Review of Linear Algebra (Sect. 7.3)

» Eigenvalues, eigenvectors of a matrix.
» Computing eigenvalues and eigenvectors.
» Diagonalizable matrices.

» The case of Hermitian matrices.
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Remark: Not every n x n matrix has real eigenvalues.

Example

Fix 8 € (0,7) and define A = [::((99)) _;Is((g))] '

Show that A has no real eigenvalues.

X2 AX

Solution: Matrix A:R?2 — R? is a

rotation by 6 counterclockwise.
There is no direction left invariant by

the function A.

We conclude: Matrix A has no eigenvalues eigenvector pairs. <

Remark:
Matrix A has complex-values eigenvalues and eigenvectors.
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Theorem (Eigenvalues-eigenvectors)

(a) The number X is an eigenvalue of an n x n matrix A iff
det(A—Al)=0.

(b) Given an eigenvalue \ of matrix A, the corresponding
eigenvectors v are the non-zero solutions to the homogeneous
linear system

(A= X)v =0.

Notation:
p(A) = det(A — \I) is called the characteristic polynomial.

If Ais nx n, then p is degree n.

Remark: An eigenvalue is a root of the characteristic polynomial.
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Proof:

Find A such that for a non-zero vector v holds,
Av=Xv < (A-X)v=0.

Recall, v # 0.

This last condition implies that matrix (A — A/) is not invertible.

(Proof: If (A— Al) invertible, then (A — AI)"1(A — Al)v = 0,
thatis, v=20.)

Since (A — Al) is not invertible, then det(A — A/) = 0.

Once X is known, the original eigenvalue-eigenvector equation
Av = \v is equivalent to (A — A/)v = 0.
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Find the eigenvalues A and eigenvectors v of A = [; ﬂ .

Solution: Recall: A\ =4, \_.=-2, A—4] = [_5 _33}
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Example
Find the eigenvalues A and eigenvectors v of A = [; ﬂ .

. -3 3
Solution: Recall: Ay =4, \_=-2, A—4] = [ 3 _3}

We solve (A — 4/)v; = 0, using Gauss elimination,

-3 3] Lo-1 -1 L [ui=wh
3 -3 3 -3 0 0 vt free.
Al solutions to the equation above are then given by
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Computing eigenvalues and eigenvectors.

Example

Find the eigenvalues A and eigenvectors v of A = B ﬂ )
1

Solution: Recall: Ay =4, v, = 1

[



Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solution: Recall: Ay =4, vy = } Ao =-2.

Solve (A+2/)v_ =0,



Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g] .

Solution: Recall: Ay =4, vy = } Ao =-2.



Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g] .

N

Solution: Recall: Ay =4, vy = } Ao =-2.



Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g] .

ENE

Solution: Recall: Ay =4, vy = } Ao =-2.



Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g] .

FREEE

Solution: Recall: Ay =4, vy = } Ao =-2.



Computing eigenvalues and eigenvectors.

Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g] .

3 3 _ 11 R 1 1 N Vl_:_V2_7
3 3 3 3 0 0 v, free.

Solution: Recall: Ay =4, vy = } Ao =-2.



Computing eigenvalues and eigenvectors.
Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g]

3 3 1 ]. ]. 1 Vl_ - - V2_ )
— — =
[3 3} [3 3] [0 0] { v, free.

Al solutions to the equation above are then given by

[

Solution: Recall: Ay =4, vy = } Ao =-2.



Computing eigenvalues and eigenvectors.
Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g]

3 3 1 ]. ]. 1 Vl_ - - V2_ )
— — =
[3 3} [3 3] [0 0] { v, free.

Al solutions to the equation above are then given by

=[] -[s

Solution: Recall: Ay =4, vy = } Ao =-2.



Computing eigenvalues and eigenvectors.
Example
Find the eigenvalues A and eigenvectors v of A = B ﬂ )

1
1

Solve (A+2/)v_ = 0, using Gauss operations on A+ 2/ = E g] .

3 3 1 ]. ]. 1 Vl_ - - V2_ )
— — =
[3 3} [3 3] [0 0] { v, free.

Al solutions to the equation above are then given by

<[ - 1

Solution: Recall: Ay =4, vy = } Ao =-2.



Computing eigenvalues and eigenvectors.

Example
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Solution: Recall: Ay =4, vy = ﬂ Ao =-2.

Solve (A+2/)v_ = 0, using Gauss operations on A+2/ = E g]
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— — =
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Al solutions to the equation above are then given by
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Diagonalizable matrices.

Definition
dp - 0
An n x n matrix D is called diagonal iff D = | : L
0 - dp
Definition
An n x n matrix A is called diagonalizable iff there exists an
invertible matrix P and a diagonal matrix D such that

A= PDP L.
Remark:

» Systems of linear differential equations are simple to solve in
the case that the coefficient matrix A is diagonalizable.

» In such case, it is simple to decouple the differential equations.

» One solves the decoupled equations, and then transforms back
to the original unknowns.
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A - 0
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where A\j,v;, fori =1,--- , n, are eigenvalue-eigenvector pairs of A.
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Diagonalizable matrices.

Theorem (Diagonalizability and eigenvectors)

An n x n matrix A is diagonalizable iff matrix A has a linearly
independent set of n eigenvectors. Furthermore,

AN - 0
A=PDP7L P={v, --,v,)], D=|: .. |,
0 - A\,
where A\j,v;, fori =1,--- , n, are eigenvalue-eigenvector pairs of A.

Remark: It is not simple to know whether an n x n matrix A has a
linearly independent set of n eigenvectors. One simple case is given
in the following result.

Theorem (n different eigenvalues)

If an n x n matrix A has n different eigenvalues, then A is
diagonalizable.
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Example

Show that A = [ 3} is diagonalizable.

1
31
Solution: We known that the eigenvalue eigenvector pairs are
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Introduce P and D as follows,
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Diagonalizable matrices.

Example

Show that A = [ 3} is diagonalizable.

1
31
Solution: We known that the eigenvalue eigenvector pairs are
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Introduce P and D as follows,
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Diagonalizable matrices.

Example

Show that A = [ 3} is diagonalizable.

1
31
Solution: We known that the eigenvalue eigenvector pairs are

)\1 = 4, V] = |:1:| and /\2 = —2, Vo = |:_11:| .

Introduce P and D as follows,
1 -1 111 |4 0
P‘L 1} - P _zLily D‘k 4}

Then
PDP™!



Diagonalizable matrices.

Example

Show that A = B ﬂ is diagonalizable.

Solution: We known that the eigenvalue eigenvector pairs are

)\1 = 4, V] = |:1:| and /\2 = —2, Vo = |:_1:| .

Introduce P and D as follows,

1 -1 L1101 4 0
P‘L 1} - P _2[—1 1]’ D_[o —2}'

Then )
|1 -1 4 0111 1
pori= 1 0 S5 101
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Diagonalizable matrices.

Example

Show that A = B ﬂ is diagonalizable.

Solution: Recall:

1 1|0 -2

kN

o=l 5]

4[4 2
PDP _[4 5

1
2
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Diagonalizable matrices.

Example

Show that A = B ﬂ is diagonalizable.

Solution: Recall:
1|1 -1 (4 O 1 1 1
PDP™ = [1 1110 =22 (-1 1|°

popr= [t 2212 =R 4]

We conclude,



Diagonalizable matrices.

Example

Show that A = B ﬂ is diagonalizable.

Solution: Recall:
1|1 -1 (4 O 1 1 1
PDP™ = [1 1110 =22 (-1 1|°
1|4 2 1 1 1 (2 1 1
PDP™ = [4 -2 2 |=1 1| |2 =1| |-1

We conclude,
PDP~! = [1 3] = A,

that is, A is diagonalizable.
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The case of Hermitian matrices.

Definition
An n x n matrix A is called Hermitian iff A = A*.
An n x n matrix A is called symmetric iff A= A.

Theorem
Every Hermitian matrix is diagonalizable.

Remark: A real-valued Hermitian matrix A is symmetric, since
A=A =A =AT = A=AT
Example

3
7 | is symmetric,
11

A=

w N =
~ O N



The case of Hermitian matrices.

Definition

An n x n matrix A is called Hermitian iff A = A*.
An n x n matrix A is called symmetric iff A= A.
Theorem

Every Hermitian matrix is diagonalizable.

Remark: A real-valued Hermitian matrix A is symmetric, since

A=A"=A"=AT = A=A"

Example
1 2 3 1 —i 1

A= |2 8 7| issymmetricc B=|i 0 —1| is Hermitian.
3 7 11 1 -1 1



Properties of differential linear systems (Sect.

» Review: n x n linear differential systems.

» Fundamental solutions to homogeneous systems.

» Existence and uniqueness of solutions to IVP.

» The Wronskian of n solutions.

7.4)
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Definition
An n x n linear differential system is a the following: Given an
n x n matrix-valued function A, and an n-vector-valued function b,
find an n-vector-valued function x solution of
x'(t) = A(t) x(t) + b(¢).
The system above is called homogeneous iff holds b = 0.
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Review: n x n linear differential systems.
Definition
An n x n linear differential system is a the following: Given an
n X n matrix-valued function A, and an n-vector-valued function b,
find an n-vector-valued function x solution of

x'(t) = A(t) x(t) + b(t).
The system above is called homogeneous iff holds b = 0.

Recall:

an(t) - am() b(t) ()

X{ = all(t) X+ -+ 81,-,(1.') Xn + bl(t)

X\ = ap(t) X1 + -+ + apn(t) xo + ban(t).
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Find the explicit expression for the linear system x’ = Ax + b in the
case that
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Example

Find the explicit expression for the linear system x’ = Ax + b in the
case that

AR G

Solution: The 2 x 2 linear system is given by

=6 3 E) o a



Review: n x n linear differential systems.

Example

Find the explicit expression for the linear system x’ = Ax + b in the
case that

13 | et X
S R R e S o
Solution: The 2 x 2 linear system is given by
x| |1 3] [x n et
x| 13 1] |x 2e3t|”

X (t) = x(t) + 3x(t) + e,
X(t) = 3x,(t) + x(t) + 2.

That is,
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X(t)=1 : =\ = sin(t)
xn(t) x/(t) cos(t)
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Review: n x n linear differential systems.

Remark: Derivatives of vector-valued functions are computed
component-wise.

x1(t) x1(t) et 7’ 2e2t
X(t)=1 : = = {sin(t)] = |: cos(t) ] .
Xn(t) X' (t) cos(t) —sin(t)

an(t) - aw(t)]’

() - amlt)
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Remark: Derivatives of vector-valued functions are computed
component-wise.
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Review: n x n linear differential systems.

Remark: Derivatives of vector-valued functions are computed
component-wise.

x1(t) x1(t) et 7’ 2e2t
X(t)=1 : = = sin(t)| = | cos(t)
Xn(t) X' (t) cos(t) —sin(t)
aun(t) - aw(®)]” [au(t) - al,(0)
Alt)=| = L
an(t) -+ ann(t) an(t) - ah(t)
Definition

An n x n matrix-valued function with values A(t) = [a;(t)] is
called continuous iff every coefficient a;; is a continuous function.
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» Review: n x n linear differential systems.
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Fundamental solutions to homogeneous systems.

Definition
A linearly independent set of solutions {x(1)(t),--- ,x("M ()} of the
n x n homogeneous linear differential system

x' = A(t) x (1)
is called a fundamental set of solutions, and the function
x(t) frd C]_X(l)(t) _|_ P + Cnx(n)(t)’

is called the general solution of Eq. (1), where ¢1,--- , ¢, are
arbitrary constants. The n x n matrix-valued function

X(t) = [xM(¢),- - ,x(N(1)]
is called a fundamental matrix of the Eq. (1), and the function
w(t) = det(X(t))

is called the Wronskian of the fundamental solutions.



Fundamental solutions to homogeneous systems.

Example
2t —t
Show that { x(1) = 2¢ , x@ = | € _ is a fundamental set
e?t 2e7t

for the linear system x'(t) = Ax(t), where A = B :g]
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Solution: First we verify the x(1) and x(?) are solutions.
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Example
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Show that {x(l) = [2:2t ] , x) = [Zee_t}} is a fundamental set

for the linear system x'(t) = Ax(t), where A = B :g]

Solution: First we verify the x(1) and x(?) are solutions.

2e21)"  [4e
X(l)/(t) = [ o2t ] = [2 e2t:|
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Example

2t —t
(1) . 2e (2) o e .
Show that {x = [ o2t ] , X\ = [2 e_t}} is a fundamental set
, p 3 -2
for the linear system x/(t) = Ax(t), where A = > ol

Solution: First we verify the x(1) and x(?) are solutions.
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Fundamental solutions to homogeneous systems.

Example

2t —t
Show that {x(l) = [2:2t ] , x) = [Zee_t}} is a fundamental set

for the linear system x'(t) = Ax(t), where A = B :g]

Solution: First we verify the x(1) and x(?) are solutions.

2 e2t] 42t 2
x(W(t) = [e2t] — [2 th] = xW()=2 M e’
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We conclude; x('(t) = Ax(D(¢).
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Fundamental solutions to homogeneous systems.

Example
2t —t
Show that {x(l) = [2:2t ] , x® = [;et} } is a fundamental set

for the linear system x/(t) = Ax(t), where A = B _g]

Solution: Recall: x('(t) = Ax()(¢).
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Fundamental solutions to homogeneous systems.

Example
2t —t
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Fundamental solutions to homogeneous systems.

Example

2t —t
Show that {x(l) = [2:2t ] , x® = [Qee—t} } is a fundamental set

for the linear system x'(t) = Ax(t), where A = B :g]
Solution: Recall: x('(t) = Ax(W(¢t), and x@'(t) = AxA(¢).
We need to compute the determinant of the fundamental matrix
2e%t et
X(t) - |: e2t 2et:| .

2 e2t eft

2t _—t 2t _—t t t
=dee " —e“Te " =4e — e
eZt 2e_t

w(t) =

that is, w(t) = 3e’. Hence Since w(t) # 0 for t € R.

We conclude: The solutions form a fundamental set. <
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Existence and uniqueness of solutions to IVP.

Theorem (Existence and uniqueness)

If the n x n matrix-valued function A and the n-vector b are
continuous on [ty, t1] C R, then the linear system

X'(t) = A(t)x + b(t) (2)
always has a fundamental set of solutions
{x(l)(t),m ,x(”)(t)}.

Furthermore, the initial value problem given by Eq. (2) together
with the initial condition x(0) = x, has a unique solution.
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Existence and uniqueness of solutions to IVP.

Theorem (Existence and uniqueness)

If the n x n matrix-valued function A and the n-vector b are
continuous on [ty, t1] C R, then the linear system

X'(t) = A(t)x + b(t) (2)
always has a fundamental set of solutions

{x(l)(t),m ,x(”)(t)}.
Furthermore, the initial value problem given by Eq. (2) together
with the initial condition x(0) = x, has a unique solution.
Remarks:

» The initial value problem contains n initial conditions.

» We will study how to obtain such solutions in the case of
constant coefficients systems, A(t) = Ap.
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Existence and uniqueness of solutions to IVP.

Example
Find the solution to the IVP

X (t) = Ax(t), A:B :;] x(O)ZH.

Solution: We need to find a fundamental set of solutions.
From the previous Example: A fundamental set is

{x(l) _ [ﬂ et X — [ﬂ e—t}'

Then, the general solution is
(2] e 1] [2e? et [a
x(t)=a [J et 4+ o [2} et = x(t)= [ 2t 2et| |

That is x(t) = X(t)c. The initial condition: x(0) = X(0)c.



Existence and uniqueness of solutions to IVP.
Example

Find the solution to the IVP

X(t) = Ax(t), A— B :3] x(0) = [1 .

Solution: The initial condition: x(0) = X(0)c.
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Example

Find the solution to the IVP

X (t) = Ax(t), A:B :3] x(O)ZH.

Solution: The initial condition: x(0) = X(0)c. Since,
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Find the solution to the IVP

X (t) = Ax(t), A:B :3] x(O)ZH.
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Existence and uniqueness of solutions to IVP.
Example

Find the solution to the IVP

X (t) = Ax(t), A:B :3] x(O)ZH.
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Solution: The initial condition: x(0) = X(0)c. Since,

o) s 2] [

C2’

FIE-0 - -0 0

c:[_;] g



Existence and uniqueness of solutions to IVP.

Remarks:

(a) Next class we learn how to obtain solutions to x’ = Ax with A
constant.



Existence and uniqueness of solutions to IVP.

Remarks:

(a) Next class we learn how to obtain solutions to x’ = Ax with A
constant.

(b) The eigenvalues and eigenvectors of A play a crucial role to
find such solutions.



Existence and uniqueness of solutions to IVP.

Remarks:
(a) Next class we learn how to obtain solutions to x’ = Ax with A
constant.
(b) The eigenvalues and eigenvectors of A play a crucial role to
find such solutions.
p : 3 -2
(c) For example: X’ = Ax, with A = > ol



Existence and uniqueness of solutions to IVP.

Remarks:

(a) Next class we learn how to obtain solutions to x’ = Ax with A
constant.

(b) The eigenvalues and eigenvectors of A play a crucial role to
find such solutions.

(c) For example: x' = Ax, with A= B _g}

The general solution is x(t) = ¢; [ﬂ e+ o [ﬂ et



Existence and uniqueness of solutions to IVP.

Remarks:
(a) Next class we learn how to obtain solutions to x’ = Ax with A
constant.

(b) The eigenvalues and eigenvectors of A play a crucial role to
find such solutions.

(c) For example: x' = Ax, with A= B _g}

The general solution is x(t) = ¢; [ﬂ e+ o [ﬂ et
The eigenvalue eigenvector pairs for A are:

N =2, vl—m,



Existence and uniqueness of solutions to IVP.

Remarks:

(a) Next class we learn how to obtain solutions to x’ = Ax with A
constant.

(b) The eigenvalues and eigenvectors of A play a crucial role to
find such solutions.

(c) For example: x' = Ax, with A= B _g}

The general solution is x(t) = ¢; [ﬂ e+ o [ﬂ et
The eigenvalue eigenvector pairs for A are:

2 1
)\1 = 2, V] = [1:| s and AQ = —1, Vo = [2:| .



Existence and uniqueness of solutions to IVP.

Remarks:

(a) Next class we learn how to obtain solutions to x’ = Ax with A
constant.

(b) The eigenvalues and eigenvectors of A play a crucial role to
find such solutions.

(c) For example: x' = Ax, with A= B _g}

The general solution is x(t) = ¢; [ﬂ e+ o [ﬂ et
The eigenvalue eigenvector pairs for A are:

2 1
)\1 = 2, V] = [1:| s and AQ = —1, Vo = [2:| .

Thatis, x(t) = cyvi eMt + vy e2F,



Existence and uniqueness of solutions to IVP.

Remarks:

(a) Next class we learn how to obtain solutions to x’ = Ax with A
constant.

(b) The eigenvalues and eigenvectors of A play a crucial role to
find such solutions.

(c) For example: x' = Ax, with A= B _g}

The general solution is x(t) = ¢; [ﬂ e+ o [ﬂ et

The eigenvalue eigenvector pairs for A are:
2 1
)\1 = 2, V] = [1:| s and AQ = —1, Vo = [2:| .
Thatis, x(t) = cyvi eMt + vy e2F,

(d) Next class we generalize the result of this example.
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The Wronskian of n solutions.

Theorem (Generalization of Abel result)

If A is an n X n continuous matrix-valued function, and x(i), with
i=1,---,n, are arbitrary solutions of the differential equation
x' = A(t)x, then the Wronskian

w(t) =det(X(t)),  X(t) = [xO(t), -, x((t)]

satisfies the equation

w(t) = w(t) e®®,  a(t) = / tr A(7) dr.

to

where tr (A)(t) = a11(t) + - - + ann(t).



The Wronskian of n solutions.

Theorem (Generalization of Abel result)

If A is an n X n continuous matrix-valued function, and x(i), with
i=1,---,n, are arbitrary solutions of the differential equation
x' = A(t)x, then the Wronskian

w(t) =det(X(t)),  X(t) = [xO(t), -, x((t)]

satisfies the equation

w(t) = w(t) e®®,  a(t) = / tr A(7) dr.

to

where tr (A)(t) = a11(t) + - - + ann(t).

Remark: If the Wronskian w(t,) # 0 at a single point t, € [t, t,],
then w(t) # 0 for all t € [t, t;].
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The Wronskian of n solutions.

Example
Verify the generalized Abel Theorem for a fundamental set of

solutions to
3 =2
x = Ax, A_[2 _2].

Solution:

Fundamental solutions: {[ﬂ et [1

2] e_t}. Their Wronskian is
2%t et

ot _t = 4e?t et —?teTt =4t — ef,
e 2e

w(t) =

that is, w(t) = 3e’. Notice: w(0) =3 and tr (A) =3 -2 =1.
Therefore,
w(t) = w(0) e (At <
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Review: n x n linear differential systems.

Recall:

» Given an n X n matrix A(t), n-vector b(t), find x(t) solution
X' (t) = A(t) x(t) + b(t).
» The system is homogeneous iff b = 0, that is,
X'(t) = A(t) x(t).
» The system has constant coefficients iff matrix A does not
depend on t, that is,
x'(t) = Ax(t) + b(t).
» We study homogeneous, constant coefficient systems, that is,

x'(t) = Ax(t).
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» Given continuous functions A, b on (t,,t,) C R, a constant
t, € (t, t,) and a vector x,, there exists a unique function x
solution of the IVP

x'(t) = A(t) x(t) + b(t), x(to) = Xo.



Review: n x n linear differential systems.

Recall:

» Given continuous functions A, b on (t;,t,) C R, a constant
t, € (t, t,) and a vector x,, there exists a unique function x
solution of the IVP

x'(t) = A(t) x(t) + b(t), x(to) = Xo.

» Today we learn to find such solution in the case of
homogeneous, constant coefficients, n x n linear systems,

X'(t) = Ax(t).
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The case of diagonalizable matrices.
Theorem (Diagonalizable matrix)
If n X n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1,--- ,v,} and corresponding eigenvalues
{A1,+,An}, then the general solution x to the homogeneous,
constant coefficients, linear system

X'(t) = Ax(t)

is given by the expression below, where ¢, , ¢y, € R,

x(t) = vy eME 4 -+ cuv, eME
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The case of diagonalizable matrices.
Theorem (Diagonalizable matrix)
If n X n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1,--- ,v,} and corresponding eigenvalues
{A1,+,An}, then the general solution x to the homogeneous,
constant coefficients, linear system

X'(t) = Ax(t)

is given by the expression below, where ¢, , ¢y, € R,

x(t) = vy eME 4 -+ cuv, eME

Remark:
» The differential system for the variable x is coupled, that is, A
is not diagonal.
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The case of diagonalizable matrices.
Theorem (Diagonalizable matrix)
If n X n matrix A is diagonalizable, with a linearly independent
eigenvectors set {v1,--- ,v,} and corresponding eigenvalues
{A1,+,An}, then the general solution x to the homogeneous,
constant coefficients, linear system

X'(t) = Ax(t)
is given by the expression below, where ¢, , ¢y, € R,

x(t) = vy eME 4 -+ cuv, eME

Remark:
» The differential system for the variable x is coupled, that is, A
is not diagonal.

» We transform the system into a system for a variable y such
that the system for y is decoupled, that is, y'(t) = Dy(t),
where D is a diagonal matrix.

» We solve for y(t) and we transform back to x(t).
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The case of diagonalizable matrices.

Proof: Since A is diagonalizable, we know that A = PDP~!, with
P:[vl,---,v,,], D:diag[A1,~-,)\,,].
Equivalently, P~AP = D. Multiply X' = Ax by P~! on the left
PIX(t) =P lAx(t) & (P'x) = (P AP) (P x).
Introduce the new unknown y(t) = P~1x(t), then

yi(t) = Ay(t), o oMt
Ya(t) = Anya(t), cne
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Proof: Recall: y(t) = P~1x(t), and y(t) = :
Ccp et

Transform back to x(t), that is,

x(t) = Py()



The case of diagonalizable matrices.

o et
Proof: Recall: y(t) = P~x(t), and y(t) = :
cp et
Transform back to x(t), that is,
cp eMt
x(t) = Py(t) = [vi,- - ,vn] |
Ant

Cnenn
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c e)\lt
Proof: Recall: y(t) = P~1x(t), and y(t) = :
¢, et
Transform back to x(t), that is,
a e)\lt
x(t) = Py(t) = [v1,- - ,vn] :
L
We conclude: x(t) = civy eMt 4+ -« + c,v, et
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The case of diagonalizable matrices.

c e)\lt
Proof: Recall: y(t) = P~1x(t), and y(t) = :
¢, et
Transform back to x(t), that is,
a e)\lt
x(t) = Py(t) = [v1,- - ,vn] :
L
We conclude: x(t) = civy eMt 4+ -« + c,v, et O
Remark:
> AV,’ = )\,'V,'.

» The eigenvalues and eigenvectors of A are crucial to solve the
differential linear system x'(t) = Ax(t).
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Remark: Here is another argument useful to understand why the
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The case of diagonalizable matrices.

Remark: Here is another argument useful to understand why the
vector x(t) = cyvy eMf + - 4 c,v, et is solution of the linear
system x/(t) = Ax(t). On the one hand, derivate x,

X (t) = cidivi M4k e\ v, e
On the other hand, compute Ax(t),
Ax(t) = ci(Avy) €Mt + -+ cu(Av,) e,
Ax(t) = cihivy €M+ 4 oA, v, et

We conclude: x/(t) = Ax(t).

Remark: Unlike the proof of the Theorem, this second argument
does not show that x(t) = cjvy Mt + .. + v, eM? are all
possible solutions to the system.
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Examples: 2 x 2 linear systems.

Example

Find the general solution to x' = Ax, with A = B ﬂ

Solution: Find eigenvalues and eigenvectors of A. We found that:

A =4, v = [ﬂ , and A\, = =2, vd = [_1] .

Fundamental solutions are

1 -1
(1) 4t (2) —2t
X\ = L] e, x= [ 1} e .

The general solution is x(t) = c; X (t) + 2 x(2(t), that is,

1 -1
x(t) = ¢ L] e+, { 1} e 2t a, 6 €R. 4
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Examples: 2 x 2 linear systems.

Remark:
. . 1 -1 .
Re-writing the solution vector x(t) = ¢ L] e* + ¢ [ 1} e 2t in
t
components x(t) = [Xl( )] then
xa(t)
xi(t)=cre’ — e, x(t)=ce* + et

Introducing the fundamental matrix X (t) = [x(!)(t),x()(t)] and
the vector c,

eht o2t

X0 |5 |

e €



Examples: 2 x 2 linear systems.

Remark:
. . 1 -1 .
Re-writing the solution vector x(t) = ¢ L] e* + ¢ [ 1} e 2t in
t
components x(t) = [Xl( )] then
xa(t)
xi(t)=cre’ — e, x(t)=ce* + et

Introducing the fundamental matrix X (t) = [x(!)(t),x()(t)] and
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Examples: 2 x 2 linear systems.

Remark:
Re-writing the solution vector x(t) = ¢ E] e*t ¢, [_11} e 2t in

components x(t) = [ilgg] then
2
2t

xi(t)=cre’ — e, x(t)=ce* + et

Introducing the fundamental matrix X (t) = [x(!)(t),x()(t)] and

the vector c,
4t —2t
e —e o)
X t = C =
( ) [e4t eZt:| ) [C2:| )



Examples: 2 x 2 linear systems.

Remark:
. . 1 -1 .
Re-writing the solution vector x(t) = ¢ L] e* + ¢ [ 1} e 2t in
t
components x(t) = [Xl( )] then
xa(t)
xi(t)=cre’ — e, x(t)=ce* + et

Introducing the fundamental matrix X (t) = [x(!)(t),x()(t)] and
the vector c,

4t —2t
et —e o]
X(t) = c=
( ) e,4t 672t ’ G ’
then the general solution above can be expressed as follows

wo=soe o [ ][0

e e G
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Examples: 2 x 2 linear systems.

Example
, 2 13
Solve the IVP x" = Ax, where x(0) = al and A= 3 1l
; ; Ll ar =11 o
Solution: The general solution: x(t) = ¢ e te e

The initial condition is,

x(0) = m . H fe [ﬂ.

We need to solve the linear system

N SRR R

Therefore, {Cl] = [3]
G 1



Examples: 2 x 2 linear systems.

Example
, 2 13
Solve the IVP x" = Ax, where x(0) = al and A= 3 1l
; ; Ll ar =11 o
Solution: The general solution: x(t) = ¢ e te e

The initial condition is,

x(0) = m . H fe [ﬂ.

We need to solve the linear system

HEIEEH

HEEEIH]

Therefore, [?] = E’] hence x(t) = 3 [1} e*t + [1} e 2t g

1

2
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two non-proportional eigenvectors vy, vo (eigen-directions).
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Classification of 2 x 2 diagonalizable systems.

Remark:
Diagonalizable 2 x 2 matrices A with real coefficients are classified
according to their eigenvalues.

(a) Matrix A has two different, real eigenvalues \; # A2, so it has
two non-proportional eigenvectors vy, vo (eigen-directions).
(Section 7.5)

(b) Matrix A has two different, complex eigenvalues A\; = )y, so it
has two non-proportional eigenvectors vy, v. (Section 7.6)

(c-1) Matrix A has repeated, real eigenvalues, \; = A\ € R with two
non-proportional eigenvectors v1, vo. (Section 7.8)

Remark:

(c-2) We will also study in Section 7.8 how to obtain solutions to a
2 x 2 system x’ = Ax in the case that A is not diagonalizable
and A has only one eigen-direction.
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» There are two main types of graphs for solutions of 2 x 2
linear systems:
(i) The graphs of the vector components;
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» Case (i): Express the solution in vector components
t .
x(t) = {Xl( )] and graph x; and x» as functions of t.
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Phase portraits for 2 x 2 systems.
Remark:

» There are two main types of graphs for solutions of 2 x 2
linear systems:
(i) The graphs of the vector components;
(ii) The phase portrait.

» Case (i): Express the solution in vector components
t .
x(t) = {Xl( )] and graph x; and x» as functions of t.
x(t)
(Recall the solution in the IVP of the previous Example:

x1(t) = 3e* — e7?t and xo(t) = 3 e* + e72t)

» Case (ii): Express the solution as a vector-valued function,

At Aot
9

x(t)=qviet' +cqwe

and plot the vector x(t) for different values of t.

» Case (ii) is called a phase portrait.
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Phase portraits for 2 x 2 systems.
Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

1 -1
(1) — 4t (2 _ —2t
x\ = [1] e*t, x { 1} e

Solution:
We start plotting the 2
vectors
1 2 ! 1
vl o : A" v
1 1 1 Xy
1 o
V= [ ] .
1
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Example

Plot the phase portrait of several linear combinations of the

fundamental solutions found above,
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Solution: x

We now plot the functions O

(1) m et N
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Phase portraits for 2 x 2 systems.

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

x) = H et x® = [_1} e 2t

1
Solution: X,
We now plot the functions
VO m et AT A
1 L X,
1 e 1 @
NG [ 1} o2t X x




Phase portraits for 2 x 2 systems.

Example

Plot the phase portrait of several linear combinations of the
fundamental solutions found above,

<D _ m it x® [—1} o2t

1
Solution:
We now plot the four
functions
xM - —x(M)
x() %)



Phase portraits for 2 x 2 systems.

Example

Plot the phase portrait of several linear combinations of the

fundamental solutions found above,

x) = [ﬂ e4t, x(?) = [_1} e 2t

1
Solution: §
2
We now plot the four
functions )
X 1
x1 —x® v

(1)

X1

(2)



Phase portraits for 2 x 2 systems.
Example
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Example
Plot the phase portrait of several linear combinations of the
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plot different solution vectors x(t) on the plane as function of t for
different choices of the constants ¢; and c».
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Phase portraits for 2 x 2 systems.

Problem:

Case (a): Consider a 2 x 2 matrix A having two different, real
eigenvalues A1 # A, so A has two non-proportional eigenvectors
vi, vo (eigen-directions).

Given a solution x(t) = ¢, v1 eMt 4 ¢, vy ™2f, to X/(t) = Ax(t),
plot different solution vectors x(t) on the plane as function of t for
different choices of the constants ¢; and c».

The plots are different depending on the eigenvalues signs.
We have the following three sub-cases:

(i) 0 < A2 < A1, both positive;
(i) A2 <0 < A1, one positive the other negative;

(iii) A2 < A1 <0, both negative.
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Phase portrait: Case (a), two different, real eigenvalues \; # Az,
sub-case 0 < A < A1, both eigenvalue positive.




Phase portraits for 2 x 2 systems.

Phase portrait: Case (a), two different, real eigenvalues \; # Az,
sub-case \» < 0 < A1, one eigenvalue positive the other negative.
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Phase portraits for 2 x 2 systems.

Phase portrait: Case (a), two different, real eigenvalues \; # Az,
sub-case \» < A1 < 0, both eigenvalues negative.
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