Convolution solutions (Sect. 6.6).

- Convolution of two functions.
- Properties of convolutions.
- Laplace Transform of a convolution.
- Impulse response solution.
- Solution decomposition theorem.

Convolution solutions (Sect. 6.6).

- ► Convolution of two functions.
- Properties of convolutions.
- Laplace Transform of a convolution.
- Impulse response solution.
- Solution decomposition theorem.

Definition

The *convolution* of piecewise continuous functions f, $g: \mathbb{R} \to \mathbb{R}$ is the function $f * g: \mathbb{R} \to \mathbb{R}$ given by

$$(f*g)(t) = \int_0^t f(\tau)g(t-\tau) d\tau.$$

Definition

The *convolution* of piecewise continuous functions f, $g: \mathbb{R} \to \mathbb{R}$ is the function $f * g: \mathbb{R} \to \mathbb{R}$ given by

$$(f*g)(t) = \int_0^t f(\tau)g(t-\tau) d\tau.$$

Remarks:

• f * g is also called the generalized product of f and g.

Definition

The *convolution* of piecewise continuous functions f, $g: \mathbb{R} \to \mathbb{R}$ is the function $f * g: \mathbb{R} \to \mathbb{R}$ given by

$$(f*g)(t) = \int_0^t f(\tau)g(t-\tau) d\tau.$$

Remarks:

- f * g is also called the generalized product of f and g.
- ► The definition of convolution of two functions also holds in the case that one of the functions is a generalized function, like Dirac's delta.

Example

Example

Solution: By definition:
$$(f * g)(t) = \int_0^t e^{-\tau} \sin(t - \tau) d\tau$$
.

Example

Find the convolution of $f(t) = e^{-t}$ and $g(t) = \sin(t)$.

Solution: By definition: $(f * g)(t) = \int_0^t e^{-\tau} \sin(t - \tau) d\tau$.

Integrate by parts twice:

Example

Solution: By definition:
$$(f * g)(t) = \int_0^t e^{-\tau} \sin(t - \tau) d\tau$$
.

Integrate by parts twice:
$$\int_0^t e^{-\tau} \sin(t-\tau) d\tau =$$

$$\left[e^{-\tau}\cos(t-\tau)\right]\Big|_0^t - \left[e^{-\tau}\sin(t-\tau)\right]\Big|_0^t - \int_0^t e^{-\tau}\sin(t-\tau)\,d\tau,$$

Example

Solution: By definition:
$$(f * g)(t) = \int_0^t e^{-\tau} \sin(t - \tau) d\tau$$
.

Integrate by parts twice:
$$\int_0^t e^{-\tau} \sin(t-\tau) d\tau =$$

$$\left[e^{-\tau}\cos(t-\tau)\right]\Big|_0^t - \left[e^{-\tau}\sin(t-\tau)\right]\Big|_0^t - \int_0^t e^{-\tau}\sin(t-\tau)\,d\tau,$$

$$2\int_0^t e^{-\tau}\sin(t-\tau)\,d\tau = \left[e^{-\tau}\cos(t-\tau)\right]\Big|_0^t - \left[e^{-\tau}\sin(t-\tau)\right]\Big|_0^t,$$

Example

Solution: By definition:
$$(f * g)(t) = \int_0^t e^{-\tau} \sin(t - \tau) d\tau$$
.

Integrate by parts twice:
$$\int_0^t \mathrm{e}^{-\tau} \, \sin(t-\tau) \, d\tau =$$

$$\left[e^{-\tau}\cos(t-\tau)\right]\Big|_0^t - \left[e^{-\tau}\sin(t-\tau)\right]\Big|_0^t - \int_0^t e^{-\tau}\sin(t-\tau)\,d\tau,$$

$$2\int_0^t e^{-\tau} \sin(t-\tau) d\tau = \left[e^{-\tau} \cos(t-\tau) \right]_0^t - \left[e^{-\tau} \sin(t-\tau) \right]_0^t,$$
$$2(f * g)(t) = e^{-t} - \cos(t) - 0 + \sin(t).$$

Example

Solution: By definition:
$$(f * g)(t) = \int_0^t e^{-\tau} \sin(t - \tau) d\tau$$
.

Integrate by parts twice:
$$\int_0^t e^{-\tau} \sin(t-\tau) d\tau =$$

$$\left[e^{-\tau}\cos(t-\tau)\right]\Big|_0^t - \left[e^{-\tau}\sin(t-\tau)\right]\Big|_0^t - \int_0^t e^{-\tau}\sin(t-\tau)\,d\tau,$$

$$2\int_0^t e^{-\tau}\sin(t-\tau)\,d\tau = \left[e^{-\tau}\cos(t-\tau)\right]\Big|_0^t - \left[e^{-\tau}\sin(t-\tau)\right]\Big|_0^t,$$

$$2(f * g)(t) = e^{-t} - \cos(t) - 0 + \sin(t).$$

We conclude:
$$(f * g)(t) = \frac{1}{2} [e^{-t} + \sin(t) - \cos(t)].$$

Convolution solutions (Sect. 6.6).

- Convolution of two functions.
- ► Properties of convolutions.
- Laplace Transform of a convolution.
- Impulse response solution.
- Solution decomposition theorem.

Theorem (Properties)

For every piecewise continuous functions f, g, and h, hold:

- (i) Commutativity: f * g = g * f;
- (ii) Associativity: f * (g * h) = (f * g) * h;
- (iii) Distributivity: f * (g + h) = f * g + f * h;
- (iv) Neutral element: f * 0 = 0;
- (v) Identity element: $f * \delta = f$.

Theorem (Properties)

For every piecewise continuous functions f, g, and h, hold:

- (i) Commutativity: f * g = g * f;
- (ii) Associativity: f * (g * h) = (f * g) * h;
- (iii) Distributivity: f * (g + h) = f * g + f * h;
- (iv) Neutral element: f * 0 = 0;
- (v) Identity element: $f * \delta = f$.

Proof:

(v):
$$(f * \delta)(t) = \int_0^t f(\tau) \, \delta(t - \tau) \, d\tau$$

Theorem (Properties)

For every piecewise continuous functions f, g, and h, hold:

- (i) Commutativity: f * g = g * f;
- (ii) Associativity: f * (g * h) = (f * g) * h;
- (iii) Distributivity: f * (g + h) = f * g + f * h;
- (iv) Neutral element: f * 0 = 0;
- (v) Identity element: $f * \delta = f$.

Proof:

(v):
$$(f*\delta)(t) = \int_0^t f(\tau) \, \delta(t-\tau) \, d\tau = f(t).$$

Proof:

(1): Commutativity: f * g = g * f.

Proof:

(1): Commutativity: f * g = g * f.

The definition of convolution is,

$$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau.$$

Proof:

(1): Commutativity: f * g = g * f.

The definition of convolution is,

$$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)\,d\tau.$$

Change the integration variable: $\hat{\tau} = t - \tau$,

Proof:

(1): Commutativity: f * g = g * f.

The definition of convolution is,

$$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)\,d\tau.$$

Change the integration variable: $\hat{ au}=t- au$, hence $d\hat{ au}=-d au$,

Proof:

(1): Commutativity: f * g = g * f.

The definition of convolution is,

$$(f*g)(t) = \int_0^t f(\tau) g(t-\tau) d\tau.$$

Change the integration variable: $\hat{\tau}=t- au$, hence $d\hat{\tau}=-d au$,

$$(f*g)(t) = \int_t^0 f(t-\hat{\tau})g(\hat{\tau})(-1)\,d\hat{\tau}$$

Proof:

(1): Commutativity: f * g = g * f.

The definition of convolution is,

$$(f*g)(t) = \int_0^t f(\tau) g(t-\tau) d\tau.$$

Change the integration variable: $\hat{ au}=t- au$, hence $d\hat{ au}=-d au$,

$$(f*g)(t) = \int_t^0 f(t-\hat{\tau})g(\hat{\tau})(-1)d\hat{\tau}$$

$$(f * g)(t) = \int_0^t g(\hat{\tau}) f(t - \hat{\tau}) d\hat{\tau}$$

Proof:

(1): Commutativity: f * g = g * f.

The definition of convolution is,

$$(f*g)(t) = \int_0^t f(\tau) g(t-\tau) d\tau.$$

Change the integration variable: $\hat{\tau}=t-\tau$, hence $d\hat{\tau}=-d\tau$,

$$(f*g)(t) = \int_t^0 f(t-\hat{\tau})g(\hat{\tau})(-1)d\hat{\tau}$$

$$(f*g)(t) = \int_0^t g(\hat{\tau}) f(t - \hat{\tau}) d\hat{\tau}$$

We conclude: (f * g)(t) = (g * f)(t).

Convolution solutions (Sect. 6.6).

- Convolution of two functions.
- Properties of convolutions.
- ► Laplace Transform of a convolution.
- Impulse response solution.
- Solution decomposition theorem.

Theorem (Laplace Transform) If f, g have well-defined Laplace Transforms $\mathcal{L}[f]$, $\mathcal{L}[g]$, then

$$\mathcal{L}[f * g] = \mathcal{L}[f] \mathcal{L}[g].$$

Theorem (Laplace Transform) If f, g have well-defined Laplace Transforms $\mathcal{L}[f]$, $\mathcal{L}[g]$, then

$$\mathcal{L}[f * g] = \mathcal{L}[f] \mathcal{L}[g].$$

Proof: The key step is to interchange two integrals.

Theorem (Laplace Transform)

If f, g have well-defined Laplace Transforms $\mathcal{L}[f]$, $\mathcal{L}[g]$, then

$$\mathcal{L}[f * g] = \mathcal{L}[f] \mathcal{L}[g].$$

Proof: The key step is to interchange two integrals. We start we the product of the Laplace transforms,

$$\mathcal{L}[f]\,\mathcal{L}[g] = \left[\int_0^\infty e^{-st}f(t)\,dt\right] \left[\int_0^\infty e^{-s\tilde{t}}g(\tilde{t})\,d\tilde{t}\right],$$

Theorem (Laplace Transform)

If f , g have well-defined Laplace Transforms $\mathcal{L}[f]$, $\mathcal{L}[g]$, then

$$\mathcal{L}[f * g] = \mathcal{L}[f] \mathcal{L}[g].$$

Proof: The key step is to interchange two integrals. We start we the product of the Laplace transforms,

$$\mathcal{L}[f]\,\mathcal{L}[g] = \left[\int_0^\infty e^{-st}f(t)\,dt\right] \left[\int_0^\infty e^{-s\tilde{t}}g(\tilde{t})\,d\tilde{t}\right],$$

$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty e^{-s\tilde{t}} g(\tilde{t}) \left(\int_0^\infty e^{-st} f(t) dt \right) d\tilde{t},$$

Theorem (Laplace Transform)

If f , g have well-defined Laplace Transforms $\mathcal{L}[f]$, $\mathcal{L}[g]$, then

$$\mathcal{L}[f*g] = \mathcal{L}[f]\mathcal{L}[g].$$

Proof: The key step is to interchange two integrals. We start we the product of the Laplace transforms,

$$\begin{split} \mathcal{L}[f]\,\mathcal{L}[g] &= \left[\int_0^\infty e^{-st}f(t)\,dt\right] \left[\int_0^\infty e^{-s\tilde{t}}g(\tilde{t})\,d\tilde{t}\right], \\ \mathcal{L}[f]\,\mathcal{L}[g] &= \int_0^\infty e^{-s\tilde{t}}g(\tilde{t}) \bigg(\int_0^\infty e^{-st}f(t)\,dt\bigg)\,d\tilde{t}, \\ \mathcal{L}[f]\,\mathcal{L}[g] &= \int_0^\infty g(\tilde{t}) \bigg(\int_0^\infty e^{-s(t+\tilde{t})}f(t)\,dt\bigg)\,d\tilde{t}. \end{split}$$

Proof: Recall:
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty g(\tilde{t}) \left(\int_0^\infty e^{-s(t+\tilde{t})} f(t) dt \right) d\tilde{t}.$$

Proof: Recall:
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty g(\tilde{t}) \left(\int_0^\infty e^{-s(t+\tilde{t})} f(t) dt \right) d\tilde{t}$$
.

Change variables: $\tau = t + \tilde{t}$,

Proof: Recall:
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty g(\tilde{t}) \left(\int_0^\infty e^{-s(t+\tilde{t})} f(t) \, dt \right) d\tilde{t}$$
.

Change variables: $\tau = t + \tilde{t}$, hence $d\tau = dt$;

Proof: Recall:
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty g(\tilde{t}) \left(\int_0^\infty e^{-s(t+\tilde{t})} f(t) dt \right) d\tilde{t}$$
.

Change variables: $\tau = t + \tilde{t}$, hence $d\tau = dt$;

$$\mathcal{L}[f]\,\mathcal{L}[g] = \int_0^\infty g(\tilde{t}) \Big(\int_{\tilde{t}}^\infty e^{-s\tau} f(\tau - \tilde{t}) \,d\tau \Big) \,d\tilde{t}.$$

Proof: Recall:
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty g(\tilde{t}) \left(\int_0^\infty e^{-s(t+\tilde{t})} f(t) \, dt \right) d\tilde{t}$$
.

Change variables: $\tau = t + \tilde{t}$, hence $d\tau = dt$;

$$\mathcal{L}[f]\,\mathcal{L}[g] = \int_0^\infty g(\tilde{t}) \Big(\int_{\tilde{t}}^\infty e^{-\mathsf{s}\tau} f(\tau - \tilde{t}) \,d\tau \Big) \,d\tilde{t}.$$

$$\mathcal{L}[f] \, \mathcal{L}[g] = \int_0^\infty \int_{ ilde{t}}^\infty e^{-s\tau} \, g(ilde{t}) \, f(\tau - ilde{t}) \, d\tau \, d ilde{t}.$$

Proof: Recall:
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty g(\tilde{t}) \left(\int_0^\infty e^{-s(t+\tilde{t})} f(t) dt \right) d\tilde{t}$$
.

Change variables: $\tau = t + \tilde{t}$, hence $d\tau = dt$;

$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty g(\tilde{t}) \left(\int_{\tilde{t}}^\infty e^{-s\tau} f(\tau - \tilde{t}) d\tau \right) d\tilde{t}.$$

$$\mathcal{L}[f] \, \mathcal{L}[g] = \int_0^\infty \int_{\tilde{t}}^\infty e^{-s\tau} \, g(\tilde{t}) \, f(\tau - \tilde{t}) \, d\tau \, d\tilde{t}.$$

The key step: Switch the order of integration.

Proof: Recall:
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty g(\tilde{t}) \left(\int_0^\infty e^{-s(t+\tilde{t})} f(t) \, dt \right) d\tilde{t}$$
.

Change variables: $\tau = t + \tilde{t}$, hence $d\tau = dt$;

$$\mathcal{L}[f]\,\mathcal{L}[g] = \int_0^\infty g(\tilde{t}) \Big(\int_{\tilde{t}}^\infty e^{-s\tau} f(\tau - \tilde{t})\,d\tau\Big)\,d\tilde{t}.$$

$$\mathcal{L}[f]\,\mathcal{L}[g] = \int_0^\infty \int_{ ilde{t}}^\infty e^{-s au}\,g(ilde{t})\,f(au- ilde{t})\,d au\,d ilde{t}.$$

The key step: Switch the order of integration.

Proof: Recall:
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty g(\tilde{t}) \left(\int_0^\infty e^{-s(t+\tilde{t})} f(t) \, dt \right) d\tilde{t}$$
.

Change variables: $\tau = t + \tilde{t}$, hence $d\tau = dt$;

$$\mathcal{L}[f]\,\mathcal{L}[g] = \int_0^\infty g(\tilde{t}) \Big(\int_{\tilde{t}}^\infty e^{-s\tau} f(\tau - \tilde{t})\,d\tau\Big)\,d\tilde{t}.$$

$$\mathcal{L}[f]\,\mathcal{L}[g] = \int_0^\infty \int_{ ilde{t}}^\infty e^{-s au}\,g(ilde{t})\,f(au- ilde{t})\,d au\,d ilde{t}.$$

The key step: Switch the order of integration.

$$\mathcal{L}[f]\,\mathcal{L}[g] = \int_0^\infty \int_0^\tau e^{-s\tau}\,g(\tilde{t})\,f(\tau-\tilde{t})\,d\tilde{t}\,d\tau.$$

Proof: Recall:
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty \int_0^\tau e^{-s\tau} g(\tilde{t}) f(\tau - \tilde{t}) d\tilde{t} d\tau$$
.

Proof: Recall:
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty \int_0^\tau e^{-s\tau} g(\tilde{t}) f(\tau - \tilde{t}) d\tilde{t} d\tau$$
.

$$\mathcal{L}[f] \, \mathcal{L}[g] = \int_0^\infty e^{-s\tau} \left(\int_0^\tau g(\tilde{t}) \, f(\tau - \tilde{t}) \, d\tilde{t} \right) d\tau,$$

Proof: Recall:
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty \int_0^\tau e^{-s\tau} g(\tilde{t}) f(\tau - \tilde{t}) d\tilde{t} d\tau$$
.

$$\mathcal{L}[f]\,\mathcal{L}[g] = \int_0^\infty \mathrm{e}^{-s au}\left(\int_0^ au g(ilde{t})\,f(au- ilde{t})\,d ilde{t}
ight)d au,$$
 $\mathcal{L}[f]\,\mathcal{L}[g] = \int_0^\infty \mathrm{e}^{-s au}(g*f)(au)\,d au$

Proof: Recall:
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty \int_0^\tau e^{-s\tau} g(\tilde{t}) f(\tau - \tilde{t}) d\tilde{t} d\tau$$
.

$$egin{align} \mathcal{L}[f]\,\mathcal{L}[g] &= \int_0^\infty e^{-s au} \left(\int_0^ au g(ilde{t})\,f(au- ilde{t})\,d ilde{t}
ight) d au, \ & \mathcal{L}[f]\,\mathcal{L}[g] &= \int_0^\infty e^{-s au}(g*f)(au)\,d au \ & \mathcal{L}[f]\,\mathcal{L}[g] &= \mathcal{L}[g*f] \end{split}$$

Proof: Recall:
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty \int_0^\tau e^{-s\tau} g(\tilde{t}) f(\tau - \tilde{t}) d\tilde{t} d\tau$$
.

$$egin{align} \mathcal{L}[f]\,\mathcal{L}[g] &= \int_0^\infty e^{-s au} \left(\int_0^ au g(ilde{t})\,f(au- ilde{t})\,d ilde{t}
ight) d au, \ & \mathcal{L}[f]\,\mathcal{L}[g] &= \int_0^\infty e^{-s au} (g*f)(au)\,d au \ & \mathcal{L}[f]\,\mathcal{L}[g] &= \mathcal{L}[g*f] \end{split}$$

We conclude:
$$\mathcal{L}[f * g] = \mathcal{L}[f] \mathcal{L}[g]$$
.

Convolution solutions (Sect. 6.6).

- Convolution of two functions.
- Properties of convolutions.
- Laplace Transform of a convolution.
- ► Impulse response solution.
- Solution decomposition theorem.

Definition

The *impulse response solution* is the function y_{δ} solution of the IVP

$$y_\delta''+a_1\,y_\delta'+a_0\,y_\delta=\delta(t-c),\quad y_\delta(0)=0,\quad y_\delta'(0)=0,\quad c\in\mathbb{R}.$$

Definition

The *impulse response solution* is the function y_{δ} solution of the IVP

$$y_\delta''+a_1\,y_\delta'+a_0\,y_\delta=\delta(t-c),\quad y_\delta(0)=0,\quad y_\delta'(0)=0,\quad c\in\mathbb{R}.$$

Example

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0.$$

Definition

The *impulse response solution* is the function y_{δ} solution of the IVP

$$y_\delta''+a_1\,y_\delta'+a_0\,y_\delta=\delta(t-c),\quad y_\delta(0)=0,\quad y_\delta'(0)=0,\quad c\in\mathbb{R}.$$

Example

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0.$$

Solution:
$$\mathcal{L}[y_{\delta}''] + 2\mathcal{L}[y_{\delta}'] + 2\mathcal{L}[y_{\delta}] = \mathcal{L}[\delta(t-c)].$$

Definition

The *impulse response solution* is the function y_{δ} solution of the IVP

$$y_\delta''+a_1\,y_\delta'+a_0\,y_\delta=\delta(t-c),\quad y_\delta(0)=0,\quad y_\delta'(0)=0,\quad c\in\mathbb{R}.$$

Example

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0.$$

Solution:
$$\mathcal{L}[y_{\delta}''] + 2\mathcal{L}[y_{\delta}'] + 2\mathcal{L}[y_{\delta}] = \mathcal{L}[\delta(t-c)].$$

$$(s^2 + 2s + 2) \mathcal{L}[y_{\delta}] = e^{-cs}$$

Definition

The *impulse response solution* is the function y_{δ} solution of the IVP

$$y_\delta''+a_1\,y_\delta'+a_0\,y_\delta=\delta(t-c),\quad y_\delta(0)=0,\quad y_\delta'(0)=0,\quad c\in\mathbb{R}.$$

Example

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0.$$

Solution:
$$\mathcal{L}[y_{\delta}''] + 2\mathcal{L}[y_{\delta}'] + 2\mathcal{L}[y_{\delta}] = \mathcal{L}[\delta(t-c)].$$

$$(s^2+2s+2)\mathcal{L}[y_\delta]=e^{-cs} \quad \Rightarrow \quad \mathcal{L}[y_\delta]=\frac{e^{-cs}}{(s^2+2s+2)}.$$

Example

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall:
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s^2 + 2s + 2)}$$
.

Example

Find the impulse response solution of the IVP

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall:
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s^2 + 2s + 2)}$$
.

Find the roots of the denominator,

$$s^2 + 2s + 2 = 0$$

Example

Find the impulse response solution of the IVP

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall:
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s^2 + 2s + 2)}$$
.

Find the roots of the denominator,

$$s^2 + 2s + 2 = 0$$
 \Rightarrow $s_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 8} \right]$

Example

Find the impulse response solution of the IVP

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall:
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s^2 + 2s + 2)}$$
.

Find the roots of the denominator,

$$s^2 + 2s + 2 = 0$$
 \Rightarrow $s_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 8} \right]$

Complex roots.

Example

Find the impulse response solution of the IVP

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall:
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s^2 + 2s + 2)}$$
.

Find the roots of the denominator,

$$s^2 + 2s + 2 = 0$$
 \Rightarrow $s_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 8} \right]$

Example

Find the impulse response solution of the IVP

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall:
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s^2 + 2s + 2)}$$
.

Find the roots of the denominator,

$$s^2 + 2s + 2 = 0$$
 \Rightarrow $s_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 8} \right]$

$$s^{2} + 2s + 2 = \left[s^{2} + 2\left(\frac{2}{2}\right)s + 1\right] - 1 + 2$$

Example

Find the impulse response solution of the IVP

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall:
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s^2 + 2s + 2)}$$
.

Find the roots of the denominator,

$$s^2 + 2s + 2 = 0$$
 \Rightarrow $s_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 8} \right]$

$$s^{2} + 2s + 2 = \left[s^{2} + 2\left(\frac{2}{2}\right)s + 1\right] - 1 + 2 = (s+1)^{2} + 1.$$

Example

Find the impulse response solution of the IVP

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall:
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s^2 + 2s + 2)}$$
.

Find the roots of the denominator,

$$s^2 + 2s + 2 = 0$$
 \Rightarrow $s_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 8} \right]$

$$s^2 + 2s + 2 = \left[s^2 + 2\left(\frac{2}{2}\right)s + 1\right] - 1 + 2 = (s+1)^2 + 1.$$

Therefore,
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s+1)^2+1}.$$

Example

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall:
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s+1)^2 + 1}$$
.

Example

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall:
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s+1)^2 + 1}$$
.

$$\text{Recall:} \ \ \mathcal{L}[\sin(t)] = \frac{1}{s^2 + 1},$$

Example

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall:
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s+1)^2 + 1}$$
.

Recall:
$$\mathcal{L}[\sin(t)] = \frac{1}{s^2 + 1}$$
, and $\mathcal{L}[f](s - c) = \mathcal{L}[e^{ct} f(t)]$.

Example

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall:
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s+1)^2 + 1}$$
.

Recall:
$$\mathcal{L}[\sin(t)] = \frac{1}{s^2 + 1}$$
, and $\mathcal{L}[f](s - c) = \mathcal{L}[e^{ct} f(t)]$.

$$\frac{1}{(s+1)^2+1} = \mathcal{L}[e^{-t}\,\sin(t)]$$

Example

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall:
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s+1)^2 + 1}$$
.

Recall:
$$\mathcal{L}[\sin(t)] = \frac{1}{s^2 + 1}$$
, and $\mathcal{L}[f](s - c) = \mathcal{L}[e^{ct} f(t)]$.

$$\frac{1}{(s+1)^2+1} = \mathcal{L}[e^{-t}\,\sin(t)] \quad \Rightarrow \quad \mathcal{L}[y_\delta] = e^{-cs}\,\mathcal{L}[e^{-t}\,\sin(t)].$$

Example

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall:
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s+1)^2 + 1}$$
.

Recall:
$$\mathcal{L}[\sin(t)] = \frac{1}{s^2 + 1}$$
, and $\mathcal{L}[f](s - c) = \mathcal{L}[e^{ct} f(t)]$.

$$\frac{1}{(s+1)^2+1} = \mathcal{L}[e^{-t}\,\sin(t)] \quad \Rightarrow \quad \mathcal{L}[y_\delta] = e^{-cs}\,\mathcal{L}[e^{-t}\,\sin(t)].$$

Since
$$e^{-cs} \mathcal{L}[f](s) = \mathcal{L}[u(t-c) f(t-c)],$$

Example

Find the impulse response solution of the IVP

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall:
$$\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s+1)^2 + 1}$$
.

Recall:
$$\mathcal{L}[\sin(t)] = \frac{1}{s^2 + 1}$$
, and $\mathcal{L}[f](s - c) = \mathcal{L}[e^{ct} f(t)]$.

$$rac{1}{(s+1)^2+1}=\mathcal{L}[e^{-t}\,\sin(t)]\quad\Rightarrow\quad\mathcal{L}[y_\delta]=e^{-cs}\,\mathcal{L}[e^{-t}\,\sin(t)].$$

Since
$$e^{-cs} \mathcal{L}[f](s) = \mathcal{L}[u(t-c) f(t-c)],$$

we conclude
$$y_{\delta}(t) = u(t-c) e^{-(t-c)} \sin(t-c)$$
.

<1

Convolution solutions (Sect. 6.6).

- Convolution of two functions.
- Properties of convolutions.
- Laplace Transform of a convolution.
- Impulse response solution.
- ► Solution decomposition theorem.

Theorem (Solution decomposition)

The solution y to the IVP

$$y'' + a_1 y' + a_0 y = g(t), \quad y(0) = y_0, \quad y'(0) = y_1,$$

can be decomposed as

$$y(t) = y_h(t) + (y_\delta * g)(t),$$

where y_h is the solution of the homogeneous IVP

$$y_h'' + a_1 y_h' + a_0 y_h = 0, \quad y_h(0) = y_0, \quad y_h'(0) = y_1,$$

and y_{δ} is the impulse response solution, that is,

$$y_{\delta}'' + a_1 y_{\delta}' + a_0 y_{\delta} = \delta(t), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0.$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution:
$$\mathcal{L}[y''] + 2\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[\sin(at)],$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution:
$$\mathcal{L}[y''] + 2\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[\sin(at)]$$
, and recall,

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s(1) - (-1),$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution:
$$\mathcal{L}[y''] + 2\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[\sin(at)]$$
, and recall,

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s(1) - (-1), \qquad \mathcal{L}[y'] = s \mathcal{L}[y] - 1.$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution:
$$\mathcal{L}[y''] + 2\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[\sin(at)]$$
, and recall,

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s(1) - (-1), \qquad \mathcal{L}[y'] = s \mathcal{L}[y] - 1.$$

$$(s^2 + 2s + 2) \mathcal{L}[y] - s + 1 - 2 = \mathcal{L}[\sin(at)].$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution:
$$\mathcal{L}[y''] + 2\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[\sin(at)]$$
, and recall,

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s(1) - (-1), \qquad \mathcal{L}[y'] = s \mathcal{L}[y] - 1.$$

$$(s^2 + 2s + 2) \mathcal{L}[y] - s + 1 - 2 = \mathcal{L}[\sin(at)].$$

$$\mathcal{L}[y] = \frac{(s+1)}{(s^2+2s+2)} + \frac{1}{(s^2+2s+2)} \mathcal{L}[\sin(at)].$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2+2s+2)} + \frac{1}{(s^2+2s+2)} \mathcal{L}[\sin(at)].$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2+2s+2)} + \frac{1}{(s^2+2s+2)} \mathcal{L}[\sin(at)].$$

But:
$$\mathcal{L}[y_h] = \frac{(s+1)}{(s^2+2s+2)}$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2+2s+2)} + \frac{1}{(s^2+2s+2)} \mathcal{L}[\sin(at)].$$

But:
$$\mathcal{L}[y_h] = \frac{(s+1)}{(s^2+2s+2)} = \frac{(s+1)}{(s+1)^2+1}$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2+2s+2)} + \frac{1}{(s^2+2s+2)} \mathcal{L}[\sin(at)].$$

But:
$$\mathcal{L}[y_h] = \frac{(s+1)}{(s^2+2s+2)} = \frac{(s+1)}{(s+1)^2+1} = \mathcal{L}[e^{-t}\cos(t)],$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2+2s+2)} + \frac{1}{(s^2+2s+2)} \mathcal{L}[\sin(at)].$$

But:
$$\mathcal{L}[y_h] = \frac{(s+1)}{(s^2+2s+2)} = \frac{(s+1)}{(s+1)^2+1} = \mathcal{L}[e^{-t}\cos(t)],$$

and:
$$\mathcal{L}[y_\delta] = \frac{1}{(s^2+2s+2)}$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2+2s+2)} + \frac{1}{(s^2+2s+2)} \mathcal{L}[\sin(at)].$$

But:
$$\mathcal{L}[y_h] = \frac{(s+1)}{(s^2+2s+2)} = \frac{(s+1)}{(s+1)^2+1} = \mathcal{L}[e^{-t}\cos(t)],$$

and:
$$\mathcal{L}[y_\delta] = \frac{1}{(s^2 + 2s + 2)} = \frac{1}{(s+1)^2 + 1}$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2+2s+2)} + \frac{1}{(s^2+2s+2)} \mathcal{L}[\sin(at)].$$

But:
$$\mathcal{L}[y_h] = \frac{(s+1)}{(s^2+2s+2)} = \frac{(s+1)}{(s+1)^2+1} = \mathcal{L}[e^{-t}\cos(t)],$$

and:
$$\mathcal{L}[y_{\delta}] = \frac{1}{(s^2 + 2s + 2)} = \frac{1}{(s+1)^2 + 1} = \mathcal{L}[e^{-t} \sin(t)].$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2+2s+2)} + \frac{1}{(s^2+2s+2)} \mathcal{L}[\sin(at)].$$

But:
$$\mathcal{L}[y_h] = \frac{(s+1)}{(s^2+2s+2)} = \frac{(s+1)}{(s+1)^2+1} = \mathcal{L}[e^{-t}\cos(t)],$$

and:
$$\mathcal{L}[y_{\delta}] = \frac{1}{(s^2+2s+2)} = \frac{1}{(s+1)^2+1} = \mathcal{L}[e^{-t}\,\sin(t)].$$
 So,

$$\mathcal{L}[y] = \mathcal{L}[y_h] + \mathcal{L}[y_\delta] \mathcal{L}[g(t)]$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2+2s+2)} + \frac{1}{(s^2+2s+2)} \mathcal{L}[\sin(at)].$$

But:
$$\mathcal{L}[y_h] = \frac{(s+1)}{(s^2+2s+2)} = \frac{(s+1)}{(s+1)^2+1} = \mathcal{L}[e^{-t}\cos(t)],$$

and:
$$\mathcal{L}[y_{\delta}] = \frac{1}{(s^2 + 2s + 2)} = \frac{1}{(s+1)^2 + 1} = \mathcal{L}[e^{-t} \sin(t)]$$
. So,

$$\mathcal{L}[y] = \mathcal{L}[y_h] + \mathcal{L}[y_\delta] \mathcal{L}[g(t)] \quad \Rightarrow \quad y(t) = y_h(t) + (y_\delta * g)(t),$$

Example

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2+2s+2)} + \frac{1}{(s^2+2s+2)} \mathcal{L}[\sin(at)].$$

But:
$$\mathcal{L}[y_h] = \frac{(s+1)}{(s^2+2s+2)} = \frac{(s+1)}{(s+1)^2+1} = \mathcal{L}[e^{-t}\cos(t)],$$

and:
$$\mathcal{L}[y_{\delta}] = \frac{1}{(s^2 + 2s + 2)} = \frac{1}{(s+1)^2 + 1} = \mathcal{L}[e^{-t} \sin(t)]$$
. So,

$$\mathcal{L}[y] = \mathcal{L}[y_h] + \mathcal{L}[y_\delta] \mathcal{L}[g(t)] \quad \Rightarrow \quad y(t) = y_h(t) + (y_\delta * g)(t),$$

So:
$$y(t) = e^{-t} \cos(t) + \int_0^t e^{-\tau} \sin(\tau) \sin[a(t-\tau)] d\tau$$
.

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - sy_0 - y_1,$$

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - sy_0 - y_1, \qquad \mathcal{L}[y'] = s \mathcal{L}[y] - y_0.$$

$$\mathcal{L}[y''] = s^2 \, \mathcal{L}[y] - s y_0 - y_1, \qquad \mathcal{L}[y'] = s \, \mathcal{L}[y] - y_0.$$

$$(s^2 + a_1 s + a_0) \mathcal{L}[y] - sy_0 - y_1 - a_1 y_0 = \mathcal{L}[g(t)].$$

$$\mathcal{L}[y''] = s^2 \, \mathcal{L}[y] - s y_0 - y_1, \qquad \mathcal{L}[y'] = s \, \mathcal{L}[y] - y_0.$$

$$(s^2 + a_1 s + a_0) \mathcal{L}[y] - sy_0 - y_1 - a_1 y_0 = \mathcal{L}[g(t)].$$

$$\mathcal{L}[y] = rac{(s+a_1)y_0 + y_1}{(s^2 + a_1 s + a_0)} + rac{1}{(s^2 + a_1 s + a_0)} \mathcal{L}[g(t)].$$

$$\mathcal{L}[y''] = s^2\,\mathcal{L}[y] - sy_0 - y_1, \qquad \mathcal{L}[y'] = s\,\mathcal{L}[y] - y_0.$$

$$(s^2 + a_1s + a_0) \mathcal{L}[y] - sy_0 - y_1 - a_1y_0 = \mathcal{L}[g(t)].$$

$$\mathcal{L}[y] = rac{(s+a_1)y_0 + y_1}{(s^2 + a_1 s + a_0)} + rac{1}{(s^2 + a_1 s + a_0)} \mathcal{L}[g(t)].$$

Recall:
$$\mathcal{L}[y_h] = \frac{(s+a_1)y_0 + y_1}{(s^2 + a_1s + a_0)}$$
,

$$\mathcal{L}[y''] = s^2 \, \mathcal{L}[y] - s y_0 - y_1, \qquad \mathcal{L}[y'] = s \, \mathcal{L}[y] - y_0.$$

$$(s^2 + a_1s + a_0) \mathcal{L}[y] - sy_0 - y_1 - a_1y_0 = \mathcal{L}[g(t)].$$

$$\mathcal{L}[y] = \frac{(s+a_1)y_0 + y_1}{(s^2 + a_1s + a_0)} + \frac{1}{(s^2 + a_1s + a_0)} \mathcal{L}[g(t)].$$

Recall:
$$\mathcal{L}[y_h] = \frac{(s+a_1)y_0 + y_1}{(s^2 + a_1 s + a_0)}$$
, and $\mathcal{L}[y_\delta] = \frac{1}{(s^2 + a_1 s + a_0)}$.

$$\mathcal{L}[y''] = s^2 \, \mathcal{L}[y] - s y_0 - y_1, \qquad \mathcal{L}[y'] = s \, \mathcal{L}[y] - y_0.$$

$$(s^2 + a_1s + a_0) \mathcal{L}[y] - sy_0 - y_1 - a_1y_0 = \mathcal{L}[g(t)].$$

$$\mathcal{L}[y] = \frac{(s+a_1)y_0 + y_1}{(s^2 + a_1s + a_0)} + \frac{1}{(s^2 + a_1s + a_0)} \mathcal{L}[g(t)].$$

Recall:
$$\mathcal{L}[y_h] = \frac{(s+a_1)y_0 + y_1}{(s^2 + a_1 s + a_0)}$$
, and $\mathcal{L}[y_\delta] = \frac{1}{(s^2 + a_1 s + a_0)}$.

Since,
$$\mathcal{L}[y] = \mathcal{L}[y_h] + \mathcal{L}[y_\delta] \mathcal{L}[g(t)]$$
,

$$\mathcal{L}[y''] = s^2\,\mathcal{L}[y] - sy_0 - y_1, \qquad \mathcal{L}[y'] = s\,\mathcal{L}[y] - y_0.$$

$$(s^2 + a_1 s + a_0) \mathcal{L}[y] - sy_0 - y_1 - a_1 y_0 = \mathcal{L}[g(t)].$$

$$\mathcal{L}[y] = \frac{(s+a_1)y_0 + y_1}{(s^2 + a_1 s + a_0)} + \frac{1}{(s^2 + a_1 s + a_0)} \mathcal{L}[g(t)].$$

Recall:
$$\mathcal{L}[y_h] = \frac{(s+a_1)y_0 + y_1}{(s^2 + a_1 s + a_0)}$$
, and $\mathcal{L}[y_\delta] = \frac{1}{(s^2 + a_1 s + a_0)}$.

Since,
$$\mathcal{L}[y] = \mathcal{L}[y_h] + \mathcal{L}[y_\delta] \mathcal{L}[g(t)]$$
, so $y(t) = y_h(t) + (y_\delta * g)(t)$.

$$\mathcal{L}[y''] = s^2 \, \mathcal{L}[y] - s y_0 - y_1, \qquad \mathcal{L}[y'] = s \, \mathcal{L}[y] - y_0.$$

$$(s^2 + a_1 s + a_0) \mathcal{L}[y] - sy_0 - y_1 - a_1 y_0 = \mathcal{L}[g(t)].$$

$$\mathcal{L}[y] = \frac{(s+a_1)y_0 + y_1}{(s^2 + a_1 s + a_0)} + \frac{1}{(s^2 + a_1 s + a_0)} \mathcal{L}[g(t)].$$

Recall:
$$\mathcal{L}[y_h] = \frac{(s+a_1)y_0 + y_1}{(s^2 + a_1 s + a_0)}$$
, and $\mathcal{L}[y_\delta] = \frac{1}{(s^2 + a_1 s + a_0)}$.

Since,
$$\mathcal{L}[y] = \mathcal{L}[y_h] + \mathcal{L}[y_\delta] \mathcal{L}[g(t)]$$
, so $y(t) = y_h(t) + (y_\delta * g)(t)$.

Equivalently:
$$y(t) = y_h(t) + \int_0^t y_\delta(\tau)g(t-\tau)\,d\tau$$
.

Systems of linear differential equations (Sect. 7.1).

- \triangleright $n \times n$ systems of linear differential equations.
- Second order equations and first order systems.
- Main concepts from Linear Algebra.

Remark: Many physical systems must be described with more than one differential equation.

Remark: Many physical systems must be described with more than one differential equation.

Example

Newton's law of motion for a particle of mass m moving in space.

Remark: Many physical systems must be described with more than one differential equation.

Example

Newton's law of motion for a particle of mass m moving in space. The unknown and the force are vector-valued functions,

Remark: Many physical systems must be described with more than one differential equation.

Example

Newton's law of motion for a particle of mass m moving in space. The unknown and the force are vector-valued functions,

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix},$$

Remark: Many physical systems must be described with more than one differential equation.

Example

Newton's law of motion for a particle of mass m moving in space. The unknown and the force are vector-valued functions,

$$\mathbf{x}(t) = egin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}, \qquad \mathbf{F}(t) = egin{bmatrix} F_1(t,\mathbf{x}) \\ F_2(t,\mathbf{x}) \\ F_3(t,\mathbf{x}) \end{bmatrix}.$$

Remark: Many physical systems must be described with more than one differential equation.

Example

Newton's law of motion for a particle of mass m moving in space. The unknown and the force are vector-valued functions,

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}, \qquad \mathbf{F}(t) = \begin{bmatrix} F_1(t, \mathbf{x}) \\ F_2(t, \mathbf{x}) \\ F_3(t, \mathbf{x}) \end{bmatrix}.$$

The equation of motion are: $m \frac{d^2 \mathbf{x}}{dt^2} = \mathbf{F}(t, \mathbf{x}(t)).$

Remark: Many physical systems must be described with more than one differential equation.

Example

Newton's law of motion for a particle of mass m moving in space. The unknown and the force are vector-valued functions,

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}, \qquad \mathbf{F}(t) = \begin{bmatrix} F_1(t, \mathbf{x}) \\ F_2(t, \mathbf{x}) \\ F_3(t, \mathbf{x}) \end{bmatrix}.$$

The equation of motion are: $m \frac{d^2 \mathbf{x}}{dt^2} = \mathbf{F}(t, \mathbf{x}(t))$. These are three differential equations.

$$m\frac{d^2x_1}{dt^2} = F_1(t, \mathbf{x}(t)), \quad m\frac{d^2x_2}{dt^2} = F_2(t, \mathbf{x}(t)), \quad m\frac{d^2x_3}{dt^2} = F_3(t, \mathbf{x}(t)).$$

Definition

An $n \times n$ system of linear first order differential equations is the following: Given the functions a_{ij} , $g_i:[a,b] \to \mathbb{R}$, where $i,j=1,\cdots,n$, find n functions $x_j:[a,b] \to \mathbb{R}$ solutions of the n linear differential equations

$$x'_1 = a_{11}(t) x_1 + \dots + a_{1n}(t) x_n + g_1(t)$$

 \vdots
 $x'_n = a_{n1}(t) x_1 + \dots + a_{nn}(t) x_n + g_n(t).$

The system is called *homogeneous* iff the source functions satisfy that $g_1 = \cdots = g_n = 0$.

Example

n=1: Single differential equation: Find $x_1(t)$ solution of

$$x_1' = a_{11}(t) x_1 + g_1(t).$$

Example

n=1: Single differential equation: Find $x_1(t)$ solution of

$$x_1' = a_{11}(t) x_1 + g_1(t).$$

Example

n=2: 2 × 2 linear system: Find $x_1(t)$ and $x_2(t)$ solutions of

$$x'_1 = a_{11}(t) x_1 + a_{12}(t) x_2 + g_1(t),$$

 $x'_2 = a_{21}(t) x_1 + a_{22}(t) x_2 + g_2(t).$

Example

n=1: Single differential equation: Find $x_1(t)$ solution of

$$x_1' = a_{11}(t) x_1 + g_1(t).$$

Example

n=2: 2 × 2 linear system: Find $x_1(t)$ and $x_2(t)$ solutions of

$$x'_1 = a_{11}(t) x_1 + a_{12}(t) x_2 + g_1(t),$$

 $x'_2 = a_{21}(t) x_1 + a_{22}(t) x_2 + g_2(t).$

Example

n=2: 2 × 2 homogeneous linear system: Find $x_1(t)$ and $x_2(t)$,

$$x'_1 = a_{11}(t) x_1 + a_{12}(t) x_2$$

 $x'_2 = a_{21}(t) x_1 + a_{22}(t) x_2$.

Example

Find $x_1(t)$, $x_2(t)$ solutions of the 2 × 2, constant coefficients, homogeneous system

$$x_1' = x_1 - x_2,$$

 $x_2' = -x_1 + x_2.$

Example

Find
$$x_1(t)$$
, $x_2(t)$ solutions of the 2×2 , $x_1' = x_1 - x_2$, constant coefficients, homogeneous system $x_2' = -x_1 + x_2$.

Solution: Add up the equations, and subtract the equations,

Example

Find
$$x_1(t)$$
, $x_2(t)$ solutions of the 2×2 , $x_1' = x_1 - x_2$, constant coefficients, homogeneous system $x_2' = -x_1 + x_2$.

Solution: Add up the equations, and subtract the equations,

$$(x_1+x_2)'=0,$$

Example

Find
$$x_1(t)$$
, $x_2(t)$ solutions of the 2 × 2, $x_1' = x_1 - x_2$, constant coefficients, homogeneous system $x_2' = -x_1 + x_2$.

Solution: Add up the equations, and subtract the equations,

$$(x_1+x_2)'=0,$$
 $(x_1-x_2)'=2(x_1-x_2).$

Example

Find
$$x_1(t)$$
, $x_2(t)$ solutions of the 2×2 , $x_1' = x_1 - x_2$, constant coefficients, homogeneous system $x_2' = -x_1 + x_2$.

Solution: Add up the equations, and subtract the equations,

$$(x_1 + x_2)' = 0,$$
 $(x_1 - x_2)' = 2(x_1 - x_2).$

Introduce the unknowns $v = x_1 + x_2$,

Example

Find
$$x_1(t)$$
, $x_2(t)$ solutions of the 2×2 , $x_1' = x_1 - x_2$, constant coefficients, homogeneous system $x_2' = -x_1 + x_2$.

Solution: Add up the equations, and subtract the equations,

$$(x_1 + x_2)' = 0,$$
 $(x_1 - x_2)' = 2(x_1 - x_2).$

Example

Find
$$x_1(t)$$
, $x_2(t)$ solutions of the 2×2 , $x_1' = x_1 - x_2$, constant coefficients, homogeneous system $x_2' = -x_1 + x_2$.

Solution: Add up the equations, and subtract the equations,

$$(x_1 + x_2)' = 0,$$
 $(x_1 - x_2)' = 2(x_1 - x_2).$

$$v'=0$$

Example

Find
$$x_1(t)$$
, $x_2(t)$ solutions of the 2 × 2, $x_1' = x_1 - x_2$, constant coefficients, homogeneous system $x_2' = -x_1 + x_2$.

Solution: Add up the equations, and subtract the equations,

$$(x_1 + x_2)' = 0,$$
 $(x_1 - x_2)' = 2(x_1 - x_2).$

$$v'=0 \Rightarrow v=c_1,$$

Example

Find
$$x_1(t)$$
, $x_2(t)$ solutions of the 2 × 2, $x_1' = x_1 - x_2$, constant coefficients, homogeneous system $x_2' = -x_1 + x_2$.

Solution: Add up the equations, and subtract the equations,

$$(x_1 + x_2)' = 0,$$
 $(x_1 - x_2)' = 2(x_1 - x_2).$

$$v'=0 \Rightarrow v=c_1,$$

$$w' = 2w$$

Example

Find
$$x_1(t)$$
, $x_2(t)$ solutions of the 2 × 2, $x_1' = x_1 - x_2$, constant coefficients, homogeneous system $x_2' = -x_1 + x_2$.

Solution: Add up the equations, and subtract the equations,

$$(x_1 + x_2)' = 0,$$
 $(x_1 - x_2)' = 2(x_1 - x_2).$

$$v'=0 \Rightarrow v=c_1,$$

$$w' = 2w \quad \Rightarrow \quad w = c_2 e^{2t}.$$

Example

Find $x_1(t)$, $x_2(t)$ solutions of the 2 × 2, $x_1' = x_1 - x_2$, constant coefficients, homogeneous system $x_2' = -x_1 + x_2$.

Solution: Add up the equations, and subtract the equations,

$$(x_1 + x_2)' = 0,$$
 $(x_1 - x_2)' = 2(x_1 - x_2).$

Introduce the unknowns $v = x_1 + x_2$, $w = x_1 - x_2$, then

$$v'=0 \quad \Rightarrow \quad v=c_1,$$

$$w' = 2w \quad \Rightarrow \quad w = c_2 e^{2t}.$$

Back to x_1 and x_2 :

Example

Find $x_1(t)$, $x_2(t)$ solutions of the 2 × 2, x_1' constant coefficients, homogeneous system x_2'

$$x'_1 = x_1 - x_2,$$

 $x'_2 = -x_1 + x_2.$

Solution: Add up the equations, and subtract the equations,

$$(x_1 + x_2)' = 0,$$
 $(x_1 - x_2)' = 2(x_1 - x_2).$

$$v'=0 \quad \Rightarrow \quad v=c_1,$$

$$w' = 2w \quad \Rightarrow \quad w = c_2 e^{2t}.$$

Back to
$$x_1$$
 and x_2 : $x_1 = \frac{1}{2}(v + w)$,

Example

Find $x_1(t)$, $x_2(t)$ solutions of the 2×2 , $x_1' = x_1 - x_2$, constant coefficients, homogeneous system $x_2' = -x_1 + x_2$.

Solution: Add up the equations, and subtract the equations,

$$(x_1 + x_2)' = 0,$$
 $(x_1 - x_2)' = 2(x_1 - x_2).$

$$v'=0 \Rightarrow v=c_1,$$

$$w'=2w \quad \Rightarrow \quad w=c_2e^{2t}.$$

Back to
$$x_1$$
 and x_2 : $x_1 = \frac{1}{2}(v + w), \quad x_2 = \frac{1}{2}(v - w).$

Example

Find $x_1(t)$, $x_2(t)$ solutions of the 2 × 2, constant coefficients, homogeneous system

$$x'_1 = x_1 - x_2,$$

 $x'_2 = -x_1 + x_2.$

Solution: Add up the equations, and subtract the equations,

$$(x_1 + x_2)' = 0,$$
 $(x_1 - x_2)' = 2(x_1 - x_2).$

$$v'=0 \Rightarrow v=c_1,$$

$$w' = 2w \quad \Rightarrow \quad w = c_2 e^{2t}.$$

Back to
$$x_1$$
 and x_2 : $x_1 = \frac{1}{2}(v + w), \quad x_2 = \frac{1}{2}(v - w).$

We conclude:
$$x_1(t) = \frac{1}{2}(c_1 + c_2e^{2t}), \qquad x_2(t) = \frac{1}{2}(c_1 - c_2e^{2t}).$$

Systems of linear differential equations (Sect. 7.1).

- \triangleright $n \times n$ systems of linear differential equations.
- ► Second order equations and first order systems.
- Main concepts from Linear Algebra.

Theorem (Reduction to first order)

Every solution y to the second order linear equation

$$y'' + p(t)y' + q(t)y = g(t), (1)$$

defines a solution $x_1 = y$ and $x_2 = y'$ of the 2×2 first order linear differential system

$$x_1' = x_2, \tag{2}$$

$$x_2' = -q(t)x_1 - p(t)x_2 + g(t). (3)$$

Conversely, every solution x_1 , x_2 of the 2×2 first order linear system in Eqs. (2)-(3) defines a solution $y = x_1$ of the second order differential equation in (1).

$$(\Rightarrow)$$
 Given y solution of $y'' + p(t)y' + q(t)y = g(t)$,

(⇒) Given y solution of
$$y'' + p(t)y' + q(t)y = g(t)$$
, introduce $x_1 = y$ and $x_2 = y'$,

(⇒) Given y solution of
$$y'' + p(t)y' + q(t)y = g(t)$$
, introduce $x_1 = y$ and $x_2 = y'$, hence $x_1' = y' = x_2$,

(⇒) Given
$$y$$
 solution of $y'' + p(t)y' + q(t)y = g(t)$, introduce $x_1 = y$ and $x_2 = y'$, hence $x_1' = y' = x_2$, that is, $x_1' = x_2$.

(⇒) Given
$$y$$
 solution of $y'' + p(t)y' + q(t)y = g(t)$, introduce $x_1 = y$ and $x_2 = y'$, hence $x_1' = y' = x_2$, that is, $x_1' = x_2$.

Then,
$$x_2' = y''$$

(
$$\Rightarrow$$
) Given y solution of $y'' + p(t)y' + q(t)y = g(t)$, introduce $x_1 = y$ and $x_2 = y'$, hence $x_1' = y' = x_2$, that is, $x_1' = x_2$.

Then,
$$x_2' = y'' = -q(t)y - p(t)y' + g(t)$$
.

(⇒) Given y solution of
$$y'' + p(t)y' + q(t)y = g(t)$$
, introduce $x_1 = y$ and $x_2 = y'$, hence $x_1' = y' = x_2$, that is, $x_1' = x_2$.

Then,
$$x_2'=y''=-q(t)\,y-p(t)\,y'+g(t).$$
 That is,
$$x_2'=-q(t)\,x_1-p(t)\,x_2+g(t).$$

(
$$\Rightarrow$$
) Given y solution of $y'' + p(t)y' + q(t)y = g(t)$, introduce $x_1 = y$ and $x_2 = y'$, hence $x_1' = y' = x_2$, that is, $x_1' = x_2$.

Then,
$$x_2'=y''=-q(t)\,y-p(t)\,y'+g(t).$$
 That is,
$$x_2'=-q(t)\,x_1-p(t)\,x_2+g(t).$$

$$(\Leftarrow)$$
 Introduce $x_2 = x_1'$ into $x_2' = -q(t)x_1 - p(t)x_2 + g(t)$.

(
$$\Rightarrow$$
) Given y solution of $y'' + p(t)y' + q(t)y = g(t)$, introduce $x_1 = y$ and $x_2 = y'$, hence $x_1' = y' = x_2$, that is, $x_1' = x_2$.

Then,
$$x_2' = y'' = -q(t) y - p(t) y' + g(t)$$
. That is,

$$x_2' = -q(t)x_1 - p(t)x_2 + g(t).$$

$$(\Leftarrow)$$
 Introduce $x_2 = x_1'$ into $x_2' = -q(t)x_1 - p(t)x_2 + g(t)$.

$$x_1'' = -q(t)x_1 - p(t)x_1' + g(t),$$

Proof:

(
$$\Rightarrow$$
) Given y solution of $y'' + p(t)y' + q(t)y = g(t)$, introduce $x_1 = y$ and $x_2 = y'$, hence $x_1' = y' = x_2$, that is,

$$x_1'=x_2.$$

Then,
$$x_2' = y'' = -q(t)y - p(t)y' + g(t)$$
. That is,
$$x_2' = -q(t)x_1 - p(t)x_2 + g(t).$$

$$(\Leftarrow)$$
 Introduce $x_2 = x_1'$ into $x_2' = -q(t)x_1 - p(t)x_2 + g(t)$.

$$x_1'' = -q(t)x_1 - p(t)x_1' + g(t),$$

that is

$$x_1'' + p(t)x_1' + q(t)x_1 = g(t).$$

Example

Express as a first order system the equation

$$y'' + 2y' + 2y = \sin(at).$$

Example

Express as a first order system the equation

$$y'' + 2y' + 2y = \sin(at).$$

Solution: Introduce the new unknowns

$$x_1 = y, \quad x_2 = y'$$

Example

Express as a first order system the equation

$$y'' + 2y' + 2y = \sin(at).$$

Solution: Introduce the new unknowns

$$x_1 = y$$
, $x_2 = y'$ \Rightarrow $x'_1 = x_2$.

Example

Express as a first order system the equation

$$y'' + 2y' + 2y = \sin(at).$$

Solution: Introduce the new unknowns

$$x_1 = y, \quad x_2 = y' \quad \Rightarrow \quad x_1' = x_2.$$

Then, the differential equation can be written as

$$x_2' + 2x_2 + 2x_1 = \sin(at).$$

Example

Express as a first order system the equation

$$y'' + 2y' + 2y = \sin(at).$$

Solution: Introduce the new unknowns

$$x_1 = y$$
, $x_2 = y'$ \Rightarrow $x'_1 = x_2$.

Then, the differential equation can be written as

$$x_2' + 2x_2 + 2x_1 = \sin(at).$$

We conclude that

$$x'_1 = x_2.$$

 $x'_2 = -2x_1 - 2x_2 + \sin(at).$

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example

Express as a single second order equation the 2×2 system and solve it,

$$x'_1 = -x_1 + 3x_2,$$

 $x'_2 = x_1 - x_2.$

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example

Express as a single second order equation $x_1' = -x_1 + 3x_2$, the 2 × 2 system and solve it, $x_2' = x_1 - x_2$.

Solution: Compute x_1 from the second equation:

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example

Express as a single second order equation $x_1' = -x_1 + 3x_2$, the 2 × 2 system and solve it, $x_2' = x_1 - x_2$.

Solution: Compute x_1 from the second equation: $x_1 = x_2' + x_2$.

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example

Express as a single second order equation
$$x_1' = -x_1 + 3x_2$$
, the 2 \times 2 system and solve it, $x_2' = x_1 - x_2$.

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example

Express as a single second order equation $x_1' = -x_1 + 3x_2$, the 2 × 2 system and solve it, $x_2' = x_1 - x_2$.

$$(x_2' + x_2)' = -(x_2' + x_2) + 3x_2,$$

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example

Express as a single second order equation the 2×2 system and solve it,

$$x_1' = -x_1 + 3x_2,$$

 $x_2' = x_1 - x_2.$

$$(x'_2 + x_2)' = -(x'_2 + x_2) + 3x_2,$$

 $x''_2 + x'_2 = -x'_2 - x_2 + 3x_2,$

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example

Express as a single second order equation the 2×2 system and solve it,

$$x_1' = -x_1 + 3x_2,$$

 $x_2' = x_1 - x_2.$

$$(x'_2 + x_2)' = -(x'_2 + x_2) + 3x_2,$$

 $x''_2 + x'_2 = -x'_2 - x_2 + 3x_2,$
 $x''_2 + 2x'_2 - 2x_2 = 0.$

Example

Express as a single second order equation the 2×2 system and solve it,

$$x'_1 = -x_1 + 3x_2,$$

 $x'_2 = x_1 - x_2.$

Solution: Recall: $x_2'' + 2x_2' - 2x_2 = 0$.

Example

Express as a single second order equation the 2×2 system and solve it,

$$x_1' = -x_1 + 3x_2,$$

 $x_2' = x_1 - x_2.$

Solution: Recall: $x_2'' + 2x_2' - 2x_2 = 0$.

$$r^2 + 2r - 2 = 0$$

Example

Express as a single second order equation the 2×2 system and solve it,

$$x'_1 = -x_1 + 3x_2,$$

 $x'_2 = x_1 - x_2.$

Solution: Recall: $x_2'' + 2x_2' - 2x_2 = 0$.

$$r^2 + 2r - 2 = 0$$
 \Rightarrow $r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 + 8} \right]$

Example

Express as a single second order equation the 2×2 system and solve it,

$$x'_1 = -x_1 + 3x_2,$$

 $x'_2 = x_1 - x_2.$

Solution: Recall: $x_2'' + 2x_2' - 2x_2 = 0$.

$$r^2 + 2r - 2 = 0$$
 \Rightarrow $r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 + 8} \right]$ \Rightarrow $r_{\pm} = -1 \pm \sqrt{3}$.

Example

Express as a single second order equation the 2×2 system and solve it,

$$x'_1 = -x_1 + 3x_2,$$

 $x'_2 = x_1 - x_2.$

Solution: Recall: $x_2'' + 2x_2' - 2x_2 = 0$.

$$r^2 + 2r - 2 = 0$$
 \Rightarrow $r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 + 8} \right]$ \Rightarrow $r_{\pm} = -1 \pm \sqrt{3}$.

Therefore, $x_2 = c_1 e^{r_+ t} + c_2 e^{r_- t}$.

Example

Express as a single second order equation the 2×2 system and solve it,

$$x'_1 = -x_1 + 3x_2,$$

 $x'_2 = x_1 - x_2.$

Solution: Recall: $x_2'' + 2x_2' - 2x_2 = 0$.

$$r^2 + 2r - 2 = 0$$
 \Rightarrow $r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 + 8} \right]$ \Rightarrow $r_{\pm} = -1 \pm \sqrt{3}$.

Therefore, $x_2 = c_1 e^{r_+ t} + c_2 e^{r_- t}$. Since $x_1 = x_2' + x_2$,

Example

Express as a single second order equation the 2×2 system and solve it,

$$x'_1 = -x_1 + 3x_2,$$

 $x'_2 = x_1 - x_2.$

Solution: Recall: $x_2'' + 2x_2' - 2x_2 = 0$.

$$r^2 + 2r - 2 = 0$$
 \Rightarrow $r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 + 8} \right]$ \Rightarrow $r_{\pm} = -1 \pm \sqrt{3}$.

Therefore,
$$x_2 = c_1 e^{r_+ t} + c_2 e^{r_- t}$$
. Since $x_1 = x_2' + x_2$,
$$x_1 = (c_1 r_+ e^{r_+ t} + c_2 r_- e^{r_- t}) + (c_1 e^{r_+ t} + c_2 e^{r_- t}),$$

Example

Express as a single second order equation the 2×2 system and solve it,

$$x'_1 = -x_1 + 3x_2,$$

 $x'_2 = x_1 - x_2.$

Solution: Recall: $x_2'' + 2x_2' - 2x_2 = 0$.

$$r^2 + 2r - 2 = 0$$
 \Rightarrow $r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 + 8} \right]$ \Rightarrow $r_{\pm} = -1 \pm \sqrt{3}$.

Therefore,
$$x_2 = c_1 e^{r_+ t} + c_2 e^{r_- t}$$
. Since $x_1 = x_2' + x_2$,

$$x_1 = (c_1 r_+ e^{r_+ t} + c_2 r_- e^{r_- t}) + (c_1 e^{r_+ t} + c_2 e^{r_- t}),$$

We conclude:
$$x_1 = c_1(1 + r_+) e^{r_+ t} + c_2(1 + r_-) e^{r_- t}$$
.

Systems of linear differential equations (Sect. 7.1).

- \triangleright $n \times n$ systems of linear differential equations.
- Second order equations and first order systems.
- ► Main concepts from Linear Algebra.

Remark: Ideas from Linear Algebra are useful to study systems of linear differential equations.

Remark: Ideas from Linear Algebra are useful to study systems of linear differential equations.

We review:

- ▶ Matrices $m \times n$.
- Matrix operations.
- *n*-vectors, dot product.
- matrix-vector product.

Remark: Ideas from Linear Algebra are useful to study systems of linear differential equations.

We review:

- ▶ Matrices $m \times n$.
- Matrix operations.
- *n*-vectors, dot product.
- matrix-vector product.

Definition

An $m \times n$ matrix, A, is an array of numbers

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}, \qquad \begin{array}{c} m \text{ rows,} \\ n \text{ columns.} \end{array}$$

where $a_{ij} \in \mathbb{C}$ and $i = 1, \dots, m$, and $j = 1, \dots, n$. An $n \times n$ matrix is called a square matrix.

(a)
$$2 \times 2$$
 matrix: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

(a)
$$2 \times 2$$
 matrix: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

(b)
$$2 \times 3$$
 matrix: $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.

(a)
$$2 \times 2$$
 matrix: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

(b)
$$2 \times 3$$
 matrix: $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.

(c)
$$3 \times 2$$
 matrix: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$.

(a)
$$2 \times 2$$
 matrix: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

(b)
$$2 \times 3$$
 matrix: $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.

(c)
$$3 \times 2$$
 matrix: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$.

(d)
$$2 \times 2$$
 complex-valued matrix: $A = \begin{bmatrix} 1+i & 2-i \\ 3 & 4i \end{bmatrix}$.

Example

(a)
$$2 \times 2$$
 matrix: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

(b)
$$2 \times 3$$
 matrix: $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.

(c)
$$3 \times 2$$
 matrix: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$.

(d)
$$2 \times 2$$
 complex-valued matrix: $A = \begin{bmatrix} 1+i & 2-i \\ 3 & 4i \end{bmatrix}$.

(e) The coefficients of a linear system can be grouped in a matrix,

$$x_1' = -x_1 + 3x_2$$

$$x_2' = x_1 - x_2$$

Example

(a)
$$2 \times 2$$
 matrix: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

(b)
$$2 \times 3$$
 matrix: $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.

(c)
$$3 \times 2$$
 matrix: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$.

(d)
$$2 \times 2$$
 complex-valued matrix: $A = \begin{bmatrix} 1+i & 2-i \\ 3 & 4i \end{bmatrix}$.

(e) The coefficients of a linear system can be grouped in a matrix,

$$\begin{vmatrix} x_1' = -x_1 + 3x_2 \\ x_2' = x_1 - x_2 \end{vmatrix} \quad \Rightarrow \quad A = \begin{bmatrix} -1 & 3 \\ 1 & -1 \end{bmatrix}.$$

Remark: An $m \times 1$ matrix is called an m-vector.

Remark: An $m \times 1$ matrix is called an m-vector.

Definition

An *m*-vector, \mathbf{v} , is the array of numbers $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix}$, where the vector components $v_i \in \mathbb{C}$, with $i = 1, \cdots, m$.

Remark: An $m \times 1$ matrix is called an m-vector.

Definition

An
$$m$$
-vector, \mathbf{v} , is the array of numbers $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix}$, where the vector components $v_i \in \mathbb{C}$, with $i=1,\cdots,m$.

Example

The unknowns of a 2×2 linear system can be grouped in a 2-vector,

Remark: An $m \times 1$ matrix is called an m-vector.

Definition

An m-vector, \mathbf{v} , is the array of numbers $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix}$, where the vector components $v_i \in \mathbb{C}$, with $i = 1, \cdots, m$.

Example

The unknowns of a 2×2 linear system can be grouped in a 2-vector, for example,

$$x_1' = -x_1 + 3x_2$$

$$x_2' = x_1 - x_2$$

Remark: An $m \times 1$ matrix is called an m-vector.

Definition

An *m*-vector, \mathbf{v} , is the array of numbers $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix}$, where the vector components $v_i \in \mathbb{C}$, with $i = 1, \cdots, m$.

Example

The unknowns of a 2×2 linear system can be grouped in a 2-vector, for example,

$$\begin{cases} x_1' = -x_1 + 3x_2 \\ x_2' = x_1 - x_2 \end{cases} \Rightarrow \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Remark: We present only examples of matrix operations.

Remark: We present only examples of *matrix operations*.

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

Remark: We present only examples of matrix operations.

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

(a) A-transpose: Interchange rows with columns:

Remark: We present only examples of *matrix operations*.

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

(a) A-transpose: Interchange rows with columns:

$$A^T = \begin{bmatrix} 1 & 3i \\ 2+i & 2 \\ -1+2i & 1 \end{bmatrix}.$$

Remark: We present only examples of *matrix operations*.

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

(a) A-transpose: Interchange rows with columns:

$$A^T = \begin{bmatrix} 1 & 3i \\ 2+i & 2 \\ -1+2i & 1 \end{bmatrix}$$
. Notice that: $(A^T)^T = A$.

Remark: We present only examples of matrix operations.

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

(a) A-transpose: Interchange rows with columns:

$$A^T = \begin{bmatrix} 1 & 3i \\ 2+i & 2 \\ -1+2i & 1 \end{bmatrix}$$
. Notice that: $(A^T)^T = A$.

(b) A-conjugate: Conjugate every matrix coefficient:

Remark: We present only examples of matrix operations.

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

(a) A-transpose: Interchange rows with columns:

$$A^{T} = \begin{bmatrix} 1 & 3i \\ 2+i & 2 \\ -1+2i & 1 \end{bmatrix}.$$
 Notice that: $(A^{T})^{T} = A$.

(b) A-conjugate: Conjugate every matrix coefficient:

$$\overline{A} = \begin{bmatrix} 1 & 2-i & -1-2i \\ -3i & 2 & 1 \end{bmatrix}.$$

Remark: We present only examples of matrix operations.

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

(a) A-transpose: Interchange rows with columns:

$$A^{T} = \begin{bmatrix} 1 & 3i \\ 2+i & 2 \\ -1+2i & 1 \end{bmatrix}.$$
 Notice that: $(A^{T})^{T} = A$.

(b) A-conjugate: Conjugate every matrix coefficient:

$$\overline{A} = \begin{bmatrix} 1 & 2-i & -1-2i \\ -3i & 2 & 1 \end{bmatrix}$$
. Notice that: $\overline{(\overline{A})} = A$.

Remark: We present only examples of matrix operations.

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

(a) A-transpose: Interchange rows with columns:

$$A^{T} = \begin{bmatrix} 1 & 3i \\ 2+i & 2 \\ -1+2i & 1 \end{bmatrix}.$$
 Notice that: $(A^{T})^{T} = A$.

(b) A-conjugate: Conjugate every matrix coefficient:

$$\overline{A} = \begin{bmatrix} 1 & 2-i & -1-2i \\ -3i & 2 & 1 \end{bmatrix}$$
. Notice that: $\overline{(\overline{A})} = A$.

Matrix A is real iff $\overline{A} = A$.

Remark: We present only examples of matrix operations.

Example

Consider a 2 × 3 matrix
$$A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$$
.

(a) A-transpose: Interchange rows with columns:

$$A^{T} = \begin{bmatrix} 1 & 3i \\ 2+i & 2 \\ -1+2i & 1 \end{bmatrix}.$$
 Notice that: $(A^{T})^{T} = A$.

(b) A-conjugate: Conjugate every matrix coefficient:

$$\overline{A} = \begin{bmatrix} 1 & 2-i & -1-2i \\ -3i & 2 & 1 \end{bmatrix}$$
. Notice that: $\overline{(\overline{A})} = A$.

Matrix A is real iff $\overline{A} = A$. Matrix A is imaginary iff $\overline{A} = -A$.

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

Example

Consider a 2 × 3 matrix
$$A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$$
.

(a) A-adjoint: Conjugate and transpose:

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

(a) A-adjoint: Conjugate and transpose:

$$A^* = \begin{bmatrix} 1 & -3i \\ 2-i & 2 \\ -1-2i & 1 \end{bmatrix}.$$

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

(a) A-adjoint: Conjugate and transpose:

$$A^* = \begin{bmatrix} 1 & -3i \\ 2-i & 2 \\ -1-2i & 1 \end{bmatrix}.$$
 Notice that: $(A^*)^* = A$.

Example

Consider a 2 × 3 matrix
$$A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$$
.

(a) A-adjoint: Conjugate and transpose:

$$A^* = \begin{bmatrix} 1 & -3i \\ 2-i & 2 \\ -1-2i & 1 \end{bmatrix}.$$
 Notice that: $(A^*)^* = A$.

(b) Addition of two $m \times n$ matrices is performed component-wise:

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

(a) A-adjoint: Conjugate and transpose:

$$A^* = \begin{bmatrix} 1 & -3i \\ 2-i & 2 \\ -1-2i & 1 \end{bmatrix}$$
. Notice that: $(A^*)^* = A$.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 5 & 1 \end{bmatrix}$$

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

(a) A-adjoint: Conjugate and transpose:

$$A^* = \begin{bmatrix} 1 & -3i \\ 2-i & 2 \\ -1-2i & 1 \end{bmatrix}.$$
 Notice that: $(A^*)^* = A$.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} (1+2) & (2+3) \\ (3+5) & (4+1) \end{bmatrix}$$

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

(a) A-adjoint: Conjugate and transpose:

$$A^* = \begin{bmatrix} 1 & -3i \\ 2-i & 2 \\ -1-2i & 1 \end{bmatrix}$$
. Notice that: $(A^*)^* = A$.

$$\begin{bmatrix}1&2\\3&4\end{bmatrix}+\begin{bmatrix}2&3\\5&1\end{bmatrix}=\begin{bmatrix}(1+2)&(2+3)\\(3+5)&(4+1)\end{bmatrix}=\begin{bmatrix}3&5\\8&5\end{bmatrix}.$$

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

(a) A-adjoint: Conjugate and transpose:

$$A^* = \begin{bmatrix} 1 & -3i \\ 2-i & 2 \\ -1-2i & 1 \end{bmatrix}$$
. Notice that: $(A^*)^* = A$.

$$\begin{bmatrix}1&2\\3&4\end{bmatrix}+\begin{bmatrix}2&3\\5&1\end{bmatrix}=\begin{bmatrix}(1+2)&(2+3)\\(3+5)&(4+1)\end{bmatrix}=\begin{bmatrix}3&5\\8&5\end{bmatrix}.$$

The addition
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 is not defined.

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$.

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$.

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$.

$$2A = 2 \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$.

$$2A = 2 \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 10 \\ 4 & 8 & 12 \end{bmatrix},$$

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$.

$$2A = 2 \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 10 \\ 4 & 8 & 12 \end{bmatrix}, \quad \begin{bmatrix} 8 & 12 \\ 16 & 20 \end{bmatrix}$$

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$.

$$2A = 2 \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 10 \\ 4 & 8 & 12 \end{bmatrix}, \quad \begin{bmatrix} 8 & 12 \\ 16 & 20 \end{bmatrix} = 4 \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}.$$

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$.

(a) Multiplication of a matrix by a number is performed component-wise:

$$2A = 2 \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 10 \\ 4 & 8 & 12 \end{bmatrix}, \quad \begin{bmatrix} 8 & 12 \\ 16 & 20 \end{bmatrix} = 4 \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}.$$

Also:

$$\frac{A}{3}$$

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$.

(a) Multiplication of a matrix by a number is performed component-wise:

$$2A = 2 \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 10 \\ 4 & 8 & 12 \end{bmatrix}, \quad \begin{bmatrix} 8 & 12 \\ 16 & 20 \end{bmatrix} = 4 \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}.$$

Also:

$$\frac{A}{3} = \frac{1}{3} \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$.

(a) Multiplication of a matrix by a number is performed component-wise:

$$2A = 2 \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 10 \\ 4 & 8 & 12 \end{bmatrix}, \quad \begin{bmatrix} 8 & 12 \\ 16 & 20 \end{bmatrix} = 4 \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}.$$

Also:

$$\frac{A}{3} = \frac{1}{3} \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 1 & \frac{5}{3} \\ \frac{2}{3} & \frac{4}{3} & 2 \end{bmatrix}.$$

Example

(a) Matrix multiplication.

Example

(a) Matrix multiplication. The matrix sizes is important:

Example

(a) Matrix multiplication. The matrix sizes is important:

```
A times B defines AB m \times n n \times \ell m \times \ell
```

Example

(a) Matrix multiplication. The matrix sizes is important:

$$egin{array}{lll} A & {\sf times} & B & {\sf defines} & AB \\ m imes n & n imes \ell & m imes \ell \end{array}$$

Example: A is 2×2 , B is 2×3 , so AB is 2×3 :

Example

(a) Matrix multiplication. The matrix sizes is important:

$$egin{array}{lll} A & {
m times} & B & {
m defines} & AB \\ m imes n & n imes \ell & m imes \ell \end{array}$$

Example: A is 2×2 , B is 2×3 , so AB is 2×3 :

$$AB = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 16 & 23 & 30 \\ 6 & 9 & 12 \end{bmatrix}.$$

Example

(a) Matrix multiplication. The matrix sizes is important:

$$egin{array}{lll} A & {
m times} & B & {
m defines} & AB \\ m imes n & n imes \ell & m imes \ell \end{array}$$

Example: A is 2×2 , B is 2×3 , so AB is 2×3 :

$$AB = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 16 & 23 & 30 \\ 6 & 9 & 12 \end{bmatrix}.$$

Notice B is 2×3 , A is 2×2 , so BA is not defined.

Example

(a) Matrix multiplication. The matrix sizes is important:

$$egin{array}{lll} A & {\sf times} & B & {\sf defines} & AB \\ m imes n & n imes \ell & m imes \ell \end{array}$$

Example: A is 2×2 , B is 2×3 , so AB is 2×3 :

$$AB = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 16 & 23 & 30 \\ 6 & 9 & 12 \end{bmatrix}.$$

Notice B is 2×3 , A is 2×2 , so BA is not defined.

$$BA = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$$
 not defined.

Remark: The matrix product is not commutative, that is, in general holds $AB \neq BA$.

Remark: The matrix product is not commutative, that is, in general holds $AB \neq BA$.

Example

Find
$$AB$$
 and BA for $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix}$.

Remark: The matrix product is not commutative, that is, in general holds $AB \neq BA$.

Example

Find
$$AB$$
 and BA for $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix}$.

$$AB = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix}$$

Remark: The matrix product is not commutative, that is, in general holds $AB \neq BA$.

Example

Find
$$AB$$
 and BA for $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix}$.

$$AB = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} (6-2) & (0+1) \\ (-3+4) & (0-2) \end{bmatrix}$$

Remark: The matrix product is not commutative, that is, in general holds $AB \neq BA$.

Example

Find
$$AB$$
 and BA for $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix}$.

$$AB=\begin{bmatrix}2&-1\\-1&2\end{bmatrix}\begin{bmatrix}3&0\\2&-1\end{bmatrix}=\begin{bmatrix}(6-2)&(0+1)\\(-3+4)&(0-2)\end{bmatrix}=\begin{bmatrix}4&1\\1&-2\end{bmatrix}.$$

Remark: The matrix product is not commutative, that is, in general holds $AB \neq BA$.

Example

Find
$$AB$$
 and BA for $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix}$.

$$AB = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} (6-2) & (0+1) \\ (-3+4) & (0-2) \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 1 & -2 \end{bmatrix}.$$

$$BA = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Remark: The matrix product is not commutative, that is, in general holds $AB \neq BA$.

Example

Find
$$AB$$
 and BA for $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix}$.

$$AB = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} (6-2) & (0+1) \\ (-3+4) & (0-2) \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 1 & -2 \end{bmatrix}.$$

$$BA = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} (6+0) & (-3+0) \\ (4+1) & (-2-2) \end{bmatrix}$$

Remark: The matrix product is not commutative, that is, in general holds $AB \neq BA$.

Example

Find
$$AB$$
 and BA for $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix}$.

$$AB = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} (6-2) & (0+1) \\ (-3+4) & (0-2) \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 1 & -2 \end{bmatrix}.$$

$$BA = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} (6+0) & (-3+0) \\ (4+1) & (-2-2) \end{bmatrix} = \begin{bmatrix} 6 & -3 \\ 5 & -4 \end{bmatrix}.$$

Remark: The matrix product is not commutative, that is, in general holds $AB \neq BA$.

Example

Find
$$AB$$
 and BA for $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix}$.

$$AB = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} (6-2) & (0+1) \\ (-3+4) & (0-2) \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 1 & -2 \end{bmatrix}.$$

$$BA = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} (6+0) & (-3+0) \\ (4+1) & (-2-2) \end{bmatrix} = \begin{bmatrix} 6 & -3 \\ 5 & -4 \end{bmatrix}.$$

So
$$AB \neq BA$$
.

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with AB = 0.

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with AB = 0.

Example

Find
$$AB$$
 for $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$.

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with AB = 0.

Example

Find
$$AB$$
 for $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$.

$$AB = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with AB = 0.

Example

Find
$$AB$$
 for $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$.

$$AB = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} (1-1) & (-1+1) \\ (-1+1) & (1-1) \end{bmatrix}$$

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with AB = 0.

Example

Find
$$AB$$
 for $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$.

$$AB = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} (1-1) & (-1+1) \\ (-1+1) & (1-1) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with AB = 0.

Example

Find
$$AB$$
 for $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$.

Solution:

$$AB = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} (1-1) & (-1+1) \\ (-1+1) & (1-1) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

1

Recall: If $a, b \in \mathbb{R}$ and ab = 0, then either a = 0 or b = 0.

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with AB = 0.

Example

Find
$$AB$$
 for $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$.

Solution:

$$AB = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} (1-1) & (-1+1) \\ (-1+1) & (1-1) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

 \triangleleft

Recall: If $a, b \in \mathbb{R}$ and ab = 0, then either a = 0 or b = 0.

We have just shown that this statement is not true for matrices.

Review Exam 3.

- ► Sections 6.1-6.6.
- ▶ 5 or 6 problems.
- ▶ 50 minutes.
- ▶ Laplace Transform table included.

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

$$\mathcal{L}[y''] - 2\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[\delta(t-2)]$$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

$$\mathcal{L}[y''] - 2\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[\delta(t-2)] = e^{-2s}$$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

$$\mathcal{L}[y''] - 2\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[\delta(t-2)] = e^{-2s}$$

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0),$$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

$$\mathcal{L}[y''] - 2\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[\delta(t-2)] = e^{-2s}$$

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0), \qquad \mathcal{L}[y'] = s \mathcal{L}[y] - y(0).$$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

$$\mathcal{L}[y''] - 2\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[\delta(t-2)] = e^{-2s}$$

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0), \qquad \mathcal{L}[y'] = s \mathcal{L}[y] - y(0).$$

$$(s^2 - 2s + 2) \mathcal{L}[y] - s y(0) - y'(0) + 2 y(0) = e^{-2s}$$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

$$\mathcal{L}[y''] - 2\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[\delta(t-2)] = e^{-2s}$$

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - sy(0) - y'(0), \qquad \mathcal{L}[y'] = s\mathcal{L}[y] - y(0).$$

$$(s^2 - 2s + 2)\mathcal{L}[y] - sy(0) - y'(0) + 2y(0) = e^{-2s}$$

$$(s^2 - 2s + 2)\mathcal{L}[y] - s - 1 = e^{-2s}$$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

$$\mathcal{L}[y''] - 2\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[\delta(t-2)] = e^{-2s}$$

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - sy(0) - y'(0), \qquad \mathcal{L}[y'] = s\mathcal{L}[y] - y(0).$$

$$(s^2 - 2s + 2)\mathcal{L}[y] - sy(0) - y'(0) + 2y(0) = e^{-2s}$$

$$(s^2 - 2s + 2)\mathcal{L}[y] - s - 1 = e^{-2s}$$

$$\mathcal{L}[y] = \frac{(s+1)}{(s^2 - 2s + 2)} + \frac{1}{(s^2 - 2s + 2)} e^{-2s}.$$

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2-2s+2)} + \frac{1}{(s^2-2s+2)} e^{-2s}$$
.

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2-2s+2)} + \frac{1}{(s^2-2s+2)} e^{-2s}$$
.

$$s^2-2s+2=0$$

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2-2s+2)} + \frac{1}{(s^2-2s+2)} e^{-2s}$$
.

$$s^2 - 2s + 2 = 0$$
 \Rightarrow $s_{\pm} = \frac{1}{2} [2 \pm \sqrt{4 - 8}],$

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2-2s+2)} + \frac{1}{(s^2-2s+2)} e^{-2s}$$
.

$$s^2-2s+2=0$$
 \Rightarrow $s_{\pm}=\frac{1}{2}\big[2\pm\sqrt{4-8}\big],$ complex roots.

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2-2s+2)} + \frac{1}{(s^2-2s+2)} e^{-2s}$$
.

$$s^2 - 2s + 2 = 0$$
 \Rightarrow $s_{\pm} = \frac{1}{2} [2 \pm \sqrt{4 - 8}],$ complex roots.

$$s^2 - 2s + 2 = (s^2 - 2s + 1) - 1 + 2$$

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2-2s+2)} + \frac{1}{(s^2-2s+2)} e^{-2s}$$
.

$$s^2-2s+2=0 \quad \Rightarrow \quad s_\pm=rac{1}{2} igl[2\pm\sqrt{4-8}igr], \quad \text{complex roots}.$$

$$s^2 - 2s + 2 = (s^2 - 2s + 1) - 1 + 2 = (s - 1)^2 + 1.$$

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2-2s+2)} + \frac{1}{(s^2-2s+2)} e^{-2s}$$
.

$$s^2-2s+2=0 \quad \Rightarrow \quad s_\pm=rac{1}{2}\big[2\pm\sqrt{4-8}\big], \quad \text{complex roots}.$$

$$s^2 - 2s + 2 = (s^2 - 2s + 1) - 1 + 2 = (s - 1)^2 + 1.$$

$$\mathcal{L}[y] = \frac{s+1}{(s-1)^2+1} + \frac{1}{(s-1)^2+1} e^{-2s}$$

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2-2s+2)} + \frac{1}{(s^2-2s+2)} e^{-2s}$$
.

$$s^2-2s+2=0$$
 \Rightarrow $s_{\pm}=\frac{1}{2}\big[2\pm\sqrt{4-8}\big],$ complex roots.

$$s^2 - 2s + 2 = (s^2 - 2s + 1) - 1 + 2 = (s - 1)^2 + 1.$$

$$\mathcal{L}[y] = \frac{s+1}{(s-1)^2 + 1} + \frac{1}{(s-1)^2 + 1} e^{-2s}$$

$$\mathcal{L}[y] = \frac{(s-1+1)+1}{(s-1)^2+1} + \frac{1}{(s-1)^2+1} e^{-2s}$$

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-1)+2}{(s-1)^2+1} + \frac{1}{(s-1)^2+1} e^{-2s}$$
,

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-1)+2}{(s-1)^2+1} + \frac{1}{(s-1)^2+1} e^{-2s}$$
,

$$\mathcal{L}[y] = \frac{(s-1)}{(s-1)^2+1} + 2\frac{1}{(s-1)^2+1} + e^{-2s}\frac{1}{(s-1)^2+1},$$

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-1)+2}{(s-1)^2+1} + \frac{1}{(s-1)^2+1} e^{-2s}$$
,

$$\mathcal{L}[y] = \frac{(s-1)}{(s-1)^2+1} + 2\frac{1}{(s-1)^2+1} + e^{-2s}\frac{1}{(s-1)^2+1},$$

$$\mathcal{L}[\cos(at)] = \frac{s}{s^2 + a^2},$$

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-1)+2}{(s-1)^2+1} + \frac{1}{(s-1)^2+1} e^{-2s}$$
,

$$\mathcal{L}[y] = \frac{(s-1)}{(s-1)^2+1} + 2\frac{1}{(s-1)^2+1} + e^{-2s}\frac{1}{(s-1)^2+1},$$

$$\mathcal{L}[\cos(at)] = \frac{s}{s^2 + a^2}, \qquad \mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2},$$

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-1)+2}{(s-1)^2+1} + \frac{1}{(s-1)^2+1} e^{-2s}$$
,

$$\mathcal{L}[y] = \frac{(s-1)}{(s-1)^2+1} + 2\frac{1}{(s-1)^2+1} + e^{-2s}\frac{1}{(s-1)^2+1},$$

$$\mathcal{L}[\cos(at)] = \frac{s}{s^2 + a^2}, \qquad \mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2},$$

$$\mathcal{L}[y] = \mathcal{L}[\cos(t)]\big|_{(s-1)}$$

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-1)+2}{(s-1)^2+1} + \frac{1}{(s-1)^2+1} e^{-2s}$$
,

$$\mathcal{L}[y] = \frac{(s-1)}{(s-1)^2+1} + 2\frac{1}{(s-1)^2+1} + e^{-2s}\frac{1}{(s-1)^2+1},$$

$$\mathcal{L}[\cos(at)] = \frac{s}{s^2 + a^2}, \qquad \mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2},$$

$$\mathcal{L}[y] = \mathcal{L}[\cos(t)]\big|_{(s-1)} + 2\mathcal{L}[\sin(t)]\big|_{(s-1)}$$

Example

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-1)+2}{(s-1)^2+1} + \frac{1}{(s-1)^2+1} e^{-2s}$$
,

$$\mathcal{L}[y] = \frac{(s-1)}{(s-1)^2+1} + 2\frac{1}{(s-1)^2+1} + e^{-2s}\frac{1}{(s-1)^2+1},$$

$$\mathcal{L}[\cos(at)] = \frac{s}{s^2 + a^2}, \qquad \mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2},$$

$$\mathcal{L}[y] = \mathcal{L}[\cos(t)]\big|_{(s-1)} + 2\mathcal{L}[\sin(t)]\big|_{(s-1)} + \mathrm{e}^{-2s}\mathcal{L}[\sin(t)]\big|_{(s-1)}.$$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:

$$\mathcal{L}[y] = \mathcal{L}[\cos(t)]|_{(s-1)} + 2\mathcal{L}[\sin(t)]|_{(s-1)} + e^{-2s}\mathcal{L}[\sin(t)]|_{(s-1)}$$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:

$$\begin{split} \mathcal{L}[y] &= \mathcal{L}[\cos(t)]\big|_{(s-1)} + 2\,\mathcal{L}[\sin(t)]\big|_{(s-1)} + e^{-2s}\,\mathcal{L}[\sin(t)]\big|_{(s-1)} \\ \text{and } \mathcal{L}[f(t)]\big|_{(s-c)} &= \mathcal{L}[e^{ct}\,f(t)]. \end{split}$$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:

$$\mathcal{L}[y] = \mathcal{L}[\cos(t)]\big|_{(s-1)} + 2\mathcal{L}[\sin(t)]\big|_{(s-1)} + e^{-2s}\mathcal{L}[\sin(t)]\big|_{(s-1)}$$

and $\mathcal{L}[f(t)]\big|_{(s-c)}=\mathcal{L}[e^{ct}\,f(t)].$ Therefore,

$$\mathcal{L}[y] = \mathcal{L}[e^t \cos(t)]$$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:

$$\mathcal{L}[y] = \mathcal{L}[\cos(t)]\big|_{(s-1)} + 2\mathcal{L}[\sin(t)]\big|_{(s-1)} + e^{-2s}\mathcal{L}[\sin(t)]\big|_{(s-1)}$$

and $\mathcal{L}[f(t)]\big|_{(s-c)} = \mathcal{L}[e^{ct} f(t)]$. Therefore,

$$\mathcal{L}[y] = \mathcal{L}[e^t \cos(t)] + 2\mathcal{L}[e^t \sin(t)]$$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:

$$\mathcal{L}[y] = \mathcal{L}[\cos(t)]\big|_{(s-1)} + 2\mathcal{L}[\sin(t)]\big|_{(s-1)} + e^{-2s}\mathcal{L}[\sin(t)]\big|_{(s-1)}$$

and $\mathcal{L}[f(t)]\big|_{(s-c)} = \mathcal{L}[e^{ct} f(t)]$. Therefore,

$$\mathcal{L}[y] = \mathcal{L}[e^t \cos(t)] + 2\mathcal{L}[e^t \sin(t)] + e^{-2s}\mathcal{L}[e^t \sin(t)].$$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:

$$\mathcal{L}[y] = \mathcal{L}[\cos(t)]|_{(s-1)} + 2\mathcal{L}[\sin(t)]|_{(s-1)} + e^{-2s}\mathcal{L}[\sin(t)]|_{(s-1)}$$

and $\mathcal{L}[f(t)]|_{(s-c)} = \mathcal{L}[e^{ct} f(t)]$. Therefore,

$$\mathcal{L}[y] = \mathcal{L}[e^t \cos(t)] + 2\mathcal{L}[e^t \sin(t)] + e^{-2s}\mathcal{L}[e^t \sin(t)].$$

Also recall: $e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u_c(t) f(t-c)].$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:

$$\mathcal{L}[y] = \mathcal{L}[\cos(t)]\big|_{(s-1)} + 2\mathcal{L}[\sin(t)]\big|_{(s-1)} + e^{-2s}\mathcal{L}[\sin(t)]\big|_{(s-1)}$$

and $\mathcal{L}[f(t)]\big|_{(s-c)} = \mathcal{L}[e^{ct} f(t)]$. Therefore,

$$\mathcal{L}[y] = \mathcal{L}[e^t \cos(t)] + 2\mathcal{L}[e^t \sin(t)] + e^{-2s}\mathcal{L}[e^t \sin(t)].$$

Also recall:
$$e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u_c(t) f(t-c)]$$
. Therefore,

$$\mathcal{L}[y] = \mathcal{L}[e^t \cos(t)] + 2\mathcal{L}[e^t \sin(t)] + \mathcal{L}[u_2(t) e^{(t-2)} \sin(t-2)].$$

Example

Use Laplace Transform to find y solution of

$$y'' - 2y' + 2y = \delta(t - 2), \quad y(0) = 1, \quad y'(0) = 3.$$

Solution: Recall:

$$\mathcal{L}[y] = \mathcal{L}[\cos(t)]\big|_{(s-1)} + 2\mathcal{L}[\sin(t)]\big|_{(s-1)} + e^{-2s}\mathcal{L}[\sin(t)]\big|_{(s-1)}$$

and $\mathcal{L}[f(t)]|_{(s-c)} = \mathcal{L}[e^{ct} f(t)]$. Therefore,

$$\mathcal{L}[y] = \mathcal{L}[e^t \cos(t)] + 2\mathcal{L}[e^t \sin(t)] + e^{-2s}\mathcal{L}[e^t \sin(t)].$$

Also recall:
$$e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u_c(t) f(t-c)]$$
. Therefore,

$$\mathcal{L}[y] = \mathcal{L}[e^t \cos(t)] + 2\mathcal{L}[e^t \sin(t)] + \mathcal{L}[u_2(t) e^{(t-2)} \sin(t-2)].$$

$$y(t) = [\cos(t) + 2\sin(t)] e^t + u_2(t) \sin(t-2) e^{(t-2)}$$
.

Example

Sketch the graph of g and use LT to find y solution of

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Example

Sketch the graph of g and use LT to find y solution of

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution:

Example

Sketch the graph of g and use LT to find y solution of

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution:

Express *g* using step functions,

Example

Sketch the graph of g and use LT to find y solution of

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution:

Express g using step functions,

$$g(t) = u_2(t) e^{(t-2)}$$
.

Example

Sketch the graph of g and use LT to find y solution of

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution:

Express g using step functions,

$$g(t) = u_2(t) e^{(t-2)}$$
.

$$\mathcal{L}[u_c(t) f(t-c)] = e^{-cs} \mathcal{L}[f(t)].$$

Example

Sketch the graph of g and use LT to find y solution of

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution:

Express g using step functions,

$$g(t) = u_2(t) e^{(t-2)}$$
.

$$\mathcal{L}[u_c(t) f(t-c)] = e^{-cs} \mathcal{L}[f(t)].$$

Therefore,

$$\mathcal{L}[g(t)] = e^{-2s}\mathcal{L}[e^t].$$

Example

Sketch the graph of g and use LT to find y solution of

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution:

We obtain: $\mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}$.

Express g using step functions,

$$g(t) = u_2(t) e^{(t-2)}$$
.

$$\mathcal{L}[u_c(t) f(t-c)] = e^{-cs} \mathcal{L}[f(t)].$$

Therefore,

$$\mathcal{L}[g(t)] = e^{-2s}\mathcal{L}[e^t].$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$\mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}$$
.

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$\mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}$$
.

$$\mathcal{L}[y''] + 3\,\mathcal{L}[y] = \mathcal{L}[g(t)]$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$\mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}$$
.
$$\mathcal{L}[y''] + 3\mathcal{L}[y] = \mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}$$
.

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$\mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}$$
.
$$\mathcal{L}[y''] + 3\mathcal{L}[y] = \mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}$$
.
$$(s^2+3)\mathcal{L}[y] = \frac{e^{-2s}}{(s-1)}$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$\mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}$$
.
 $\mathcal{L}[y''] + 3\mathcal{L}[y] = \mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}$.
 $(s^2 + 3)\mathcal{L}[y] = \frac{e^{-2s}}{(s-1)} \implies \mathcal{L}[y] = e^{-2s} \frac{1}{(s-1)(s^2 + 3)}$.

$$(s^2+3) \mathcal{L}[y] = \frac{e^{-2s}}{(s-1)} \quad \Rightarrow \quad \mathcal{L}[y] = e^{-2s} \frac{1}{(s-1)(s^2+3)}.$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$\mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}$$
.

$$\mathcal{L}[y''] + 3\mathcal{L}[y] = \mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}.$$

$$\mathcal{L}[y''] + 3\mathcal{L}[y] = \mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}.$$

$$(s^2 + 3)\mathcal{L}[y] = \frac{e^{-2s}}{(s-1)} \implies \mathcal{L}[y] = e^{-2s} \frac{1}{(s-1)(s^2 + 3)}.$$

$$H(s) = \frac{1}{(s-1)(s^2+3)}$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$\mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}$$
.

$$\mathcal{L}[y''] + 3\mathcal{L}[y] = \mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}.$$

$$(s^2 + 3)\mathcal{L}[y] = \frac{e^{-2s}}{(s-1)} \implies \mathcal{L}[y] = e^{-2s} \frac{1}{(s-1)(s^2 + 3)}.$$

$$H(s) = \frac{1}{(s-1)(s^2+3)} = \frac{a}{(s-1)} + \frac{(bs+c)}{(s^2+3)}$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$\mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}$$
.

$$\mathcal{L}[y''] + 3\mathcal{L}[y] = \mathcal{L}[g(t)] = \frac{e^{-2s}}{(s-1)}.$$

$$(s^2+3) \mathcal{L}[y] = \frac{e^{-2s}}{(s-1)} \quad \Rightarrow \quad \mathcal{L}[y] = e^{-2s} \frac{1}{(s-1)(s^2+3)}.$$

$$H(s) = \frac{1}{(s-1)(s^2+3)} = \frac{a}{(s-1)} + \frac{(bs+c)}{(s^2+3)}$$

$$1 = a(s^2 + 3) + (bs + c)(s - 1)$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$1 = a(s^2 + 3) + (bs + c)(s - 1)$$
.

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$1 = a(s^2 + 3) + (bs + c)(s - 1)$$
.

$$1 = as^2 + 3a + bs^2 + cs - bs - c$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$1 = a(s^2 + 3) + (bs + c)(s - 1)$$
.

$$1 = as^2 + 3a + bs^2 + cs - bs - c$$

$$1 = (a+b) s^2 + (c-b) s + (3a-c)$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$1 = a(s^2 + 3) + (bs + c)(s - 1)$$
.

$$1 = as^2 + 3a + bs^2 + cs - bs - c$$

$$1 = (a + b) s^{2} + (c - b) s + (3a - c)$$

$$a + b = 0$$
, $c - b = 0$, $3a - c = 1$.

Example

Sketch the graph of g and use LT to find y solution of

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall: $1 = a(s^2 + 3) + (bs + c)(s - 1)$.

$$1 = as^2 + 3a + bs^2 + cs - bs - c$$

$$1 = (a + b) s^{2} + (c - b) s + (3a - c)$$

$$a + b = 0$$
, $c - b = 0$, $3a - c = 1$.

$$a=-b$$
,

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$1 = a(s^2 + 3) + (bs + c)(s - 1)$$
.

$$1 = as^2 + 3a + bs^2 + cs - bs - c$$

$$1 = (a+b) s^2 + (c-b) s + (3a-c)$$

$$a + b = 0$$
, $c - b = 0$, $3a - c = 1$.

$$a=-b, \quad c=b,$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$1 = a(s^2 + 3) + (bs + c)(s - 1)$$
.

$$1 = as^2 + 3a + bs^2 + cs - bs - c$$

$$1 = (a+b) s^2 + (c-b) s + (3a-c)$$

$$a + b = 0$$
, $c - b = 0$, $3a - c = 1$.

$$a = -b$$
, $c = b$, $-3b - b = 1$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$1 = a(s^2 + 3) + (bs + c)(s - 1)$$
.

$$1 = as^2 + 3a + bs^2 + cs - bs - c$$

$$1 = (a + b) s^{2} + (c - b) s + (3a - c)$$

$$a + b = 0$$
, $c - b = 0$, $3a - c = 1$.

$$a = -b$$
, $c = b$, $-3b-b = 1$ \Rightarrow $b = -\frac{1}{4}$,

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$1 = a(s^2 + 3) + (bs + c)(s - 1)$$
.

$$1 = as^2 + 3a + bs^2 + cs - bs - c$$

$$1 = (a+b) s^2 + (c-b) s + (3a-c)$$

$$a + b = 0$$
, $c - b = 0$, $3a - c = 1$.

$$a = -b$$
, $c = b$, $-3b-b = 1$ \Rightarrow $b = -\frac{1}{4}$, $a = \frac{1}{4}$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$1 = a(s^2 + 3) + (bs + c)(s - 1)$$
.

$$1 = as^2 + 3a + bs^2 + cs - bs - c$$

$$1 = (a+b) s^2 + (c-b) s + (3a-c)$$

$$a + b = 0$$
, $c - b = 0$, $3a - c = 1$.

$$a = -b$$
, $c = b$, $-3b - b = 1$ \Rightarrow $b = -\frac{1}{4}$, $a = \frac{1}{4}$, $c = -\frac{1}{4}$.

Example

Sketch the graph of g and use LT to find y solution of

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall: $1 = a(s^2 + 3) + (bs + c)(s - 1)$.

$$1 = as^{2} + 3a + bs^{2} + cs - bs - c$$

$$1 = (a + b) s^{2} + (c - b) s + (3a - c)$$

$$a + b = 0, \quad c - b = 0, \quad 3a - c = 1,$$

$$a = -b, \quad c = b, \quad -3b - b = 1 \quad \Rightarrow \quad b = -\frac{1}{4}, \ a = \frac{1}{4}, \ c = -\frac{1}{4}.$$

$$H(s) = \frac{1}{4} \left[\frac{1}{s-1} - \frac{s+1}{s^2+3} \right].$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$H(s)=rac{1}{4}\Big[rac{1}{s-1}-rac{s+1}{s^2+3}\Big]$$
, $\mathcal{L}[y]=e^{-2s}\,H(s)$.

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$H(s) = \frac{1}{4} \left[\frac{1}{s-1} - \frac{s+1}{s^2+3} \right], \ \mathcal{L}[y] = e^{-2s} H(s).$$

$$H(s) = \frac{1}{4} \left[\frac{1}{s-1} - \frac{s}{s^2+3} - \frac{1}{\sqrt{3}} \frac{\sqrt{3}}{s^2+3} \right],$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall: $H(s) = \frac{1}{4} \left[\frac{1}{s-1} - \frac{s+1}{s^2+3} \right], \quad \mathcal{L}[y] = e^{-2s} H(s).$

$$H(s) = \frac{1}{4} \left[\frac{1}{s-1} - \frac{s}{s^2+3} - \frac{1}{\sqrt{3}} \frac{\sqrt{3}}{s^2+3} \right],$$

$$H(s) = \frac{1}{4} \Big[\mathcal{L}[e^t] \Big]$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$H(s) = \frac{1}{4} \left[\frac{1}{s-1} - \frac{s+1}{s^2+3} \right]$$
, $\mathcal{L}[y] = e^{-2s} H(s)$.

$$H(s) = \frac{1}{4} \left[\frac{1}{s-1} - \frac{s}{s^2+3} - \frac{1}{\sqrt{3}} \frac{\sqrt{3}}{s^2+3} \right],$$

$$H(s) = \frac{1}{4} \Big[\mathcal{L}[e^t] - \mathcal{L}[\cos(\sqrt{3}t)] \Big]$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$H(s) = \frac{1}{4} \left[\frac{1}{s-1} - \frac{s+1}{s^2+3} \right], \ \mathcal{L}[y] = e^{-2s} \ H(s).$$

$$H(s) = \frac{1}{4} \left[\frac{1}{s-1} - \frac{s}{s^2+3} - \frac{1}{\sqrt{3}} \frac{\sqrt{3}}{s^2+3} \right],$$

$$H(s) = \frac{1}{4} \Big[\mathcal{L}[e^t] - \mathcal{L}\big[\cos \big(\sqrt{3} \, t \big) \big] - \frac{1}{\sqrt{3}} \, \mathcal{L}\big[\sin \big(\sqrt{3} \, t \big) \big] \Big].$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \geqslant 2. \end{cases}$$

Solution: Recall: $H(s) = \frac{1}{4} \left[\frac{1}{s-1} - \frac{s+1}{s^2+3} \right], \quad \mathcal{L}[y] = e^{-2s} H(s).$

$$H(s) = \frac{1}{4} \left[\frac{1}{s-1} - \frac{s}{s^2+3} - \frac{1}{\sqrt{3}} \frac{\sqrt{3}}{s^2+3} \right],$$

$$H(s) = \frac{1}{4} \Big[\mathcal{L}[e^t] - \mathcal{L}[\cos(\sqrt{3}\,t)] - \frac{1}{\sqrt{3}}\,\mathcal{L}[\sin(\sqrt{3}\,t)] \Big].$$

$$H(s) = \mathcal{L}\left[\frac{1}{4}\left(e^t - \cos(\sqrt{3}t) - \frac{1}{\sqrt{3}}\sin(\sqrt{3}t)\right)\right].$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$H(s) = \mathcal{L}\left[\frac{1}{4}\left(e^t - \cos(\sqrt{3}t) - \frac{1}{\sqrt{3}}\sin(\sqrt{3}t)\right)\right].$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \geqslant 2. \end{cases}$$
Solution: Recall:
$$H(s) = \mathcal{L}\left[\frac{1}{4}\left(e^t - \cos(\sqrt{3}\,t) - \frac{1}{\sqrt{3}}\sin(\sqrt{3}\,t)\right)\right].$$

$$h(t) = \frac{1}{4}\left(e^t - \cos(\sqrt{3}\,t) - \frac{1}{\sqrt{3}}\sin(\sqrt{3}\,t)\right),$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$

Solution: Recall:
$$H(s) = \mathcal{L}\left[\frac{1}{4}\left(e^t - \cos(\sqrt{3}t) - \frac{1}{\sqrt{3}}\sin(\sqrt{3}t)\right)\right].$$

$$h(t) = \frac{1}{4} \left(e^t - \cos\left(\sqrt{3}\,t\right) - \frac{1}{\sqrt{3}}\,\sin\left(\sqrt{3}\,t\right) \right), \quad H(s) = \mathcal{L}[h(t)].$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \geqslant 2. \end{cases}$$
Solution: Recall:
$$H(s) = \mathcal{L}\left[\frac{1}{4}\left(e^t - \cos(\sqrt{3}\,t) - \frac{1}{\sqrt{3}}\sin(\sqrt{3}\,t)\right)\right].$$

$$h(t) = \frac{1}{4}\left(e^t - \cos(\sqrt{3}\,t) - \frac{1}{\sqrt{3}}\sin(\sqrt{3}\,t)\right), \quad H(s) = \mathcal{L}[h(t)].$$

$$\mathcal{L}[y] = e^{-2s}\,H(s)$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \geqslant 2. \end{cases}$$
Solution: Recall:
$$H(s) = \mathcal{L}\left[\frac{1}{4}\left(e^t - \cos(\sqrt{3}\,t) - \frac{1}{\sqrt{3}}\sin(\sqrt{3}\,t)\right)\right].$$

$$h(t) = \frac{1}{4}\left(e^t - \cos(\sqrt{3}\,t) - \frac{1}{\sqrt{3}}\sin(\sqrt{3}\,t)\right), \quad H(s) = \mathcal{L}[h(t)].$$

$$\mathcal{L}[y] = e^{-2s} H(s) = e^{-2s} \mathcal{L}[h(t)]$$

Example

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \geqslant 2. \end{cases}$$
Solution: Recall:
$$H(s) = \mathcal{L}\left[\frac{1}{4}\left(e^t - \cos(\sqrt{3}\,t) - \frac{1}{\sqrt{3}}\sin(\sqrt{3}\,t)\right)\right].$$

$$h(t) = \frac{1}{4}\left(e^t - \cos(\sqrt{3}\,t) - \frac{1}{\sqrt{3}}\sin(\sqrt{3}\,t)\right), \quad H(s) = \mathcal{L}[h(t)].$$

$$\mathcal{L}[y] = e^{-2s} H(s) = e^{-2s} \mathcal{L}[h(t)] = \mathcal{L}[u_2(t) h(t-2)].$$

Example

Sketch the graph of g and use LT to find y solution of

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \ge 2. \end{cases}$$
Solution: Recall:
$$H(s) = \mathcal{L}\left[\frac{1}{4}\left(e^{t} - \cos(\sqrt{3}t) - \frac{1}{\sqrt{3}}\sin(\sqrt{3}t)\right)\right].$$

$$h(t) = \frac{1}{4}\left(e^{t} - \cos(\sqrt{3}t) - \frac{1}{\sqrt{3}}\sin(\sqrt{3}t)\right), \quad H(s) = \mathcal{L}[h(t)].$$

$$\mathcal{L}[y] = e^{-2s}H(s) = e^{-2s}\mathcal{L}[h(t)] = \mathcal{L}[u_{2}(t)h(t-2)].$$

We conclude: $y(t) = u_2(t) h(t-2)$.

Example

Sketch the graph of g and use LT to find y solution of

$$y'' + 3y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < 2, \\ e^{(t-2)}, & t \geqslant 2. \end{cases}$$

Solution: Recall: $H(s) = \mathcal{L}\left[\frac{1}{4}\left(e^t - \cos(\sqrt{3}t) - \frac{1}{\sqrt{2}}\sin(\sqrt{3}t)\right)\right].$

$$h(t) = \frac{1}{4} \Big(e^t - \cos\left(\sqrt{3}\,t\right) - \frac{1}{\sqrt{3}}\,\sin\left(\sqrt{3}\,t\right) \Big), \quad H(s) = \mathcal{L}[h(t)].$$

$$\mathcal{L}[y] = e^{-2s} H(s) = e^{-2s} \mathcal{L}[h(t)] = \mathcal{L}[u_2(t) h(t-2)].$$

We conclude: $y(t) = u_2(t) h(t-2)$. Equivalently,

$$y(t) = \frac{u_2(t)}{4} \left[e^{(t-2)} - \cos(\sqrt{3}(t-2)) - \frac{1}{\sqrt{3}} \sin(\sqrt{3}(t-2)) \right].$$

Example

Use convolutions to find f satisfying $\mathcal{L}[f(t)] = \frac{e^{-2s}}{(s-1)(s^2+3)}$.

Example

Use convolutions to find f satisfying $\mathcal{L}[f(t)] = \frac{e^{-2s}}{(s-1)(s^2+3)}$.

$$\mathcal{L}[f(t)] = e^{-2s} \frac{1}{(s^2+3)} \frac{1}{(s-1)}$$

Example

Use convolutions to find f satisfying $\mathcal{L}[f(t)] = \frac{e^{-2s}}{(s-1)(s^2+3)}$.

$$\mathcal{L}[f(t)] = e^{-2s} \frac{1}{(s^2+3)} \frac{1}{(s-1)} = e^{-2s} \frac{1}{\sqrt{3}} \frac{\sqrt{3}}{(s^2+3)} \frac{1}{(s-1)},$$

Example

Use convolutions to find f satisfying $\mathcal{L}[f(t)] = \frac{e^{-2s}}{(s-1)(s^2+3)}$.

$$\mathcal{L}[f(t)] = e^{-2s} \frac{1}{(s^2+3)} \frac{1}{(s-1)} = e^{-2s} \frac{1}{\sqrt{3}} \frac{\sqrt{3}}{(s^2+3)} \frac{1}{(s-1)},$$

$$\mathcal{L}[f(t)] = e^{-2s} \frac{1}{\sqrt{3}} \mathcal{L}[\sin(\sqrt{3}t)] \mathcal{L}[e^t]$$

Example

Use convolutions to find f satisfying $\mathcal{L}[f(t)] = \frac{e^{-2s}}{(s-1)(s^2+3)}$.

$$\mathcal{L}[f(t)] = e^{-2s} \frac{1}{(s^2+3)} \frac{1}{(s-1)} = e^{-2s} \frac{1}{\sqrt{3}} \frac{\sqrt{3}}{(s^2+3)} \frac{1}{(s-1)},$$
 $\mathcal{L}[f(t)] = e^{-2s} \frac{1}{\sqrt{3}} \mathcal{L}[\sin(\sqrt{3}t)] \mathcal{L}[e^t]$ $\mathcal{L}[f(t)] = \frac{1}{\sqrt{3}} \mathcal{L}[u_2(t) \sin(\sqrt{3}(t-2))] \mathcal{L}[e^t].$

Example

Use convolutions to find f satisfying $\mathcal{L}[f(t)] = \frac{e^{-2s}}{(s-1)(s^2+3)}$.

$$\mathcal{L}[f(t)] = e^{-2s} \frac{1}{(s^2 + 3)} \frac{1}{(s - 1)} = e^{-2s} \frac{1}{\sqrt{3}} \frac{\sqrt{3}}{(s^2 + 3)} \frac{1}{(s - 1)},$$

$$\mathcal{L}[f(t)] = e^{-2s} \frac{1}{\sqrt{3}} \mathcal{L}[\sin(\sqrt{3}t)] \mathcal{L}[e^t]$$

$$\mathcal{L}[f(t)] = \frac{1}{\sqrt{3}} \mathcal{L}[u_2(t) \sin(\sqrt{3}(t - 2))] \mathcal{L}[e^t].$$

$$f(t) = \frac{1}{\sqrt{3}} \int_0^t u_2(\tau) \sin(\sqrt{3}(\tau - 2)) e^{(t - \tau)} d\tau.$$

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Example

Sketch the graph of g and use LT to find y solution of

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:

Example

Sketch the graph of g and use LT to find y solution of

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:

Express g using step functions,

Example

Sketch the graph of g and use LT to find y solution of

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:

Express g using step functions,

$$g(t) = u_{\pi}(t) \sin(t - \pi).$$

Example

Sketch the graph of g and use LT to find y solution of

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:

Express g using step functions,

$$g(t) = u_{\pi}(t) \sin(t - \pi).$$

$$\mathcal{L}[u_c(t) f(t-c)] = e^{-cs} \mathcal{L}[f(t)].$$

Example

Sketch the graph of g and use LT to find y solution of

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:

Express g using step functions,

$$g(t) = u_{\pi}(t) \sin(t - \pi).$$

$$\mathcal{L}[u_c(t) f(t-c)] = e^{-cs} \mathcal{L}[f(t)].$$

Therefore,

$$\mathcal{L}[g(t)] = e^{-\pi s} \mathcal{L}[\sin(t)].$$

Example

Sketch the graph of g and use LT to find y solution of

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:

We obtain: $\mathcal{L}[g(t)] = \frac{e^{-\pi s}}{s^2 + 1}$.

Express g using step functions,

$$g(t) = u_{\pi}(t) \sin(t - \pi).$$

$$\mathcal{L}[u_c(t) f(t-c)] = e^{-cs} \mathcal{L}[f(t)].$$

Therefore,

$$\mathcal{L}[g(t)] = e^{-\pi s} \mathcal{L}[\sin(t)].$$

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:
$$\mathcal{L}[g(t)] = \frac{e^{-\pi s}}{s^2 + 1}$$
.

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:
$$\mathcal{L}[g(t)] = \frac{e^{-\pi s}}{s^2 + 1}$$
.

$$\mathcal{L}[y''] - 6\,\mathcal{L}[y] = \mathcal{L}[g(t)]$$

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:
$$\mathcal{L}[g(t)] = \frac{e^{-\pi s}}{s^2 + 1}$$
.

$$\mathcal{L}[y''] - 6\,\mathcal{L}[y] = \mathcal{L}[g(t)] = \frac{e^{-\pi s}}{s^2 + 1}.$$

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:
$$\mathcal{L}[g(t)]=rac{e^{-\pi s}}{s^2+1}.$$

$$\mathcal{L}[y'']-6\,\mathcal{L}[y]=\mathcal{L}[g(t)]=rac{e^{-\pi s}}{s^2+1}.$$
 $(s^2-6)\,\mathcal{L}[y]=rac{e^{-\pi s}}{s^2+1}$

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:
$$\mathcal{L}[g(t)] = \frac{e^{-\pi s}}{s^2 + 1}$$
.
 $\mathcal{L}[y''] - 6 \mathcal{L}[y] = \mathcal{L}[g(t)] = \frac{e^{-\pi s}}{s^2 + 1}$.
 $(s^2 - 6) \mathcal{L}[y] = \frac{e^{-\pi s}}{s^2 + 1} \implies \mathcal{L}[y] = e^{-\pi s} \frac{1}{(s^2 + 1)(s^2 - 6)}$.

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:
$$\mathcal{L}[g(t)] = \frac{e^{-\pi s}}{s^2 + 1}$$
.
$$\mathcal{L}[y''] - 6 \mathcal{L}[y] = \mathcal{L}[g(t)] = \frac{e^{-\pi s}}{s^2 + 1}.$$

$$(s^2 - 6) \mathcal{L}[y] = \frac{e^{-\pi s}}{s^2 + 1} \quad \Rightarrow \quad \mathcal{L}[y] = e^{-\pi s} \frac{1}{(s^2 + 1)(s^2 - 6)}.$$

$$\mathcal{H}(s) = \frac{1}{(s^2 + 1)(s^2 - 6)}$$

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:
$$\mathcal{L}[g(t)] = \frac{e^{-\pi s}}{s^2 + 1}$$
.

$$\mathcal{L}[y''] - 6 \mathcal{L}[y] = \mathcal{L}[g(t)] = \frac{e^{-\pi s}}{s^2 + 1}.$$

$$(s^2 - 6) \mathcal{L}[y] = \frac{e^{-\pi s}}{s^2 + 1} \quad \Rightarrow \quad \mathcal{L}[y] = e^{-\pi s} \frac{1}{(s^2 + 1)(s^2 - 6)}.$$

$$\mathcal{H}(s) = \frac{1}{(s^2 + 1)(s^2 - 6)} = \frac{1}{(s^2 + 1)(s + \sqrt{6})(s - \sqrt{6})}.$$

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \ge \pi. \end{cases}$$

Solution:
$$\mathcal{L}[g(t)] = \frac{e^{-\pi s}}{s^2 + 1}$$
.

$$\mathcal{L}[y''] - 6\,\mathcal{L}[y] = \mathcal{L}[g(t)] = \frac{e^{-\pi s}}{s^2 + 1}.$$

$$(s^2 - 6) \mathcal{L}[y] = \frac{e^{-\pi s}}{s^2 + 1} \quad \Rightarrow \quad \mathcal{L}[y] = e^{-\pi s} \frac{1}{(s^2 + 1)(s^2 - 6)}.$$

$$H(s) = \frac{1}{(s^2+1)(s^2-6)} = \frac{1}{(s^2+1)(s+\sqrt{6})(s-\sqrt{6})}$$

$$H(s) = \frac{a}{(s+\sqrt{6})} + \frac{b}{(s-\sqrt{6})} + \frac{(cs+d)}{(s^2+1)}.$$

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:
$$H(s) = \frac{a}{(s+\sqrt{6})} + \frac{b}{(s-\sqrt{6})} + \frac{(cs+d)}{(s^2+1)}$$
.

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:
$$H(s) = \frac{a}{(s+\sqrt{6})} + \frac{b}{(s-\sqrt{6})} + \frac{(cs+d)}{(s^2+1)}$$
.

$$\frac{1}{(s^2+1)(s+\sqrt{6})(s-\sqrt{6})} = \frac{a}{(s+\sqrt{6})} + \frac{b}{(s-\sqrt{6})} + \frac{(cs+d)}{(s^2+1)}$$

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:
$$H(s) = \frac{a}{(s+\sqrt{6})} + \frac{b}{(s-\sqrt{6})} + \frac{(cs+d)}{(s^2+1)}$$
.

$$\frac{1}{(s^2+1)(s+\sqrt{6})(s-\sqrt{6})} = \frac{a}{(s+\sqrt{6})} + \frac{b}{(s-\sqrt{6})} + \frac{(cs+d)}{(s^2+1)}$$

$$1 = a(s - \sqrt{6})(s^2 + 1) + b(s + \sqrt{6})(s^2 + 1) + (cs + d)(s^2 - 6).$$

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:
$$H(s) = \frac{a}{(s+\sqrt{6})} + \frac{b}{(s-\sqrt{6})} + \frac{(cs+d)}{(s^2+1)}$$
.

$$\frac{1}{(s^2+1)(s+\sqrt{6})(s-\sqrt{6})} = \frac{a}{(s+\sqrt{6})} + \frac{b}{(s-\sqrt{6})} + \frac{(cs+d)}{(s^2+1)}$$

$$1 = a(s - \sqrt{6})(s^2 + 1) + b(s + \sqrt{6})(s^2 + 1) + (cs + d)(s^2 - 6).$$

The solution is:
$$a = -\frac{1}{14\sqrt{6}}$$
, $b = \frac{1}{14\sqrt{6}}$, $c = 0$, $d = -\frac{1}{7}$.

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution:
$$H(s) = \frac{1}{14\sqrt{6}} \left[-\frac{1}{(s+\sqrt{6})} + \frac{1}{(s-\sqrt{6})} - \frac{2\sqrt{6}}{(s^2+1)} \right].$$

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

$$\text{Solution: } H(s) = \frac{1}{14\sqrt{6}} \left[-\frac{1}{\left(s + \sqrt{6}\right)} + \frac{1}{\left(s - \sqrt{6}\right)} - \frac{2\sqrt{6}}{\left(s^2 + 1\right)} \right].$$

$$H(s) = \frac{1}{14\sqrt{6}} \left[-\mathcal{L}\left[e^{-\sqrt{6}t}\right] + \mathcal{L}\left[e^{\sqrt{6}t}\right] - 2\sqrt{6}\,\mathcal{L}[\sin(t)] \right]$$

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

$$\text{Solution: } H(s) = \frac{1}{14\sqrt{6}} \left[-\frac{1}{\left(s + \sqrt{6}\right)} + \frac{1}{\left(s - \sqrt{6}\right)} - \frac{2\sqrt{6}}{\left(s^2 + 1\right)} \right].$$

$$H(s) = \frac{1}{14\sqrt{6}} \left[-\mathcal{L}\left[e^{-\sqrt{6}t}\right] + \mathcal{L}\left[e^{\sqrt{6}t}\right] - 2\sqrt{6}\,\mathcal{L}[\sin(t)] \right]$$

$$H(s) = \mathcal{L}\left[\frac{1}{14\sqrt{6}}\left(-e^{-\sqrt{6}t} + e^{\sqrt{6}t} - 2\sqrt{6}\sin(t)\right)\right].$$

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

$$\text{Solution: } H(s) = \frac{1}{14\sqrt{6}} \left[-\frac{1}{\left(s + \sqrt{6}\right)} + \frac{1}{\left(s - \sqrt{6}\right)} - \frac{2\sqrt{6}}{\left(s^2 + 1\right)} \right].$$

$$H(s) = \frac{1}{14\sqrt{6}} \left[-\mathcal{L} \left[e^{-\sqrt{6}t} \right] + \mathcal{L} \left[e^{\sqrt{6}t} \right] - 2\sqrt{6} \, \mathcal{L} [\sin(t)] \right]$$

$$H(s) = \mathcal{L}\left[\frac{1}{14\sqrt{6}}\left(-e^{-\sqrt{6}t} + e^{\sqrt{6}t} - 2\sqrt{6}\sin(t)\right)\right].$$

$$h(t) = \frac{1}{14\sqrt{6}} \left[-e^{-\sqrt{6}t} + e^{\sqrt{6}t} - 2\sqrt{6}\sin(t) \right]$$

Example

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

$$\text{Solution: } H(s) = \frac{1}{14\sqrt{6}} \left[-\frac{1}{\left(s + \sqrt{6}\right)} + \frac{1}{\left(s - \sqrt{6}\right)} - \frac{2\sqrt{6}}{\left(s^2 + 1\right)} \right].$$

$$H(s) = \frac{1}{14\sqrt{6}} \left[-\mathcal{L}\left[e^{-\sqrt{6}t}\right] + \mathcal{L}\left[e^{\sqrt{6}t}\right] - 2\sqrt{6}\,\mathcal{L}[\sin(t)] \right]$$

$$H(s) = \mathcal{L}\Big[\frac{1}{14\sqrt{6}}\left(-e^{-\sqrt{6}t} + e^{\sqrt{6}t} - 2\sqrt{6}\sin(t)\right)\Big].$$

$$h(t) = \frac{1}{14\sqrt{6}} \left[-e^{-\sqrt{6}t} + e^{\sqrt{6}t} - 2\sqrt{6}\sin(t) \right] \Rightarrow H(s) = \mathcal{L}[h(t)].$$

Example

Sketch the graph of g and use LT to find y solution of

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution: Recall: $\mathcal{L}[y] = e^{-\pi s} \, H(s)$, where $H(s) = \mathcal{L}[h(t)]$, and

$$h(t) = \frac{1}{14\sqrt{6}} \left[-e^{-\sqrt{6}t} + e^{\sqrt{6}t} - 2\sqrt{6}\sin(t) \right].$$

Example

Sketch the graph of g and use LT to find y solution of

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution: Recall: $\mathcal{L}[y] = e^{-\pi s} \, \mathcal{H}(s)$, where $\mathcal{H}(s) = \mathcal{L}[h(t)]$, and

$$h(t) = \frac{1}{14\sqrt{6}} \left[-e^{-\sqrt{6}t} + e^{\sqrt{6}t} - 2\sqrt{6}\sin(t) \right].$$

$$\mathcal{L}[y] = e^{-\pi s} \, \mathcal{L}[h(t)]$$

Example

Sketch the graph of g and use LT to find y solution of

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution: Recall: $\mathcal{L}[y] = e^{-\pi s} \, \mathcal{H}(s)$, where $\mathcal{H}(s) = \mathcal{L}[h(t)]$, and

$$h(t) = \frac{1}{14\sqrt{6}} \left[-e^{-\sqrt{6}t} + e^{\sqrt{6}t} - 2\sqrt{6}\sin(t) \right].$$

$$\mathcal{L}[y] = e^{-\pi s} \mathcal{L}[h(t)] = \mathcal{L}[u_{\pi}(t) h(t-\pi)]$$

Example

Sketch the graph of g and use LT to find y solution of

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution: Recall: $\mathcal{L}[y] = e^{-\pi s} \, H(s)$, where $H(s) = \mathcal{L}[h(t)]$, and

$$h(t) = \frac{1}{14\sqrt{6}} \left[-e^{-\sqrt{6}t} + e^{\sqrt{6}t} - 2\sqrt{6}\sin(t) \right].$$

$$\mathcal{L}[y] = e^{-\pi s} \mathcal{L}[h(t)] = \mathcal{L}[u_{\pi}(t) h(t-\pi)] \ \Rightarrow \ y(t) = u_{\pi}(t) h(t-\pi).$$

Example

Sketch the graph of g and use LT to find y solution of

$$y'' - 6y = g(t), \quad y(0) = y'(0) = 0, \quad g(t) = \begin{cases} 0, & t < \pi, \\ \sin(t - \pi), & t \geqslant \pi. \end{cases}$$

Solution: Recall: $\mathcal{L}[y] = e^{-\pi s} H(s)$, where $H(s) = \mathcal{L}[h(t)]$, and

$$h(t) = \frac{1}{14\sqrt{6}} \left[-e^{-\sqrt{6}t} + e^{\sqrt{6}t} - 2\sqrt{6}\sin(t) \right].$$

$$\mathcal{L}[y] = e^{-\pi s} \mathcal{L}[h(t)] = \mathcal{L}[u_{\pi}(t) h(t-\pi)] \ \Rightarrow \ y(t) = u_{\pi}(t) h(t-\pi).$$

Equivalently:

$$y(t) = \frac{u_{\pi}(t)}{14\sqrt{6}} \left[-e^{-\sqrt{6}(t-\pi)} + e^{\sqrt{6}(t-\pi)} - 2\sqrt{6}\sin(t-\pi) \right]. \ \, \triangleleft$$

