
Review of Linear Algebra (Sect. 7.3)

I Eigenvalues, eigenvectors of a matrix.

I Computing eigenvalues and eigenvectors.

I Diagonalizable matrices.

I The case of Hermitian matrices.



Eigenvalues, eigenvectors of a matrix

Definition
A number λ and a non-zero n-vector v are respectively called an
eigenvalue and eigenvector of an n × n matrix A iff the following
equation holds,

Av = λv .

Example

Verify that the pair λ1 = 4, v1 =

[
1
1

]
and λ2 = −2, v2 =

[
−1
1

]
are

eigenvalue and eigenvector pairs of matrix A =

[
1 3
3 1

]
.

Solution: Av1 =

[
1 3
3 1

] [
1
1

]
=

[
4
4

]
= 4

[
1
1

]
= λ1v1.

Av2 =

[
1 3
3 1

] [
−1
1

]
=

[
2
−2

]
= −2

[
−1
1

]
= λ2v2. C
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Eigenvalues, eigenvectors of a matrix

Remarks:

I If we interpret an n × n matrix A as a function A : Rn → Rn,
then the eigenvector v determines a particular direction on Rn

where the action of A is simple:

Av is proportional to v.

I Matrices usually change the direction of the vector, like[
1 3
3 1

] [
1
2

]
=

[
7
5

]
.

I This is not the case for eigenvectors, like[
1 3
3 1

] [
1
1

]
=

[
4
4

]
.
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Eigenvalues, eigenvectors of a matrix

Example

Find the eigenvalues and eigenvectors of the matrix A =

[
0 1
1 0

]
.

Solution:

The function A : R2 → R2 is a
reflection along x1 = x2 axis.[

0 1
1 0

] [
x1

x2

]
=

[
x2

x1

]
2

Ax

x

x

Av  = −v

Av  = v
v

2 2

2

x1

2

11

x  = x1

The line x1 = x2 is invariant under A. Hence,

v1 =

[
1
1

]
⇒

[
0 1
1 0

] [
1
1

]
=

[
1
1

]
⇒ λ1 = 1.

An eigenvalue eigenvector pair is: λ1 = 1, v1 =

[
1
1

]
.
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A second eigenvector eigenvalue pair is:

v2 =

[
−1
1

]
⇒

[
0 1
1 0

] [
−1
1

]
=

[
1
−1

]
= (−1)

[
−1
1

]
⇒ λ2 = −1.

A second eigenvalue eigenvector pair: λ2 = −1, v2 =

[
−1
1

]
. C
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Eigenvalues, eigenvectors of a matrix

Remark: Not every n × n matrix has real eigenvalues.

Example

Fix θ ∈ (0, π) and define A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Show that A has no real eigenvalues.

Solution: Matrix A : R2 → R2 is a

rotation by θ counterclockwise.
There is no direction left invariant by
the function A.

2

0

Ax

x

x1

x

We conclude: Matrix A has no eigenvalues eigenvector pairs. C

Remark:
Matrix A has complex-values eigenvalues and eigenvectors.
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Review of Linear Algebra (Sect. 7.3)

I Eigenvalues, eigenvectors of a matrix.

I Computing eigenvalues and eigenvectors.

I Diagonalizable matrices.

I The case of Hermitian matrices.



Computing eigenvalues and eigenvectors.

Problem:
Given an n × n matrix A, find, if possible, λ and v 6= 0 solution of

Av = λ v.

Remark:
This is more complicated than solving a linear system Av = b,
since in our case we do not know the source vector b = λv.

Solution:

(a) First solve for λ.

(b) Having λ, then solve for v.
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Computing eigenvalues and eigenvectors.

Theorem (Eigenvalues-eigenvectors)

(a) The number λ is an eigenvalue of an n × n matrix A iff

det(A− λI ) = 0.

(b) Given an eigenvalue λ of matrix A, the corresponding
eigenvectors v are the non-zero solutions to the homogeneous
linear system

(A− λI )v = 0.

Notation:
p(λ) = det(A− λI ) is called the characteristic polynomial.
If A is n × n, then p is degree n.

Remark: An eigenvalue is a root of the characteristic polynomial.
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Computing eigenvalues and eigenvectors.

Proof:
Find λ such that for a non-zero vector v holds,

Av = λv

⇔ (A− λI )v = 0.

Recall, v 6= 0.

This last condition implies that matrix (A− λI ) is not invertible.

(Proof: If (A− λI ) invertible, then (A− λI )−1(A− λI )v = 0,
that is, v = 0.)

Since (A− λI ) is not invertible, then det(A− λI ) = 0.

Once λ is known, the original eigenvalue-eigenvector equation
Av = λv is equivalent to (A− λI )v = 0.
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Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues λ and eigenvectors v of A =

[
1 3
3 1

]
.

Solution:
The eigenvalues are the roots of the characteristic polynomial.

A−λI =

[
1 3
3 1

]
−λ

[
1 0
0 1

]
=

[
1 3
3 1

]
−

[
λ 0
0 λ

]
=

[
(1− λ) 3

3 (1− λ)

]
The characteristic polynomial is

p(λ) = det(A− λI ) =

∣∣∣∣(1− λ) 3
3 (1− λ)

∣∣∣∣ = (λ− 1)2 − 9

The roots are λ+ = 4 and λ− = −2.
Compute the eigenvector for λ+ = 4. Solve (A− 4I )v+ = 0.

A− 4I =

[
1− 4 3

3 1− 4

]
=

[
−3 3
3 −3

]
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λ 0
0 λ

]
=

[
(1− λ) 3

3 (1− λ)

]
The characteristic polynomial is

p(λ) = det(A− λI ) =

∣∣∣∣(1− λ) 3
3 (1− λ)

∣∣∣∣ = (λ− 1)2 − 9

The roots are λ+ = 4 and λ− = −2.

Compute the eigenvector for λ+ = 4. Solve (A− 4I )v+ = 0.

A− 4I =

[
1− 4 3

3 1− 4

]
=

[
−3 3
3 −3

]
.
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[
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0 0
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⇒
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v+
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2 ,

v+
2 free.

Al solutions to the equation above are then given by
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2
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2
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=

[
1
1

]
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2 ⇒ v+ =

[
1
1

]
,

The first eigenvalue eigenvector pair is λ+ = 4, v+ =

[
1
1
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Review of Linear Algebra (Sect. 7.3)

I Eigenvalues, eigenvectors of a matrix.

I Computing eigenvalues and eigenvectors.

I Diagonalizable matrices.

I The case of Hermitian matrices.



Diagonalizable matrices.

Definition

An n × n matrix D is called diagonal iff D =

d11 · · · 0
...

. . .
...

0 · · · dnn

.

Definition
An n × n matrix A is called diagonalizable iff there exists an
invertible matrix P and a diagonal matrix D such that

A = PDP−1.

Remark:

I Systems of linear differential equations are simple to solve in
the case that the coefficient matrix A is diagonalizable.

I In such case, it is simple to decouple the differential equations.

I One solves the decoupled equations, and then transforms back
to the original unknowns.
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Diagonalizable matrices.

Theorem (Diagonalizability and eigenvectors)

An n × n matrix A is diagonalizable iff matrix A has a linearly
independent set of n eigenvectors. Furthermore,

A = PDP−1, P = [v1, · · · , vn], D =

λ1 · · · 0
...

. . .
...

0 · · · λn

 ,

where λi , vi , for i = 1, · · · , n, are eigenvalue-eigenvector pairs of A.

Remark: It is not simple to know whether an n× n matrix A has a
linearly independent set of n eigenvectors. One simple case is given
in the following result.

Theorem (n different eigenvalues)

If an n × n matrix A has n different eigenvalues, then A is
diagonalizable.
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Diagonalizable matrices.

Example

Show that A =

[
1 3
3 1

]
is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

λ1 = 4, v1 =

[
1
1

]
and λ2 = −2, v2 =

[
−1
1

]
.

Introduce P and D as follows,

P =

[
1 −1
1 1

]
⇒ P−1 =

1

2

[
1 1
−1 1

]
, D =

[
4 0
0 −2

]
.

Then

PDP−1 =

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
.



Diagonalizable matrices.

Example

Show that A =

[
1 3
3 1

]
is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

λ1 = 4, v1 =

[
1
1

]
and λ2 = −2, v2 =

[
−1
1

]
.

Introduce P and D as follows,

P =

[
1 −1
1 1

]
⇒ P−1 =

1

2

[
1 1
−1 1

]
, D =

[
4 0
0 −2

]
.

Then

PDP−1 =

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
.



Diagonalizable matrices.

Example

Show that A =

[
1 3
3 1

]
is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

λ1 = 4, v1 =

[
1
1

]
and λ2 = −2, v2 =

[
−1
1

]
.

Introduce P and D as follows,

P =

[
1 −1
1 1

]
⇒ P−1 =

1

2

[
1 1
−1 1

]
, D =

[
4 0
0 −2

]
.

Then

PDP−1 =

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
.



Diagonalizable matrices.

Example

Show that A =

[
1 3
3 1

]
is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

λ1 = 4, v1 =

[
1
1

]
and λ2 = −2, v2 =

[
−1
1

]
.

Introduce P and D as follows,

P =

[
1 −1
1 1

]

⇒ P−1 =
1

2

[
1 1
−1 1

]
, D =

[
4 0
0 −2

]
.

Then

PDP−1 =

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
.



Diagonalizable matrices.

Example

Show that A =

[
1 3
3 1

]
is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

λ1 = 4, v1 =

[
1
1

]
and λ2 = −2, v2 =

[
−1
1

]
.

Introduce P and D as follows,

P =

[
1 −1
1 1

]
⇒ P−1 =

1

2

[
1 1
−1 1

]
,

D =

[
4 0
0 −2

]
.

Then

PDP−1 =

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
.



Diagonalizable matrices.

Example

Show that A =

[
1 3
3 1

]
is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

λ1 = 4, v1 =

[
1
1

]
and λ2 = −2, v2 =

[
−1
1

]
.

Introduce P and D as follows,

P =

[
1 −1
1 1

]
⇒ P−1 =

1

2

[
1 1
−1 1

]
, D =

[
4 0
0 −2

]
.

Then

PDP−1 =

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
.



Diagonalizable matrices.

Example

Show that A =

[
1 3
3 1

]
is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

λ1 = 4, v1 =

[
1
1

]
and λ2 = −2, v2 =

[
−1
1

]
.

Introduce P and D as follows,

P =

[
1 −1
1 1

]
⇒ P−1 =

1

2

[
1 1
−1 1

]
, D =

[
4 0
0 −2

]
.

Then

PDP−1

=

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
.



Diagonalizable matrices.

Example

Show that A =

[
1 3
3 1

]
is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

λ1 = 4, v1 =

[
1
1

]
and λ2 = −2, v2 =

[
−1
1

]
.

Introduce P and D as follows,

P =

[
1 −1
1 1

]
⇒ P−1 =

1

2

[
1 1
−1 1

]
, D =

[
4 0
0 −2

]
.

Then

PDP−1 =

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
.



Diagonalizable matrices.

Example

Show that A =

[
1 3
3 1

]
is diagonalizable.

Solution: Recall:

PDP−1 =

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
.

PDP−1 =

[
4 2
4 −2

]
1

2

[
1 1
−1 1

]
=

[
2 1
2 −1

] [
1 1
−1 1

]
We conclude,

PDP−1 =

[
1 3
3 1

]
= A,

that is, A is diagonalizable. C



Diagonalizable matrices.

Example

Show that A =

[
1 3
3 1

]
is diagonalizable.

Solution: Recall:

PDP−1 =

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
.

PDP−1 =

[
4 2
4 −2

]
1

2

[
1 1
−1 1

]

=

[
2 1
2 −1

] [
1 1
−1 1

]
We conclude,

PDP−1 =

[
1 3
3 1

]
= A,

that is, A is diagonalizable. C



Diagonalizable matrices.

Example

Show that A =

[
1 3
3 1

]
is diagonalizable.

Solution: Recall:

PDP−1 =

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
.

PDP−1 =

[
4 2
4 −2

]
1

2

[
1 1
−1 1

]
=

[
2 1
2 −1

] [
1 1
−1 1

]

We conclude,

PDP−1 =

[
1 3
3 1

]
= A,

that is, A is diagonalizable. C



Diagonalizable matrices.

Example

Show that A =

[
1 3
3 1

]
is diagonalizable.

Solution: Recall:

PDP−1 =

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
.

PDP−1 =

[
4 2
4 −2

]
1

2

[
1 1
−1 1

]
=

[
2 1
2 −1

] [
1 1
−1 1

]
We conclude,

PDP−1 =

[
1 3
3 1

]

= A,

that is, A is diagonalizable. C



Diagonalizable matrices.

Example

Show that A =

[
1 3
3 1

]
is diagonalizable.

Solution: Recall:

PDP−1 =

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
.

PDP−1 =

[
4 2
4 −2

]
1

2

[
1 1
−1 1

]
=

[
2 1
2 −1

] [
1 1
−1 1

]
We conclude,

PDP−1 =

[
1 3
3 1

]
= A,

that is, A is diagonalizable. C



Diagonalizable matrices.

Example

Show that A =

[
1 3
3 1

]
is diagonalizable.

Solution: Recall:

PDP−1 =

[
1 −1
1 1

] [
4 0
0 −2

]
1

2

[
1 1
−1 1

]
.

PDP−1 =

[
4 2
4 −2

]
1

2

[
1 1
−1 1

]
=

[
2 1
2 −1

] [
1 1
−1 1

]
We conclude,

PDP−1 =

[
1 3
3 1

]
= A,

that is, A is diagonalizable. C



Review of Linear Algebra (Sect. 7.3)

I Eigenvalues, eigenvectors of a matrix.

I Computing eigenvalues and eigenvectors.

I Diagonalizable matrices.

I The case of Hermitian matrices.



The case of Hermitian matrices.

Definition
An n × n matrix A is called Hermitian iff A = A∗.
An n × n matrix A is called symmetric iff A = AT .

Theorem
Every Hermitian matrix is diagonalizable.

Remark: A real-valued Hermitian matrix A is symmetric, since

A = A∗ = A
T

= AT ⇒ A = AT

Example

A =

1 2 3
2 8 7
3 7 11

 is symmetric, B =

1 −i 1
i 0 −1
1 −1 1

 is Hermitian.
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Properties of differential linear systems (Sect. 7.4)

I Review: n × n linear differential systems.

I Fundamental solutions to homogeneous systems.

I Existence and uniqueness of solutions to IVP.

I The Wronskian of n solutions.



Review: n × n linear differential systems.
Definition
An n × n linear differential system is a the following: Given an
n× n matrix-valued function A, and an n-vector-valued function b,
find an n-vector-valued function x solution of

x′(t) = A(t) x(t) + b(t).

The system above is called homogeneous iff holds b = 0.

Recall:

A(t) =

a11(t) · · · a1n(t)
...

...
an1(t) · · · ann(t)

 , b(t) =

b1(t)
...

bn(t)

 , x(t) =

x1(t)
...

xn(t)

 .

x′(t) = A(t) x(t) + b(t) ⇔

x ′
1 = a11(t) x1 + · · ·+ a1n(t) xn + b1(t)

...

x ′
n = an1(t) x1 + · · ·+ ann(t) xn + bn(t).
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Review: n × n linear differential systems.

Example

Find the explicit expression for the linear system x′ = Ax + b in the
case that

A =

[
1 3
3 1

]
, b(t) =

[
et

2e3t

]
, x =

[
x1

x2

]
.

Solution: The 2× 2 linear system is given by[
x ′1
x ′2

]
=

[
1 3
3 1

] [
x1

x2

]
+

[
et

2e3t

]
.

That is,
x ′1(t) = x1(t) + 3x2(t) + et ,

x ′2(t) = 3x1(t) + x2(t) + 2e3t .

C
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Review: n × n linear differential systems.

Remark: Derivatives of vector-valued functions are computed
component-wise.

x′(t) =

x1(t)
...

xn(t)


′

=

x ′1(t)
...

x ′n(t)

 ⇒

 e2t

sin(t)
cos(t)

′

=

 2e2t

cos(t)
− sin(t)

 .

A′(t) =

a11(t) · · · a1n(t)
...

...
an1(t) · · · ann(t)


′

=

a′11(t) · · · a′1n(t)
...

...
a′n1(t) · · · a′nn(t)

 ,

Definition
An n × n matrix-valued function with values A(t) = [aij(t)] is
called continuous iff every coefficient aij is a continuous function.
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Properties of differential linear systems (Sect. 7.4)

I Review: n × n linear differential systems.

I Fundamental solutions to homogeneous systems.

I Existence and uniqueness of solutions to IVP.

I The Wronskian of n solutions.



Fundamental solutions to homogeneous systems.

Definition
A linearly independent set of solutions {x(1)(t), · · · , x(n)(t)} of the
n × n homogeneous linear differential system

x′ = A(t) x (1)

is called a fundamental set of solutions, and the function

x(t) = c1x
(1)(t) + · · ·+ cnx

(n)(t),

is called the general solution of Eq. (1), where c1, · · · , cn are
arbitrary constants. The n × n matrix-valued function

X (t) =
[
x(1)(t), · · · , x(n)(t)

]
is called a fundamental matrix of the Eq. (1), and the function

w(t) = det
(
X (t)

)
is called the Wronskian of the fundamental solutions.



Fundamental solutions to homogeneous systems.

Example

Show that
{
x(1) =

[
2 e2t

e2t

]
, x(2) =

[
e−t

2 e−t

]}
is a fundamental set

for the linear system x′(t) = A x(t), where A =

[
3 −2
2 −2

]
.

Solution: First we verify the x(1) and x(2) are solutions.

x(1)′(t) =

[
2 e2t

e2t

]′
=

[
4 e2t

2 e2t

]
⇒ x(1)′(t) = 2

[
2
1

]
e2t .

A x(1)(t) =

[
3 −2
2 −2

] [
2
1

]
e2t =

[
6− 2
4− 2

]
e2t = 2

[
2
1

]
e2t

We conclude; x(1)′(t) = A x(1)(t).
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Properties of differential linear systems (Sect. 7.4)

I Review: n × n linear differential systems.

I Fundamental solutions to homogeneous systems.

I Existence and uniqueness of solutions to IVP.

I The Wronskian of n solutions.



Existence and uniqueness of solutions to IVP.

Theorem (Existence and uniqueness)

If the n × n matrix-valued function A and the n-vector b are
continuous on [t0, t1] ⊂ R, then the linear system

x′(t) = A(t) x + b(t) (2)

always has a fundamental set of solutions{
x(1)(t), · · · , x(n)(t)

}
.

Furthermore, the initial value problem given by Eq. (2) together
with the initial condition x(0) = x0 has a unique solution.

Remarks:

I The initial value problem contains n initial conditions.

I We will study how to obtain such solutions in the case of
constant coefficients systems, A(t) = A0.



Existence and uniqueness of solutions to IVP.

Theorem (Existence and uniqueness)
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Existence and uniqueness of solutions to IVP.

Example

Find the solution to the IVP

x′(t) = A x(t), A =

[
3 −2
2 −2

]
, x(0) =

[
1
5

]
.

Solution: We need to find a fundamental set of solutions.
From the previous Example: A fundamental set is{

x(1) =

[
2
1

]
e2t , x(2) =

[
1
2

]
e−t

}
.

Then, the general solution is

x(t) = c1

[
2
1

]
e2t + c2

[
1
2

]
e−t ⇒ x(t) =

[
2 e2t e−t

e2t 2 e−t

] [
c1

c2

]
.

That is x(t) = X (t) c. The initial condition: x(0) = X (0) c.
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.
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2 1
1 2
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=
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=
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Existence and uniqueness of solutions to IVP.

Remarks:

(a) Next class we learn how to obtain solutions to x′ = A x with A
constant.

(b) The eigenvalues and eigenvectors of A play a crucial role to
find such solutions.

(c) For example: x′ = A x, with A =

[
3 −2
2 −2

]
.

The general solution is x(t) = c1

[
2
1

]
e2t + c2

[
1
2

]
e−t .

The eigenvalue eigenvector pairs for A are:

λ1 = 2, v1 =

[
2
1

]
, and λ2 = −1, v2 =

[
1
2

]
.

That is, x(t) = c1 v1 eλ1t + c2 v2 eλ2t .

(d) Next class we generalize the result of this example.
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Properties of differential linear systems (Sect. 7.4)

I Review: n × n linear differential systems.

I Fundamental solutions to homogeneous systems.

I Existence and uniqueness of solutions to IVP.

I The Wronskian of n solutions.



The Wronskian of n solutions.

Theorem (Generalization of Abel result)

If A is an n × n continuous matrix-valued function, and x(i), with
i = 1, · · · , n, are arbitrary solutions of the differential equation
x′ = A(t)x, then the Wronskian

w(t) = det
(
X (t)

)
, X (t) =

[
x(1)(t), · · · , x(n)(t)

]
satisfies the equation

w(t) = w(t0) eα(t), α(t) =

∫ t

t0

trA(τ) dτ.

where tr (A)(t) = a11(t) + · · ·+ ann(t).

Remark: If the Wronskian w(t2) 6= 0 at a single point t2 ∈ [t0, t1],
then w(t) 6= 0 for all t ∈ [t0, t1].
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The Wronskian of n solutions.

Example

Verify the generalized Abel Theorem for a fundamental set of
solutions to

x = A x, A =

[
3 −2
2 −2

]
.

Solution:

Fundamental solutions:
{[

2
1

]
e2t ,

[
1
2

]
e−t

}
. Their Wronskian is

w(t) =

∣∣∣∣2 e2t e−t

e2t 2 e−t

∣∣∣∣ = 4e2t e−t − e2t e−t = 4 et − et ,

that is, w(t) = 3 et . Notice: w(0) = 3 and tr (A) = 3− 2 = 1.
Therefore,

w(t) = w(0) etr (A) t . C
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Real, distinct eigenvalues (Sect. 7.5)

I Review: n × n linear differential systems.

I The case of diagonalizable matrices.

I Examples: 2× 2 linear systems.

I Classification of 2× 2 diagonalizable systems.

I Phase portraits for 2× 2 systems.



Review: n × n linear differential systems.

Recall:

I Given an n × n matrix A(t), n-vector b(t), find x(t) solution

x′(t) = A(t) x(t) + b(t).

I The system is homogeneous iff b = 0, that is,

x′(t) = A(t) x(t).

I The system has constant coefficients iff matrix A does not
depend on t, that is,

x′(t) = A x(t) + b(t).

I We study homogeneous, constant coefficient systems, that is,

x′(t) = A x(t).
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Review: n × n linear differential systems.

Recall:

I Given continuous functions A, b on (t1, t2) ⊂ R, a constant
t0 ∈ (t1, t2) and a vector x0, there exists a unique function x
solution of the IVP

x′(t) = A(t) x(t) + b(t), x(t0) = x0.

I Today we learn to find such solution in the case of
homogeneous, constant coefficients, n × n linear systems,

x′(t) = A x(t).
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Real, distinct eigenvalues (Sect. 7.5)

I Review: n × n linear differential systems.

I The case of diagonalizable matrices.

I Examples: 2× 2 linear systems.

I Classification of 2× 2 diagonalizable systems.

I Phase portraits for 2× 2 systems.



The case of diagonalizable matrices.
Theorem (Diagonalizable matrix)

If n × n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1, · · · , vn} and corresponding eigenvalues
{λ1, · · · , λn}, then the general solution x to the homogeneous,
constant coefficients, linear system

x′(t) = A x(t)

is given by the expression below, where c1, · · · , cn ∈ R,

x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt .

Remark:

I The differential system for the variable x is coupled, that is, A
is not diagonal.

I We transform the system into a system for a variable y such
that the system for y is decoupled, that is, y′(t) = D y(t),
where D is a diagonal matrix.

I We solve for y(t) and we transform back to x(t).
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The case of diagonalizable matrices.

Proof: Since A is diagonalizable, we know that A = PDP−1,

with

P =
[
v1, · · · , vn

]
, D = diag

[
λ1, · · · , λn

]
.

Equivalently, P−1AP = D. Multiply x′ = A x by P−1 on the left

P−1x′(t) = P−1A x(t) ⇔
(
P−1x

)′
=

(
P−1AP

) (
P−1x

)
.

Introduce the new unknown y(t) = P−1x(t), then

y′(t) = D y(t) ⇔


y ′1(t) = λ1 y1(t),

...

y ′n(t) = λn yn(t),

⇒ y(t) =

c1 eλ1t

...
cn eλnt
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.

Transform back to x(t), that is,

x(t) = P y(t) =
[
v1, · · · , vn

] c1 eλ1t

...
cn eλnt


We conclude: x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt .

Remark:

I A vi = λivi .

I The eigenvalues and eigenvectors of A are crucial to solve the
differential linear system x′(t) = A x(t).
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The case of diagonalizable matrices.

Remark: Here is another argument useful to understand why the
vector x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt is solution of the linear
system x′(t) = A x(t).

On the one hand, derivate x,

x′(t) = c1λ1 v1 eλ1t + · · ·+ cnλn vn eλnt .

On the other hand, compute A x(t),

A x(t) = c1(A v1) eλ1t + · · ·+ cn(A vn) eλnt ,

A x(t) = c1λ1 v1 eλ1t + · · ·+ cnλn vn eλnt .

We conclude: x′(t) = A x(t).

Remark: Unlike the proof of the Theorem, this second argument
does not show that x(t) = c1v1 eλ1t + · · ·+ cnvn eλnt are all
possible solutions to the system.
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I Review: n × n linear differential systems.
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I Phase portraits for 2× 2 systems.



Examples: 2× 2 linear systems.

Example

Find the general solution to x′ = Ax, with A =

[
1 3
3 1

]
.

Solution: Find eigenvalues and eigenvectors of A. We found that:

λ1 = 4, v(1) =

[
1
1

]
, and λ2 = −2, v(2) =

[
−1
1

]
.

Fundamental solutions are

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

The general solution is x(t) = c1 x(1)(t) + c2 x(2)(t), that is,

x(t) = c1

[
1
1

]
e4t + c2

[
−1
1

]
e−2t , c1, c2 ∈ R. C
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Real, distinct eigenvalues (Sect. 7.5)

I Review: n × n linear differential systems.

I The case of diagonalizable matrices.

I Examples: 2× 2 linear systems.

I Classification of 2× 2 diagonalizable systems.

I Phase portraits for 2× 2 systems.



Classification of 2× 2 diagonalizable systems.

Remark:
Diagonalizable 2× 2 matrices A with real coefficients are classified
according to their eigenvalues.

(a) Matrix A has two different, real eigenvalues λ1 6= λ2, so it has
two non-proportional eigenvectors v1, v2 (eigen-directions).
(Section 7.5)

(b) Matrix A has two different, complex eigenvalues λ1 = λ2, so it
has two non-proportional eigenvectors v1, v2. (Section 7.6)

(c-1) Matrix A has repeated, real eigenvalues, λ1 = λ2 ∈ R with two
non-proportional eigenvectors v1, v2. (Section 7.8)

Remark:

(c-2) We will also study in Section 7.8 how to obtain solutions to a
2× 2 system x′ = A x in the case that A is not diagonalizable
and A has only one eigen-direction.
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Phase portraits for 2× 2 systems.
Remark:

I There are two main types of graphs for solutions of 2× 2
linear systems:

(i) The graphs of the vector components;
(ii) The phase portrait.

I Case (i): Express the solution in vector components

x(t) =

[
x1(t)
x2(t)

]
, and graph x1 and x2 as functions of t.

(Recall the solution in the IVP of the previous Example:
x1(t) = 3 e4t − e−2t and x2(t) = 3 e4t + e−2t .)

I Case (ii): Express the solution as a vector-valued function,

x(t) = c1 v1 eλ1t + c2 v2 eλ2t ,

and plot the vector x(t) for different values of t.

I Case (ii) is called a phase portrait.
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I Case (ii): Express the solution as a vector-valued function,

x(t) = c1 v1 eλ1t + c2 v2 eλ2t ,

and plot the vector x(t) for different values of t.

I Case (ii) is called a phase portrait.
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Phase portraits for 2× 2 systems.
Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x(1) =

[
1
1

]
e4t , x(2) =

[
−1
1

]
e−2t .

Solution:
We start plotting the
vectors

v1 =

[
1
1

]
,

v2 =

[
−1
1

]
.
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Phase portraits for 2× 2 systems.

Problem:
Case (a): Consider a 2× 2 matrix A having two different, real
eigenvalues λ1 6= λ2, so A has two non-proportional eigenvectors
v1, v2 (eigen-directions).

Given a solution x(t) = c1 v1 eλ1t + c2 v2 eλ2t , to x′(t) = A x(t),
plot different solution vectors x(t) on the plane as function of t for
different choices of the constants c1 and c2.

The plots are different depending on the eigenvalues signs.
We have the following three sub-cases:

(i) 0 < λ2 < λ1, both positive;

(ii) λ2 < 0 < λ1, one positive the other negative;

(iii) λ2 < λ1 < 0, both negative.
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Phase portraits for 2× 2 systems.

Phase portrait: Case (a), two different, real eigenvalues λ1 6= λ2,
sub-case 0 < λ2 < λ1, both eigenvalue positive.
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Phase portraits for 2× 2 systems.

Phase portrait: Case (a), two different, real eigenvalues λ1 6= λ2,
sub-case λ2 < 0 < λ1, one eigenvalue positive the other negative.
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Phase portraits for 2× 2 systems.

Phase portrait: Case (a), two different, real eigenvalues λ1 6= λ2,
sub-case λ2 < λ1 < 0, both eigenvalues negative.
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