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Overview and notation.

Overview: The Laplace Transform method can be used to solve
constant coefficients differential equations with discontinuous
source functions.

Notation:
If L[f (t)] = F (s), then we denote L−1[F (s)] = f (t).

Remark: One can show that for a particular type of functions f ,
that includes all functions we work with in this Section, the
notation above is well-defined.

Example

From the Laplace Transform table we know that L
[
eat

]
=

1

s − a
.

Then also holds that L−1
[ 1

s − a

]
= eat . C
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The definition of a step function.

Definition
A function u is called a step function at t = 0 iff holds

u(t) =

{
0 for t < 0,

1 for t > 0.

Example

Graph the step function values u(t) above, and the translations
u(t − c) and u(t + c) with c > 0.

Solution:
u(t)

t

1

0

u(t − c)

t

1

0 c

u(t + c)

0

1

t− c

C
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The definition of a step function.

Remark: Given any function values f (t) and c > 0, then f (t − c)
is a right translation of f and f (t + c) is a left translation of f .

Example

f ( t ) =  e 

0 t

a t

1

f ( t ) f ( t ) =  e 

0 t

1

c

a ( t − c )
f ( t )

a t

0 t

f ( t )

1

f ( t ) =  u ( t ) e f ( t ) =  u ( t − c )  e 

0 t

1

c

a ( t − c )
f ( t )
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Piecewise discontinuous functions.

Example

Graph of the function b(t) = u(t − a)− u(t − b), with 0 < a < b.

Solution: The bump function b can be graphed as follows:

u(t −a)

0 a b

1

t

u(t −b)

0 a b

1

t

t0 a b

b(t)

1

C



Piecewise discontinuous functions.

Example

Graph of the function b(t) = u(t − a)− u(t − b), with 0 < a < b.

Solution: The bump function b can be graphed as follows:

u(t −a)

0 a b

1

t

u(t −b)

0 a b

1

t

t0 a b

b(t)

1

C



Piecewise discontinuous functions.

Example

Graph of the function b(t) = u(t − a)− u(t − b), with 0 < a < b.

Solution: The bump function b can be graphed as follows:

u(t −a)

0 a b

1

t

u(t −b)

0 a b

1

t

t0 a b

b(t)

1

C



Piecewise discontinuous functions.

Example

Graph of the function b(t) = u(t − a)− u(t − b), with 0 < a < b.

Solution: The bump function b can be graphed as follows:

u(t −a)

0 a b

1

t

u(t −b)

0 a b

1

t

t0 a b

b(t)

1

C



Piecewise discontinuous functions.

Example

Graph of the function f (t) = eat
[
u(t − 1)− u(t − 2)

]
.

Solution:

a t

t1 2

1

a t

f ( t ) = e     [ u ( t −1 ) − u ( t −2 ) ]

 [ u ( t −1 ) − u ( t −2 ) ]

e   

y

Notation: The function values u(t − c) are denoted in the
textbook as uc(t).
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The Laplace Transform of discontinuous functions.

Theorem
Given any real number c > 0, the following equation holds,

L[u(t − c)] =
e−cs

s
, s > 0.

Proof:

L[u(t − c)] =

∫ ∞

0

e−stu(t − c) dt =

∫ ∞

c
e−st dt,

L[u(t − c)] = lim
N→∞

−1

s

(
e−Ns − e−cs

)
=

e−cs

s
, s > 0.

We conclude that L[u(t − c)] =
e−cs

s
.
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The Laplace Transform of discontinuous functions.

Example

Compute L[3u(t − 2)].

Solution: L[3u(t − 2)] = 3L[u(t − 2)] = 3
e−2s

s
.

We conclude: L[3u(t − 2)] =
3e−2s

s
. C

Example

Compute L−1
[e−3s

s

]
.

Solution: L−1
[e−3s

s

]
= u(t − 3).

We conclude: L−1
[e−3s

s

]
= u(t − 3). C
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Properties of the Laplace Transform.

Theorem (Translations)

If F (s) = L[f (t)] exists for s > a > 0 and c > 0, then holds

L[u(t − c)f (t − c)] = e−cs F (s), s > a.

Furthermore,

L[ect f (t)] = F (s − c), s > a + c .

Remark:

I L
[
translation (uf )

]
= (exp)

(
L[f ]

)
.

I L
[
(exp) (f )

]
= translation

(
L[f ]

)
.

Equivalent notation:

I L[u(t − c)f (t − c)] = e−cs L[f (t)],

I L[ect f (t)] = L[f ](s − c).
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Properties of the Laplace Transform.

Example

Compute L
[
u(t − 2) sin(a(t − 2))

]
.

Solution: L[sin(at)] =
a

s2 + a2
, L[u(t − c)f (t − c)] = e−cs L[f (t)].

L
[
u(t − 2) sin(a(t − 2))

]
= e−2s L[sin(at)] = e−2s a

s2 + a2
.

We conclude: L
[
u(t − 2) sin(a(t − 2))

]
= e−2s a

s2 + a2
. C

Example

Compute L
[
e3t sin(at)

]
.

Solution: Recall: L[ect f (t)] = L[f ](s − c).

We conclude: L
[
e3t sin(at)

]
=

a

(s − 3)2 + a2
, with s > 3. C
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Properties of the Laplace Transform.

Example

Find the Laplace transform of f (t) =

{
0, t < 1,

(t2 − 2t + 2), t > 1.

Solution: Using step function notation,

f (t) = u(t − 1)(t2 − 2t + 2).

Completing the square we obtain,

t2 − 2t + 2 = (t2 − 2t + 1)− 1 + 2 = (t − 1)2 + 1.

This is a parabola t2 translated to the
right by 1 and up by one. This is a
discontinuous function.

1

10

f ( t )

t
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Properties of the Laplace Transform.

Example
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(t2 − 2t + 2), t > 1.

Solution: Recall: f (t) = u(t − 1)
[
(t − 1)2 + 1

]
.

This is equivalent to

f (t) = u(t − 1) (t − 1)2 + u(t − 1).

Since L[t2] = 2/s3, and L[u(t − c)g(t − c)] = e−cs L[g(t)], then

L[f (t)] = L[u(t − 1) (t − 1)2] + L[u(t − 1)] = e−s 2

s3
+ e−s 1

s
.

We conclude: L[f (t)] =
e−s

s3

(
2 + s2

)
. C
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Properties of the Laplace Transform.

Remark: The inverse of the formulas in the Theorem above are:

L−1
[
e−cs F (s)

]
= u(t − c) f (t − c),

L−1
[
F (s − c)

]
= ect f (t).

Example

Find L−1
[ e−4s

s2 + 9

]
.

Solution: L−1
[ e−4s

s2 + 9

]
=

1

3
L−1

[
e−4s 3

s2 + 9

]
.

Recall: L−1
[ a

s2 + a2

]
= sin(at). Then, we conclude that

L−1
[ e−4s

s2 + 9

]
=

1

3
u(t − 4) sin

(
3(t − 4)

)
. C
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Properties of the Laplace Transform.

Example

Find L−1
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(s − 2)2 + 9

]
.

Solution: L−1
[ s

s2 + a2

]
= cos(at), L−1

[
F (s − c)

]
= ect f (t).

We conclude: L−1
[ (s − 2)

(s − 2)2 + 9

]
= e2t cos(3t). C

Example

Find L−1
[ 2e−3s

s2 − 4

]
.

Solution: Recall: L−1
[ a

s2 − a2

]
= sinh(at)

and L−1
[
e−cs F (s)

]
= u(t − c) f (t − c).
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Properties of the Laplace Transform.

Example

Find L−1
[ e−2s

s2 + s − 2

]
.

Solution: Find the roots of the denominator:

s± =
1

2

[
−1±

√
1 + 8

]
⇒

{
s+ = 1,

s− = −2.

Therefore, s2 + s − 2 = (s − 1) (s + 2).

Use partial fractions to simplify the rational function:

1

s2 + s − 2
=

1

(s − 1) (s + 2)
=

a

(s − 1)
+

b

(s + 2)
,

1

s2 + s − 2
= a(s + 2) + b(s − 1) =

(a + b) s + (2a− b)

(s − 1) (s + 2)
.
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Equations with discontinuous sources (Sect. 6.4).

I Differential equations with discontinuous sources.
I We solve the IVPs:

(a) Example 1:

y ′ + 2y = u(t − 4), y(0) = 3.

(b) Example 2:

y ′′ + y ′ +
5

4
y = b(t),

y(0) = 0,

y ′(0) = 0,
b(t) =

{
1, t ∈ [0, π)

0, t ∈ [π,∞).

(c) Example 3:

y ′′+y ′+
5

4
y = g(t),

y(0) = 0,

y ′(0) = 0,
g(t) =

{
sin(t), t ∈ [0, π)

0, t ∈ [π,∞).
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Differential equations with discontinuous sources.

Example

Use the Laplace transform to find the solution of the IVP

y ′ + 2y = u(t − 4), y(0) = 3.

Solution: Compute the Laplace transform of the whole equation,

L[y ′] + 2L[y ] = L[u(t − 4)] =
e−4s

s
.

From the previous Section we know that[
s L[y ]−y(0)

]
+2L[y ] =

e−4s

s
⇒ (s +2)L[y ] = y(0)+

e−4s

s
.

Introduce the initial condition, L[y ] =
3

(s + 2)
+ e−4s 1

s(s + 2)
,

Use the table: L[y ] = 3L
[
e−2t

]
+ e−4s 1

s(s + 2)
.
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+
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Equations with discontinuous sources (Sect. 6.4).

I Differential equations with discontinuous sources.
I We solve the IVPs:

(a) Example 1:

y ′ + 2y = u(t − 4), y(0) = 3.

(b) Example 2:

y ′′ + y ′ +
5

4
y = b(t),

y(0) = 0,

y ′(0) = 0,
b(t) =

{
1, t ∈ [0, π)

0, t ∈ [π,∞).

(c) Example 3:

y ′′+y ′+
5

4
y = g(t),

y(0) = 0,

y ′(0) = 0,
g(t) =

{
sin(t), t ∈ [0, π)

0, t ∈ [π,∞).
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4
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y(0) = 0,

y ′(0) = 0,
b(t) =

{
1, t ∈ [0, π)

0, t ∈ [π,∞).

Solution:

Rewrite the source function using
step functions.

b ( t )

1

0 pi t

t

u ( t )

1

0 pi

u ( t − pi )

1

0 pi t
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1
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− e−πs

s
.

So, the source is L[b(t)] =
(
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) 1

s
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5

4
L[y ] =

(
1− e−πs

) 1

s
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Equations with discontinuous sources (Sect. 6.4).

I Differential equations with discontinuous sources.
I We solve the IVPs:

(a) Example 1:

y ′ + 2y = u(t − 4), y(0) = 3.

(b) Example 2:

y ′′ + y ′ +
5

4
y = b(t),

y(0) = 0,

y ′(0) = 0,
b(t) =

{
1, t ∈ [0, π)

0, t ∈ [π,∞).

(c) Example 3:

y ′′+y ′+
5

4
y = g(t),

y(0) = 0,

y ′(0) = 0,
g(t) =

{
sin(t), t ∈ [0, π)

0, t ∈ [π,∞).
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0 t ∈ [π,∞).

Solution:

Rewrite the source function using
step functions.

g ( t )

0 tpi
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y

sin ( t )

1

0 pi t

y y

0

1

u ( t ) − u ( t − pi )

pi t
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Solution: The graphs imply: g(t) =
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u(t)− u(t − π)

]
sin(t).

Recall the identity: sin(t) = − sin(t − π). Then,

g(t) = u(t) sin(t)− u(t − π) sin(t),

g(t) = u(t) sin(t) + u(t − π) sin(t − π).

Now is simple to find L[g ], since

L[g(t)] = L[u(t) sin(t)] + L[u(t − π) sin(t − π)].
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L[g(t)] =
1

(s2 + 1)
+ e−πs 1

(s2 + 1)
.

Recall the Laplace transform of the differential equation

L[y ′′] + L[y ′] +
5

4
L[y ] = L[g ].

The initial conditions imply: L[y ′′] = s2 L[y ] and L[y ′] = s L[y ].

Therefore,
(
s2 + s +

5

4

)
L[y ] =

(
1 + e−πs

) 1

(s2 + 1)
.
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√
1− 5

]
⇒ Complex roots.
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The Dirac delta generalized function.

Definition
Consider the sequence of functions for n > 1,

δn(t) =


0, t < 0

n, 0 6 t 6
1

n

0, t >
1

n
.

d
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1 t
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n
d

d

d

The Dirac delta generalized function is given by

lim
n→∞

δn(t) = δ(t), t ∈ R.

Remarks:

(a) There exist infinitely many sequences δn that define the same
generalized function δ.

(b) For example, compare with the sequence δn in the textbook.
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Remarks:

(a) The Dirac δ is a function on the domain R− {0}, and
δ(t) = 0 for t ∈ R− {0}.

(b) δ at t = 0 is not defined, since δ(0) = limn→∞ n = +∞.

(c) δ is not a function on R.
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Properties of Dirac’s delta.

Remark: The Dirac δ is not a function.

We define operations on Dirac’s δ as limits n →∞ of the
operation on the sequence elements δn.

Definition

δ(t − c) = lim
n→∞

δn(t − c),

a δ(t) + b δ(t) = lim
n→∞

[
a δn(t) + b δn(t)

]
,

f (t) δ(t) = lim
n→∞

[
f (t) δn(t)

]
,∫ b

a
δ(t) dt = lim

n→∞

∫ b

a
δn(t) dt,

L[δ] = lim
n→∞

L[δn].
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Theorem ∫ a

−a
δ(t) dt = 1, a > 0.

Proof: ∫ a
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Properties of Dirac’s delta.

Theorem
If f : R → R is continuous, t0 ∈ R and a > 0, then∫ t0+a

t0−a
δ(t − t0) f (t) dt = f (t0).

Proof: Introduce the change of variable τ = t − t0,

I =

∫ t0+a

t0−a
δ(t − t0) f (t) dt =

∫ a

−a
δ(τ) f (τ + t0) dτ,

I = lim
n→∞

∫ a

−a
δn(τ) f (τ + t0) dτ = lim

n→∞

∫ 1/n

0
n f (τ + t0) dτ

Therefore, I = lim
n→∞

n

∫ 1/n

0
F ′(τ + t0) dτ , where we introduced the

primitive F (t) =

∫
f (t) dt, that is, f (t) = F ′(t).
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Generalized sources (Sect. 6.5).

I The Dirac delta generalized function.

I Properties of Dirac’s delta.

I Relation between deltas and steps.

I Dirac’s delta in Physics.

I The Laplace Transform of Dirac’s delta.

I Differential equations with Dirac’s delta sources.



Relation between deltas and steps.

Theorem
The sequence of functions for n > 1,

un(t) =


0, t < 0

nt, 0 6 t 6
1

n

1, t >
1

n
.

u

t0 1/3 1/2 1

3 2 1
u u u

1

n

satisfies, for t ∈ (−∞, 0) ∪ (0, 1/n) ∪ (1/n,∞), both equations,

u′n(t) = δn(t), lim
n→∞

un(t) = u(t), t ∈ R.

Remark:

I If we generalize the notion of derivative as
u′(t) = lim

n→∞
δn(t), then holds u′(t) = δ(t).

I Dirac’s delta is a generalized derivative of the step function.



Relation between deltas and steps.

Theorem
The sequence of functions for n > 1,

un(t) =


0, t < 0

nt, 0 6 t 6
1

n

1, t >
1

n
.

u

t0 1/3 1/2 1

3 2 1
u u u

1

n

satisfies, for t ∈ (−∞, 0) ∪ (0, 1/n) ∪ (1/n,∞), both equations,

u′n(t) = δn(t), lim
n→∞

un(t) = u(t), t ∈ R.

Remark:

I If we generalize the notion of derivative as
u′(t) = lim

n→∞
δn(t), then holds u′(t) = δ(t).

I Dirac’s delta is a generalized derivative of the step function.



Relation between deltas and steps.

Theorem
The sequence of functions for n > 1,

un(t) =


0, t < 0

nt, 0 6 t 6
1

n

1, t >
1

n
.

u

t0 1/3 1/2 1

3 2 1
u u u

1

n

satisfies, for t ∈ (−∞, 0) ∪ (0, 1/n) ∪ (1/n,∞), both equations,

u′n(t) = δn(t), lim
n→∞

un(t) = u(t), t ∈ R.

Remark:

I If we generalize the notion of derivative as
u′(t) = lim

n→∞
δn(t), then holds u′(t) = δ(t).

I Dirac’s delta is a generalized derivative of the step function.



Relation between deltas and steps.

Theorem
The sequence of functions for n > 1,

un(t) =


0, t < 0

nt, 0 6 t 6
1

n

1, t >
1

n
.

u

t0 1/3 1/2 1

3 2 1
u u u

1

n

satisfies, for t ∈ (−∞, 0) ∪ (0, 1/n) ∪ (1/n,∞), both equations,

u′n(t) = δn(t), lim
n→∞

un(t) = u(t), t ∈ R.

Remark:

I If we generalize the notion of derivative as
u′(t) = lim

n→∞
δn(t), then holds u′(t) = δ(t).

I Dirac’s delta is a generalized derivative of the step function.



Relation between deltas and steps.

Theorem
The sequence of functions for n > 1,

un(t) =


0, t < 0

nt, 0 6 t 6
1

n

1, t >
1

n
.

u

t0 1/3 1/2 1

3 2 1
u u u

1

n

satisfies, for t ∈ (−∞, 0) ∪ (0, 1/n) ∪ (1/n,∞), both equations,

u′n(t) = δn(t), lim
n→∞

un(t) = u(t), t ∈ R.

Remark:

I If we generalize the notion of derivative as
u′(t) = lim

n→∞
δn(t), then holds u′(t) = δ(t).

I Dirac’s delta is a generalized derivative of the step function.



Generalized sources (Sect. 6.5).

I The Dirac delta generalized function.

I Properties of Dirac’s delta.

I Relation between deltas and steps.

I Dirac’s delta in Physics.

I The Laplace Transform of Dirac’s delta.

I Differential equations with Dirac’s delta sources.



Dirac’s delta in Physics.

Remarks:

(a) Dirac’s delta generalized function is useful to describe
impulsive forces in mechanical systems.

(b) An impulsive force transmits a finite momentum in an
infinitely short time.

(c) For example: The momentum transmitted to a pendulum
when hit by a hammer. Newton’s law of motion says,

m v ′(t) = F (t), with F (t) = F0 δ(t − t0).

The momentum transfer is:

∆I = lim
∆t→0

mv(t)
∣∣∣t0+∆t

t0−∆t
= lim

∆t→0

∫ t0+∆t

t0−∆t
F (t) dt = F0.

That is, ∆I = F0.
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The Laplace Transform of Dirac’s delta.

Recall: The Laplace Transform can be generalized from functions
to δ,

as follows, L[δ(t − c)] = lim
n→∞

L[δn(t − c)].

Theorem
L[δ(t − c)] = e−cs .

Proof:

L[δ(t − c)] = lim
n→∞

L[δn(t − c)], δn(t) = n
[
u(t)− u

(
t − 1

n

)]
.

L[δ(t − c)] = lim
n→∞

n
(
L[u(t − c)]− L

[
u
(
t − c − 1

n

)])
L[δ(t − c)] = lim

n→∞
n
(e−cs

s
− e−(c+ 1
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δ(t − c) e−st dt = e−cs .

(c) L[δ(t − c) f (t)] =
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δ(t − c) e−st f (t) dt = e−cs f (c).
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Generalized sources (Sect. 6.5).

I The Dirac delta generalized function.

I Properties of Dirac’s delta.

I Relation between deltas and steps.

I Dirac’s delta in Physics.

I The Laplace Transform of Dirac’s delta.

I Differential equations with Dirac’s delta sources.



Differential equations with Dirac’s delta sources.

Example

Find the solution y to the initial value problem

y ′′ − y = −20 δ(t − 3), y(0) = 1, y ′(0) = 0.

Solution: Compute: L[y ′′]− L[y ] = −20L[δ(t − 3)].

L[y ′′] = s2 L[y ]−s y(0)−y ′(0) ⇒ (s2−1)L[y ]−s = −20 e−3s ,

We arrive to the equation L[y ] =
s

(s2 − 1)
− 20 e−3s 1

(s2 − 1)
,

L[y ] = L[cosh(t)]− 20L[u(t − 3) sinh(t − 3)],

We conclude: y(t) = cosh(t)− 20 u(t − 3) sinh(t − 3). C
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Differential equations with Dirac’s delta sources.

Example

Find the solution to the initial value problem

y ′′ + 4y = δ(t − π)− δ(t − 2π), y(0) = 0, y ′(0) = 0.

Solution: Compute: L[y ′′] + 4L[y ] = L[δ(t − π)]− L[δ(t − 2π)],

(s2 + 4)L[y ] = e−πs − e−2πs ⇒ L[y ] =
e−πs

(s2 + 4)
− e−2πs

(s2 + 4)
,

that is, L[y ] =
e−πs

2

2

(s2 + 4)
− e−2πs

2

2

(s2 + 4)
.

Recall: e−cs L[f (t)] = L[u(t − c) f (t − c)]. Therefore,

L[y ] =
1

2
L

[
u(t−π) sin

[
2(t−π)

]]
− 1

2
L

[
u(t−2π) sin

[
2(t−2π)

]]
.
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