$$
, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$. We solve $(A - 4I)\mathbf{v}_+ = \mathbf{0}$, using Gauss elimination,

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_+ = 4$$
, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

We solve $(A-4I)\mathbf{v}_{+}=\mathbf{0}$, using Gauss elimination,

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_+ = 4$$
, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

We solve $(A-4I)\mathbf{v}_+=\mathbf{0}$, using Gauss elimination,

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_+ = 4$$
, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

We solve $(A-4I)\mathbf{v}_+=\mathbf{0}$, using Gauss elimination,

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_+ = 4$$
, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

We solve $(A-4I)\mathbf{v}_{+}=\mathbf{0}$, using Gauss elimination,

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^+ = v_2^+, \\ v_2^+ \quad \text{free.} \end{cases}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_+ = 4$$
, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

We solve $(A-4I)\mathbf{v}_{+}=\mathbf{0}$, using Gauss elimination,

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^+ = v_2^+, \\ v_2^+ \quad \text{free.} \end{cases}$$

$$\mathbf{v}_{+} = \begin{bmatrix} v_{2}^{+} \\ v_{2}^{+} \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_+ = 4$$
, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

We solve $(A-4I)\mathbf{v}_{+}=\mathbf{0}$, using Gauss elimination,

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^+ = v_2^+, \\ v_2^+ \quad \text{free.} \end{cases}$$

$$\mathbf{v}_{+} = \begin{bmatrix} v_{2}^{+} \\ v_{2}^{+} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} v_{2}^{+}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_+ = 4$$
, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

We solve $(A - 4I)\mathbf{v}_+ = \mathbf{0}$, using Gauss elimination,

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^+ = v_2^+, \\ v_2^+ \quad \text{free.} \end{cases}$$

$$\mathbf{v}_{+} = egin{bmatrix} \mathbf{v}_{2}^{+} \ \mathbf{v}_{2}^{+} \end{bmatrix} = egin{bmatrix} 1 \ 1 \end{bmatrix} \ \mathbf{v}_{2}^{+} \quad \Rightarrow \quad \mathbf{v}_{+} = egin{bmatrix} 1 \ 1 \end{bmatrix},$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_+ = 4$$
, $\lambda_- = -2$, $A - 4I = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix}$.

We solve $(A-4I)\mathbf{v}_+=\mathbf{0}$, using Gauss elimination,

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^+ = v_2^+, \\ v_2^+ \quad \text{free.} \end{cases}$$

Al solutions to the equation above are then given by

$$\mathbf{v}_{+} = egin{bmatrix} \mathbf{v}_{2}^{+} \ \mathbf{v}_{2}^{+} \end{bmatrix} = egin{bmatrix} 1 \ 1 \end{bmatrix} \ \mathbf{v}_{2}^{+} \quad \Rightarrow \quad \mathbf{v}_{+} = egin{bmatrix} 1 \ 1 \end{bmatrix},$$

The first eigenvalue eigenvector pair is $\lambda_+=4$, $\mathbf{v}_+=\begin{bmatrix}1\\1\end{bmatrix}$

Example

Solution: Recall:
$$\lambda_+ = 4$$
, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Example

Solution: Recall:
$$\lambda_+ = 4$$
, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve
$$(A + 2I)v_{-} = 0$$
,

Example

Solution: Recall:
$$\lambda_+ = 4$$
, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve
$$(A+2I)\mathbf{v}_{-}=\mathbf{0}$$
, using Gauss operations on $A+2I=\begin{bmatrix}3&3\\3&3\end{bmatrix}$.

Example

Solution: Recall:
$$\lambda_+ = 4$$
, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve
$$(A+2I)\mathbf{v}_{-}=\mathbf{0}$$
, using Gauss operations on $A+2I=\begin{bmatrix}3&3\\3&3\end{bmatrix}$.

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$$

Example

Solution: Recall:
$$\lambda_+ = 4$$
, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve
$$(A+2I)\mathbf{v}_{-}=\mathbf{0}$$
, using Gauss operations on $A+2I=\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$.

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_+ = 4$$
, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve $(A+2I)\mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2I=\begin{bmatrix}3&3\\3&3\end{bmatrix}$.

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_+ = 4$$
, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve $(A+2I)\mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2I=\begin{bmatrix}3&3\\3&3\end{bmatrix}$.

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^- = -v_2^-, \\ v_2^- & \text{free.} \end{cases}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_+ = 4$$
, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve $(A+2I)\mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2I=\begin{bmatrix}3&3\\3&3\end{bmatrix}$.

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^- = -v_2^-, \\ v_2^- & \text{free.} \end{cases}$$

$$\mathbf{v}_{-} = \begin{bmatrix} -v_{2}^{-} \\ v_{2}^{-} \end{bmatrix}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_+ = 4$$
, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve $(A+2I)\mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2I=\begin{bmatrix}3&3\\3&3\end{bmatrix}$.

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^- = -v_2^-, \\ v_2^- & \text{free.} \end{cases}$$

$$\mathbf{v}_{-} = \begin{bmatrix} -v_{2}^{-} \\ v_{2}^{-} \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} v_{2}^{-}$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_+ = 4$$
, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve $(A+2I)\mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2I=\begin{bmatrix}3&3\\3&3\end{bmatrix}$.

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^- = -v_2^-, \\ v_2^- & \text{free.} \end{cases}$$

$$\mathbf{v}_{-} = egin{bmatrix} -\mathbf{v}_{2}^{-} \ \mathbf{v}_{2}^{-} \end{bmatrix} = egin{bmatrix} -1 \ 1 \end{bmatrix} \mathbf{v}_{2}^{-} \quad \Rightarrow \quad \mathbf{v}_{-} = egin{bmatrix} -1 \ 1 \end{bmatrix},$$

Example

Find the eigenvalues λ and eigenvectors \mathbf{v} of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Recall:
$$\lambda_+ = 4$$
, $\mathbf{v}_+ = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\lambda_- = -2$.

Solve $(A+2I)\mathbf{v}_{-}=\mathbf{0}$, using Gauss operations on $A+2I=\begin{bmatrix}3&3\\3&3\end{bmatrix}$.

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad \Rightarrow \quad \begin{cases} v_1^- = -v_2^-, \\ v_2^- & \text{free.} \end{cases}$$

Al solutions to the equation above are then given by

$$\mathbf{v}_{-} = \begin{bmatrix} -v_{2}^{-} \\ v_{2}^{-} \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \ v_{2}^{-} \quad \Rightarrow \quad \mathbf{v}_{-} = \begin{bmatrix} -1 \\ 1 \end{bmatrix},$$

The second eigenvalue eigenvector pair: $\lambda_-=-2$, $\mathbf{v}_-=\begin{bmatrix} -1 \\ 1 \end{bmatrix}$. \lhd

Review of Linear Algebra (Sect. 7.3)

- ► Eigenvalues, eigenvectors of a matrix.
- ► Computing eigenvalues and eigenvectors.
- ► Diagonalizable matrices.
- ▶ The case of Hermitian matrices.

Definition

An
$$n \times n$$
 matrix D is called *diagonal* iff $D = \begin{bmatrix} d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{nn} \end{bmatrix}$.

Definition

An
$$n \times n$$
 matrix D is called *diagonal* iff $D = \begin{bmatrix} d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{nn} \end{bmatrix}$.

Definition

An $n \times n$ matrix A is called *diagonalizable* iff there exists an invertible matrix P and a diagonal matrix D such that

$$A = PDP^{-1}$$
.

Definition

An
$$n \times n$$
 matrix D is called *diagonal* iff $D = \begin{bmatrix} d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{nn} \end{bmatrix}$.

Definition

An $n \times n$ matrix A is called *diagonalizable* iff there exists an invertible matrix P and a diagonal matrix D such that

$$A = PDP^{-1}$$
.

Remark:

▶ Systems of linear *differential* equations are simple to solve in the case that the coefficient matrix *A* is diagonalizable.

Definition

Definition
An
$$n \times n$$
 matrix D is called *diagonal* iff $D = \begin{bmatrix} d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{nn} \end{bmatrix}$.

Definition

An $n \times n$ matrix A is called *diagonalizable* iff there exists an invertible matrix P and a diagonal matrix D such that

$$A = PDP^{-1}$$
.

Remark:

- Systems of linear differential equations are simple to solve in the case that the coefficient matrix A is diagonalizable.
- ▶ In such case, it is simple to *decouple* the differential equations.

Definition

Definition
An
$$n \times n$$
 matrix D is called *diagonal* iff $D = \begin{bmatrix} d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{nn} \end{bmatrix}$.

Definition

An $n \times n$ matrix A is called *diagonalizable* iff there exists an invertible matrix P and a diagonal matrix D such that

$$A = PDP^{-1}$$
.

Remark:

- Systems of linear differential equations are simple to solve in the case that the coefficient matrix A is diagonalizable.
- ▶ In such case, it is simple to *decouple* the differential equations.
- One solves the decoupled equations, and then transforms back to the original unknowns.

Theorem (Diagonalizability and eigenvectors)

An $n \times n$ matrix A is diagonalizable iff matrix A has a linearly independent set of n eigenvectors. Furthermore,

$$A = PDP^{-1}, \quad P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \quad D = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix},$$

where λ_i , \mathbf{v}_i , for $i = 1, \dots, n$, are eigenvalue-eigenvector pairs of A.

Theorem (Diagonalizability and eigenvectors)

An $n \times n$ matrix A is diagonalizable iff matrix A has a linearly independent set of n eigenvectors. Furthermore,

$$A = PDP^{-1}, \quad P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \quad D = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix},$$

where λ_i , \mathbf{v}_i , for $i = 1, \dots, n$, are eigenvalue-eigenvector pairs of A.

Remark: It is not simple to know whether an $n \times n$ matrix A has a linearly independent set of n eigenvectors.

Theorem (Diagonalizability and eigenvectors)

An $n \times n$ matrix A is diagonalizable iff matrix A has a linearly independent set of n eigenvectors. Furthermore,

$$A = PDP^{-1}, \quad P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \quad D = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix},$$

where λ_i , \mathbf{v}_i , for $i = 1, \dots, n$, are eigenvalue-eigenvector pairs of A.

Remark: It is not simple to know whether an $n \times n$ matrix A has a linearly independent set of n eigenvectors. One simple case is given in the following result.

Theorem (Diagonalizability and eigenvectors)

An $n \times n$ matrix A is diagonalizable iff matrix A has a linearly independent set of n eigenvectors. Furthermore,

$$A = PDP^{-1}, \quad P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \quad D = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix},$$

where λ_i , \mathbf{v}_i , for $i = 1, \dots, n$, are eigenvalue-eigenvector pairs of A.

Remark: It is not simple to know whether an $n \times n$ matrix A has a linearly independent set of n eigenvectors. One simple case is given in the following result.

Theorem (*n* different eigenvalues)

If an $n \times n$ matrix A has n different eigenvalues, then A is diagonalizable.

Example

Show that
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
 is diagonalizable.

Example

Show that
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
 is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

$$\lambda_1=4, \quad \mathbf{v}_1=egin{bmatrix}1\\1\end{bmatrix} \quad \text{and} \quad \lambda_2=-2, \quad \mathbf{v}_2=egin{bmatrix}-1\\1\end{bmatrix}.$$

Example

Show that
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
 is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

$$\lambda_1=4, \quad \mathbf{v}_1=egin{bmatrix}1\\1\end{bmatrix} \quad \text{and} \quad \lambda_2=-2, \quad \mathbf{v}_2=egin{bmatrix}-1\\1\end{bmatrix}.$$

Example

Show that
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
 is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

$$\lambda_1=4, \quad \mathbf{v}_1=egin{bmatrix}1\\1\end{bmatrix} \quad \text{and} \quad \lambda_2=-2, \quad \mathbf{v}_2=egin{bmatrix}-1\\1\end{bmatrix}.$$

$$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

Example

Show that
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
 is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

$$\lambda_1=4,\quad \mathbf{v}_1=\begin{bmatrix}1\\1\end{bmatrix}\quad \text{and}\quad \lambda_2=-2,\quad \mathbf{v}_2=\begin{bmatrix}-1\\1\end{bmatrix}.$$

$$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \Rightarrow \quad P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix},$$

Example

Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

$$\lambda_1=4, \quad \mathbf{v}_1=\begin{bmatrix}1\\1\end{bmatrix} \quad \text{and} \quad \lambda_2=-2, \quad \mathbf{v}_2=\begin{bmatrix}-1\\1\end{bmatrix}.$$

$$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \Rightarrow \quad P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix}.$$

Example

Show that $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

$$\lambda_1=4, \quad \mathbf{v}_1=\begin{bmatrix}1\\1\end{bmatrix} \quad \text{and} \quad \lambda_2=-2, \quad \mathbf{v}_2=\begin{bmatrix}-1\\1\end{bmatrix}.$$

Introduce P and D as follows,

$$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \Rightarrow \quad P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix}.$$

Then

$$PDP^{-1}$$

Example

Show that
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
 is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

$$\lambda_1=4, \quad \mathbf{v}_1=\begin{bmatrix}1\\1\end{bmatrix} \quad \text{and} \quad \lambda_2=-2, \quad \mathbf{v}_2=\begin{bmatrix}-1\\1\end{bmatrix}.$$

Introduce P and D as follows,

$$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \Rightarrow \quad P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix}.$$

Then

$$PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

Example

Show that
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
 is diagonalizable.

Solution: Recall:

$$PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

Example

Show that
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
 is diagonalizable.

Solution: Recall:

$$PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

$$PDP^{-1} = \begin{bmatrix} 4 & 2 \\ 4 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

Example

Show that
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
 is diagonalizable.

Solution: Recall:

$$PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

$$PDP^{-1} = \begin{bmatrix} 4 & 2 \\ 4 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

Example

Show that
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
 is diagonalizable.

Solution: Recall:

$$PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

$$PDP^{-1} = \begin{bmatrix} 4 & 2 \\ 4 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

We conclude,

$$PDP^{-1} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$

Example

Show that
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
 is diagonalizable.

Solution: Recall:

$$PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

$$PDP^{-1} = \begin{bmatrix} 4 & 2 \\ 4 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

We conclude,

$$PDP^{-1} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} = A,$$

Example

Show that
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$$
 is diagonalizable.

Solution: Recall:

$$PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

$$PDP^{-1} = \begin{bmatrix} 4 & 2 \\ 4 & -2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

We conclude,

$$PDP^{-1} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} = A,$$

that is, A is diagonalizable.

 \triangleleft

Review of Linear Algebra (Sect. 7.3)

- ▶ Eigenvalues, eigenvectors of a matrix.
- ► Computing eigenvalues and eigenvectors.
- Diagonalizable matrices.
- ▶ The case of Hermitian matrices.

Definition

An $n \times n$ matrix A is called Hermitian iff $A = A^*$.

An $n \times n$ matrix A is called symmetric iff $A = A^T$.

Definition

An $n \times n$ matrix A is called Hermitian iff $A = A^*$. An $n \times n$ matrix A is called symmetric iff $A = A^T$.

Theorem

Every Hermitian matrix is diagonalizable.

Definition

An $n \times n$ matrix A is called Hermitian iff $A = A^*$. An $n \times n$ matrix A is called symmetric iff $A = A^T$.

Theorem

Every Hermitian matrix is diagonalizable.

Definition

An $n \times n$ matrix A is called Hermitian iff $A = A^*$.

An $n \times n$ matrix A is called symmetric iff $A = A^T$.

Theorem

Every Hermitian matrix is diagonalizable.

$$A = A^*$$

Definition

An $n \times n$ matrix A is called Hermitian iff $A = A^*$.

An $n \times n$ matrix A is called symmetric iff $A = A^T$.

Theorem

Every Hermitian matrix is diagonalizable.

$$A = A^* = \overline{A}^T$$

Definition

An $n \times n$ matrix A is called Hermitian iff $A = A^*$.

An $n \times n$ matrix A is called symmetric iff $A = A^T$.

Theorem

Every Hermitian matrix is diagonalizable.

$$A = A^* = \overline{A}^T = A^T$$

Definition

An $n \times n$ matrix A is called Hermitian iff $A = A^*$.

An $n \times n$ matrix A is called symmetric iff $A = A^T$.

Theorem

Every Hermitian matrix is diagonalizable.

$$A = A^* = \overline{A}^T = A^T \quad \Rightarrow \quad A = A^T$$

Definition

An $n \times n$ matrix A is called Hermitian iff $A = A^*$. An $n \times n$ matrix A is called symmetric iff $A = A^T$.

Theorem

Every Hermitian matrix is diagonalizable.

Remark: A real-valued Hermitian matrix A is symmetric, since

$$A = A^* = \overline{A}^T = A^T \quad \Rightarrow \quad A = A^T$$

Example

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 8 & 7 \\ 3 & 7 & 11 \end{bmatrix}$$
 is symmetric,

Definition

An $n \times n$ matrix A is called Hermitian iff $A = A^*$.

An $n \times n$ matrix A is called symmetric iff $A = A^T$.

Theorem

Every Hermitian matrix is diagonalizable.

Remark: A real-valued Hermitian matrix A is symmetric, since

$$A = A^* = \overline{A}^T = A^T \quad \Rightarrow \quad A = A^T$$

Example

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 8 & 7 \\ 3 & 7 & 11 \end{bmatrix} \text{ is symmetric, } B = \begin{bmatrix} 1 & -i & 1 \\ i & 0 & -1 \\ 1 & -1 & 1 \end{bmatrix} \text{ is Hermitian.}$$

Properties of differential linear systems (Sect. 7.4)

- ▶ Review: $n \times n$ linear differential systems.
- ▶ Fundamental solutions to homogeneous systems.
- Existence and uniqueness of solutions to IVP.
- ▶ The Wronskian of *n* solutions.

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$$

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$$

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix},$$

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$$

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}, \ \mathbf{b}(t) = \begin{bmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{bmatrix},$$

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$$

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}, \ \mathbf{b}(t) = \begin{bmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{bmatrix}, \ \mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}.$$

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$$

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}, \ \mathbf{b}(t) = \begin{bmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{bmatrix}, \ \mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}.$$

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t)$$

Definition

An $n \times n$ linear differential system is a the following: Given an $n \times n$ matrix-valued function A, and an n-vector-valued function \mathbf{b} , find an n-vector-valued function \mathbf{x} solution of

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$$

The system above is called *homogeneous* iff holds $\mathbf{b} = 0$.

$$A(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}, \ \mathbf{b}(t) = \begin{bmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{bmatrix}, \ \mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}.$$

$$x'_1 = a_{11}(t) x_1 + \dots + a_{1n}(t) x_n + b_1(t)$$

$$\mathbf{x}'(t) = A(t) \mathbf{x}(t) + \mathbf{b}(t) \Leftrightarrow \vdots$$

$$x'_n = a_{n1}(t) x_1 + \dots + a_{nn}(t) x_n + b_n(t).$$

Example

Find the explicit expression for the linear system $\mathbf{x}' = A\mathbf{x} + \mathbf{b}$ in the case that

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, \qquad \mathbf{b}(t) = \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Example

Find the explicit expression for the linear system $\mathbf{x}' = A\mathbf{x} + \mathbf{b}$ in the case that

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, \qquad \mathbf{b}(t) = \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Solution: The 2×2 linear system is given by

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}.$$

Example

Find the explicit expression for the linear system $\mathbf{x}' = A\mathbf{x} + \mathbf{b}$ in the case that

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}, \qquad \mathbf{b}(t) = \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}, \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Solution: The 2×2 linear system is given by

$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} e^t \\ 2e^{3t} \end{bmatrix}.$$

That is,

$$x'_1(t) = x_1(t) + 3x_2(t) + e^t,$$

 $x'_2(t) = 3x_1(t) + x_2(t) + 2e^{3t}.$

$$\mathbf{x}'(t) = egin{bmatrix} x_1(t) \ dots \ x_n(t) \end{bmatrix}'$$

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}' = \begin{bmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{bmatrix}$$

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}' = \begin{bmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}'$$

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}' = \begin{bmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}' = \begin{bmatrix} 2e^{2t} \\ \cos(t) \\ -\sin(t) \end{bmatrix}.$$

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}' = \begin{bmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}' = \begin{bmatrix} 2e^{2t} \\ \cos(t) \\ -\sin(t) \end{bmatrix}.$$

$$A'(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}'$$

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}' = \begin{bmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}' = \begin{bmatrix} 2e^{2t} \\ \cos(t) \\ -\sin(t) \end{bmatrix}.$$

$$A'(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}' = \begin{bmatrix} a'_{11}(t) & \cdots & a'_{1n}(t) \\ \vdots & & \vdots \\ a'_{n1}(t) & \cdots & a'_{nn}(t) \end{bmatrix},$$

Remark: Derivatives of vector-valued functions are computed component-wise.

$$\mathbf{x}'(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}' = \begin{bmatrix} x_1'(t) \\ \vdots \\ x_n'(t) \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} e^{2t} \\ \sin(t) \\ \cos(t) \end{bmatrix}' = \begin{bmatrix} 2e^{2t} \\ \cos(t) \\ -\sin(t) \end{bmatrix}.$$

$$A'(t) = \begin{bmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{bmatrix}' = \begin{bmatrix} a'_{11}(t) & \cdots & a'_{1n}(t) \\ \vdots & & \vdots \\ a'_{n1}(t) & \cdots & a'_{nn}(t) \end{bmatrix},$$

Definition

An $n \times n$ matrix-valued function with values $A(t) = [a_{ij}(t)]$ is called *continuous* iff every coefficient a_{ij} is a continuous function.

Properties of differential linear systems (Sect. 7.4)

- ▶ Review: $n \times n$ linear differential systems.
- ► Fundamental solutions to homogeneous systems.
- Existence and uniqueness of solutions to IVP.
- ▶ The Wronskian of *n* solutions.

Definition

A linearly independent set of solutions $\{\mathbf{x}^{(1)}(t), \cdots, \mathbf{x}^{(n)}(t)\}$ of the $n \times n$ homogeneous linear differential system

$$\mathbf{x}' = A(t)\mathbf{x} \tag{1}$$

is called a fundamental set of solutions, and the function

$$\mathbf{x}(t) = c_1 \mathbf{x}^{(1)}(t) + \cdots + c_n \mathbf{x}^{(n)}(t),$$

is called the *general solution* of Eq. (1), where c_1, \dots, c_n are arbitrary constants. The $n \times n$ matrix-valued function

$$X(t) = \left[\mathbf{x}^{(1)}(t), \cdots, \mathbf{x}^{(n)}(t)\right]$$

is called a fundamental matrix of the Eq. (1), and the function

$$w(t) = \det(X(t))$$

is called the Wronskian of the fundamental solutions.

Example Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2\,e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2\,e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set for the linear system $\mathbf{x}'(t) = A\,\mathbf{x}(t)$, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}'$$

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}' = \begin{bmatrix} 4 e^{2t} \\ 2 e^{2t} \end{bmatrix}$$

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}' = \begin{bmatrix} 4 e^{2t} \\ 2 e^{2t} \end{bmatrix} \quad \Rightarrow \quad \mathbf{x}^{(1)\prime}(t) = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}.$$

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}' = \begin{bmatrix} 4 e^{2t} \\ 2 e^{2t} \end{bmatrix} \quad \Rightarrow \quad \mathbf{x}^{(1)\prime}(t) = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}.$$

$$A\mathbf{x}^{(1)}(t) = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}$$

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}' = \begin{bmatrix} 4 e^{2t} \\ 2 e^{2t} \end{bmatrix} \quad \Rightarrow \quad \mathbf{x}^{(1)\prime}(t) = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}.$$

$$A\mathbf{x}^{(1)}(t) = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} = \begin{bmatrix} 6-2 \\ 4-2 \end{bmatrix} e^{2t}$$

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}' = \begin{bmatrix} 4 e^{2t} \\ 2 e^{2t} \end{bmatrix} \quad \Rightarrow \quad \mathbf{x}^{(1)\prime}(t) = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}.$$

$$A\mathbf{x}^{(1)}(t) = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} = \begin{bmatrix} 6-2 \\ 4-2 \end{bmatrix} e^{2t} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}$$

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: First we verify the $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are solutions.

$$\mathbf{x}^{(1)\prime}(t) = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}' = \begin{bmatrix} 4 e^{2t} \\ 2 e^{2t} \end{bmatrix} \quad \Rightarrow \quad \mathbf{x}^{(1)\prime}(t) = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}.$$

$$A\mathbf{x}^{(1)}(t) = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} = \begin{bmatrix} 6-2 \\ 4-2 \end{bmatrix} e^{2t} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}$$

We conclude; $\mathbf{x}^{(1)'}(t) = A \mathbf{x}^{(1)}(t)$.

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall:
$$\mathbf{x}^{(1)\prime}(t) = A\mathbf{x}^{(1)}(t)$$
.

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall:
$$\mathbf{x}^{(1)\prime}(t) = A\mathbf{x}^{(1)}(t)$$
.

$$\mathbf{x}^{(2)\prime}(t) = \begin{bmatrix} e^{-t} \\ 2 e^{2t} \end{bmatrix}'$$

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall:
$$\mathbf{x}^{(1)\prime}(t) = A\mathbf{x}^{(1)}(t)$$
.

$$\mathbf{x}^{(2)\prime}(t) = \begin{bmatrix} e^{-t} \\ 2 e^{2t} \end{bmatrix}' = \begin{bmatrix} -e^{-t} \\ -2 e^{-t} \end{bmatrix}$$

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall:
$$\mathbf{x}^{(1)\prime}(t) = A\mathbf{x}^{(1)}(t)$$
.

$$\mathbf{x}^{(2)\prime}(t) = \begin{bmatrix} e^{-t} \\ 2 e^{2t} \end{bmatrix}' = \begin{bmatrix} -e^{-t} \\ -2 e^{-t} \end{bmatrix} \quad \Rightarrow \quad \mathbf{x}^{(2)\prime}(t) = -\begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}.$$

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall:
$$\mathbf{x}^{(1)\prime}(t) = A\mathbf{x}^{(1)}(t)$$
.

$$\mathbf{x}^{(2)\prime}(t) = \begin{bmatrix} e^{-t} \\ 2 e^{2t} \end{bmatrix}' = \begin{bmatrix} -e^{-t} \\ -2 e^{-t} \end{bmatrix} \quad \Rightarrow \quad \mathbf{x}^{(2)\prime}(t) = -\begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}.$$

$$A\mathbf{x}^{(2)}(t) = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}$$

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall: $\mathbf{x}^{(1)\prime}(t) = A\mathbf{x}^{(1)}(t)$.

$$\mathbf{x}^{(2)\prime}(t) = \begin{bmatrix} e^{-t} \\ 2 e^{2t} \end{bmatrix}' = \begin{bmatrix} -e^{-t} \\ -2 e^{-t} \end{bmatrix} \quad \Rightarrow \quad \mathbf{x}^{(2)\prime}(t) = -\begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}.$$

$$A\mathbf{x}^{(2)}(t) = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t} = \begin{bmatrix} 3-4 \\ 2-4 \end{bmatrix} e^{-t}$$

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall: $\mathbf{x}^{(1)\prime}(t) = A\mathbf{x}^{(1)}(t)$.

$$\mathbf{x}^{(2)\prime}(t) = \begin{bmatrix} e^{-t} \\ 2 e^{2t} \end{bmatrix}' = \begin{bmatrix} -e^{-t} \\ -2 e^{-t} \end{bmatrix} \quad \Rightarrow \quad \mathbf{x}^{(2)\prime}(t) = -\begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}.$$

$$A\mathbf{x}^{(2)}(t) = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t} = \begin{bmatrix} 3-4 \\ 2-4 \end{bmatrix} e^{-t} = -\begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}$$

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall: $\mathbf{x}^{(1)\prime}(t) = A\mathbf{x}^{(1)}(t)$.

$$\mathbf{x}^{(2)\prime}(t) = \begin{bmatrix} e^{-t} \\ 2 e^{2t} \end{bmatrix}' = \begin{bmatrix} -e^{-t} \\ -2 e^{-t} \end{bmatrix} \quad \Rightarrow \quad \mathbf{x}^{(2)\prime}(t) = -\begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}.$$

$$A\mathbf{x}^{(2)}(t) = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t} = \begin{bmatrix} 3-4 \\ 2-4 \end{bmatrix} e^{-t} = -\begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}$$

We conclude; $\mathbf{x}^{(2)}(t) = A \mathbf{x}^{(2)}(t)$.

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall:
$$\mathbf{x}^{(1)\prime}(t) = A\mathbf{x}^{(1)}(t)$$
, and $\mathbf{x}^{(2)\prime}(t) = A\mathbf{x}^{(2)}(t)$.

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set

for the linear system
$$\mathbf{x}'(t) = A\mathbf{x}(t)$$
, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall:
$$\mathbf{x}^{(1)'}(t) = A\mathbf{x}^{(1)}(t)$$
, and $\mathbf{x}^{(2)'}(t) = A\mathbf{x}^{(2)}(t)$.

$$X(t) = \begin{bmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{bmatrix}.$$

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set for the linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall: $\mathbf{x}^{(1)'}(t) = A\mathbf{x}^{(1)}(t)$, and $\mathbf{x}^{(2)'}(t) = A\mathbf{x}^{(2)}(t)$.

$$X(t) = \begin{bmatrix} 2e^{2t} & e^{-t} \\ e^{2t} & 2e^{-t} \end{bmatrix}.$$

$$w(t) = \begin{vmatrix} 2e^{2t} & e^{-t} \\ e^{2t} & 2e^{-t} \end{vmatrix}$$

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set for the linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall: $\mathbf{x}^{(1)'}(t) = A\mathbf{x}^{(1)}(t)$, and $\mathbf{x}^{(2)'}(t) = A\mathbf{x}^{(2)}(t)$.

$$X(t) = \begin{bmatrix} 2e^{2t} & e^{-t} \\ e^{2t} & 2e^{-t} \end{bmatrix}.$$

$$w(t) = \begin{vmatrix} 2e^{2t} & e^{-t} \\ e^{2t} & 2e^{-t} \end{vmatrix} = 4e^{2t}e^{-t} - e^{2t}e^{-t}$$

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set for the linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall:
$$\mathbf{x}^{(1)'}(t) = A\mathbf{x}^{(1)}(t)$$
, and $\mathbf{x}^{(2)'}(t) = A\mathbf{x}^{(2)}(t)$.

$$X(t) = \begin{bmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{bmatrix}.$$

$$w(t) = \begin{vmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{vmatrix} = 4e^{2t} e^{-t} - e^{2t} e^{-t} = 4 e^{t} - e^{t}$$

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set for the linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall:
$$\mathbf{x}^{(1)'}(t) = A\mathbf{x}^{(1)}(t)$$
, and $\mathbf{x}^{(2)'}(t) = A\mathbf{x}^{(2)}(t)$.

$$X(t) = \begin{bmatrix} 2e^{2t} & e^{-t} \\ e^{2t} & 2e^{-t} \end{bmatrix}.$$

$$w(t) = \begin{vmatrix} 2e^{2t} & e^{-t} \\ e^{2t} & 2e^{-t} \end{vmatrix} = 4e^{2t}e^{-t} - e^{2t}e^{-t} = 4e^{t} - e^{t}$$
that is, $w(t) = 3e^{t}$.

Fundamental solutions to homogeneous systems.

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 \, e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 \, e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set for the linear system $\mathbf{x}'(t) = A \, \mathbf{x}(t)$, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall: $\mathbf{x}^{(1)'}(t) = A\mathbf{x}^{(1)}(t)$, and $\mathbf{x}^{(2)'}(t) = A\mathbf{x}^{(2)}(t)$.

We need to compute the determinant of the fundamental matrix

$$X(t) = \begin{bmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{bmatrix}.$$

$$w(t) = \begin{vmatrix} 2e^{2t} & e^{-t} \\ e^{2t} & 2e^{-t} \end{vmatrix} = 4e^{2t}e^{-t} - e^{2t}e^{-t} = 4e^{t} - e^{t}$$

that is, $w(t) = 3e^t$. Hence Since $w(t) \neq 0$ for $t \in \mathbb{R}$.

Fundamental solutions to homogeneous systems.

Example

Show that
$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 \, e^{2t} \\ e^{2t} \end{bmatrix}, \ \mathbf{x}^{(2)} = \begin{bmatrix} e^{-t} \\ 2 \, e^{-t} \end{bmatrix} \right\}$$
 is a fundamental set for the linear system $\mathbf{x}'(t) = A \, \mathbf{x}(t)$, where $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

Solution: Recall: $\mathbf{x}^{(1)'}(t) = A\mathbf{x}^{(1)}(t)$, and $\mathbf{x}^{(2)'}(t) = A\mathbf{x}^{(2)}(t)$.

We need to compute the determinant of the fundamental matrix

$$X(t) = \begin{bmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{bmatrix}.$$

$$w(t) = \begin{vmatrix} 2e^{2t} & e^{-t} \\ e^{2t} & 2e^{-t} \end{vmatrix} = 4e^{2t}e^{-t} - e^{2t}e^{-t} = 4e^{t} - e^{t}$$

that is, $w(t) = 3e^t$. Hence Since $w(t) \neq 0$ for $t \in \mathbb{R}$.

We conclude: The solutions form a fundamental set.

Properties of differential linear systems (Sect. 7.4)

- ▶ Review: $n \times n$ linear differential systems.
- ▶ Fundamental solutions to homogeneous systems.
- Existence and uniqueness of solutions to IVP.
- ▶ The Wronskian of *n* solutions.

Theorem (Existence and uniqueness)

If the $n \times n$ matrix-valued function A and the n-vector \mathbf{b} are continuous on $[t_0, t_1] \subset \mathbb{R}$, then the linear system

$$\mathbf{x}'(t) = A(t)\mathbf{x} + \mathbf{b}(t) \tag{2}$$

always has a fundamental set of solutions

$$\big\{\mathbf{x}^{(1)}(t),\cdots,\mathbf{x}^{(n)}(t)\big\}.$$

Furthermore, the initial value problem given by Eq. (2) together with the initial condition $\mathbf{x}(0) = \mathbf{x}_0$ has a unique solution.

Theorem (Existence and uniqueness)

If the $n \times n$ matrix-valued function A and the n-vector \mathbf{b} are continuous on $[t_0, t_1] \subset \mathbb{R}$, then the linear system

$$\mathbf{x}'(t) = A(t)\mathbf{x} + \mathbf{b}(t) \tag{2}$$

always has a fundamental set of solutions

$$\big\{\mathbf{x}^{(1)}(t),\cdots,\mathbf{x}^{(n)}(t)\big\}.$$

Furthermore, the initial value problem given by Eq. (2) together with the initial condition $\mathbf{x}(0) = \mathbf{x}_0$ has a unique solution.

Remarks:

▶ The initial value problem contains *n* initial conditions.

Theorem (Existence and uniqueness)

If the $n \times n$ matrix-valued function A and the n-vector \mathbf{b} are continuous on $[t_0, t_1] \subset \mathbb{R}$, then the linear system

$$\mathbf{x}'(t) = A(t)\mathbf{x} + \mathbf{b}(t) \tag{2}$$

always has a fundamental set of solutions

$$\{\mathbf{x}^{(1)}(t),\cdots,\mathbf{x}^{(n)}(t)\}.$$

Furthermore, the initial value problem given by Eq. (2) together with the initial condition $\mathbf{x}(0) = \mathbf{x}_0$ has a unique solution.

- ▶ The initial value problem contains *n* initial conditions.
- ▶ We will study how to obtain such solutions in the case of constant coefficients systems, $A(t) = A_0$.

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Solution: We need to find a fundamental set of solutions.

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Solution: We need to find a fundamental set of solutions. From the previous Example: A fundamental set is

$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t}, \ \mathbf{x}^{(2)} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t} \right\}.$$

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Solution: We need to find a fundamental set of solutions. From the previous Example: A fundamental set is

$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2\\1 \end{bmatrix} e^{2t}, \ \mathbf{x}^{(2)} = \begin{bmatrix} 1\\2 \end{bmatrix} e^{-t} \right\}.$$

Then, the general solution is

$$\mathbf{x}(t) = c_1 egin{bmatrix} 2 \\ 1 \end{bmatrix} \, \mathrm{e}^{2t} + c_2 egin{bmatrix} 1 \\ 2 \end{bmatrix} \, \mathrm{e}^{-t}$$

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Solution: We need to find a fundamental set of solutions.

From the previous Example: A fundamental set is

$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2\\1 \end{bmatrix} e^{2t}, \ \mathbf{x}^{(2)} = \begin{bmatrix} 1\\2 \end{bmatrix} e^{-t} \right\}.$$

Then, the general solution is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} \ \mathbf{e}^{2t} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} \ \mathbf{e}^{-t} \ \Rightarrow \ \mathbf{x}(t) = \begin{bmatrix} 2 \ \mathbf{e}^{2t} & \mathbf{e}^{-t} \\ \mathbf{e}^{2t} & 2 \ \mathbf{e}^{-t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.$$

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Solution: We need to find a fundamental set of solutions.

From the previous Example: A fundamental set is

$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2\\1 \end{bmatrix} e^{2t}, \ \mathbf{x}^{(2)} = \begin{bmatrix} 1\\2 \end{bmatrix} e^{-t} \right\}.$$

Then, the general solution is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} \ \mathbf{e}^{2t} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} \ \mathbf{e}^{-t} \ \Rightarrow \ \mathbf{x}(t) = \begin{bmatrix} 2 \, \mathbf{e}^{2t} & \mathbf{e}^{-t} \\ \mathbf{e}^{2t} & 2 \, \mathbf{e}^{-t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.$$

That is $\mathbf{x}(t) = X(t)\mathbf{c}$.

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Solution: We need to find a fundamental set of solutions.

From the previous Example: A fundamental set is

$$\left\{\mathbf{x}^{(1)} = \begin{bmatrix} 2\\1 \end{bmatrix} e^{2t}, \ \mathbf{x}^{(2)} = \begin{bmatrix} 1\\2 \end{bmatrix} e^{-t} \right\}.$$

Then, the general solution is

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} \ \mathbf{e}^{2t} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} \ \mathbf{e}^{-t} \ \Rightarrow \ \mathbf{x}(t) = \begin{bmatrix} 2 \, \mathbf{e}^{2t} & \mathbf{e}^{-t} \\ \mathbf{e}^{2t} & 2 \, \mathbf{e}^{-t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.$$

That is $\mathbf{x}(t) = X(t)\mathbf{c}$. The initial condition: $\mathbf{x}(0) = X(0)\mathbf{c}$.

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Solution: The initial condition: $\mathbf{x}(0) = X(0)\mathbf{c}$.

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Solution: The initial condition: $\mathbf{x}(0) = X(0)\mathbf{c}$. Since,

$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix},$$

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Solution: The initial condition: $\mathbf{x}(0) = X(0)\mathbf{c}$. Since,

$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \quad X(t) = \begin{bmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{bmatrix},$$

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Solution: The initial condition: $\mathbf{x}(0) = X(0)\mathbf{c}$. Since,

$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \quad X(t) = \begin{bmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix},$$

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Solution: The initial condition: $\mathbf{x}(0) = X(0)\mathbf{c}$. Since,

$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \quad X(t) = \begin{bmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix},$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Solution: The initial condition: $\mathbf{x}(0) = X(0)\mathbf{c}$. Since,

$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \quad X(t) = \begin{bmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix},$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Solution: The initial condition: $\mathbf{x}(0) = X(0)\mathbf{c}$. Since,

$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \quad X(t) = \begin{bmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix},$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -3 \\ 9 \end{bmatrix}.$$

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Solution: The initial condition: $\mathbf{x}(0) = X(0)\mathbf{c}$. Since,

$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \quad X(t) = \begin{bmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix},$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -3 \\ 9 \end{bmatrix}.$$

$$\mathbf{c} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

Example

Find the solution to the IVP

$$\mathbf{x}'(t) = A\mathbf{x}(t), \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}, \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$$

Solution: The initial condition: $\mathbf{x}(0) = X(0)\mathbf{c}$. Since,

$$\mathbf{x}(0) = \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \quad X(t) = \begin{bmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix},$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -3 \\ 9 \end{bmatrix}.$$

$$\mathbf{c} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \quad \Rightarrow \quad \mathbf{x}(t) = -\begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} + 3\begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}. \quad \triangleleft$$

Remarks:

(a) Next class we learn how to obtain solutions to $\mathbf{x}' = A\mathbf{x}$ with A constant.

- (a) Next class we learn how to obtain solutions to $\mathbf{x}' = A\mathbf{x}$ with A constant.
- (b) The eigenvalues and eigenvectors of *A* play a crucial role to find such solutions.

- (a) Next class we learn how to obtain solutions to $\mathbf{x}' = A\mathbf{x}$ with A constant.
- (b) The eigenvalues and eigenvectors of A play a crucial role to find such solutions.
- (c) For example: $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$.

- (a) Next class we learn how to obtain solutions to $\mathbf{x}' = A\mathbf{x}$ with A constant.
- (b) The eigenvalues and eigenvectors of A play a crucial role to find such solutions.
- (c) For example: $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$. The general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}$.

- (a) Next class we learn how to obtain solutions to $\mathbf{x}' = A\mathbf{x}$ with A constant.
- (b) The eigenvalues and eigenvectors of A play a crucial role to find such solutions.
- (c) For example: $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$. The general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}$. The eigenvalue eigenvector pairs for A are:

$$\lambda_1 = 2, \quad \mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix},$$

- (a) Next class we learn how to obtain solutions to $\mathbf{x}' = A\mathbf{x}$ with A constant.
- (b) The eigenvalues and eigenvectors of A play a crucial role to find such solutions.
- (c) For example: $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$. The general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}$. The eigenvalue eigenvector pairs for A are:

$$\lambda_1=2, \quad \mathbf{v}_1=egin{bmatrix}2\\1\end{bmatrix}, \quad \text{and} \quad \lambda_2=-1, \quad \mathbf{v}_2=egin{bmatrix}1\\2\end{bmatrix}.$$

Remarks:

- (a) Next class we learn how to obtain solutions to $\mathbf{x}' = A\mathbf{x}$ with A constant.
- (b) The eigenvalues and eigenvectors of A play a crucial role to find such solutions.
- (c) For example: $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$. The general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}$. The eigenvalue eigenvector pairs for A are:

$$\lambda_1=2, \quad \mathbf{v}_1=\begin{bmatrix}2\\1\end{bmatrix}, \quad \text{and} \quad \lambda_2=-1, \quad \mathbf{v}_2=\begin{bmatrix}1\\2\end{bmatrix}.$$

That is, $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$.

Remarks:

- (a) Next class we learn how to obtain solutions to $\mathbf{x}' = A \mathbf{x}$ with A constant.
- (b) The eigenvalues and eigenvectors of A play a crucial role to find such solutions.
- (c) For example: $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}$. The general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-t}$. The eigenvalue eigenvector pairs for A are:

$$\lambda_1=2, \quad \mathbf{v}_1=egin{bmatrix}2\\1\end{bmatrix}, \quad \text{and} \quad \lambda_2=-1, \quad \mathbf{v}_2=egin{bmatrix}1\\2\end{bmatrix}.$$

That is, $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$.

(d) Next class we generalize the result of this example.

Properties of differential linear systems (Sect. 7.4)

- ▶ Review: $n \times n$ linear differential systems.
- Fundamental solutions to homogeneous systems.
- Existence and uniqueness of solutions to IVP.
- ► The Wronskian of *n* solutions.

Theorem (Generalization of Abel result)

If A is an $n \times n$ continuous matrix-valued function, and $\mathbf{x}^{(i)}$, with $i=1,\cdots,n$, are arbitrary solutions of the differential equation $\mathbf{x}'=A(t)\mathbf{x}$, then the Wronskian

$$w(t) = \det(X(t)), \qquad X(t) = [\mathbf{x}^{(1)}(t), \cdots, \mathbf{x}^{(n)}(t)]$$

satisfies the equation

$$w(t) = w(t_0) e^{\alpha(t)}, \qquad \alpha(t) = \int_{t_0}^t \operatorname{tr} A(\tau) d\tau.$$

where
$$tr(A)(t) = a_{11}(t) + \cdots + a_{nn}(t)$$
.

Theorem (Generalization of Abel result)

If A is an $n \times n$ continuous matrix-valued function, and $\mathbf{x}^{(i)}$, with $i=1,\cdots,n$, are arbitrary solutions of the differential equation $\mathbf{x}'=A(t)\mathbf{x}$, then the Wronskian

$$w(t) = \det(X(t)), \qquad X(t) = [\mathbf{x}^{(1)}(t), \cdots, \mathbf{x}^{(n)}(t)]$$

satisfies the equation

$$w(t) = w(t_0) e^{\alpha(t)}, \qquad \alpha(t) = \int_{t_0}^t \operatorname{tr} A(\tau) d\tau.$$

where
$$tr(A)(t) = a_{11}(t) + \cdots + a_{nn}(t)$$
.

Remark: If the Wronskian $w(t_2) \neq 0$ at a single point $t_2 \in [t_0, t_1]$, then $w(t) \neq 0$ for all $t \in [t_0, t_1]$.

Example

Verify the generalized Abel Theorem for a fundamental set of solutions to

$$\mathbf{x} = A \mathbf{x}, \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}.$$

Example

Verify the generalized Abel Theorem for a fundamental set of solutions to

$$\mathbf{x} = A \mathbf{x}, \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}.$$

Solution:

Fundamental solutions:
$$\left\{ \begin{vmatrix} 2 \\ 1 \end{vmatrix} e^{2t}, \begin{vmatrix} 1 \\ 2 \end{vmatrix} e^{-t} \right\}$$
.

Example

Verify the generalized Abel Theorem for a fundamental set of solutions to

$$\mathbf{x} = A\mathbf{x}, \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}.$$

Solution:

Fundamental solutions: $\left\{ \begin{vmatrix} 2\\1 \end{vmatrix} e^{2t}, \begin{vmatrix} 1\\2 \end{vmatrix} e^{-t} \right\}$. Their Wronskian is

$$w(t) = \begin{vmatrix} 2e^{2t} & e^{-t} \\ e^{2t} & 2e^{-t} \end{vmatrix}$$

Example

Verify the generalized Abel Theorem for a fundamental set of solutions to

$$\mathbf{x} = A\mathbf{x}, \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}.$$

Solution:

Fundamental solutions: $\left\{ \begin{vmatrix} 2\\1 \end{vmatrix} e^{2t}, \begin{vmatrix} 1\\2 \end{vmatrix} e^{-t} \right\}$. Their Wronskian is

$$w(t) = \begin{vmatrix} 2e^{2t} & e^{-t} \\ e^{2t} & 2e^{-t} \end{vmatrix} = 4e^{2t}e^{-t} - e^{2t}e^{-t}$$

Example

Verify the generalized Abel Theorem for a fundamental set of solutions to

$$\mathbf{x} = A\mathbf{x}, \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}.$$

Solution:

Fundamental solutions: $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix} e^{2t}, \begin{bmatrix} 1\\2 \end{bmatrix} e^{-t} \right\}$. Their Wronskian is

$$w(t) = \begin{vmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{vmatrix} = 4e^{2t} e^{-t} - e^{2t} e^{-t} = 4 e^{t} - e^{t},$$

Example

Verify the generalized Abel Theorem for a fundamental set of solutions to

$$\mathbf{x} = A\mathbf{x}, \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}.$$

Solution:

Fundamental solutions: $\left\{\begin{bmatrix} 2\\1 \end{bmatrix} e^{2t}, \begin{bmatrix} 1\\2 \end{bmatrix} e^{-t} \right\}$. Their Wronskian is

$$w(t) = \begin{vmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{vmatrix} = 4 e^{2t} e^{-t} - e^{2t} e^{-t} = 4 e^{t} - e^{t},$$

that is, $w(t) = 3e^t$.

Example

Verify the generalized Abel Theorem for a fundamental set of solutions to

$$\mathbf{x} = A\mathbf{x}, \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}.$$

Solution:

Fundamental solutions: $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix} e^{2t}, \begin{bmatrix} 1\\2 \end{bmatrix} e^{-t} \right\}$. Their Wronskian is

$$w(t) = \begin{vmatrix} 2e^{2t} & e^{-t} \\ e^{2t} & 2e^{-t} \end{vmatrix} = 4e^{2t}e^{-t} - e^{2t}e^{-t} = 4e^{t} - e^{t},$$

that is, $w(t) = 3e^t$. Notice: w(0) = 3

Example

Verify the generalized Abel Theorem for a fundamental set of solutions to

$$\mathbf{x} = A \mathbf{x}, \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}.$$

Solution:

Fundamental solutions: $\left\{ \begin{vmatrix} 2\\1 \end{vmatrix} e^{2t}, \begin{vmatrix} 1\\2 \end{vmatrix} e^{-t} \right\}$. Their Wronskian is

$$w(t) = \begin{vmatrix} 2e^{2t} & e^{-t} \\ e^{2t} & 2e^{-t} \end{vmatrix} = 4e^{2t}e^{-t} - e^{2t}e^{-t} = 4e^{t} - e^{t},$$

that is, $w(t) = 3e^{t}$. Notice: w(0) = 3 and tr(A) = 3 - 2

Example

Verify the generalized Abel Theorem for a fundamental set of solutions to

$$\mathbf{x} = A \mathbf{x}, \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}.$$

Solution:

Fundamental solutions: $\left\{\begin{bmatrix} 2\\1 \end{bmatrix} e^{2t}, \begin{bmatrix} 1\\2 \end{bmatrix} e^{-t} \right\}$. Their Wronskian is

$$w(t) = \begin{vmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{vmatrix} = 4e^{2t} e^{-t} - e^{2t} e^{-t} = 4 e^{t} - e^{t},$$

that is, $w(t) = 3e^t$. Notice: w(0) = 3 and tr(A) = 3 - 2 = 1.

Example

Verify the generalized Abel Theorem for a fundamental set of solutions to

$$\mathbf{x} = A \mathbf{x}, \quad A = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix}.$$

Solution:

Fundamental solutions: $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix} e^{2t}, \begin{bmatrix} 1\\2 \end{bmatrix} e^{-t} \right\}$. Their Wronskian is

$$w(t) = \begin{vmatrix} 2 e^{2t} & e^{-t} \\ e^{2t} & 2 e^{-t} \end{vmatrix} = 4e^{2t} e^{-t} - e^{2t} e^{-t} = 4 e^{t} - e^{t},$$

that is, $w(t) = 3e^t$. Notice: w(0) = 3 and tr(A) = 3 - 2 = 1. Therefore,

$$w(t) = w(0) e^{\operatorname{tr}(A) t}.$$

Real, distinct eigenvalues (Sect. 7.5)

- ▶ Review: $n \times n$ linear differential systems.
- ▶ The case of diagonalizable matrices.
- ► Examples: 2 × 2 linear systems.
- ▶ Classification of 2×2 diagonalizable systems.
- ▶ Phase portraits for 2×2 systems.

Recall:

► Given an $n \times n$ matrix A(t), n-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution $\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$

Recall:

▶ Given an $n \times n$ matrix A(t), n-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$$

▶ The system is *homogeneous* iff $\mathbf{b} = 0$, that is,

$$\mathbf{x}'(t) = A(t)\,\mathbf{x}(t).$$

Recall:

▶ Given an $n \times n$ matrix A(t), n-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$$

▶ The system is *homogeneous* iff $\mathbf{b} = 0$, that is,

$$\mathbf{x}'(t) = A(t)\,\mathbf{x}(t).$$

► The system has *constant coefficients* iff matrix *A* does not depend on *t*, that is,

$$\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{b}(t).$$

Recall:

▶ Given an $n \times n$ matrix A(t), n-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$$

▶ The system is *homogeneous* iff $\mathbf{b} = 0$, that is,

$$\mathbf{x}'(t) = A(t)\,\mathbf{x}(t).$$

► The system has *constant coefficients* iff matrix *A* does not depend on *t*, that is,

$$\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{b}(t).$$

▶ We study homogeneous, constant coefficient systems, that is,

$$\mathbf{x}'(t) = A\mathbf{x}(t).$$

Recall:

▶ Given continuous functions A, \mathbf{b} on $(t_1, t_2) \subset \mathbb{R}$, a constant $t_0 \in (t_1, t_2)$ and a vector \mathbf{x}_0 , there exists a unique function \mathbf{x} solution of the IVP

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t), \qquad \mathbf{x}(t_0) = \mathbf{x}_0.$$

Recall:

▶ Given continuous functions A, \mathbf{b} on $(t_1, t_2) \subset \mathbb{R}$, a constant $t_0 \in (t_1, t_2)$ and a vector \mathbf{x}_0 , there exists a unique function \mathbf{x} solution of the IVP

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t), \qquad \mathbf{x}(t_0) = \mathbf{x}_0.$$

► Today we learn to find such solution in the case of homogeneous, constant coefficients, n × n linear systems,

$$\mathbf{x}'(t) = A\mathbf{x}(t).$$

Real, distinct eigenvalues (Sect. 7.5)

- ▶ Review: $n \times n$ linear differential systems.
- ► The case of diagonalizable matrices.
- ► Examples: 2 × 2 linear systems.
- ▶ Classification of 2×2 diagonalizable systems.
- ▶ Phase portraits for 2×2 systems.

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$\mathbf{x}'(t) = A\mathbf{x}(t)$$

is given by the expression below, where $c_1, \dots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \dots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$\mathbf{x}'(t) = A\mathbf{x}(t)$$

is given by the expression below, where $c_1, \dots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \dots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Remark:

▶ The differential system for the variable **x** is coupled,

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$\mathbf{x}'(t) = A\mathbf{x}(t)$$

is given by the expression below, where $c_1, \dots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \dots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Remark:

► The differential system for the variable **x** is coupled, that is, *A* is not diagonal.

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$\mathbf{x}'(t) = A\mathbf{x}(t)$$

is given by the expression below, where $c_1, \dots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \dots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

- ► The differential system for the variable x is coupled, that is, A is not diagonal.
- ▶ We transform the system into a system for a variable **y** such that the system for **y** is decoupled,

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$\mathbf{x}'(t) = A\mathbf{x}(t)$$

is given by the expression below, where $c_1, \dots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \dots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

- ► The differential system for the variable x is coupled, that is, A is not diagonal.
- ▶ We transform the system into a system for a variable \mathbf{y} such that the system for \mathbf{y} is decoupled, that is, $\mathbf{y}'(t) = D \mathbf{y}(t)$,

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$\mathbf{x}'(t) = A\mathbf{x}(t)$$

is given by the expression below, where $c_1, \dots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \dots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

- ► The differential system for the variable x is coupled, that is, A is not diagonal.
- ▶ We transform the system into a system for a variable \mathbf{y} such that the system for \mathbf{y} is decoupled, that is, $\mathbf{y}'(t) = D \mathbf{y}(t)$, where D is a diagonal matrix.

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$\mathbf{x}'(t) = A\mathbf{x}(t)$$

is given by the expression below, where $c_1, \dots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \dots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

- ► The differential system for the variable **x** is coupled, that is, *A* is not diagonal.
- ▶ We transform the system into a system for a variable \mathbf{y} such that the system for \mathbf{y} is decoupled, that is, $\mathbf{y}'(t) = D \mathbf{y}(t)$, where D is a diagonal matrix.
- ▶ We solve for $\mathbf{y}(t)$ and we transform back to $\mathbf{x}(t)$.

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$,

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \dots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \dots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$.

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \dots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \dots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t)$$

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \dots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \dots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\,\mathbf{x}(t) \quad \Leftrightarrow \quad \left(P^{-1}\mathbf{x}\right)' = \left(P^{-1}AP\right)\left(P^{-1}\mathbf{x}\right).$$

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \dots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \dots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\,\mathbf{x}(t) \quad \Leftrightarrow \quad \left(P^{-1}\mathbf{x}\right)' = \left(P^{-1}AP\right)\left(P^{-1}\mathbf{x}\right).$$

Introduce the new unknown $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$,

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \dots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \dots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\,\mathbf{x}(t) \quad \Leftrightarrow \quad \left(P^{-1}\mathbf{x}\right)' = \left(P^{-1}AP\right)\left(P^{-1}\mathbf{x}\right).$$

Introduce the new unknown $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$, then

$$\mathbf{y}'(t) = D\mathbf{y}(t)$$

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\,\mathbf{x}(t) \quad \Leftrightarrow \quad \left(P^{-1}\mathbf{x}\right)' = \left(P^{-1}AP\right)\left(P^{-1}\mathbf{x}\right).$$

Introduce the new unknown $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$, then

$$\mathbf{y}'(t) = D\,\mathbf{y}(t) \iff egin{cases} y_1'(t) = \lambda_1\,y_1(t), \ dots \ y_n'(t) = \lambda_n\,y_n(t), \end{cases}$$

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\,\mathbf{x}(t) \quad \Leftrightarrow \quad \left(P^{-1}\mathbf{x}\right)' = \left(P^{-1}AP\right)\left(P^{-1}\mathbf{x}\right).$$

Introduce the new unknown $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$, then

$$\mathbf{y}'(t) = D \mathbf{y}(t) \iff \begin{cases} y_1'(t) = \lambda_1 y_1(t), \\ \vdots & \Rightarrow \mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}.$$

Proof: Recall:
$$\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$$
, and $\mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$.

Proof: Recall:
$$\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$$
, and $\mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$.

Transform back to $\mathbf{x}(t)$,

Proof: Recall:
$$\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$$
, and $\mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$.

Transform back to $\mathbf{x}(t)$, that is,

$$\mathbf{x}(t) = P \mathbf{y}(t)$$

Proof: Recall:
$$\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$$
, and $\mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$.

Transform back to $\mathbf{x}(t)$, that is,

$$\mathbf{x}(t) = P \mathbf{y}(t) = \begin{bmatrix} \mathbf{v}_1, \cdots, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

Proof: Recall:
$$\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$$
, and $\mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$.

Transform back to $\mathbf{x}(t)$, that is,

$$\mathbf{x}(t) = P \mathbf{y}(t) = \begin{bmatrix} \mathbf{v}_1, \cdots, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

We conclude:
$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$$
.

Proof: Recall:
$$\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$$
, and $\mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$.

Transform back to $\mathbf{x}(t)$, that is,

$$\mathbf{x}(t) = P \mathbf{y}(t) = \begin{bmatrix} \mathbf{v}_1, \cdots, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

We conclude:
$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$$
.

Remark:

$$A \mathbf{v}_i = \lambda_i \mathbf{v}_i.$$

Proof: Recall:
$$\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$$
, and $\mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$.

Transform back to $\mathbf{x}(t)$, that is,

$$\mathbf{x}(t) = P \mathbf{y}(t) = \begin{bmatrix} \mathbf{v}_1, \cdots, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

We conclude:
$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$$
.

Remark:

- $ightharpoonup A \mathbf{v}_i = \lambda_i \mathbf{v}_i.$
- ► The eigenvalues and eigenvectors of A are crucial to solve the differential linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$.

Remark: Here is another argument useful to understand why the vector $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$ is solution of the linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$.

Remark: Here is another argument useful to understand why the vector $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$ is solution of the linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$. On the one hand, derivate \mathbf{x} ,

Remark: Here is another argument useful to understand why the vector $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$ is solution of the linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$. On the one hand, derivate \mathbf{x} ,

$$\mathbf{x}'(t) = c_1 \lambda_1 \, \mathbf{v}_1 \, e^{\lambda_1 t} + \dots + c_n \lambda_n \, \mathbf{v}_n \, e^{\lambda_n t}.$$

Remark: Here is another argument useful to understand why the vector $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$ is solution of the linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$. On the one hand, derivate \mathbf{x} ,

$$\mathbf{x}'(t) = c_1 \lambda_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \lambda_n \mathbf{v}_n e^{\lambda_n t}.$$

On the other hand, compute $A\mathbf{x}(t)$,

Remark: Here is another argument useful to understand why the vector $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$ is solution of the linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$. On the one hand, derivate \mathbf{x} ,

$$\mathbf{x}'(t) = c_1 \lambda_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \lambda_n \mathbf{v}_n e^{\lambda_n t}.$$

On the other hand, compute Ax(t),

$$A\mathbf{x}(t) = c_1(A\mathbf{v}_1)e^{\lambda_1 t} + \cdots + c_n(A\mathbf{v}_n)e^{\lambda_n t},$$

Remark: Here is another argument useful to understand why the vector $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$ is solution of the linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$. On the one hand, derivate \mathbf{x} ,

$$\mathbf{x}'(t) = c_1 \lambda_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \lambda_n \mathbf{v}_n e^{\lambda_n t}.$$

On the other hand, compute Ax(t),

$$A\mathbf{x}(t) = c_1(A\mathbf{v}_1)e^{\lambda_1 t} + \cdots + c_n(A\mathbf{v}_n)e^{\lambda_n t},$$

$$A\mathbf{x}(t) = c_1\lambda_1\mathbf{v}_1e^{\lambda_1t} + \cdots + c_n\lambda_n\mathbf{v}_ne^{\lambda_nt}.$$

Remark: Here is another argument useful to understand why the vector $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$ is solution of the linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$. On the one hand, derivate \mathbf{x} ,

$$\mathbf{x}'(t) = c_1 \lambda_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \lambda_n \mathbf{v}_n e^{\lambda_n t}.$$

On the other hand, compute Ax(t),

$$A\mathbf{x}(t) = c_1(A\mathbf{v}_1) e^{\lambda_1 t} + \dots + c_n(A\mathbf{v}_n) e^{\lambda_n t},$$

$$A\mathbf{x}(t) = c_1 \lambda_1 \mathbf{v}_1 e^{\lambda_1 t} + \dots + c_n \lambda_n \mathbf{v}_n e^{\lambda_n t}.$$

We conclude: $\mathbf{x}'(t) = A\mathbf{x}(t)$.

Remark: Here is another argument useful to understand why the vector $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$ is solution of the linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$. On the one hand, derivate \mathbf{x} ,

$$\mathbf{x}'(t) = c_1 \lambda_1 \, \mathbf{v}_1 \, e^{\lambda_1 t} + \dots + c_n \lambda_n \, \mathbf{v}_n \, e^{\lambda_n t}.$$

On the other hand, compute Ax(t),

$$A\mathbf{x}(t) = c_1(A\mathbf{v}_1) e^{\lambda_1 t} + \dots + c_n(A\mathbf{v}_n) e^{\lambda_n t},$$

 $A\mathbf{x}(t) = c_1\lambda_1 \mathbf{v}_1 e^{\lambda_1 t} + \dots + c_n\lambda_n \mathbf{v}_n e^{\lambda_n t}.$

We conclude: $\mathbf{x}'(t) = A\mathbf{x}(t)$.

Remark: Unlike the proof of the Theorem, this second argument does not show that $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$ are all possible solutions to the system.

Real, distinct eigenvalues (Sect. 7.5)

- ▶ Review: $n \times n$ linear differential systems.
- ▶ The case of diagonalizable matrices.
- **Examples:** 2×2 linear systems.
- ▶ Classification of 2×2 diagonalizable systems.
- ▶ Phase portraits for 2×2 systems.

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A.

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1 = 4, \quad \mathbf{v}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1=4, \quad \mathbf{v^{(1)}}=egin{bmatrix}1\\1\end{bmatrix}, \quad ext{and} \quad \lambda_2=-2, \quad \mathbf{v^{(2)}}=egin{bmatrix}-1\\1\end{bmatrix}.$$

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1=4, \quad \mathbf{v^{(1)}}=egin{bmatrix}1\\1\end{bmatrix}, \quad \text{and} \quad \lambda_2=-2, \quad \mathbf{v^{(2)}}=egin{bmatrix}-1\\1\end{bmatrix}.$$

Fundamental solutions are

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t},$$

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1=4, \quad \mathbf{v^{(1)}}=egin{bmatrix}1\\1\end{bmatrix}, \quad \text{and} \quad \lambda_2=-2, \quad \mathbf{v^{(2)}}=egin{bmatrix}-1\\1\end{bmatrix}.$$

Fundamental solutions are

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, \mathrm{e}^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \\ 1 \end{bmatrix} \, \mathrm{e}^{-2t}.$$

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1=4, \quad \mathbf{v^{(1)}}=egin{bmatrix}1\\1\end{bmatrix}, \quad \text{and} \quad \lambda_2=-2, \quad \mathbf{v^{(2)}}=egin{bmatrix}-1\\1\end{bmatrix}.$$

Fundamental solutions are

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \\ 1 \end{bmatrix} \, e^{-2t}.$$

The general solution is $\mathbf{x}(t) = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t)$,

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1=4, \quad \mathbf{v^{(1)}}=egin{bmatrix}1\\1\end{bmatrix}, \quad \text{and} \quad \lambda_2=-2, \quad \mathbf{v^{(2)}}=egin{bmatrix}-1\\1\end{bmatrix}.$$

Fundamental solutions are

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \\ 1 \end{bmatrix} \, e^{-2t}.$$

The general solution is $\mathbf{x}(t) = c_1 \mathbf{x}^{(1)}(t) + c_2 \mathbf{x}^{(2)}(t)$, that is,

$$\mathbf{x}(t) = c_1 egin{bmatrix} 1 \ 1 \end{bmatrix} e^{4t} + c_2 egin{bmatrix} -1 \ 1 \end{bmatrix} e^{-2t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Remark:

Re-writing the solution vector
$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$$
 in components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$,

Remark:

Re-writing the solution vector
$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$$
 in components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, then

$$x_1(t) = c_1 e^{4t} - c_2 e^{-2t}, \quad x_2(t) = c_1 e^{4t} + c_2 e^{-2t}.$$

Remark:

Re-writing the solution vector $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ in components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, then

$$x_1(t) = c_1 e^{4t} - c_2 e^{-2t}, \quad x_2(t) = c_1 e^{4t} + c_2 e^{-2t}.$$

Introducing the fundamental matrix $X(t) = \left[\mathbf{x}^{(1)}(t), \mathbf{x}^{(2)}(t)\right]$

Remark:

Re-writing the solution vector $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ in components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, then

$$x_1(t) = c_1 e^{4t} - c_2 e^{-2t}, \quad x_2(t) = c_1 e^{4t} + c_2 e^{-2t}.$$

Introducing the fundamental matrix $X(t) = [\mathbf{x}^{(1)}(t), \mathbf{x}^{(2)}(t)]$ and the vector \mathbf{c} ,

Remark:

Re-writing the solution vector $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ in components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, then

$$x_1(t) = c_1 e^{4t} - c_2 e^{-2t}, \quad x_2(t) = c_1 e^{4t} + c_2 e^{-2t}.$$

Introducing the fundamental matrix $X(t) = [\mathbf{x}^{(1)}(t), \mathbf{x}^{(2)}(t)]$ and the vector \mathbf{c} ,

$$X(t) = \begin{bmatrix} e^{4t} & -e^{-2t} \\ e^{4t} & e^{-2t} \end{bmatrix},$$

Remark:

Re-writing the solution vector $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ in components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, then

$$x_1(t) = c_1 e^{4t} - c_2 e^{-2t}, \quad x_2(t) = c_1 e^{4t} + c_2 e^{-2t}.$$

Introducing the fundamental matrix $X(t) = [\mathbf{x}^{(1)}(t), \mathbf{x}^{(2)}(t)]$ and the vector \mathbf{c} ,

$$X(t) = \begin{bmatrix} e^{4t} & -e^{-2t} \\ e^{4t} & e^{-2t} \end{bmatrix}, \qquad \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix},$$

Remark:

Re-writing the solution vector $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ in components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, then

$$x_1(t) = c_1 e^{4t} - c_2 e^{-2t}, \quad x_2(t) = c_1 e^{4t} + c_2 e^{-2t}.$$

Introducing the fundamental matrix $X(t) = [\mathbf{x}^{(1)}(t), \mathbf{x}^{(2)}(t)]$ and the vector \mathbf{c} ,

$$X(t) = \begin{bmatrix} e^{4t} & -e^{-2t} \\ e^{4t} & e^{-2t} \end{bmatrix}, \qquad \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix},$$

then the general solution above can be expressed as follows

$$\mathbf{x}(t) = X(t)\mathbf{c}$$

Remark:

Re-writing the solution vector $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ in components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, then

$$x_1(t) = c_1 e^{4t} - c_2 e^{-2t}, \quad x_2(t) = c_1 e^{4t} + c_2 e^{-2t}.$$

Introducing the fundamental matrix $X(t) = [\mathbf{x}^{(1)}(t), \mathbf{x}^{(2)}(t)]$ and the vector \mathbf{c} ,

$$X(t) = \begin{bmatrix} e^{4t} & -e^{-2t} \\ e^{4t} & e^{-2t} \end{bmatrix}, \qquad \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix},$$

then the general solution above can be expressed as follows

$$\mathbf{x}(t) = X(t)\mathbf{c} \quad \Leftrightarrow \quad \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} e^{4t} & -e^{-2t} \\ e^{4t} & e^{-2t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.$$

Example

Solve the IVP
$$\mathbf{x}' = A\mathbf{x}$$
, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Example

Solve the IVP
$$\mathbf{x}' = A\mathbf{x}$$
, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution:
$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$$
.

Example

Solve the IVP
$$\mathbf{x}' = A\mathbf{x}$$
, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Example

Solve the IVP
$$\mathbf{x}' = A\mathbf{x}$$
, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Example

Solve the IVP
$$\mathbf{x}' = A\mathbf{x}$$
, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Example

Solve the IVP
$$\mathbf{x}' = A\mathbf{x}$$
, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

Example

Solve the IVP
$$\mathbf{x}' = A\mathbf{x}$$
, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

Therefore,
$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
,

Example

Solve the IVP
$$\mathbf{x}' = A\mathbf{x}$$
, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. The initial condition is,

$$\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

Therefore,
$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, hence $\mathbf{x}(t) = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. \lhd

Real, distinct eigenvalues (Sect. 7.5)

- ▶ Review: $n \times n$ linear differential systems.
- ▶ The case of diagonalizable matrices.
- ► Examples: 2 × 2 linear systems.
- ► Classification of 2 × 2 diagonalizable systems.
- ▶ Phase portraits for 2×2 systems.

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

(a) Matrix A has two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so it has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions). (Section 7.5)

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) Matrix A has two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so it has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions). (Section 7.5)
- (b) Matrix A has two different, complex eigenvalues $\lambda_1 = \overline{\lambda}_2$, so it has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 . (Section 7.6)

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) Matrix A has two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so it has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions). (Section 7.5)
- (b) Matrix A has two different, complex eigenvalues $\lambda_1 = \overline{\lambda}_2$, so it has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 . (Section 7.6)
- (c-1) Matrix A has repeated, real eigenvalues, $\lambda_1 = \lambda_2 \in \mathbb{R}$ with two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 . (Section 7.8)

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) Matrix A has two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so it has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions). (Section 7.5)
- (b) Matrix A has two different, complex eigenvalues $\lambda_1 = \overline{\lambda}_2$, so it has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 . (Section 7.6)
- (c-1) Matrix A has repeated, real eigenvalues, $\lambda_1 = \lambda_2 \in \mathbb{R}$ with two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 . (Section 7.8)

Remark:

(c-2) We will also study in Section 7.8 how to obtain solutions to a 2×2 system $\mathbf{x}' = A\mathbf{x}$ in the case that A is not diagonalizable and A has only one eigen-direction.

Real, distinct eigenvalues (Sect. 7.5)

- ▶ Review: $n \times n$ linear differential systems.
- ▶ The case of diagonalizable matrices.
- ► Examples: 2 × 2 linear systems.
- ▶ Classification of 2×2 diagonalizable systems.
- ▶ Phase portraits for 2×2 systems.

Remark:

► There are two main types of graphs for solutions of 2 × 2 linear systems:

- ► There are two main types of graphs for solutions of 2 × 2 linear systems:
 - (i) The graphs of the vector components;

- ▶ There are two main types of graphs for solutions of 2×2 linear systems:
 - (i) The graphs of the vector components;
 - (ii) The phase portrait.

- ► There are two main types of graphs for solutions of 2 × 2 linear systems:
 - (i) The graphs of the vector components;
 - (ii) The phase portrait.
- Case (i): Express the solution in vector components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, and graph x_1 and x_2 as functions of t.

- ► There are two main types of graphs for solutions of 2 × 2 linear systems:
 - (i) The graphs of the vector components;
 - (ii) The phase portrait.
- Case (i): Express the solution in vector components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, and graph x_1 and x_2 as functions of t. (Recall the solution in the IVP of the previous Example:

- ► There are two main types of graphs for solutions of 2 × 2 linear systems:
 - (i) The graphs of the vector components;
 - (ii) The phase portrait.
- ► Case (i): Express the solution in vector components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, and graph x_1 and x_2 as functions of t. (Recall the solution in the IVP of the previous Example: $x_1(t) = 3 e^{4t} e^{-2t}$ and $x_2(t) = 3 e^{4t} + e^{-2t}$.)

Remark:

- ► There are two main types of graphs for solutions of 2 × 2 linear systems:
 - (i) The graphs of the vector components;
 - (ii) The phase portrait.
- ► Case (i): Express the solution in vector components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, and graph x_1 and x_2 as functions of t. (Recall the solution in the IVP of the previous Example: $x_1(t) = 3 e^{4t} e^{-2t}$ and $x_2(t) = 3 e^{4t} + e^{-2t}$.)
- Case (ii): Express the solution as a vector-valued function,

$$\mathbf{x}(t) = c_1 \, \mathbf{v}_1 \, e^{\lambda_1 t} + c_2 \, \mathbf{v}_2 \, e^{\lambda_2 t},$$

and plot the vector $\mathbf{x}(t)$ for different values of t.

Remark:

- ► There are two main types of graphs for solutions of 2 × 2 linear systems:
 - (i) The graphs of the vector components;
 - (ii) The phase portrait.
- ► Case (i): Express the solution in vector components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, and graph x_1 and x_2 as functions of t. (Recall the solution in the IVP of the previous Example: $x_1(t) = 3 e^{4t} e^{-2t}$ and $x_2(t) = 3 e^{4t} + e^{-2t}$.)
- ► Case (ii): Express the solution as a vector-valued function,

$$\mathbf{x}(t) = c_1 \, \mathbf{v}_1 \, e^{\lambda_1 t} + c_2 \, \mathbf{v}_2 \, e^{\lambda_2 t},$$

and plot the vector $\mathbf{x}(t)$ for different values of t.

► Case (ii) is called a *phase portrait*.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Solution:

We start plotting the vectors

$$\mathbf{v}^1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

$$\mathbf{v}^2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \\ 1 \end{bmatrix} \, e^{-2t}.$$

Solution:

We start plotting the vectors

$$\mathbf{v}^1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

$$\mathbf{v}^2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\boldsymbol{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \; e^{4t}, \quad \boldsymbol{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \; e^{-2t}.$$

Solution:

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, e^{4t},$$

$$\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, \mathrm{e}^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \\ 1 \end{bmatrix} \, \mathrm{e}^{-2t}.$$

Solution:

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, e^{4t},$$

$$\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\boldsymbol{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \, e^{4t}, \quad \boldsymbol{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \, e^{-2t}.$$

Solution:

$$-\mathbf{x}^{(1)} = -egin{bmatrix} 1 \ 1 \end{bmatrix} \, e^{4t},$$

$$-\mathbf{x}^{(2)} = -egin{bmatrix} -1 \ 1 \end{bmatrix} e^{-2t}.$$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, \mathrm{e}^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \\ 1 \end{bmatrix} \, \mathrm{e}^{-2t}.$$

Solution:

$$-\mathbf{x}^{(1)} = -\begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t},$$

$$-\mathbf{x}^{(2)} = -egin{bmatrix} -1 \ 1 \end{bmatrix} e^{-2t}.$$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \\ 1 \end{bmatrix} \, e^{-2t}.$$

Solution:

$$\mathbf{x}^{(1)}, -\mathbf{x}^{(1)},$$

$$\mathbf{x}^{(2)}, -\mathbf{x}^{(2)}.$$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \\ 1 \end{bmatrix} \, e^{-2t}.$$

Solution:

$$\mathbf{x}^{(1)}, -\mathbf{x}^{(1)},$$

$$x^{(2)}, -x^{(2)}.$$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \\ 1 \end{bmatrix} \, e^{-2t}.$$

Solution:

$$\mathbf{x}^{(1)}, -\mathbf{x}^{(1)}, \ \mathbf{x}^{(2)}, -\mathbf{x}^{(2)},$$

and
$$\mathbf{x}^{(1)} + \mathbf{x}^{(2)}$$
,

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \\ 1 \end{bmatrix} \, e^{-2t}.$$

Solution:

$$\mathbf{x}^{(1)}, \ -\mathbf{x}^{(1)}, \ \mathbf{x}^{(2)}, \ -\mathbf{x}^{(2)},$$
 and $\mathbf{x}^{(1)}+\mathbf{x}^{(2)},$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, \mathrm{e}^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \\ 1 \end{bmatrix} \, \mathrm{e}^{-2t}.$$

Solution:

We now plot the eight functions

$$\mathbf{x}^{(1)}, -\mathbf{x}^{(1)}, \ \mathbf{x}^{(2)}, -\mathbf{x}^{(2)},$$

$$\mathbf{x}^{(1)} + \mathbf{x}^{(2)}, \quad -\mathbf{x}^{(1)} + \mathbf{x}^{(2)},$$

$$\mathbf{x}^{(1)} - \mathbf{x}^{(2)}, \quad -\mathbf{x}^{(1)} - \mathbf{x}^{(2)}.$$

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t}, \quad \mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$

Solution:

We now plot the eight functions

$$\mathbf{x}^{(1)}, -\mathbf{x}^{(1)}, \ \mathbf{x}^{(2)}, -\mathbf{x}^{(2)},$$

$$\mathbf{x}^{(1)} + \mathbf{x}^{(2)}, \quad -\mathbf{x}^{(1)} + \mathbf{x}^{(2)},$$

$$\mathbf{x}^{(1)} - \mathbf{x}^{(2)}, \quad -\mathbf{x}^{(1)} - \mathbf{x}^{(2)}.$$

Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions).

Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions).

Given a solution $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$, to $\mathbf{x}'(t) = A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_1 and c_2 .

Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions).

Given a solution $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$, to $\mathbf{x}'(t) = A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_1 and c_2 .

The plots are different depending on the eigenvalues signs.

Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions).

Given a solution $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$, to $\mathbf{x}'(t) = A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_1 and c_2 .

The plots are different depending on the eigenvalues signs. We have the following three sub-cases:

Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions).

Given a solution $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$, to $\mathbf{x}'(t) = A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_1 and c_2 .

The plots are different depending on the eigenvalues signs. We have the following three sub-cases:

(i) $0 < \lambda_2 < \lambda_1$, both positive;

Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions).

Given a solution $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$, to $\mathbf{x}'(t) = A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_1 and c_2 .

The plots are different depending on the eigenvalues signs. We have the following three sub-cases:

- (i) $0 < \lambda_2 < \lambda_1$, both positive;
- (ii) $\lambda_2 < 0 < \lambda_1$, one positive the other negative;

Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions).

Given a solution $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$, to $\mathbf{x}'(t) = A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_1 and c_2 .

The plots are different depending on the eigenvalues signs. We have the following three sub-cases:

- (i) $0 < \lambda_2 < \lambda_1$, both positive;
- (ii) $\lambda_2 < 0 < \lambda_1$, one positive the other negative;
- (iii) $\lambda_2 < \lambda_1 < 0$, both negative.

Phase portrait: Case (a), two different, real eigenvalues $\lambda_1 \neq \lambda_2$, sub-case $0 < \lambda_2 < \lambda_1$, both eigenvalue positive.

Phase portrait: Case (a), two different, real eigenvalues $\lambda_1 \neq \lambda_2$, sub-case $\lambda_2 < 0 < \lambda_1$, one eigenvalue positive the other negative.

Phase portrait: Case (a), two different, real eigenvalues $\lambda_1 \neq \lambda_2$, sub-case $\lambda_2 < \lambda_1 < 0$, both eigenvalues negative.

