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Convolution of two functions.

Definition
The convolution of piecewise continuous functions f, g : R — R is

the function f x g : R — R given by

(Fxg)(t) = /0 f(r)g(t—7)dr.

Remarks:
» f x g is also called the generalized product of f and g.

» The definition of convolution of two functions also holds in
the case that one of the functions is a generalized function,

like Dirac’'s delta.
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Convolution of two functions.
Example

Find the convolution of f(t) = e~ ! and g(t) = sin(t).

t
Solution: By definition: (f *x g)(t) = / e Tsin(t — 7)dT.
0

t
Integrate by parts twice: / e Tsin(t—171)dr =
0

t t

- [e_T sin(t — 7')} - /Ot e " sin(t — 1) dT,

[e‘T cos(t — 7')}

0 0

t

’
0

2 /Ot e "sin(t—71)dr = [e_T cos(t — 7')] ‘: - [e_T sin(t — T)]

2(f x g)(t) = e~ — cos(t) — 0 +sin(t).



Convolution of two functions.
Example

Find the convolution of f(t) = e~ ! and g(t) = sin(t).

t
Solution: By definition: (f *x g)(t) = / e Tsin(t — 7)dT.
0

t
Integrate by parts twice: / e Tsin(t—171)dr =
0

t t

- [e_T sin(t — 7')} - /Ot e " sin(t — 1) dT,

[e‘T cos(t — 7')}

0 0

t

’
0

2 /Ot e " sin(t—T1)dT = [e_T cos(t — 7')] ‘: - [e‘T sin(t — T)]
2(f x g)(t) = e~ — cos(t) — 0 +sin(t).

We conclude: (f = g)(t) = %[e*t +sin(t) — cos(t)]. <
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Theorem (Properties)
For every piecewise continuous functions f, g, and h, hold:
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(iv) Neutral element: f +0 =0,

(v) Identity element: f x 6 = f.
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Properties of convolutions.

Theorem (Properties)
For every piecewise continuous functions f, g, and h, hold:

(i) Commutativity: fxg=g=xf;

(ii) Associativity: fx(gxh)=(fxg)*h;
(iii) Distributivity: — f«(g+h)=fxg+fxh;
(iv) Neutral element: f +0 =0,

(v) Identity element: f x 6 = f.

Proof: .
(v): (f*é)(t)—/o F(7)0(t — 7) dr = F(1).
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Properties of convolutions.

Proof:
(1): Commutativity: f+xg =g f.

The definition of convolution is,

()0 = [ f(ete—r)or

Change the integration variable: 7 =t — 7, hence d7 = —dr,
0
(Fxe)(t) = [ fle-7)g(?)(-1)d?
t
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Properties of convolutions.

Proof:
(1): Commutativity: f+xg =g f.

The definition of convolution is,

()0 = [ f(ete—r)or

Change the integration variable: 7 =t — 7, hence d7 = —dr,

0
(F + g)(t) = / F(t - #)g(F)(~1) d#

(F +g)(t) = / g(7) F(t - 7) d#

We conclude: (f * g)(t) = (g = f)(t).
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Laplace Transform of a convolution.

Theorem (Laplace Transform)
If f, g have well-defined Laplace Transforms L[f], L[g], then

L[f x g] = L[f] L[g].

Proof: The key step is to interchange two integrals. We start we
the product of the Laplace transforms,

clr) £lg] = | / T et (1) d | / et d).
L[f] Lg] = /0 h e—sfg(%)( /0 T et (1) dt) di,

L[f] L[g] = /Ooo gﬁ)(/oo et (¢) dt> di.

0
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Proof: Recall: L[f] £[g] = / h (i) / oSt () dt) d.

Change variables: 7 =1t+t, hence dr = dt;
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Laplace Transform of a convolution.

Proof: Recall: L[f] £[g] = / h 8(5)( / oSt () dt) d.

Change variables: 7 =1t+t, hence dr = dt;

et cle - [ e®([ e it -ar) di

C[f] Clg] = / h /t T e () (7 — ) dr di. —

A
The key step: Switch the order of integration. |

0 ‘ tau

£[f] £lg] = / h /0 " o5 () f(r — F) didr.
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Laplace Transform of a convolution.

Proof: Recall: £[f] £[g] = / h / " e~ g (i) F(r — T) di dr.
0 0

Then, is straightforward to check that

Cif] £lg] = / T /O g F(r - ) dF) dr

Clf £lg] = / T e (g # F)(r) dr
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Laplace Transform of a convolution.

Proof: Recall: £[f] £[g] = / h / " e~ g (i) F(r — T) di dr.
0 0

Then, is straightforward to check that
ol ctel - | T / g F(r - ) dF) dr
clrclel = [ e e or
L[] Llg] = Llg +f]

We conclude: L[f % g] = L[f] L[g].
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Impulse response solution.

Definition
The impulse response solution is the function ys solution of the IVP

v§ +ays+ays=06(t—c), ys(0)=0, y;(00=0, ceR.

Example

Find the impulse response solution of the IVP

vs +2ys+2ys =06(t—c), ys(0)=0, y5(0)=0.

Solution: L[ys] 4+ 2 L[ys] + 2 L]ys] = L[6(t — ¢)].

e—CS

2 __ _—cCs =
(s> +25+2) Llys] =e = Ll = (s2+25+2)
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Impulse response solution.
Example
Find the impulse response solution of the VP
ys +2y5+2ys=0(t—c), y5(0)=0, y5(0)=0,.
e—Cs
(2 +2s+2)

Find the roots of the denominator,

1
?4+2s+2=0 = si:E[—2j:\/4—8]

Solution: Recall:  L[ys] =

Complex roots. We complete the square:

2
2425 +2= [52+2(§)s+1] —1+2=(s+1)2+1.



Impulse response solution.
Example
Find the impulse response solution of the VP
ys +2y5+2ys=0(t—c), y5(0)=0, y5(0)=0,.
e—Cs
(2 +2s+2)

Find the roots of the denominator,

1
?4+2s+2=0 = si:E[—2j:\/4—8]

Solution: Recall:  L[ys] =

Complex roots. We complete the square:
2
2425 +2= [52+2(§)s+1] —1+2=(s+1)2+1.

e—CS

Therefore, L[ys] = (s+1)2+1
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Y§ +2y5+2y; =0(t—c), ys5(0)=0, y;(0)=0,.

e—CS

Solution: Recall:  L[ys] = GriEel
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Example
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Recall: L[sin(t)] = 52:_1



Impulse response solution.

Example
Find the impulse response solution of the IVP

Y§ +2y5+2y; =0(t—c), ys5(0)=0, y;(0)=0,.
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Recall: L[sin(t)] = , and L[f](s — c) = L[e“ f(t)].

1
s24+1



Impulse response solution.

Example
Find the impulse response solution of the IVP

Y§ +2y5+2y; =0(t—c), ys5(0)=0, y;(0)=0,.

e—CS

Solution: Recall:  L[ys] = GriEel

Recall: L[sin(t)] = , and L[f](s — c) = L[e“ f(t)].
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GriiTl = L[e"" sin(t)]



Impulse response solution.

Example
Find the impulse response solution of the IVP
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Impulse response solution.

Example
Find the impulse response solution of the IVP

Y§ +2y5+2y; =0(t—c), ys5(0)=0, y;(0)=0,.

e—CS

Solution: Recall:  L[ys] = GriEel

Recall: L[sin(t)] = , and L[f](s — c) = L[e“ f(t)].

1
241
TP+l Lle " sin(t)] = Llys] = e < L[e " sin(t)].
Since e < L[f](s) = L[u(t — ¢) f(t — ¢)],

we conclude ys(t) = u(t — ¢) e ") sin(t — ¢). <
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Solution decomposition theorem.

Theorem (Solution decomposition)
The solution y to the IVP

Y't+ay +ay=g(t), y(0)=y, y(0)=y,
can be decomposed as

y(t) = yn(t) + (ys * g)(t),

where yy, is the solution of the homogeneous IVP

Yo +aiyh+aoyh =0, ya(0) =yo yu(0) =y,
and ys is the impulse response solution, that is,

ys +aiys+aoys =6(t), ys(0)=0, ys5(0)=0.



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y"+2y +2y =sin(at), y(0)=1, y'(0)=-1.
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Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y"+2y" +2y =sin(at), y(0)=1, y'(0)=-1
Solution: L[y"] + 2 L[y'] + 2 L]y] = L[sin(at)], and recall,

Ly =sLlyl-s(1)—(-1), LI ]1=sLly]-1.

(s> 4+ 25 +2) L[y] — s + 1 —2 = L[sin(at)].

(s+1) 1
(s2+25s+2) (s?°+2s5+2)

Lly] = Llsin(at)].



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y"+2y +2y =sin(at), y(0)=1, y'(0)=-1.
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Solution: Recall: L[y] = L[sin(at)].



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of
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Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y'+2y" +2y =sin(at), y(0)=1, y'(0)=-1

. _ (s +1) 1 .
Solution: Recall: L[y] = (2+25+2) (2251 2) L[sin(at)].
(s+1) (s+1)

But: Llyp] = (s2 4 25+ 2) - (s+1)2+1



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y'+2y" +2y =sin(at), y(0)=1, y'(0)=-1

. 1 1 .
Solution: Recall: L[y] = (52(45——;5 3_ ) T 2512 L[sin(at)].
But: L= —CF Y D i)

(s2+2s+2) (s+1)2+1



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y'+2y" +2y =sin(at), y(0)=1, y'(0)=-1
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1

and: [,[yg] = m



Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y'+2y" +2y =sin(at), y(0)=1, y'(0)=-1

Solution: Recall: L[y] = (52(45——;513— R ;5 np) L[sin(at)].
But: L[y] = (52(j;1i 5= (55:3211 - = Ll cos(t)],
1 1

and: Llys] = (s242s+2) - (s+1)2+1
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Solution decomposition theorem.

Example
Use the Solution Decomposition Theorem to express the solution of

y'+2y" +2y =sin(at), y(0)=1, y'(0)=-1

. 1 1 .
Solution: Recall: L[y] = (52(45——;5 3_ ) T 2512 L[sin(at)].
But: L[ys] = (52(j;514)r 5= (S$$21)+ - = Lle™* cos(t)]
and: L[ys] = L = ! = L[e" " sin(t)]. So,

(s2+2s4+2) (s+1)2+1

LIyl = Llyn] + Lys] Llg(t)] = y(t) = ya(t) + (v5 * g)(1),

So: y(t) = e " cos(t) +/0 e "sin(7) sin[a(t — 7)] dT. <
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Solution decomposition theorem.

Proof: Compute: L[y"] + a; L[y'] + a, L[y] = L[g(t)], and recall,
LY =Ll = spo—n,  LIY]=5sL] -y

(s2 + a5+ ao) L[y] — syo — v — a1y = L[g(t)].

(s+a)yo+wn 1

£l = (s2+ais+a) (s2+ as+ a)

Llg(t)].

(s+a)ye +n 1

Recall - d -1
€ca ‘C[yh] (S2+315—|—30), an ﬁ[y(i] (52—|—315+80)

Since, Lly] = Llya] + L[ys] L[g(t)], so y(t) = ya(t) + (vs * g)(t).

Equivalently: y(t) = yn(t) + /Oty(;(r)g(t —7)dT. O



Systems of linear differential equations (Sect. 7.1).

» n x n systems of linear differential equations.
» Second order equations and first order systems.

» Main concepts from Linear Algebra.
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Example
Newton's law of motion for a particle of mass m moving in space.
The unknown and the force are vector-valued functions,

Xl(t) Fl(t,x)
x(t) = |x(t)|, F(t) = | Fa(t,x)
X3(T.') F3(1.',X)

d?x

The equation of motion are: m o F(t,x(t)).



n X n systems of linear differential equations.

Remark: Many physical systems must be described with more
than one differential equation.

Example
Newton's law of motion for a particle of mass m moving in space.
The unknown and the force are vector-valued functions,

Xl(t) Fl(t,x)
x(t) = [x(t)]|, F(t) = | Fa(t,x)
X3(t) F3(1.',X)

d?x
The equation of motion are: m o F(t,x(t)).
These are three differential equations,



n X n systems of linear differential equations.

Definition

An n x n system of linear first order differential equations is the
following: Given the functions aj;, gi : [a, b] — R, where
i,j=1,---,n, find n functions x; : [a, b] — R solutions of the n
linear differential equations

x| = a11(t) x + - + an(t) xn + g1(t)

X = a1 (t) x4+ -+ + apn(t) xn + gn(t).

The system is called homogeneous iff the source functions satisfy
that gy =--- =g, =0.
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Example
n = 1: Single differential equation: Find x(t) solution of

X{ = all(t) X1 +g1(t).
Example

n=2: 2 x 2 linear system: Find x,(t) and x,(t) solutions of

x = an(t) x + aa(t) X + gi(t),
X2 = ap1(t) x + a2(t) x + &(t).



n X n systems of linear differential equations.

Example
n = 1: Single differential equation: Find x(t) solution of

X{ = all(t) X1 +g1(t).
Example

n=2: 2 x 2 linear system: Find x,(t) and x(t) solutions of
x = an(t) x + aa(t) X + gi(t),
X, = ao1(t) xq + a2z (t) X, + &(t).

Example
n = 2: 2 x 2 homogeneous linear system: Find x,(t) and x,(t),
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Example
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constant coefficients, homogeneous system X = —x + .
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n X n systems of linear differential equations.

Example
Find x(t), x(t) solutions of the 2 x 2, X =X, — X,
constant coefficients, homogeneous system X = —x + .

Solution: Add up the equations, and subtract the equations,
(Xl + X2)/ — 07 (Xl - Xz), — 2(X1 - X2).
Introduce the unknowns v = x; + x,, w = x; — X, then
V/ - 0 = vV = Cla

/

w =2w = chzezt.
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n X n systems of linear differential equations.

Example
Find x(t), x(t) solutions of the 2 x 2, X =X, — X,
constant coefficients, homogeneous system X = —x + .

Solution: Add up the equations, and subtract the equations,
(Xl + X2)/ — 07 (Xl - Xz), — 2(X1 - X2).
Introduce the unknowns v = x; + x,, w = x; — X, then
V/ - 0 = vV = Cla

/

w =2w = chzezt.
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n X n systems of linear differential equations.

Example
Find x(t), x(t) solutions of the 2 x 2, X =X, — X,
constant coefficients, homogeneous system X = —x + .

Solution: Add up the equations, and subtract the equations,
(Xl + X2)/ — 07 (Xl - Xz), — 2(X1 - X2).
Introduce the unknowns v = x; + x,, w = x; — X, then

V/ZO = vV = (G,

w =2w = w=ce’l
1 1
Back to x; and x,: X1:§(V—|-W), x2:§ v —w).
1 2t 1 2t
We conclude:  x,(t) = 3 (c + cet), x(t) = 5 (c — qe™")



Systems of linear differential equations (Sect. 7.1).

» n x n systems of linear differential equations.
» Second order equations and first order systems.

» Main concepts from Linear Algebra.



Second order equations and first order systems.

Theorem (Reduction to first order)
Every solution y to the second order linear equation

y'+p(t)y + q(t)y = g(t), (1)

defines a solution x, = y and x, =y’ of the 2 x 2 first order linear
differential system

X! = X, (2)

x; = —q(t) x; — p(t) xo + g(t). (3)

Conversely, every solution x;, x, of the 2 x 2 first order linear
system in Eqs. (2)-(3) defines a solution y = x; of the second order
differential equation in (1).
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introduce x, = y and x, = y/, hence x|/ =y’ = x, that is,

!/
Xl — X2.



Second order equations and first order systems.

Proof:
(=) Given y solution of y” + p(t)y’ + q(t)y = g(t),
introduce x, = y and x, = y/, hence x|/ =y’ = x, that is,

!/
Xl — X2.

"

Then, x, =y
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Proof:
(=) Given y solution of y" + p(t)y' + q(t)y = g(t),

introduce x, = y and x, = y/, hence x|/ =y’ = x, that is,

!/
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Then, x; = y" = —q(t)y — p(t) y' + g(t).



Second order equations and first order systems.

Proof:
(=) Given y solution of y" + p(t)y' + q(t)y = g(t),

introduce x, = y and x, = y/, hence x|/ =y’ = x, that is,

Xll — X2.
Then, x, = y" = —q(t)y — p(t)y’ + g(t). That is,

x, = —q(t) x — p(t) x, + g(t).



Second order equations and first order systems.

Proof:
(=) Given y solution of y" + p(t)y' + q(t)y = g(t),

introduce x, = y and x, = y/, hence x|/ =y’ = x, that is,
x| = x,.
Then, x, = y" = —q(t)y — p(t)y’ + g(t). That is,
x, = —q(t)x — p(t) x + g(t).

(<) Introduce x, = x] into x, = —q(t) x, — p(t) x + g(t).



Second order equations and first order systems.

Proof:
(=) Given y solution of y" + p(t)y' + q(t)y = g(t),

introduce x, = y and x, = y/, hence x|/ =y’ = x, that is,
x| = x,.
Then, x, = y" = —q(t)y — p(t)y’ + g(t). That is,
x, = —q(t)x — p(t) x + g(t).

(<) Introduce x, = x] into x, = —q(t) x, — p(t) x + g(t).

"

X! = —q(t)x — p(t) x| + g(t),



Second order equations and first order systems.

Proof:
(=) Given y solution of y" + p(t)y' + q(t)y = g(t),

introduce x, = y and x, = y/, hence x|/ =y’ = x, that is,

!/
Xl — X2.

Then, x, = y" = —q(t)y — p(t)y’ + g(t). That is,
% = —q(t) x — p(t) x2 + g(t).

(<) Introduce x, = x{ into x; = —q(t) x, — p(t) x + g(t).
x = —q(t)x — p(t)x + g(t),

that is
X"+ p(t) x] + q(t) x = g(t).
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Express as a first order system the equation

y" +2y" + 2y = sin(at).
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Solution: Introduce the new unknowns

/
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Second order equations and first order systems.

Example

Express as a first order system the equation
y" +2y" + 2y = sin(at).
Solution: Introduce the new unknowns

' '
X=Y, X=Yy = X=X



Second order equations and first order systems.

Example

Express as a first order system the equation
y" +2y' + 2y = sin(at).
Solution: Introduce the new unknowns
x=y, %=y = x =x.

Then, the differential equation can be written as

X, + 2x, + 2x, = sin(at).



Second order equations and first order systems.

Example
Express as a first order system the equation

y" +2y' + 2y = sin(at).

Solution: Introduce the new unknowns

' '
X=Y, X=Yy = X=X

Then, the differential equation can be written as
X, + 2x, + 2x, = sin(at).

We conclude that

/_
X; = Xo.

X, = —2x; — 2x, + sin(at).
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Remark: Systems of first order equations can, sometimes, be
transformed into a second order single equation.

Example
Express as a single second order equation X, = —x + 3%,
the 2 x 2 system and solve it, X=X — X,

Solution: Compute x; from the second equation: x; = x} + X,.
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Remark: Systems of first order equations can, sometimes, be
transformed into a second order single equation.

Example
Express as a single second order equation X, = —x + 3%,
the 2 x 2 system and solve it, X=X — X,

Solution: Compute x; from the second equation: x; = x} + X,.
Introduce this expression into the first equation,



Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be
transformed into a second order single equation.

Example
Express as a single second order equation X, = —x + 3%,
the 2 x 2 system and solve it, X=X — X,

Solution: Compute x; from the second equation: x; = x} + X,.
Introduce this expression into the first equation,

(X2/ + X2)/ = _(le + %) + 3%,



Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be
transformed into a second order single equation.

Example
Express as a single second order equation X, = —x + 3%,
the 2 x 2 system and solve it, X=X — X,

Solution: Compute x; from the second equation: x; = x} + X,.
Introduce this expression into the first equation,

(X2/ + X2)/ = _(le + %) + 3%,

7 / /
X, +X ==X, — X + 3%,



Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be
transformed into a second order single equation.

Example
Express as a single second order equation X, = —x + 3%,
the 2 x 2 system and solve it, X=X — X,

Solution: Compute x; from the second equation: x; = x} + X,.
Introduce this expression into the first equation,

(6 +x) = =06 +x) + 3%,
X+ X = —x — x + 3%,

x) +2x, — 2%, = 0.
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Example
Express as a single second order equation x| = —x; + 3%,
the 2 x 2 system and solve it, X=X — %.

Solution: Recall: x!' + 2x] — 2x, = 0.



Second order equations and first order systems.

Example
Express as a single second order equation x| = —x; + 3%,
the 2 x 2 system and solve it, X=X — %.

Solution: Recall: x!' + 2x] — 2x, = 0.

r?42r—2 =0



Second order equations and first order systems.

Example
Express as a single second order equation x| = —x; + 3%,
the 2 x 2 system and solve it, X=X — %.

Solution: Recall: x!' + 2x] — 2x, = 0.

rP42r-2=0 = r. = % [—24+V/4 + 8]



Second order equations and first order systems.

Example
Express as a single second order equation x| = —x; + 3%,
the 2 x 2 system and solve it, X=X — %.

Solution: Recall: x!' + 2x] — 2x, = 0.

1
rP42r—2=0 = rp= 5 [—2:|:\/4 + 8] = ry=—-1+V3.



Second order equations and first order systems.

Example
Express as a single second order equation x| = —x; + 3%,
the 2 x 2 system and solve it, X=X — %.

Solution: Recall: x!' + 2x] — 2x, = 0.

1
rP42r—2=0 = rp= 5 [—2:|:\/4 + 8] = ry=—-1+V3.

Therefore, x, =c, e+t +c e~ L.



Second order equations and first order systems.

Example
Express as a single second order equation x| = —x; + 3%,
the 2 x 2 system and solve it, X=X — %.

Solution: Recall: x!' + 2x] — 2x, = 0.

1
rP42r—2=0 = rp= 5 [—2:|:\/4 + 8] = ry=—-1+V3.

Therefore, x, = c, et + et Since x; = X! + x,
) 1 2 1 5 >



Second order equations and first order systems.

Example
Express as a single second order equation x| = —x; + 3%,
the 2 x 2 system and solve it, X=X — %.
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Second order equations and first order systems.

Example
Express as a single second order equation x| = —x; + 3%,
the 2 x 2 system and solve it, X=X — %.

Solution: Recall: x!' + 2x] — 2x, = 0.

1
rP42r—2=0 = rp= 5 [—2:|:\/4 + 8] = ry=—-1+V3.

Therefore, x, = ¢, e+ ¢, e~ ". Since x;, = x, + x,,
X, = (clrJr et 4 cr e t) + (c;l ety ge- t),

We conclude: x; = ¢(1+ri)e™t+o(l+r)e 1 <



Systems of linear differential equations (Sect. 7.1).

» n x n systems of linear differential equations.
» Second order equations and first order systems.

» Main concepts from Linear Algebra.
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Remark: Ideas from Linear We review:
Algebra are useful to study » Matrices m x n.
systems of linear differential > Matrix operations
equations.
» n-vectors, dot product.
» matrix-vector product.
Definition

An m x n matrix, A, is an array of numbers

a1 -+ din
m rows,
A=
n columns.
dml *°°  dmn
where aj € Cand i=1,--- ,mand j=1,--- ,n. Annxn

matrix is called a square matrix.
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(b) 2 x 3 matrix: A= 4 5 6]'
[1 2
(c) 3x2matrixc A= |3 4].
5 6

(d) 2 x 2 complex-valued matrix: A= F +i2- ’]_

3 4
(e) The coefficients of a linear system can be grouped in a matrix,

/

X1 = —x1 + 3x2 -1 3
;L } = A:[1 _J.
Xo = X1 — X2



Main concepts from Linear Algebra.

Remark: An m x 1 matrix is called an m-vector.



Main concepts from Linear Algebra.

Remark: An m x 1 matrix is called an m-vector.

Definition
%1

An m-vector, v, is the array of numbers v = | : |, where the
Vm

vector components v; € C, with i=1,--- m.



Main concepts from Linear Algebra.

Remark: An m x 1 matrix is called an m-vector.

Definition
%1

An m-vector, v, is the array of numbers v = | : |, where the
Vm

vector components v; € C, with i =1,--- ,m.

Example

The unknowns of a 2 x 2 linear system can be grouped in a
2-vector,



Main concepts from Linear Algebra.

Remark: An m x 1 matrix is called an m-vector.

Definition
%1

An m-vector, v, is the array of numbers v = | : |, where the
Vm

vector components v; € C, with i =1,--- ,m.

Example

The unknowns of a 2 x 2 linear system can be grouped in a
2-vector, for example,



Main concepts from Linear Algebra.

Remark: An m x 1 matrix is called an m-vector.

Definition
%1

An m-vector, v, is the array of numbers v = | : |, where the
Vm

vector components v; € C, with i =1,--- ,m.

Example

The unknowns of a 2 x 2 linear system can be grouped in a
2-vector, for example,



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example
1 247 =142

Consider a 2 x 3 matrix A = 3 5 1



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example
1 247 =142

Consider a 2 x 3 matrix A = 3 5 1

(a) A-transpose: Interchange rows with columns:



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example
1 247 =142

Consider a 2 x 3 matrix A = 3 5 1

(a) A-transpose: Interchange rows with columns:
1 3i

Al = | 247 2
—1+2i 1



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example
1 247 =142

Consider a 2 x 3 matrix A = 3 5 1

(a) A-transpose: Interchange rows with columns:

1 3i

AT=| 24i 2|. Notice that: (AT)" = A

-1+2; 1



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example
1 247 =142

Consider a 2 x 3 matrix A = 3 5 1

(a) A-transpose: Interchange rows with columns:

1 3
AT=| 24i 2|. Notice that: (AT)" = A
~142i 1

(b) A-conjugate: Conjugate every matrix coefficient:



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example
1 247 =142

Consider a 2 x 3 matrix A = 3 5 1

(a) A-transpose: Interchange rows with columns:

1 3
AT=| 24i 2|. Notice that: (AT)" = A
~142i 1

(b) A-conjugate: Conjugate every matrix coefficient:

1 2—7 —-1-2i

A= 3 1



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example
1 247 =142

Consider a 2 x 3 matrix A = 3 5 1

(a) A-transpose: Interchange rows with columns:

1 3
AT=| 24i 2|. Notice that: (AT)" = A
~142i 1

(b) A-conjugate: Conjugate every matrix coefficient:

1 2—7 —-1-2i arcy

A= Y 5 1 Notice that: (A) = A.



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example
1 247 =142

Consider a 2 x 3 matrix A = 3 5 1

(a) A-transpose: Interchange rows with columns:

1 3
AT=| 24i 2|. Notice that: (AT)" = A
~142i 1

(b) A-conjugate: Conjugate every matrix coefficient:

1 2—7 —-1-2i arcy

A= Y 5 1 Notice that: (A) = A.

Matrix A is real iff A = A.



Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example
1 247 =142

Consider a 2 x 3 matrix A = 3 5 1

(a) A-transpose: Interchange rows with columns:

1 3
AT=| 24i 2|. Notice that: (AT)" = A
~142i 1

(b) A-conjugate: Conjugate every matrix coefficient:

1 2—7 —-1-2i arcy

A= Y 5 1 Notice that: (A) = A.

Matrix A is real iff A= A. Matrix A is imaginary iff A = —A.
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Consider a 2 x 3 matrix A = 3 5 1

(a) A-adjoint: Conjugate and transpose:
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Consider a 2 x 3 matrix A = 3 5 1

(a) A-adjoint: Conjugate and transpose:

1 -3
A= 22— 2 |. Notice that: (A*)* = A.
—1-2J 1

(b) Addition of two m x n matrices is performed component-wise:
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Example
1 247 —1+42i

Consider a 2 x 3 matrix A = 3 5 1

(a) A-adjoint: Conjugate and transpose:

1 —3i
A= 22— 2 |. Notice that: (A*)* = A.
—1-2J 1

(b) Addition of two m x n matrices is performed component-wise:
1 2 n 2 3] [(1+2) (2+3)] [3 5
3 4 5 1|  [(3+5) (4+1)] |8 5]

" 1 2 1 2 3. )
The addition [3 4] + [4 5 6} is not defined.



Main concepts from Linear Algebra.

Example

) . 1 3 5
Consider a 2 x 3 matrix A = [2 4 6]'



Main concepts from Linear Algebra.

Example

Consider a 2 x 3 matrix A = [1 3 5].

2 46

(a) Multiplication of a matrix by a number is performed
component-wise:



Main concepts from Linear Algebra.

Example

: . 1 35
Consider a 2 x 3 matrix A = [2 4 6]'
(a) Multiplication of a matrix by a number is performed

component-wise:

1 35
2A_2[2 4 6]



Main concepts from Linear Algebra.

Example

: . 1 35
Consider a 2 x 3 matrix A = [2 4 6]'
(a) Multiplication of a matrix by a number is performed

component-wise:

135 [26 10
2A_2{2 4 6]_[4 8 12}’



Main concepts from Linear Algebra.

Example

) . 1 3 5
Consider a 2 x 3 matrix A = [2 4 6]'

(a) Multiplication of a matrix by a number is performed
component-wise:
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Example

Consider a 2 x 3 matrix A = [

1 35
2 4 6|

(a) Multiplication of a matrix by a number is performed
component-wise:

1 35 2 6 10 8 12 2 3
2A_2{2 4 6] _[4 8 12}’ [16 20} _4[4 5}

Also:

| —
N =
&~ W
S Ol
—_
Il
wl N W

i

w
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Main concepts from Linear Algebra.

Example

(a) Matrix multiplication. The matrix sizes is important:

A times B defines AB
mxn nx4¢ mx ¢

Example: Ais2x 2, Bis2x3,s0 ABis 2 x 3:

4 3111 2 3 16 23 30
ey il e=le 5 0

Notice Bis 2 x 3, Ais 2 x 2, so BA is not defined.

WS

45 6l |2 1] not defined.
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Remark: The matrix product is not commutative, that is, in
general holds AB # BA.

Example

) 2 -1 3 0
Find AB and BA for A = [_1 5 } and B = [2 _1].
Solution:

AB =

330k o162 8

I
1
IS
=

ea= |5 |
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Solution:
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-1 2] 2 1] T |(-3+4) (0-2)] |1
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Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in
general holds AB # BA.

Example

) 2 -1 3 0

Find AB and BA for A = [_1 2} and B = [2 _1].

Solution:

AB_'2 -11[3 0] [(®6-2) (0+1)] _
-1 2] 2 1] T |(-3+4) (0-2)] |1

BA— 3 0] [2 -1] [(6+0) (-3+0)] [6
o 2 —1] [-1 2] o _(4+1) (—2—2)_ o 5

So AB # BA.
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AB — [1 —1] [1 —1} _ [(1—1) (—1+1)] _ [0 o].
-1 1] ]1 -1 (-1+1) (1-1) 00
<

Recall: If a,b € R and ab = 0, then either a=0or b = 0.



Main concepts from Linear Algebra.

Remark: There exist matrices A # 0 and B # 0 with AB = 0.

Example

. 1 -1 1 -1
Find AB for A = [_1 1 ] and B = [1 _1].
Solution:

o[t 3L - B Y

<
Recall: If a,b € R and ab = 0, then either a=0or b = 0.

We have just shown that this statement is not true for matrices.
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» 5 or 6 problems.
» 50 minutes.

» Laplace Transform table included.
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Example

Use Laplace Transform to find y solution of

y'=2y'+2y=46(t-2), y(0)=1, y'(0)=3.

Solution: Compute the LT of the equation,
Ly" = 2L[y]+2L]y] = L[5(t - 2)] = e

Ly = LIyl —sy(0)—y'(0),  LIY]=sL[y] - y(0).
(s> =25 +2) L[y] = sy(0) — y'(0) +2y(0) = e~ *
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Example

Use Laplace Transform to find y solution of

V' —oy 2y = 5(t—2), y(0)=1, y/(0)=3.
Solution: Compute the LT of the equation,
Ly = 2L+ 2Ly] = L[5(t —2)] = e
LIyl =s* LIyl =sy(0) = y'(0),  LIy1=sLly] - y(0).
(s> =25 +2) L[y] = sy(0) — y'(0) +2y(0) = e~ *
(s2=25+2)L[y] —s—1=e"2¢

(5 + 1) 1 —2s

L= (s2—25+2) (52—25—1—2)e
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0, t <2,

"+ 3y = g(t), 0) = y'(0) =0, t) =
y'+3y =g(t), y(0)=y'(0)=0, g(t) {em)’ .

Solution: Recall: H(s) = EE (et — cos(V3t) — \}g sin(v/3 t))}

~ L (V3 t)), H(s) = L[h(1)].

V3
Lly] = e 25 H(s) = e~ L[h(t)] = Lus(t) h(t — 2)].

h(t) = %(et - cos(x/g t)

We conclude: y(t) = ua(t) h(t — 2).
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Example
Sketch the graph of g and use LT to find y solution of
0, t <2,

"+ 3y = g(t), 0) = y'(0) =0, t) =
y'+3y =g(t), y(0)=y'(0)=0, g(t) {em)’ .

Solution: Recall: H(s) = EE (et — cos(V3t) — \}§ sin(v/3 t))}

~ L (V3 t)), H(s) = L[h(1)].

V3
Lly] = e 25 H(s) = e~ L[h(t)] = Lus(t) h(t — 2)].

h(t) = %(et - cos(x/g t)

We conclude: y(t) = ux(t) h(t — 2). Equivalently,

_u (t) t— I
y(H) === [e< 2 — cos(V3(t —2)) — e sin(V/3 (t — 2))]%
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LIf(t)] = e
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Extra problem

Example
e—25
(s—1)(s2+3)

Solution: One way to solve this is with the splitting

Use convolutions to find f satisfying L[f(t)] =

_ 25 1 1 _6*25i \/§ 1
Ol = g - ~° VB2 +3) 5-1)

LIF(E)] = e \}g Clsin(v3 1)] £[ef]
L Llu(t) sin(V3 (¢t - 2))] £[e].

LIFe) =



Extra problem

Example
e—25
(s—1)(s2+3)

Solution: One way to solve this is with the splitting

ClF() = e L gl V31

Use convolutions to find f satisfying L[f(t)] =

(s24+3) (s—1) V3 (s2+3) (s—1)

s 1 ;
L[f(t)] = e2 %L[sm(\@t)]c[e]

CIF(8)] = \%ﬁ[uz(t) sin(V3(t - 2))] L[e'].

F(t) = \% /Ot ua(7) sin(v3 (r — 2)) ) dr.
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y" =6y =g(t), y(0)=y'(0)=0, g(t):{(:in(t—ﬂ) :;7;
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Example
Sketch the graph of g and use LT to find y solution of

0, t<m,

y' —6y =g(t), y(0)=y'(0)=0, g(t)= { sin(t —m), t>7.

Solution:

sin (t) u(t-pi)

N R 2 Y A
‘
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Sketch the graph of g and use LT to find y solution of

0, t<m,

y" —6y =g(t), y(0)=y'(0)=0, g(t):{s;n(t_w) t>

Solution: ) )
Express g using step functions,

sin (t) u(t-pi)

N R 2 Y A
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Exam: November 12, 2008. Problem 3

Example
Sketch the graph of g and use LT to find y solution of

O’ t<7r’

y" —6y =g(t), y(0)=y'(0)=0, g(t):{s;n(t_w) t>

Solution: ) )
Express g using step functions,

sin(t) u(t-pi)

1 Ry e N Y A
‘

g(t) = ug(t) sin(t — ).
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Example
Sketch the graph of g and use LT to find y solution of

0 t<m
" — 6y = g(t), 0) =y'(0) =0, t) = ’ ’
y" =6y =g(t), y(0)=y(0) g(t) {sin(t_ﬂ -
Solution: ) )
Express g using step functions,

sin (t) u(t-pi)

g(t) = ug(t) sin(t — ).

N e
/ Lluc(t) F(t = c)] = e L[F(1)].
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Example
Sketch the graph of g and use LT to find y solution of

0 t<m
" — 6y = g(t), 0) =y'(0) =0, t) = ’ ’
y" =6y =g(t), y(0)=y(0) g(t) {sin(t_ﬂ -
Solution: ) )
Express g using step functions,

sin (t) u(t-pi)

g(t) = ug(t) sin(t — ).

N e
/ Lluc(t) F(t = c)] = e L[F(1)].

" \/ ‘ Therefore,

Llg(t)] = e"™Lsin(t)].




Exam: November 12, 2008. Problem 3

Example
Sketch the graph of g and use LT to find y solution of

y" =6y =g(t), y(0)=y'(0)=0, g(t)= {Z’in(t—w), Z;:
Solution: Express g using step functions,
| — U g(t) = ux(t) sin(t — ).
9(7 Lluc(t) f(t — )] = e~ L[f(1)].

" \/ ‘ Therefore,

Llg(t)] = e"™Lsin(t)].

We obtain: L[g(t)] = Se
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Example
Sketch the graph of g and use LT to find y solution of

y”—6y:g(t)7 y(0) :yI(O) =0, g(t)= {2’in(t—7r) z;:”

Solution: L[g(t)] = °
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Example
Sketch the graph of g and use LT to find y solution of

V' 6y = g(t), y(0) =y (0)=0, g(t)= { 2}n(t —7)

Solution: L[g(t)] = EaE

Lly"] -6 LIy] = L[g(t)]

t<m,
t>m.
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Example
Sketch the graph of g and use LT to find y solution of
0,
y"—6by=g(t), y(0)=y'(0)=0, g(t)= { :
sin(t — ),
e—ﬂ'S
lution: t)=—-——=.
Solution: L[g(t)] o

—TS

£~ 6Lh] = Lls(0] = 5oy

t<m,
t>m.
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Example
Sketch the graph of g and use LT to find y solution of

V' — 6y = g(t), y(0)=y'(0) = 0. g@%={gﬂt_ﬂ

Solution: L[g(t)] = EaE

—TS

L") -6 L] = Llg(t)] = 5

(s* ~6) Lly] =

e
s24+1
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Example
Sketch the graph of g and use LT to find y solution of

V' — 6y = g(t), y(0)=y'(0) = 0. g@%={gﬂt_ﬂ

Solution: L[g(t)] = EaE

—TS

L") -6 L] = Llg(t)] = 5

(s* ~6) Lly] =

= Lly]=eT°

t<m,
t>m.

e
s24+1

1
(s2+1)(s?—6)
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Sketch the graph of g and use LT to find y solution of
0 t<m
" 6 _ O — ! O — O — Y b
y" =6y =g(t), y(0)=y'(0)=0, g(t) { sin(t—7), t3> 7.
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Solution: L[g(t)] = _;ﬁ
£l - 6£1 = £lg(0)] = 5.
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Example
Sketch the graph of g and use LT to find y solution of

0, t<m,

y" =6y =g(t), y(0)=y'(0)=0, g(t)= { sin(t — ), t>m.

e—TK'S

Solution: L[g(t)]

S
£l - 6£1 = £lg(0)] = 5.
E-0LW =577 = W= G

Hs) = 1 _ 1

(s> +1)(s> = 6)  (s2+1)(s +V6)(s — V6)
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Example
Sketch the graph of g and use LT to find y solution of
0 t<m
" 6 _ 0 — ! O — O — Y b
y'—6by=g(t), y(0)=y'(0)=0, g(t) { sin(t—7), t3> 7.
. e—’?TS
Solution: L[g(t)] = EaE
£ly') -6l = £ls(t)] = o
3% yI=LlgOl= 5
(6Ll = o = L= oo
=2 M= (2412 —6)
H(s) = 1 _ 1

(s> +1)(s> = 6)  (s2+1)(s +V6)(s — V6)

a b (cs+d)

H(s) = (s+\@)+(s—\@)+ (2+1)°
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y" =6y =g(t), y(0)=y(0)=0, g(t):{Sin(tﬂ) t>m.
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Exam: November 12, 2008. Problem 3

Example
Sketch the graph of g and use LT to find y solution of
0, t<m,

y" -6y =g(t), y(0)=y'(0)=0, g(t):{Sin(tﬂ) t>m.

b (cs+d)

. B a
Solution: H(s) = (5 v6) + (- Vo) + 2+1)

1 b (cs+d)

P+ )5+ Vo) s—v6) (5+v8)  (5-vo)  (+1)

1=a(s—V6)(s>+ 1)+ b(s + V6)(s*> + 1) + (cs + d) (s> — 6).



Exam: November 12, 2008. Problem 3

Example
Sketch the graph of g and use LT to find y solution of
0, t<m,

y" -6y =g(t), y(0)=y'(0)=0, g(t):{Sin(tﬂ) t>m.

b (cs+d)

. B a
Solution: H(s) = (5 v6) + (- Vo) + 2+1)

1 b (cs+d)

P+ )5+ Vo) s—v6) (5+v8)  (5-vo)  (+1)

1=a(s—V6)(s>+ 1)+ b(s + V6)(s*> + 1) + (cs + d) (s> — 6).

1 1 1
The solution is: a = ——— 0, d=—-.

] b = = c = 1
146 146 7
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Example
Sketch the graph of g and use LT to find y solution of
0, t<m,

y" —6y =g(t), y(0)=y'(0)=0, g(t)—{sin(t_ﬂ) b

Solution: H(s) = — [( 1 1 26

146 s+\@)+(s—\@)7(52+1)'
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Example
Sketch the graph of g and use LT to find y solution of
0, t<m,

y" —6y =g(t), y(0)=y'(0)=0, g(t)—{sin(t_ﬂ) b

Solution: H(s) = ! [( ! ! 2v6 }

146 5+\@)+(5—\@)7(52+1)

H(s) (L[5 + £[e¥®H] — 26 Llsin(1)]]

1
146
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Example
Sketch the graph of g and use LT to find y solution of
0, t<m,

y" —6y =g(t), y(0)=y'(0)=0, g(t)—{sin(t_ﬂ) b

N B 1 26
Solution: H(s) = W [ (s + Vo) + c-v6) (=+ 1)}
H(s) = 141\@ L[5 + £[eVE1] — 2v/6 Lfsin(1)]

H(s) = ﬁ[ml\@ (—ef\/at +eVot_2V6 sin(t))].
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Example
Sketch the graph of g and use LT to find y solution of
0, t<m,

y" —6y =g(t), y(0)=y'(0)=0, g(t)—{sin(t_ﬂ) b

. 11 1 26
Solution: H(s) = W [ (s + Vo) + c-v6) (=+ 1)}
H(s) = 141\@ {—E[e’*/gt] + L[eVot] — 2\f6£[sin(t)]]
H(s) = ﬁ[Ml\@ (—ef\/at +eY%t_ 26 sin(t))]
1

h(t) {—e*\/gt +eVot_2\6 sin(t)}

T 146
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Example
Sketch the graph of g and use LT to find y solution of
0, t<m,

y" —6y =g(t), y(0)=y'(0)=0, g(t)—{sin(t_ﬂ) b

. 11 1 26
Solution: H(s) = W [ (s + Vo) + c-v6) (=+ 1)}
H(s) = 141\@ {—E[e’*/gt] + E[e*/ét] - 2\f6£[sin(t)]]
H(s) = ﬁ[Ml\@ (—ef\/at +eY%t_ 26 sin(t))]
1

h(t) [—efﬁweﬁf —2V6 sin(t)} = H(s) = L[h(t)].

T 146
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Solution: Recall: L[y] = e™™ H(s), where H(s) = L[h(t)], and

1

h(t) = YW
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Example
Sketch the graph of g and use LT to find y solution of
0 t<m
"—6y=g(t), y(0)=y(0)=0, g(t)=1 . ’
y" —6y =g(t), y(0)=y'(0) 409 {Sin(t_ﬂ P>

Solution: Recall: L[y] = e™™ H(s), where H(s) = L[h(t)], and

h(t) = 141\@ e CLNES L NG sin(r)]

Lly] = e™™ L[h(1)]
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Example
Sketch the graph of g and use LT to find y solution of

Y 6y =g(t). y(0)=y(0)=0, g(t)_{(:in(t—ﬂ) o

Solution: Recall: L[y] = e™™ H(s), where H(s) = L[h(t)], and

1
146

Lly] = e7™ L[h(t)] = Llux(t) h(t —7)]

h(t) e VBt L VB0 /g sin(r)]
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Example
Sketch the graph of g and use LT to find y solution of

0, t<m,

V' —6y —g(t), y(0)=y'(0)=0, g(t)= { sin(t — ), t>7.

Solution: Recall: L[y] = e™™ H(s), where H(s) = L[h(t)], and

1
146

Lly] = e™™ L[A(t)] = Llux(t) h(t =7)] = y(t) = ux(t) h(t —).
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Example
Sketch the graph of g and use LT to find y solution of

y'—6y=g(t). y(0)=y'(0)=0, g(t)_{(:in(t—ﬂ) :;

Solution: Recall: L[y] = e™™ H(s), where H(s) = L[h(t)], and

1
146

Lly] = e™™ L[A(t)] = Llux(t) h(t =7)] = y(t) = ux(t) h(t —).

h(t) e VBt L VB0 /g sin(t)]

Equivalently:

y(t) = f;f}g e VB | V() _ o sin(t — ). _




