Review for Exam 2.

- 5 or 6 problems.
- No multiple choice questions.
- ▶ No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
 - ▶ Regular-singular points (5.5).
 - ▶ Euler differential equation (5.4).
 - Power series solutions (5.2).
 - Variation of parameters (3.6).
 - Undetermined coefficients (3.5)
 - ► Constant coefficients, homogeneous, (3.1)-(3.4).

Review for Exam 2.

- 5 or 6 problems.
- ▶ No multiple choice questions.
- ▶ No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
 - ► Regular-singular points (5.5).
 - Euler differential equation (5.4).
 - Power series solutions (5.2).
 - Variation of parameters (3.6).
 - Undetermined coefficients (3.5)
 - ► Constant coefficients, homogeneous, (3.1)-(3.4).

Summary:

▶ Look for solutions $y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{(n+r)}$.

- ▶ Look for solutions $y(x) = \sum_{n=0}^{\infty} a_n(x x_0)^{(n+r)}$.

► Recall: Since
$$r \neq 0$$
, holds
$$y' = \sum_{n=0}^{\infty} (n+r) a_n (x-x_0)^{(n+r-1)} \neq \sum_{n=1}^{\infty} (n+r) a_n (x-x_0)^{(n+r-1)},$$

Summary:

- ▶ Look for solutions $y(x) = \sum_{n=0}^{\infty} a_n (x x_0)^{(n+r)}$.
- ▶ Recall: Since $r \neq 0$, holds

$$y' = \sum_{n=0}^{\infty} (n+r)a_n(x-x_0)^{(n+r-1)} \neq \sum_{n=1}^{\infty} (n+r)a_n(x-x_0)^{(n+r-1)},$$

▶ Find the indicial equation for r, the recurrence relation for a_n .

- ▶ Look for solutions $y(x) = \sum_{n=0}^{\infty} a_n (x x_0)^{(n+r)}$.
- ▶ Recall: Since $r \neq 0$, holds

$$y' = \sum_{n=0}^{\infty} (n+r)a_n(x-x_0)^{(n+r-1)} \neq \sum_{n=1}^{\infty} (n+r)a_n(x-x_0)^{(n+r-1)},$$

- ▶ Find the indicial equation for r, the recurrence relation for a_n .
- ▶ Introduce the larger root r_+ of the indicial polynomial into the recurrence relation and solve for a_n .

- ▶ Look for solutions $y(x) = \sum_{n=0}^{\infty} a_n (x x_0)^{(n+r)}$.
- ▶ Recall: Since $r \neq 0$, holds

$$y' = \sum_{n=0}^{\infty} (n+r)a_n(x-x_0)^{(n+r-1)} \neq \sum_{n=1}^{\infty} (n+r)a_n(x-x_0)^{(n+r-1)},$$

- ▶ Find the indicial equation for r, the recurrence relation for a_n .
- ▶ Introduce the larger root r_+ of the indicial polynomial into the recurrence relation and solve for a_n .
 - (a) If $(r_+ r_-)$ is not an integer, then each r_+ and r_- define linearly independent solutions.

- ▶ Look for solutions $y(x) = \sum_{n=0}^{\infty} a_n (x x_0)^{(n+r)}$.
- ▶ Recall: Since $r \neq 0$, holds

$$y' = \sum_{n=0}^{\infty} (n+r)a_n(x-x_0)^{(n+r-1)} \neq \sum_{n=1}^{\infty} (n+r)a_n(x-x_0)^{(n+r-1)},$$

- ▶ Find the indicial equation for r, the recurrence relation for a_n .
- ▶ Introduce the larger root r_+ of the indicial polynomial into the recurrence relation and solve for a_n .
 - (a) If $(r_+ r_-)$ is not an integer, then each r_+ and r_- define linearly independent solutions.
 - (b) If $(r_+ r_-)$ is an integer, then both r_+ and r_- define proportional solutions.

Example

Example

Solution:
$$y = \sum_{n=0}^{\infty} a_n x^{(n+r)}$$
,

Example

Solution:
$$y = \sum_{n=0}^{\infty} a_n x^{(n+r)}, \ y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{(n+r-2)},$$

Example

Solution:
$$y = \sum_{n=0}^{\infty} a_n x^{(n+r)}$$
, $y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{(n+r-2)}$, $x^2 y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{(n+r)}$

Example

Consider the equation $x^2y'' + \left(x^2 + \frac{1}{4}\right)y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
$$y = \sum_{n=0}^{\infty} a_n x^{(n+r)}$$
, $y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{(n+r-2)}$, $x^2 y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{(n+r)}$

We also need to compute

$$\left(x^{2} + \frac{1}{4}\right)y = \sum_{n=0}^{\infty} a_{n}x^{(n+r+2)} + \sum_{n=0}^{\infty} \frac{1}{4}a_{n}x^{(n+r)},$$

Example

Solution:
$$\left(x^2 + \frac{1}{4}\right)y = \sum_{n=0}^{\infty} a_n x^{(n+r+2)} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{(n+r)}$$
.

Example

Consider the equation $x^2y'' + \left(x^2 + \frac{1}{4}\right)y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
$$\left(x^2 + \frac{1}{4}\right)y = \sum_{n=0}^{\infty} a_n x^{(n+r+2)} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{(n+r)}$$
.

Re-label m = n + 2 in the first term and then switch back to n,

Example

Consider the equation $x^2y'' + \left(x^2 + \frac{1}{4}\right)y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
$$\left(x^2 + \frac{1}{4}\right)y = \sum_{n=0}^{\infty} a_n x^{(n+r+2)} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{(n+r)}$$
.

Re-label m = n + 2 in the first term and then switch back to n,

$$\left(x^2 + \frac{1}{4}\right)y = \sum_{n=2}^{\infty} a_{(n-2)}x^{(n+r)} + \sum_{n=0}^{\infty} \frac{1}{4}a_nx^{(n+r)},$$

Example

Consider the equation $x^2 y'' + \left(x^2 + \frac{1}{4}\right) y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
$$\left(x^2 + \frac{1}{4}\right)y = \sum_{n=0}^{\infty} a_n x^{(n+r+2)} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{(n+r)}$$
.

Re-label m = n + 2 in the first term and then switch back to n,

$$\left(x^2 + \frac{1}{4}\right)y = \sum_{n=2}^{\infty} a_{(n-2)}x^{(n+r)} + \sum_{n=0}^{\infty} \frac{1}{4}a_nx^{(n+r)},$$

The equation is

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{(n+r)} + \sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)} + \sum_{n=0}^{\infty} \frac{1}{4}a_n x^{(n+r)} = 0.$$

Example

Consider the equation $x^2y'' + \left(x^2 + \frac{1}{4}\right)y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{(n+r)} + \sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)} + \sum_{n=0}^{\infty} \frac{1}{4}a_n x^{(n+r)} = 0.$$

Example

Consider the equation $x^2y'' + \left(x^2 + \frac{1}{4}\right)y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:

$$\begin{split} \sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{(n+r)} + \sum_{n=2}^{\infty} a_{(n-2)} x^{(n+r)} + \sum_{n=0}^{\infty} \frac{1}{4} a_n x^{(n+r)} &= 0. \\ \left[r(r-1) + \frac{1}{4} \right] a_0 x^r + \left[(r+1)r + \frac{1}{4} \right] a_1 x^{(r+1)} + \\ \sum_{n=0}^{\infty} \left[(n+r)(n+r-1)a_n + a_{(n-2)} + \frac{1}{4} a_n \right] x^{(n+r)} &= 0. \end{split}$$

Example

Solution:
$$\left[r(r-1) + \frac{1}{4}\right] a_0 = 0$$
, $\left[(r+1)r + \frac{1}{4}\right] a_1 = 0$, $\left[(n+r)(n+r-1) + \frac{1}{4}\right] a_n + a_{(n-2)} = 0$.

Example

Consider the equation $x^2y'' + \left(x^2 + \frac{1}{4}\right)y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
$$\left[r(r-1) + \frac{1}{4}\right] a_0 = 0$$
, $\left[(r+1)r + \frac{1}{4}\right] a_1 = 0$, $\left[(n+r)(n+r-1) + \frac{1}{4}\right] a_n + a_{(n-2)} = 0$.

The indicial equation $r^2 - r + \frac{1}{4} = 0$ implies $r_{\pm} = \frac{1}{2}$.

Example

Consider the equation $x^2y'' + \left(x^2 + \frac{1}{4}\right)y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
$$\left[r(r-1) + \frac{1}{4}\right] a_0 = 0$$
, $\left[(r+1)r + \frac{1}{4}\right] a_1 = 0$, $\left[(n+r)(n+r-1) + \frac{1}{4}\right] a_n + a_{(n-2)} = 0$.

The indicial equation $r^2 - r + \frac{1}{4} = 0$ implies $r_{\pm} = \frac{1}{2}$.

The indicial equation $r^2 + r + \frac{1}{4} = 0$ implies $r_{\pm} = -\frac{1}{2}$.

Example

Consider the equation $x^2y'' + \left(x^2 + \frac{1}{4}\right)y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
$$\left[r(r-1) + \frac{1}{4}\right] a_0 = 0$$
, $\left[(r+1)r + \frac{1}{4}\right] a_1 = 0$, $\left[(n+r)(n+r-1) + \frac{1}{4}\right] a_n + a_{(n-2)} = 0$.

The indicial equation $r^2 - r + \frac{1}{4} = 0$ implies $r_{\pm} = \frac{1}{2}$.

The indicial equation $r^2+r+\frac{1}{4}=0$ implies $r_\pm=-\frac{1}{2}.$

Choose
$$r = \frac{1}{2}$$
.

Example

Consider the equation $x^2y'' + \left(x^2 + \frac{1}{4}\right)y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
$$\left[r(r-1) + \frac{1}{4}\right] a_0 = 0$$
, $\left[(r+1)r + \frac{1}{4}\right] a_1 = 0$, $\left[(n+r)(n+r-1) + \frac{1}{4}\right] a_n + a_{(n-2)} = 0$.

The indicial equation $r^2 - r + \frac{1}{4} = 0$ implies $r_{\pm} = \frac{1}{2}$.

The indicial equation $r^2+r+\frac{1}{4}=0$ implies $r_\pm=-\frac{1}{2}.$

Choose $r = \frac{1}{2}$. That implies a_0 arbitrary

Example

Consider the equation $x^2y'' + \left(x^2 + \frac{1}{4}\right)y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
$$\left[r(r-1) + \frac{1}{4}\right] a_0 = 0$$
, $\left[(r+1)r + \frac{1}{4}\right] a_1 = 0$, $\left[(n+r)(n+r-1) + \frac{1}{4}\right] a_n + a_{(n-2)} = 0$.

The indicial equation $r^2 - r + \frac{1}{4} = 0$ implies $r_{\pm} = \frac{1}{2}$.

The indicial equation $r^2 + r + \frac{1}{4} = 0$ implies $r_{\pm} = -\frac{1}{2}$.

Choose $r = \frac{1}{2}$. That implies a_0 arbitrary and $a_1 = 0$.

Example

Solution:
$$r = \frac{1}{2}$$
, $a_1 = 0$, $\left[(n+r)(n+r-1) + \frac{1}{4} \right] a_n = -a_{(n-2)}$.

Example

Solution:
$$r = \frac{1}{2}$$
, $a_1 = 0$, $\left[(n+r)(n+r-1) + \frac{1}{4} \right] a_n = -a_{(n-2)}$.

$$\left[\left(n + \frac{1}{2} \right) \left(n - \frac{1}{2} \right) + \frac{1}{4} \right] a_n = -a_{(n-2)}$$

Example

Solution:
$$r = \frac{1}{2}$$
, $a_1 = 0$, $\left[(n+r)(n+r-1) + \frac{1}{4} \right] a_n = -a_{(n-2)}$.

$$\left[\left(n + \frac{1}{2} \right) \left(n - \frac{1}{2} \right) + \frac{1}{4} \right] a_n = -a_{(n-2)} \ \Rightarrow \ \left[n^2 - \frac{1}{4} + \frac{1}{4} \right] a_n = -a_{(n-2)}$$

Example

Solution:
$$r = \frac{1}{2}$$
, $a_1 = 0$, $\left[(n+r)(n+r-1) + \frac{1}{4} \right] a_n = -a_{(n-2)}$.

$$\left[\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)+\frac{1}{4}\right]a_n=-a_{(n-2)} \ \Rightarrow \ \left[n^2-\frac{1}{4}+\frac{1}{4}\right]a_n=-a_{(n-2)}$$

$$n^2a_n=-a_{(n-2)}$$

Example

Solution:
$$r = \frac{1}{2}$$
, $a_1 = 0$, $\left[(n+r)(n+r-1) + \frac{1}{4} \right] a_n = -a_{(n-2)}$.

$$\left[\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)+\frac{1}{4}\right]a_n=-a_{(n-2)} \ \Rightarrow \ \left[n^2-\frac{1}{4}+\frac{1}{4}\right]a_n=-a_{(n-2)}$$

$$n^2 a_n = -a_{(n-2)} \implies a_n = -\frac{a_{(n-2)}}{n^2}$$

Example

Solution:
$$r = \frac{1}{2}$$
, $a_1 = 0$, $\left[(n+r)(n+r-1) + \frac{1}{4} \right] a_n = -a_{(n-2)}$.

$$\left[\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)+\frac{1}{4}\right]a_n=-a_{(n-2)} \ \Rightarrow \ \left[n^2-\frac{1}{4}+\frac{1}{4}\right]a_n=-a_{(n-2)}$$

$$n^2 a_n = -a_{(n-2)} \implies a_n = -\frac{a_{(n-2)}}{n^2} \implies \begin{cases} a_2 = -\frac{a_0}{4}, \\ a_4 = -\frac{a_2}{16} \end{cases}$$

Example

Solution:
$$r = \frac{1}{2}$$
, $a_1 = 0$, $\left[(n+r)(n+r-1) + \frac{1}{4} \right] a_n = -a_{(n-2)}$.

$$\left[\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)+\frac{1}{4}\right]a_n=-a_{(n-2)} \ \Rightarrow \ \left[n^2-\frac{1}{4}+\frac{1}{4}\right]a_n=-a_{(n-2)}$$

$$n^2 a_n = -a_{(n-2)} \implies a_n = -\frac{a_{(n-2)}}{n^2} \implies \begin{cases} a_2 = -\frac{a_0}{4}, \\ a_4 = -\frac{a_2}{16} = \frac{a_0}{64}. \end{cases}$$

Example

Solution:
$$r = \frac{1}{2}$$
, $a_1 = 0$, $a_2 = -\frac{a_0}{4}$, and $a_4 = \frac{a_0}{64}$.

Example

Solution:
$$r = \frac{1}{2}$$
, $a_1 = 0$, $a_2 = -\frac{a_0}{4}$, and $a_4 = \frac{a_0}{64}$. Then,
$$y(x) = x^r (a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots).$$

Example

Consider the equation $x^2y'' + \left(x^2 + \frac{1}{4}\right)y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
$$r = \frac{1}{2}$$
, $a_1 = 0$, $a_2 = -\frac{a_0}{4}$, and $a_4 = \frac{a_0}{64}$. Then,
$$y(x) = x^r (a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots).$$

Recall: $a_1 = 0$ and the recurrence relation imply $a_n = 0$ for n odd.

Example

Consider the equation $x^2y'' + \left(x^2 + \frac{1}{4}\right)y = 0$. Use a power series centered at the regular-singular point $x_0 = 0$ to find the three first terms of the solution corresponding to the larger root of the indicial polynomial.

Solution:
$$r = \frac{1}{2}$$
, $a_1 = 0$, $a_2 = -\frac{a_0}{4}$, and $a_4 = \frac{a_0}{64}$. Then,
$$y(x) = x^r (a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots).$$

Recall: $a_1 = 0$ and the recurrence relation imply $a_n = 0$ for n odd. Therefore,

$$y(x) = a_0 x^{1/2} \left(1 - \frac{1}{4} x^2 + \frac{1}{64} x^4 + \cdots\right).$$

Review for Exam 2.

- 5 problems.
- ▶ No multiple choice questions.
- ▶ No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
 - ▶ Regular-singular points (5.5).
 - ► Euler differential equation (5.4).
 - Power series solutions (5.2).
 - Variation of parameters (3.6).
 - Undetermined coefficients (3.5)
 - ► Constant coefficients, homogeneous, (3.1)-(3.4).

Summary:

$$(x-x_0)^2 y'' + (x-x_0)p_0 y' + q_0 y = 0.$$

Summary:

- $(x-x_0)^2 y'' + (x-x_0)p_0 y' + q_0 y = 0.$
- ▶ Find r_{\pm} solutions of $r(r-1) + p_0r + q_0 = 0$.

Summary:

- $(x-x_0)^2 y'' + (x-x_0)p_0 y' + q_0 y = 0.$
- ▶ Find r_{\pm} solutions of $r(r-1) + p_0 r + q_0 = 0$.
- ▶ If $r_+ \neq r_-$ and both are real, then fundamental solutions are

$$y_+ = |x - x_0|^{r_+}, \quad y_- = |x - x_0|^{r_-}.$$

Summary:

- $(x-x_0)^2 y'' + (x-x_0)p_0 y' + q_0 y = 0.$
- ▶ Find r_{\pm} solutions of $r(r-1) + p_0 r + q_0 = 0$.
- ▶ If $r_+ \neq r_-$ and both are real, then fundamental solutions are

$$y_+ = |x - x_0|^{r_+}, \quad y_- = |x - x_0|^{r_-}.$$

▶ If $r_{\pm} = \alpha \pm i\beta$, then real-valued fundamental solutions are

$$y_{+} = |x - x_{0}|^{\alpha} \cos(\beta \ln |x - x_{0}|), \ y_{-} = |x - x_{0}|^{\alpha} \sin(\beta \ln |x - x_{0}|).$$

Summary:

- $(x-x_0)^2 y'' + (x-x_0)p_0 y' + q_0 y = 0.$
- ▶ Find r_{\pm} solutions of $r(r-1) + p_0 r + q_0 = 0$.
- ▶ If $r_+ \neq r_-$ and both are real, then fundamental solutions are

$$y_+ = |x - x_0|^{r_+}, \quad y_- = |x - x_0|^{r_-}.$$

▶ If $r_{\pm} = \alpha \pm i\beta$, then real-valued fundamental solutions are

$$y_{+} = |x - x_{0}|^{\alpha} \cos(\beta \ln |x - x_{0}|), \ y_{-} = |x - x_{0}|^{\alpha} \sin(\beta \ln |x - x_{0}|).$$

▶ If $r_+ = r_-$ and both are real, then fundamental solutions are

$$y_{+} = |x - x_0|^{r_+}, \quad y_{-} = |x - x_0|^{r_+} \ln|x - x_0|.$$

Example

Find real-valued fundamental solutions of

$$(x-2)^2 y'' + 5(x-2) y' + 8 y = 0.$$

Example

Find real-valued fundamental solutions of

$$(x-2)^2y'' + 5(x-2)y' + 8y = 0.$$

Solution: This is an Euler equation.

Example

Find real-valued fundamental solutions of

$$(x-2)^2y'' + 5(x-2)y' + 8y = 0.$$

Solution: This is an Euler equation. Find r solution of r(r-1)+5r+8=0,

Example

Find real-valued fundamental solutions of

$$(x-2)^2y'' + 5(x-2)y' + 8y = 0.$$

Solution: This is an Euler equation. Find r solution of r(r-1)+5r+8=0, that is, $r^2+4r+8=0$,

Example

Find real-valued fundamental solutions of

$$(x-2)^2y'' + 5(x-2)y' + 8y = 0.$$

Solution: This is an Euler equation. Find r solution of r(r-1)+5r+8=0, that is, $r^2+4r+8=0$,

$$r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 32} \right]$$

Example

Find real-valued fundamental solutions of

$$(x-2)^2y'' + 5(x-2)y' + 8y = 0.$$

Solution: This is an Euler equation. Find r solution of r(r-1)+5r+8=0, that is, $r^2+4r+8=0$,

$$r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 32} \right] \quad \Rightarrow \quad r_{\pm} = -2 \pm 2i.$$

Example

Find real-valued fundamental solutions of

$$(x-2)^2y'' + 5(x-2)y' + 8y = 0.$$

Solution: This is an Euler equation. Find r solution of r(r-1)+5r+8=0, that is, $r^2+4r+8=0$,

$$r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 32} \right] \quad \Rightarrow \quad r_{\pm} = -2 \pm 2i.$$

Real valued fundamental solutions are

$$y_{+}(x) = |x - 2|^{-2} \cos(2 \ln |x - 2|),$$

$$y_{-}(x) = |x - 2|^{-2} \sin(2 \ln |x - 2|).$$

 $\langle 1 \rangle$

Review for Exam 2.

- 5 problems.
- ▶ No multiple choice questions.
- ▶ No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
 - ▶ Regular-singular points (5.5).
 - Euler differential equation (5.4).
 - ▶ Power series solutions (5.2).
 - Variation of parameters (3.6).
 - Undetermined coefficients (3.5)
 - ► Constant coefficients, homogeneous, (3.1)-(3.4).

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2) y'' + 2y = 0$.

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution: We look for solutions $y = \sum_{n=0}^{\infty} a_n x^n$.

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution: We look for solutions $y = \sum_{n=0}^{\infty} a_n x^n$. Therefore,

$$y'' = \sum_{n=0}^{\infty} n(n-1)a_n x^{(n-2)}$$

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution: We look for solutions $y = \sum_{n=0}^{\infty} a_n x^n$. Therefore,

$$y'' = \sum_{n=0}^{\infty} n(n-1)a_n x^{(n-2)}$$

The differential equation is then given by

$$(4-x^2)\sum_{n=0}^{\infty}n(n-1)a_nx^{(n-2)}+2\sum_{n=0}^{\infty}a_nx^n=0,$$

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution: We look for solutions $y = \sum_{n=0}^{\infty} a_n x^n$. Therefore,

$$y'' = \sum_{n=0}^{\infty} n(n-1)a_n x^{(n-2)}$$

The differential equation is then given by

$$(4-x^2)\sum_{n=0}^{\infty}n(n-1)a_nx^{(n-2)}+2\sum_{n=0}^{\infty}a_nx^n=0,$$

$$\sum_{n=0}^{\infty}4n(n-1)a_nx^{(n-2)}-\sum_{n=0}^{\infty}n(n-1)a_nx^n+\sum_{n=0}^{\infty}2a_nx^n=0.$$

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:

$$\sum_{n=2}^{\infty} 4n(n-1)a_n x^{(n-2)} - \sum_{n=0}^{\infty} n(n-1)a_n x^n + \sum_{n=0}^{\infty} 2a_n x^n = 0.$$

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2) y'' + 2y = 0$.

Solution:

$$\sum_{n=2}^{\infty} 4n(n-1)a_n x^{(n-2)} - \sum_{n=0}^{\infty} n(n-1)a_n x^n + \sum_{n=0}^{\infty} 2a_n x^n = 0.$$

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:

$$\sum_{n=2}^{\infty} 4n(n-1)a_n x^{(n-2)} - \sum_{n=0}^{\infty} n(n-1)a_n x^n + \sum_{n=0}^{\infty} 2a_n x^n = 0.$$

$$\sum_{n=0}^{\infty} 4(n+2)(n+1)a_{n+2}x^n - \sum_{n=0}^{\infty} n(n-1)a_nx^n + \sum_{n=0}^{\infty} 2a_nx^n = 0.$$

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:

$$\sum_{n=2}^{\infty} 4n(n-1)a_n x^{(n-2)} - \sum_{n=0}^{\infty} n(n-1)a_n x^n + \sum_{n=0}^{\infty} 2a_n x^n = 0.$$

$$\sum_{n=0}^{\infty} 4(n+2)(n+1)a_{n+2}x^n - \sum_{n=0}^{\infty} n(n-1)a_nx^n + \sum_{n=0}^{\infty} 2a_nx^n = 0.$$

$$\sum_{n=0}^{\infty} \left[4(n+2)(n+1)a_{n+2} - n(n-1)a_n + 2a_n \right]x^n = 0.$$

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:

$$\sum_{n=2}^{\infty} 4n(n-1)a_n x^{(n-2)} - \sum_{n=0}^{\infty} n(n-1)a_n x^n + \sum_{n=0}^{\infty} 2a_n x^n = 0.$$

$$\sum_{n=0}^{\infty} 4(n+2)(n+1)a_{n+2}x^n - \sum_{n=0}^{\infty} n(n-1)a_nx^n + \sum_{n=0}^{\infty} 2a_nx^n = 0.$$

$$\sum_{n=0}^{\infty} \left[4(n+2)(n+1)a_{n+2} - n(n-1)a_n + 2a_n \right]x^n = 0.$$

$$4(n+2)(n+1)a_{n+2} + (-n^2 + n + 2)a_n = 0.$$

Example

Using a power series centered at $x_0=0$ find the three first terms of the general solution of $(4-x^2)y''+2y=0$.

Solution:
$$4(n+2)(n+1)a_{n+2} + (-n^2 + n + 2)a_n = 0$$
.

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:
$$4(n+2)(n+1)a_{n+2} + (-n^2 + n + 2)a_n = 0$$
.

Notice:
$$-n^2 + n + 2 = -(n-2)(n+1)$$
,

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:
$$4(n+2)(n+1)a_{n+2} + (-n^2 + n + 2)a_n = 0$$
.

Notice:
$$-n^2 + n + 2 = -(n-2)(n+1)$$
, hence

$$4(n+2)(n+1)a_{n+2}-(n-2)(n+1)a_n=0$$

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:
$$4(n+2)(n+1)a_{n+2} + (-n^2 + n + 2)a_n = 0$$
.

Notice:
$$-n^2 + n + 2 = -(n-2)(n+1)$$
, hence

$$4(n+2)(n+1)a_{n+2}-(n-2)(n+1)a_n=0 \Rightarrow a_{n+2}=\frac{(n-2)a_n}{4(n+2)}.$$

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:
$$4(n+2)(n+1)a_{n+2} + (-n^2 + n + 2)a_n = 0$$
.

Notice:
$$-n^2 + n + 2 = -(n-2)(n+1)$$
, hence

$$4(n+2)(n+1)a_{n+2}-(n-2)(n+1)a_n=0 \Rightarrow a_{n+2}=\frac{(n-2)a_n}{4(n+2)}.$$

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:
$$4(n+2)(n+1)a_{n+2} + (-n^2 + n + 2)a_n = 0$$
.

Notice:
$$-n^2 + n + 2 = -(n-2)(n+1)$$
, hence

$$4(n+2)(n+1)a_{n+2}-(n-2)(n+1)a_n=0 \Rightarrow a_{n+2}=\frac{(n-2)a_n}{4(n+2)}.$$

$$a_2=\frac{-2a_0}{8},$$

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:
$$4(n+2)(n+1)a_{n+2} + (-n^2 + n + 2)a_n = 0$$
.

Notice:
$$-n^2 + n + 2 = -(n-2)(n+1)$$
, hence

$$4(n+2)(n+1)a_{n+2}-(n-2)(n+1)a_n=0 \Rightarrow a_{n+2}=\frac{(n-2)a_n}{4(n+2)}.$$

$$a_2=\frac{-2a_0}{8}, \quad a_4=0,$$

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:
$$4(n+2)(n+1)a_{n+2} + (-n^2 + n + 2)a_n = 0$$
.

Notice:
$$-n^2 + n + 2 = -(n-2)(n+1)$$
, hence

$$4(n+2)(n+1)a_{n+2}-(n-2)(n+1)a_n=0 \Rightarrow a_{n+2}=\frac{(n-2)a_n}{4(n+2)}.$$

$$a_2 = \frac{-2a_0}{8}, \quad a_4 = 0, \quad a_6 = 0, \cdots$$

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:
$$4(n+2)(n+1)a_{n+2} + (-n^2 + n + 2)a_n = 0$$
.

Notice:
$$-n^2 + n + 2 = -(n-2)(n+1)$$
, hence

$$4(n+2)(n+1)a_{n+2}-(n-2)(n+1)a_n=0 \Rightarrow a_{n+2}=\frac{(n-2)a_n}{4(n+2)}.$$

$$a_2 = \frac{-2a_0}{8}, \quad a_4 = 0, \quad a_6 = 0, \cdots$$

For *n* odd:
$$a_3 = \frac{-a_1}{12}$$
,

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:
$$4(n+2)(n+1)a_{n+2} + (-n^2 + n + 2)a_n = 0$$
.

Notice:
$$-n^2 + n + 2 = -(n-2)(n+1)$$
, hence

$$4(n+2)(n+1)a_{n+2}-(n-2)(n+1)a_n=0 \Rightarrow a_{n+2}=\frac{(n-2)a_n}{4(n+2)}.$$

$$a_2 = \frac{-2a_0}{8}, \quad a_4 = 0, \quad a_6 = 0, \cdots$$

For *n* odd:
$$a_3 = \frac{-a_1}{12}$$
, $a_5 = \frac{a_3}{20}$

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:
$$4(n+2)(n+1)a_{n+2} + (-n^2 + n + 2)a_n = 0$$
.

Notice:
$$-n^2 + n + 2 = -(n-2)(n+1)$$
, hence

$$4(n+2)(n+1)a_{n+2}-(n-2)(n+1)a_n=0 \Rightarrow a_{n+2}=\frac{(n-2)a_n}{4(n+2)}.$$

$$a_2 = \frac{-2a_0}{8}, \quad a_4 = 0, \quad a_6 = 0, \cdots$$

For *n* odd:
$$a_3 = \frac{-a_1}{12}$$
, $a_5 = \frac{a_3}{20} = -\frac{a_1}{(12)(20)}$, ...

Example

Using a power series centered at $x_0 = 0$ find the three first terms of the general solution of $(4 - x^2)y'' + 2y = 0$.

Solution:
$$4(n+2)(n+1)a_{n+2} + (-n^2 + n + 2)a_n = 0$$
.

Notice:
$$-n^2 + n + 2 = -(n-2)(n+1)$$
, hence

$$4(n+2)(n+1)a_{n+2}-(n-2)(n+1)a_n=0 \Rightarrow a_{n+2}=\frac{(n-2)a_n}{4(n+2)}.$$

$$a_2 = \frac{-2a_0}{8}, \quad a_4 = 0, \quad a_6 = 0, \cdots$$

For
$$n$$
 odd: $a_3 = \frac{-a_1}{12}$, $a_5 = \frac{a_3}{20} = -\frac{a_1}{(12)(20)}$, ...

$$y = a_0 \left[1 - \frac{1}{4} x^2 \right] + a_1 \left[x - \frac{1}{12} x^3 - \frac{1}{(12)(20)} x^5 + \cdots \right].$$

Review for Exam 2.

- 5 problems.
- ▶ No multiple choice questions.
- ▶ No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
 - ▶ Regular-singular points (5.5).
 - ► Euler differential equation (5.4).
 - Power series solutions (5.2).
 - ▶ Variation of parameters (3.6).
 - Undetermined coefficients (3.5)
 - ► Constant coefficients, homogeneous, (3.1)-(3.4).

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}$$
.

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

$$r^2 + 4r + 4 = 0$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

$$r^2 + 4r + 4 = 0$$
 \Rightarrow $r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 16} \right]$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

$$r^2 + 4r + 4 = 0$$
 \Rightarrow $r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 16} \right]$ \Rightarrow $r_{\pm} = -2$.

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: We find the solutions of the homogeneous equation,

$$r^2 + 4r + 4 = 0$$
 \Rightarrow $r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 16} \right]$ \Rightarrow $r_{\pm} = -2$.

Fundamental solutions of the homogeneous equations are

$$y_1 = e^{-2x}, \quad y_2 = x e^{-2x}.$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: We find the solutions of the homogeneous equation,

$$r^2 + 4r + 4 = 0$$
 \Rightarrow $r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 16} \right]$ \Rightarrow $r_{\pm} = -2$.

Fundamental solutions of the homogeneous equations are

$$y_1 = e^{-2x}, \quad y_2 = x e^{-2x}.$$

We now compute their Wronskian,

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}$$
.

Solution: We find the solutions of the homogeneous equation,

$$r^2 + 4r + 4 = 0$$
 \Rightarrow $r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 16} \right]$ \Rightarrow $r_{\pm} = -2$.

Fundamental solutions of the homogeneous equations are

$$y_1 = e^{-2x}, \quad y_2 = x e^{-2x}.$$

We now compute their Wronskian,

$$W = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^{-2x} & x e^{-2x} \\ -2e^{-2x} & (1-2x) e^{-2x} \end{vmatrix}$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}$$
.

Solution: We find the solutions of the homogeneous equation,

$$r^2 + 4r + 4 = 0$$
 \Rightarrow $r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 16} \right]$ \Rightarrow $r_{\pm} = -2$.

Fundamental solutions of the homogeneous equations are

$$y_1 = e^{-2x}, \quad y_2 = x e^{-2x}.$$

We now compute their Wronskian,

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} e^{-2x} & x e^{-2x} \\ -2e^{-2x} & (1-2x) e^{-2x} \end{vmatrix} = (1-2x) e^{-4x} + 2x e^{-4x}.$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: We find the solutions of the homogeneous equation,

$$r^2 + 4r + 4 = 0$$
 \Rightarrow $r_{\pm} = \frac{1}{2} \left[-4 \pm \sqrt{16 - 16} \right]$ \Rightarrow $r_{\pm} = -2$.

Fundamental solutions of the homogeneous equations are

$$y_1 = e^{-2x}, \quad y_2 = x e^{-2x}.$$

We now compute their Wronskian,

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} e^{-2x} & x e^{-2x} \\ -2e^{-2x} & (1-2x) e^{-2x} \end{vmatrix} = (1-2x) e^{-4x} + 2x e^{-4x}.$$

Hence $W = e^{-4x}$.

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution:
$$y_1 = e^{-2x}$$
, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: $y_1 = e^{-2x}$, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: $y_1 = e^{-2x}$, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

$$u_1'=-\frac{y_2g}{W}$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: $y_1 = e^{-2x}$, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

$$u_1' = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}}$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: $y_1 = e^{-2x}$, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

$$u_1' = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x}$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: $y_1 = e^{-2x}$, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

$$u_1' = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x} \quad \Rightarrow \quad u_1 = -\ln|x|.$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: $y_1 = e^{-2x}$, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

$$u_1' = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x} \implies u_1 = -\ln|x|.$$

$$u_2' = \frac{y_1 g}{W}$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: $y_1 = e^{-2x}$, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

$$u'_1 = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x} \implies u_1 = -\ln|x|.$$

$$u_2' = \frac{y_1 g}{W} = \frac{e^{-2x} x^{-2} e^{-2x}}{e^{-4x}}$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: $y_1 = e^{-2x}$, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

$$u_1' = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x} \implies u_1 = -\ln|x|.$$

$$u_2' = \frac{y_1 g}{W} = \frac{e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = x^{-2}$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}$$
.

Solution: $y_1 = e^{-2x}$, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

$$u_1' = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x} \implies u_1 = -\ln|x|.$$

$$u_2' = \frac{y_1 g}{W} = \frac{e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = x^{-2} \quad \Rightarrow \quad u_2 = -\frac{1}{x}.$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution: $y_1 = e^{-2x}$, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

$$u_1' = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x} \implies u_1 = -\ln|x|.$$

$$u_2' = \frac{y_1 g}{W} = \frac{e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = x^{-2} \quad \Rightarrow \quad u_2 = -\frac{1}{x}.$$

$$y_p = u_1 y_1 + u_2 y_2$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}$$
.

Solution:
$$y_1 = e^{-2x}$$
, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

$$u_1' = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x} \implies u_1 = -\ln|x|.$$

$$u_2' = \frac{y_1 g}{W} = \frac{e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = x^{-2} \implies u_2 = -\frac{1}{x}.$$

$$y_p = u_1 y_1 + u_2 y_2 = -\ln|x| e^{-2x} - \frac{1}{x} x e^{-2x}$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution:
$$y_1 = e^{-2x}$$
, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

$$u'_1 = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x} \implies u_1 = -\ln|x|.$$

$$u_2' = \frac{y_1 g}{W} = \frac{e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = x^{-2} \quad \Rightarrow \quad u_2 = -\frac{1}{x}.$$

$$y_p = u_1 y_1 + u_2 y_2 = -\ln|x| e^{-2x} - \frac{1}{x} x e^{-2x} = -(1 + \ln|x|) e^{-2x}.$$

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution:
$$y_1 = e^{-2x}$$
, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

Now we find the functions u_1 and u_2 ,

$$u_1' = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x} \implies u_1 = -\ln|x|.$$

$$u_2' = \frac{y_1 g}{W} = \frac{e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = x^{-2} \quad \Rightarrow \quad u_2 = -\frac{1}{x}.$$

$$y_p = u_1 y_1 + u_2 y_2 = -\ln|x| e^{-2x} - \frac{1}{x} x e^{-2x} = -(1 + \ln|x|) e^{-2x}.$$

Since $\tilde{y}_p = -\ln|x| e^{-2x}$ is solution,

Example

Use the variation of parameters to find the general solution of

$$y'' + 4y' + 4y = x^{-2} e^{-2x}.$$

Solution:
$$y_1 = e^{-2x}$$
, $y_2 = x e^{-2x}$, $g = x^{-2} e^{-2x}$, $W = e^{-4x}$.

$$u_1' = -\frac{y_2 g}{W} = -\frac{x e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = -\frac{1}{x} \implies u_1 = -\ln|x|.$$

$$u_2' = \frac{y_1 g}{W} = \frac{e^{-2x} x^{-2} e^{-2x}}{e^{-4x}} = x^{-2} \quad \Rightarrow \quad u_2 = -\frac{1}{x}.$$

$$y_p = u_1 y_1 + u_2 y_2 = -\ln|x| e^{-2x} - \frac{1}{x} x e^{-2x} = -(1 + \ln|x|) e^{-2x}.$$

Since
$$\tilde{y}_p = -\ln|x| e^{-2x}$$
 is solution, $y = (c_1 + c_2x - \ln|x|) e^{-2x}$.

Review for Exam 2.

- 5 problems.
- ▶ No multiple choice questions.
- ▶ No notes, no books, no calculators.
- Problems similar to homeworks.
- Exam covers:
 - ▶ Regular-singular points (5.5).
 - Euler differential equation (5.4).
 - Power series solutions (5.2).
 - Variation of parameters (3.6).
 - Undetermined coefficients (3.5)
 - ► Constant coefficients, homogeneous, (3.1)-(3.4).

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}$$

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}$$

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}$$

$$r^2+4=0$$

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}$$

$$r^2 + 4 = 0 \quad \Rightarrow \quad r_{\pm} = \pm 2i.$$

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}$$

$$r^2 + 4 = 0 \implies r_{\pm} = \pm 2i$$
.

$$y_1=\cos(2x),\quad y_2=\sin(2x).$$

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}$$

Solution: Find the solutions of the homogeneous problem,

$$r^2 + 4 = 0 \quad \Rightarrow \quad r_{\pm} = \pm 2i.$$

$$y_1=\cos(2x),\quad y_2=\sin(2x).$$

Start with the first source, $f_1(x) = 3\sin(2x)$.

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}$$

Solution: Find the solutions of the homogeneous problem,

$$r^2 + 4 = 0 \quad \Rightarrow \quad r_{\pm} = \pm 2i.$$

$$y_1=\cos(2x), \quad y_2=\sin(2x).$$

Start with the first source, $f_1(x) = 3\sin(2x)$.

The function $\tilde{y}_{p_1} = k_1 \sin(2x) + k_2 \cos(2x)$ is the

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}$$

Solution: Find the solutions of the homogeneous problem,

$$r^2 + 4 = 0 \quad \Rightarrow \quad r_{\pm} = \pm 2i.$$

$$y_1=\cos(2x), \quad y_2=\sin(2x).$$

Start with the first source, $f_1(x) = 3\sin(2x)$.

The function $\tilde{y}_{p_1} = k_1 \sin(2x) + k_2 \cos(2x)$ is the wrong guess,

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}$$

Solution: Find the solutions of the homogeneous problem,

$$r^2 + 4 = 0 \Rightarrow r_{\pm} = \pm 2i.$$

$$y_1 = \cos(2x), \quad y_2 = \sin(2x).$$

Start with the first source, $f_1(x) = 3\sin(2x)$. The function $\tilde{y}_{p_1} = k_1\sin(2x) + k_2\cos(2x)$ is the wrong guess, since it is solution of the homogeneous equation.

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}$$

Solution: Find the solutions of the homogeneous problem,

$$r^2 + 4 = 0 \Rightarrow r_{\pm} = \pm 2i.$$

 $y_1 = \cos(2x), \quad y_2 = \sin(2x).$

Start with the first source, $f_1(x) = 3\sin(2x)$. The function $\tilde{y}_{p_1} = k_1\sin(2x) + k_2\cos(2x)$ is the wrong guess, since it is solution of the homogeneous equation. We guess:

$$y_p = x \big[k_1 \sin(2x) + k_2 \cos(2x) \big].$$

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}$$

Solution: Find the solutions of the homogeneous problem,

$$r^2 + 4 = 0 \Rightarrow r_{\pm} = \pm 2i.$$

 $y_1 = \cos(2x), \quad y_2 = \sin(2x).$

Start with the first source, $f_1(x) = 3\sin(2x)$.

The function $\tilde{y}_{p_1} = k_1 \sin(2x) + k_2 \cos(2x)$ is the wrong guess, since it is solution of the homogeneous equation. We guess:

$$y_p = x \big[k_1 \sin(2x) + k_2 \cos(2x) \big].$$

$$y_p' = [k_1 \sin(2x) + k_2 \cos(2x)] + 2x[k_1 \cos(2x) - k_2 \sin(2x)].$$

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}$$

Solution: Find the solutions of the homogeneous problem,

$$r^2 + 4 = 0 \Rightarrow r_{\pm} = \pm 2i.$$

 $y_1 = \cos(2x), \quad y_2 = \sin(2x).$

Start with the first source, $f_1(x) = 3\sin(2x)$.

The function $\tilde{y}_{p_1} = k_1 \sin(2x) + k_2 \cos(2x)$ is the wrong guess, since it is solution of the homogeneous equation. We guess:

$$y_p = x \big[k_1 \sin(2x) + k_2 \cos(2x) \big].$$

$$y_p' = [k_1 \sin(2x) + k_2 \cos(2x)] + 2x[k_1 \cos(2x) - k_2 \sin(2x)].$$

$$y_p'' = 4[k_1 \cos(2x) - k_2 \sin(2x)] + 4x[-k_1 \sin(2x) - k_2 \cos(2x)].$$

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall: $y_1 = \sin(2x)$, and $y_2 = \cos(2x)$.

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall: $y_1 = \sin(2x)$, and $y_2 = \cos(2x)$.

$$4[k_1\cos(2x) - k_2\sin(2x)] + 4x[-k_1\sin(2x) - k_2\cos(2x)] + 4x[k_1\sin(2x) + k_2\cos(2x)] = 3\sin(2x),$$

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall: $y_1 = \sin(2x)$, and $y_2 = \cos(2x)$.

$$4[k_1\cos(2x) - k_2\sin(2x)] + 4x[-k_1\sin(2x) - k_2\cos(2x)] + 4x[k_1\sin(2x) + k_2\cos(2x)] = 3\sin(2x),$$

Therefore, $4[k_1\cos(2x) - k_2\sin(2x)] = 3\sin(2x)$.

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall: $y_1 = \sin(2x)$, and $y_2 = \cos(2x)$.

$$4[k_1\cos(2x) - k_2\sin(2x)] + 4x[-k_1\sin(2x) - k_2\cos(2x)] + 4x[k_1\sin(2x) + k_2\cos(2x)] = 3\sin(2x),$$

Therefore, $4[k_1 \cos(2x) - k_2 \sin(2x)] = 3\sin(2x)$.

Evaluating at x = 0 and $x = \pi/4$

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall: $y_1 = \sin(2x)$, and $y_2 = \cos(2x)$.

$$4[k_1\cos(2x) - k_2\sin(2x)] + 4x[-k_1\sin(2x) - k_2\cos(2x)] + 4x[k_1\sin(2x) + k_2\cos(2x)] = 3\sin(2x),$$

Therefore, $4[k_1\cos(2x) - k_2\sin(2x)] = 3\sin(2x)$.

Evaluating at x = 0 and $x = \pi/4$ we get

$$4k_1 = 0, \quad -4k_2 = 3$$

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall: $y_1 = \sin(2x)$, and $y_2 = \cos(2x)$.

$$4[k_1\cos(2x) - k_2\sin(2x)] + 4x[-k_1\sin(2x) - k_2\cos(2x)] + 4x[k_1\sin(2x) + k_2\cos(2x)] = 3\sin(2x),$$

Therefore, $4[k_1\cos(2x) - k_2\sin(2x)] = 3\sin(2x)$.

Evaluating at x = 0 and $x = \pi/4$ we get

$$4k_1 = 0, \quad -4k_2 = 3 \quad \Rightarrow \quad k_1 = 0, \quad k_2 = -\frac{3}{4}.$$

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall: $y_1 = \sin(2x)$, and $y_2 = \cos(2x)$.

$$4[k_1\cos(2x) - k_2\sin(2x)] + 4x[-k_1\sin(2x) - k_2\cos(2x)] + 4x[k_1\sin(2x) + k_2\cos(2x)] = 3\sin(2x),$$

Therefore, $4[k_1 \cos(2x) - k_2 \sin(2x)] = 3\sin(2x)$.

Evaluating at x = 0 and $x = \pi/4$ we get

$$4k_1 = 0, \quad -4k_2 = 3 \quad \Rightarrow \quad k_1 = 0, \quad k_2 = -\frac{3}{4}.$$

Therefore, $y_{p_1} = -\frac{3}{4}x\cos(2x)$.

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall:
$$y_{p_1} = -\frac{3}{4}x\cos(2x)$$
.

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall: $y_{p_1} = -\frac{3}{4}x\cos(2x)$.

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall: $y_{p_1} = -\frac{3}{4}x\cos(2x)$.

We now compute y_{p_2} for $f_2(x) = e^{3x}$.

We guess: $y_{p_2} = k e^{3x}$. Then, $y''_{p_2} = 9 e^{3x}$,

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall:
$$y_{p_1} = -\frac{3}{4}x\cos(2x)$$
.

We guess:
$$y_{p_2} = k e^{3x}$$
. Then, $y''_{p_2} = 9 e^{3x}$,

$$(9+4)ke^{3x}=e^{3x}$$

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall:
$$y_{p_1} = -\frac{3}{4}x\cos(2x)$$
.

We guess:
$$y_{p_2} = k e^{3x}$$
. Then, $y''_{p_2} = 9 e^{3x}$,

$$(9+4)ke^{3x} = e^{3x} \quad \Rightarrow \quad k = \frac{1}{13}$$

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall:
$$y_{p_1} = -\frac{3}{4}x\cos(2x)$$
.

We guess:
$$y_{p_2} = k e^{3x}$$
. Then, $y''_{p_2} = 9 e^{3x}$,

$$(9+4)ke^{3x} = e^{3x} \quad \Rightarrow \quad k = \frac{1}{13} \quad \Rightarrow \quad y_{p_2} = \frac{1}{13}e^{3x}.$$

Example

Use the undetermined coefficients to find the general solution of

$$y'' + 4y = 3\sin(2x) + e^{3x}.$$

Solution: Recall: $y_{p_1} = -\frac{3}{4}x\cos(2x)$.

We now compute y_{p_2} for $f_2(x) = e^{3x}$.

We guess: $y_{p_2} = k e^{3x}$. Then, $y''_{p_2} = 9 e^{3x}$,

$$(9+4)ke^{3x} = e^{3x} \quad \Rightarrow \quad k = \frac{1}{13} \quad \Rightarrow \quad y_{p_2} = \frac{1}{13}e^{3x}.$$

Therefore, the general solution is

$$y(x) = c_1 \sin(2x) + \left(c_2 - \frac{3}{4}x\right) \cos(2x) + \frac{1}{13}e^{3x}.$$

The Laplace Transform (Sect. 6.1).

- ▶ The definition of the Laplace Transform.
- Review: Improper integrals.
- Examples of Laplace Transforms.
- A table of Laplace Transforms.
- Properties of the Laplace Transform.
- ► Laplace Transform and differential equations.

The Laplace Transform (Sect. 6.1).

- ► The definition of the Laplace Transform.
- Review: Improper integrals.
- Examples of Laplace Transforms.
- A table of Laplace Transforms.
- Properties of the Laplace Transform.
- Laplace Transform and differential equations.

Definition

The function $F: D_F \to \mathbb{R}$ is the *Laplace transform* of a function $f: [0, \infty) \to \mathbb{R}$ iff for all $s \in D_F$ holds,

$$F(s) = \int_0^\infty e^{-st} f(t) dt,$$

where $D_F \subset \mathbb{R}$ is the set where the integral converges.

Definition

The function $F: D_F \to \mathbb{R}$ is the *Laplace transform* of a function $f: [0, \infty) \to \mathbb{R}$ iff for all $s \in D_F$ holds,

$$F(s) = \int_0^\infty e^{-st} f(t) dt,$$

where $D_F \subset \mathbb{R}$ is the set where the integral converges.

Remark: The domain D_F of F depends on the function f.

Definition

The function $F: D_F \to \mathbb{R}$ is the *Laplace transform* of a function $f: [0, \infty) \to \mathbb{R}$ iff for all $s \in D_F$ holds,

$$F(s) = \int_0^\infty e^{-st} f(t) dt,$$

where $D_F \subset \mathbb{R}$ is the set where the integral converges.

Remark: The domain D_F of F depends on the function f.

Notation: We often denote: $F(s) = \mathcal{L}[f(t)]$.

Definition

The function $F: D_F \to \mathbb{R}$ is the *Laplace transform* of a function $f: [0, \infty) \to \mathbb{R}$ iff for all $s \in D_F$ holds,

$$F(s) = \int_0^\infty e^{-st} f(t) dt,$$

where $D_F \subset \mathbb{R}$ is the set where the integral converges.

Remark: The domain D_F of F depends on the function f.

Notation: We often denote: $F(s) = \mathcal{L}[f(t)]$.

► This notation L[] emphasizes that the Laplace transform defines a map from a set of functions into a set of functions.

Definition

The function $F: D_F \to \mathbb{R}$ is the *Laplace transform* of a function $f: [0, \infty) \to \mathbb{R}$ iff for all $s \in D_F$ holds,

$$F(s) = \int_0^\infty e^{-st} f(t) dt,$$

where $D_F \subset \mathbb{R}$ is the set where the integral converges.

Remark: The domain D_F of F depends on the function f.

Notation: We often denote: $F(s) = \mathcal{L}[f(t)]$.

- ► This notation L[] emphasizes that the Laplace transform defines a map from a set of functions into a set of functions.
- ▶ Functions are denoted as $t \mapsto f(t)$.

Definition

The function $F: D_F \to \mathbb{R}$ is the *Laplace transform* of a function $f: [0, \infty) \to \mathbb{R}$ iff for all $s \in D_F$ holds,

$$F(s) = \int_0^\infty e^{-st} f(t) dt,$$

where $D_F \subset \mathbb{R}$ is the set where the integral converges.

Remark: The domain D_F of F depends on the function f.

Notation: We often denote: $F(s) = \mathcal{L}[f(t)]$.

- ▶ This notation L[] emphasizes that the Laplace transform defines a map from a set of functions into a set of functions.
- ▶ Functions are denoted as $t \mapsto f(t)$.
- ▶ The Laplace transform is also a function: $f \mapsto \mathcal{L}[f]$.

The Laplace Transform (Sect. 6.1).

- ▶ The definition of the Laplace Transform.
- ► Review: Improper integrals.
- Examples of Laplace Transforms.
- A table of Laplace Transforms.
- Properties of the Laplace Transform.
- ► Laplace Transform and differential equations.

Recall: Improper integral are defined as a limit.

$$\int_{t_0}^{\infty} g(t) dt = \lim_{N \to \infty} \int_{t_0}^{N} g(t) dt.$$

Recall: Improper integral are defined as a limit.

$$\int_{t_0}^{\infty} g(t) dt = \lim_{N \to \infty} \int_{t_0}^{N} g(t) dt.$$

▶ The integral converges iff the limit exists.

Recall: Improper integral are defined as a limit.

$$\int_{t_0}^{\infty} g(t) dt = \lim_{N \to \infty} \int_{t_0}^{N} g(t) dt.$$

- ▶ The integral converges iff the limit exists.
- ▶ The integral diverges iff the limit does not exist.

Recall: Improper integral are defined as a limit.

$$\int_{t_0}^{\infty} g(t) dt = \lim_{N \to \infty} \int_{t_0}^{N} g(t) dt.$$

- ▶ The integral converges iff the limit exists.
- ▶ The integral diverges iff the limit does not exist.

Example

Recall: Improper integral are defined as a limit.

$$\int_{t_0}^{\infty} g(t) dt = \lim_{N \to \infty} \int_{t_0}^{N} g(t) dt.$$

- ▶ The integral converges iff the limit exists.
- ▶ The integral diverges iff the limit does not exist.

Example

Solution:
$$\int_0^\infty e^{-at} dt = \lim_{N \to \infty} \int_0^N e^{-at} dt$$

Recall: Improper integral are defined as a limit.

$$\int_{t_0}^{\infty} g(t) dt = \lim_{N \to \infty} \int_{t_0}^{N} g(t) dt.$$

- ▶ The integral converges iff the limit exists.
- ▶ The integral diverges iff the limit does not exist.

Example

$$\text{Solution: } \int_0^\infty e^{-at} \ dt = \lim_{N \to \infty} \int_0^N e^{-at} \ dt = \lim_{N \to \infty} -\frac{1}{a} \Big(e^{-aN} - 1 \Big).$$

Recall: Improper integral are defined as a limit.

$$\int_{t_0}^{\infty} g(t) dt = \lim_{N \to \infty} \int_{t_0}^{N} g(t) dt.$$

- ▶ The integral converges iff the limit exists.
- ▶ The integral diverges iff the limit does not exist.

Example

Solution:
$$\int_0^\infty e^{-at} \, dt = \lim_{N \to \infty} \int_0^N e^{-at} \, dt = \lim_{N \to \infty} -\frac{1}{a} \Big(e^{-aN} - 1 \Big).$$

Since
$$\lim_{N\to\infty}e^{-aN}=0$$
 for $a>0$,

Recall: Improper integral are defined as a limit.

$$\int_{t_0}^{\infty} g(t) dt = \lim_{N \to \infty} \int_{t_0}^{N} g(t) dt.$$

- ▶ The integral converges iff the limit exists.
- ▶ The integral diverges iff the limit does not exist.

Example

$$\begin{split} & \text{Solution: } \int_0^\infty e^{-at} \ dt = \lim_{N \to \infty} \int_0^N e^{-at} \ dt = \lim_{N \to \infty} -\frac{1}{a} \Big(e^{-aN} - 1 \Big). \\ & \text{Since } \lim_{N \to \infty} e^{-aN} = 0 \text{ for } a > 0 \text{, we conclude } \int_0^\infty e^{-at} \ dt = \frac{1}{a}. \ \, \lhd \end{split}$$

The Laplace Transform (Sect. 6.1).

- ▶ The definition of the Laplace Transform.
- ► Review: Improper integrals.
- ► Examples of Laplace Transforms.
- A table of Laplace Transforms.
- Properties of the Laplace Transform.
- ► Laplace Transform and differential equations.

Examples of Laplace Transforms.

Example Compute $\mathcal{L}[1]$.

Example

Compute $\mathcal{L}[1]$.

Solution: We have to find the Laplace Transform of f(t) = 1.

Example

Compute $\mathcal{L}[1]$.

$$\mathcal{L}[1] = \int_0^\infty e^{-st} \, 1 \, dt$$

Example

Compute $\mathcal{L}[1]$.

$$\mathcal{L}[1] = \int_0^\infty e^{-st} \, 1 \, dt = \int_0^\infty e^{-st} \, dt$$

Example

Compute $\mathcal{L}[1]$.

$$\mathcal{L}[1] = \int_0^\infty e^{-st} \, 1 \, dt = \int_0^\infty e^{-st} \, dt$$

But
$$\int_0^\infty e^{-at} dt = \frac{1}{a}$$
 for $a > 0$,

Example

Compute $\mathcal{L}[1]$.

$$\mathcal{L}[1] = \int_0^\infty e^{-st} \, 1 \, dt = \int_0^\infty e^{-st} \, dt$$

But
$$\int_0^\infty e^{-at} dt = \frac{1}{a}$$
 for $a > 0$, and diverges for $a \le 0$.

Example

Compute $\mathcal{L}[1]$.

Solution: We have to find the Laplace Transform of f(t) = 1. Following the definition we obtain,

$$\mathcal{L}[1] = \int_0^\infty e^{-st} \, 1 \, dt = \int_0^\infty e^{-st} \, dt$$

But $\int_0^\infty e^{-at} dt = \frac{1}{a}$ for a > 0, and diverges for $a \le 0$.

Therefore
$$\mathcal{L}[1] = \frac{1}{s}$$
, for $s > 0$,

Example

Compute $\mathcal{L}[1]$.

Solution: We have to find the Laplace Transform of f(t) = 1. Following the definition we obtain,

$$\mathcal{L}[1] = \int_0^\infty e^{-st} \, 1 \, dt = \int_0^\infty e^{-st} \, dt$$

But $\int_0^\infty e^{-at} dt = \frac{1}{a}$ for a > 0, and diverges for $a \le 0$.

Therefore $\mathcal{L}[1] = \frac{1}{s}$, for s > 0, and $\mathcal{L}[1]$ does not exists for $s \leq 0$.

Example

Compute $\mathcal{L}[1]$.

Solution: We have to find the Laplace Transform of f(t) = 1. Following the definition we obtain,

$$\mathcal{L}[1] = \int_0^\infty e^{-st} \, 1 \, dt = \int_0^\infty e^{-st} \, dt$$

But $\int_0^\infty e^{-at} dt = \frac{1}{a}$ for a > 0, and diverges for $a \le 0$.

Therefore $\mathcal{L}[1] = \frac{1}{s}$, for s > 0, and $\mathcal{L}[1]$ does not exists for $s \leq 0$.

In other words, $F(s)=\mathcal{L}[1]$ is the function $F:D_F o\mathbb{R}$ given by

$$f(t)=1, \qquad F(s)=rac{1}{s}, \qquad D_F=(0,\infty).$$

Example Compute $\mathcal{L}[e^{at}]$, where $a \in \mathbb{R}$.

Example

Compute $\mathcal{L}[e^{at}]$, where $a \in \mathbb{R}$.

Solution: Following the definition of Laplace Transform,

$$\mathcal{L}[e^{at}] = \int_0^\infty e^{-st} e^{at} dt$$

Example

Compute $\mathcal{L}[e^{at}]$, where $a \in \mathbb{R}$.

Solution: Following the definition of Laplace Transform,

$$\mathcal{L}[e^{at}] = \int_0^\infty e^{-st} e^{at} dt = \int_0^\infty e^{-(s-a)t} dt.$$

Example

Compute $\mathcal{L}[e^{at}]$, where $a \in \mathbb{R}$.

Solution: Following the definition of Laplace Transform,

$$\mathcal{L}[e^{at}] = \int_0^\infty e^{-st} e^{at} dt = \int_0^\infty e^{-(s-a)t} dt.$$

We have seen that the improper integral is given by

$$\int_0^\infty e^{-(s-a)} dt = \frac{1}{(s-a)} \quad \text{for} \quad (s-a) > 0.$$

Example

Compute $\mathcal{L}[e^{at}]$, where $a \in \mathbb{R}$.

Solution: Following the definition of Laplace Transform,

$$\mathcal{L}[e^{at}] = \int_0^\infty e^{-st} e^{at} dt = \int_0^\infty e^{-(s-a)t} dt.$$

We have seen that the improper integral is given by

$$\int_0^\infty e^{-(s-a)} dt = \frac{1}{(s-a)} \quad \text{for} \quad (s-a) > 0.$$

We conclude that $\mathcal{L}[e^{at}] = \frac{1}{s-a}$ for s > a.

Example

Compute $\mathcal{L}[e^{at}]$, where $a \in \mathbb{R}$.

Solution: Following the definition of Laplace Transform,

$$\mathcal{L}[e^{at}] = \int_0^\infty e^{-st} e^{at} dt = \int_0^\infty e^{-(s-a)t} dt.$$

We have seen that the improper integral is given by

$$\int_0^\infty e^{-(s-a)} dt = \frac{1}{(s-a)} \quad \text{for} \quad (s-a) > 0.$$

We conclude that $\mathcal{L}[e^{at}] = \frac{1}{s-a}$ for s > a. In other words,

$$f(t) = e^{at}, \qquad F(s) = \frac{1}{(s-a)}, \qquad s > a.$$

Example

Compute $\mathcal{L}[\sin(at)]$, where $a \in \mathbb{R}$.

Example

Compute $\mathcal{L}[\sin(at)]$, where $a \in \mathbb{R}$.

Solution: In this case we need to compute

$$\mathcal{L}[\sin(at)] = \lim_{N \to \infty} \int_0^N e^{-st} \sin(at) dt.$$

Example

Compute $\mathcal{L}[\sin(at)]$, where $a \in \mathbb{R}$.

Solution: In this case we need to compute

$$\mathcal{L}[\sin(at)] = \lim_{N \to \infty} \int_0^N e^{-st} \sin(at) dt.$$

Integrating by parts twice it is not difficult to obtain:

$$\int_0^N e^{-st} \sin(at) \, dt =$$

$$-\frac{1}{s} \Big[e^{-st} \sin(at) \Big] \Big|_0^N - \frac{a}{s^2} \Big[e^{-st} \cos(at) \Big] \Big|_0^N - \frac{a^2}{s^2} \int_0^N e^{-st} \sin(at) \, dt.$$

Example

Compute $\mathcal{L}[\sin(at)]$, where $a \in \mathbb{R}$.

Solution: In this case we need to compute

$$\mathcal{L}[\sin(at)] = \lim_{N \to \infty} \int_0^N e^{-st} \sin(at) dt.$$

Integrating by parts twice it is not difficult to obtain:

$$\int_0^N e^{-st} \sin(at) \, dt =$$

$$-\frac{1}{s} \Big[e^{-st} \sin(at) \Big] \Big|_0^N - \frac{a}{s^2} \Big[e^{-st} \cos(at) \Big] \Big|_0^N - \frac{a^2}{s^2} \int_0^N e^{-st} \sin(at) \, dt.$$

This identity implies

$$\left(1 + \frac{a^2}{s^2}\right) \int_0^N e^{-st} \sin(at) \, dt = -\frac{1}{s} \left[e^{-st} \sin(at) \right] \Big|_0^N - \frac{a}{s^2} \left[e^{-st} \cos(at) \right] \Big|_0^N.$$

Example

Compute $\mathcal{L}[\sin(at)]$, where $a \in \mathbb{R}$.

Solution: Recall the identity:

$$\left(1+\frac{a^2}{s^2}\right)\int_0^N e^{-st}\sin(at)\,dt = -\frac{1}{s}\big[e^{-st}\sin(at)\big]\Big|_0^N - \frac{a}{s^2}\big[e^{-st}\cos(at)\big]\Big|_0^N.$$

Example

Compute $\mathcal{L}[\sin(at)]$, where $a \in \mathbb{R}$.

Solution: Recall the identity:

$$\left(1 + \frac{a^2}{s^2}\right) \int_0^N e^{-st} \sin(at) \, dt = -\frac{1}{s} \left[e^{-st} \sin(at) \right] \Big|_0^N - \frac{a}{s^2} \left[e^{-st} \cos(at) \right] \Big|_0^N.$$

Hence, it is not difficult to see that

$$\left(\frac{s^2+a^2}{s^2}\right)\int_0^\infty e^{-st}\sin(at)\,dt=\frac{a}{s^2},\qquad s>0$$

Example

Compute $\mathcal{L}[\sin(at)]$, where $a \in \mathbb{R}$.

Solution: Recall the identity:

$$\left(1 + \frac{a^2}{s^2}\right) \int_0^N e^{-st} \sin(at) \, dt = -\frac{1}{s} \left[e^{-st} \sin(at) \right] \Big|_0^N - \frac{a}{s^2} \left[e^{-st} \cos(at) \right] \Big|_0^N.$$

Hence, it is not difficult to see that

$$\left(\frac{s^2+a^2}{s^2}\right)\int_0^\infty e^{-st}\sin(at)\,dt=\frac{a}{s^2},\qquad s>0,$$

which is equivalent to

$$\mathcal{L}[\sin(at)] = \frac{a}{s^2 + a^2}, \qquad s > 0.$$

The Laplace Transform (Sect. 6.1).

- ▶ The definition of the Laplace Transform.
- Review: Improper integrals.
- Examples of Laplace Transforms.
- ► A table of Laplace Transforms.
- Properties of the Laplace Transform.
- ► Laplace Transform and differential equations.

A table of Laplace Transforms.

$$f(t) = 1 \qquad F(s) = \frac{1}{s} \qquad s > 0,$$

$$f(t) = e^{at} \qquad F(s) = \frac{1}{s - a} \qquad s > \max\{a, 0\},$$

$$f(t) = t^n \qquad F(s) = \frac{n!}{s^{(n+1)}} \qquad s > 0,$$

$$f(t) = \sin(at) \qquad F(s) = \frac{a}{s^2 + a^2} \qquad s > 0,$$

$$f(t) = \cos(at) \qquad F(s) = \frac{s}{s^2 + a^2} \qquad s > 0,$$

$$f(t) = \sinh(at) \qquad F(s) = \frac{a}{s^2 - a^2} \qquad s > 0,$$

$$f(t) = \cosh(at) \qquad F(s) = \frac{s}{s^2 - a^2} \qquad s > 0,$$

$$f(t) = t^n e^{at} \qquad F(s) = \frac{n!}{(s - a)^{(n+1)}} \qquad s > \max\{a, 0\},$$

$$f(t) = e^{at} \sin(bt) \qquad F(s) = \frac{b}{(s - a)^2 + b^2} \qquad s > \max\{a, 0\}.$$

The Laplace Transform (Sect. 6.1).

- ▶ The definition of the Laplace Transform.
- Review: Improper integrals.
- Examples of Laplace Transforms.
- A table of Laplace Transforms.
- ▶ Properties of the Laplace Transform.
- ► Laplace Transform and differential equations.

Theorem (Sufficient conditions)

If the function $f:[0,\infty)\to\mathbb{R}$ is piecewise continuous and there exist positive constants k and a such that

$$|f(t)| \leqslant k e^{at},$$

then the Laplace Transform of f exists for all s > a.

Theorem (Sufficient conditions)

If the function $f:[0,\infty)\to\mathbb{R}$ is piecewise continuous and there exist positive constants k and a such that

$$|f(t)| \leqslant k e^{at},$$

then the Laplace Transform of f exists for all s > a.

Theorem (Linear combination)

If the $\mathcal{L}[f]$ and $\mathcal{L}[g]$ are well-defined and a, b are constants, then

$$\mathcal{L}[af + bg] = a\mathcal{L}[f] + b\mathcal{L}[g].$$

Theorem (Sufficient conditions)

If the function $f:[0,\infty)\to\mathbb{R}$ is piecewise continuous and there exist positive constants k and a such that

$$|f(t)| \leqslant k e^{at}$$
,

then the Laplace Transform of f exists for all s > a.

Theorem (Linear combination)

If the $\mathcal{L}[f]$ and $\mathcal{L}[g]$ are well-defined and a, b are constants, then

$$\mathcal{L}[af + bg] = a\mathcal{L}[f] + b\mathcal{L}[g].$$

Proof: Integration is a linear operation:

Theorem (Sufficient conditions)

If the function $f:[0,\infty)\to\mathbb{R}$ is piecewise continuous and there exist positive constants k and a such that

$$|f(t)| \leqslant k e^{at}$$
,

then the Laplace Transform of f exists for all s > a.

Theorem (Linear combination)

If the $\mathcal{L}[f]$ and $\mathcal{L}[g]$ are well-defined and a, b are constants, then

$$\mathcal{L}[af + bg] = a\mathcal{L}[f] + b\mathcal{L}[g].$$

Proof: Integration is a linear operation:

$$\int [af(t)+bg(t)] dt = a \int f(t) dt + b \int g(t) dt.$$

Theorem (Derivatives)

If the $\mathcal{L}[f]$ and $\mathcal{L}[f']$ are well-defined, then holds,

$$\mathcal{L}[f'] = s \mathcal{L}[f] - f(0). \tag{1}$$

Furthermore, if $\mathcal{L}[f'']$ is well-defined, then it also holds

$$\mathcal{L}[f''] = s^2 \mathcal{L}[f] - s f(0) - f'(0).$$
 (2)

Theorem (Derivatives)

If the $\mathcal{L}[f]$ and $\mathcal{L}[f']$ are well-defined, then holds,

$$\mathcal{L}[f'] = s \mathcal{L}[f] - f(0). \tag{1}$$

Furthermore, if $\mathcal{L}[f'']$ is well-defined, then it also holds

$$\mathcal{L}[f''] = s^2 \mathcal{L}[f] - s f(0) - f'(0). \tag{2}$$

Proof of Eq (2):

Theorem (Derivatives)

If the $\mathcal{L}[f]$ and $\mathcal{L}[f']$ are well-defined, then holds,

$$\mathcal{L}[f'] = s \mathcal{L}[f] - f(0). \tag{1}$$

Furthermore, if $\mathcal{L}[f'']$ is well-defined, then it also holds

$$\mathcal{L}[f''] = s^2 \mathcal{L}[f] - s f(0) - f'(0).$$
 (2)

Theorem (Derivatives)

If the $\mathcal{L}[f]$ and $\mathcal{L}[f']$ are well-defined, then holds,

$$\mathcal{L}[f'] = s \, \mathcal{L}[f] - f(0). \tag{1}$$

Furthermore, if $\mathcal{L}[f'']$ is well-defined, then it also holds

$$\mathcal{L}[f''] = s^2 \mathcal{L}[f] - s f(0) - f'(0). \tag{2}$$

$$\mathcal{L}[f''] = \mathcal{L}[(f')']$$

Theorem (Derivatives)

If the $\mathcal{L}[f]$ and $\mathcal{L}[f']$ are well-defined, then holds,

$$\mathcal{L}[f'] = s \mathcal{L}[f] - f(0). \tag{1}$$

Furthermore, if $\mathcal{L}[f'']$ is well-defined, then it also holds

$$\mathcal{L}[f''] = s^2 \mathcal{L}[f] - s f(0) - f'(0). \tag{2}$$

$$\mathcal{L}[f''] = \mathcal{L}[(f')'] = s\mathcal{L}[(f')] - f'(0)$$

Theorem (Derivatives)

If the $\mathcal{L}[f]$ and $\mathcal{L}[f']$ are well-defined, then holds,

$$\mathcal{L}[f'] = s \mathcal{L}[f] - f(0). \tag{1}$$

Furthermore, if $\mathcal{L}[f'']$ is well-defined, then it also holds

$$\mathcal{L}[f''] = s^2 \mathcal{L}[f] - s f(0) - f'(0). \tag{2}$$

$$\mathcal{L}[f''] = \mathcal{L}[(f')'] = s\mathcal{L}[(f')] - f'(0) = s(s\mathcal{L}[f] - f(0)) - f'(0),$$

Theorem (Derivatives)

If the $\mathcal{L}[f]$ and $\mathcal{L}[f']$ are well-defined, then holds,

$$\mathcal{L}[f'] = s \, \mathcal{L}[f] - f(0). \tag{1}$$

Furthermore, if $\mathcal{L}[f'']$ is well-defined, then it also holds

$$\mathcal{L}[f''] = s^2 \mathcal{L}[f] - s f(0) - f'(0).$$
 (2)

Proof of Eq (2): Use Eq. (1) twice:

$$\mathcal{L}[f''] = \mathcal{L}[(f')'] = s\mathcal{L}[(f')] - f'(0) = s(s\mathcal{L}[f] - f(0)) - f'(0),$$

that is.

$$\mathcal{L}[f''] = s^2 \mathcal{L}[f] - s f(0) - f'(0).$$

Proof of Eq (1): Recall the definition of the Laplace Transform,

$$\mathcal{L}[f'] = \int_0^\infty e^{-st} f'(t) dt$$

Proof of Eq (1): Recall the definition of the Laplace Transform,

$$\mathcal{L}[f'] = \int_0^\infty e^{-st} f'(t) dt = \lim_{n \to \infty} \int_0^n e^{-st} f'(t) dt$$

Proof of Eq (1): Recall the definition of the Laplace Transform,

$$\mathcal{L}[f'] = \int_0^\infty e^{-st} f'(t) dt = \lim_{n \to \infty} \int_0^n e^{-st} f'(t) dt$$

Integrating by parts,

$$\lim_{n\to\infty}\int_0^n e^{-st}f'(t)\,dt = \lim_{n\to\infty}\left[\left(e^{-st}f(t)\right)\Big|_0^n - \int_0^n (-s)e^{-st}f(t)\,dt\right]$$

Proof of Eq (1): Recall the definition of the Laplace Transform,

$$\mathcal{L}[f'] = \int_0^\infty e^{-st} f'(t) dt = \lim_{n \to \infty} \int_0^n e^{-st} f'(t) dt$$

Integrating by parts,

$$\lim_{n\to\infty}\int_0^n e^{-st}f'(t)\,dt = \lim_{n\to\infty}\left[\left(e^{-st}f(t)\right)\Big|_0^n - \int_0^n (-s)e^{-st}f(t)\,dt\right]$$

$$\mathcal{L}[f'] = \lim_{n \to \infty} \left[e^{-sn} f(n) - f(0) \right] + s \int_0^\infty e^{-st} f(t) dt$$

Proof of Eq (1): Recall the definition of the Laplace Transform,

$$\mathcal{L}[f'] = \int_0^\infty e^{-st} f'(t) dt = \lim_{n \to \infty} \int_0^n e^{-st} f'(t) dt$$

Integrating by parts,

$$\lim_{n\to\infty}\int_0^n e^{-st}f'(t)\,dt = \lim_{n\to\infty}\left[\left(e^{-st}f(t)\right)\Big|_0^n - \int_0^n (-s)e^{-st}f(t)\,dt\right]$$

$$\mathcal{L}[f'] = \lim_{n \to \infty} \left[e^{-sn} f(n) - f(0) \right] + s \int_0^\infty e^{-st} f(t) dt = -f(0) + s \mathcal{L}[f],$$

Proof of Eq (1): Recall the definition of the Laplace Transform,

$$\mathcal{L}[f'] = \int_0^\infty e^{-st} f'(t) dt = \lim_{n \to \infty} \int_0^n e^{-st} f'(t) dt$$

Integrating by parts,

$$\lim_{n\to\infty}\int_0^n e^{-st}f'(t)\,dt = \lim_{n\to\infty}\left[\left(e^{-st}f(t)\right)\Big|_0^n - \int_0^n (-s)e^{-st}f(t)\,dt\right]$$

$$\mathcal{L}[f'] = \lim_{n \to \infty} \left[e^{-sn} f(n) - f(0) \right] + s \int_0^\infty e^{-st} f(t) dt = -f(0) + s \mathcal{L}[f],$$

where we used that $\lim_{n\to\infty} e^{-sn}f(n) = 0$ for s big enough,

Proof of Eq (1): Recall the definition of the Laplace Transform,

$$\mathcal{L}[f'] = \int_0^\infty e^{-st} f'(t) dt = \lim_{n \to \infty} \int_0^n e^{-st} f'(t) dt$$

Integrating by parts,

$$\lim_{n\to\infty}\int_0^n e^{-st}f'(t)\,dt = \lim_{n\to\infty}\left[\left(e^{-st}f(t)\right)\Big|_0^n - \int_0^n (-s)e^{-st}f(t)\,dt\right]$$

$$\mathcal{L}[f'] = \lim_{n \to \infty} \left[e^{-sn} f(n) - f(0) \right] + s \int_0^\infty e^{-st} f(t) dt = -f(0) + s \mathcal{L}[f],$$

where we used that $\lim_{n\to\infty} e^{-sn} f(n) = 0$ for s big enough, and we also used that $\mathcal{L}[f]$ is well-defined.

Proof of Eq (1): Recall the definition of the Laplace Transform,

$$\mathcal{L}[f'] = \int_0^\infty e^{-st} f'(t) dt = \lim_{n \to \infty} \int_0^n e^{-st} f'(t) dt$$

Integrating by parts,

$$\lim_{n\to\infty}\int_0^n e^{-st}f'(t)\,dt = \lim_{n\to\infty}\left[\left(e^{-st}f(t)\right)\Big|_0^n - \int_0^n (-s)e^{-st}f(t)\,dt\right]$$

$$\mathcal{L}[f'] = \lim_{n \to \infty} \left[e^{-sn} f(n) - f(0) \right] + s \int_0^\infty e^{-st} f(t) dt = -f(0) + s \mathcal{L}[f],$$

where we used that $\lim_{n\to\infty} e^{-sn} f(n) = 0$ for s big enough, and we also used that $\mathcal{L}[f]$ is well-defined.

We then conclude that $\mathcal{L}[f'] = s \mathcal{L}[f] - f(0)$.

The Laplace Transform (Sect. 6.1).

- ▶ The definition of the Laplace Transform.
- Review: Improper integrals.
- Examples of Laplace Transforms.
- A table of Laplace Transforms.
- Properties of the Laplace Transform.
- ► Laplace Transform and differential equations.

Remark: Laplace Transforms can be used to find solutions to differential equations with constant coefficients.

Remark: Laplace Transforms can be used to find solutions to differential equations with constant coefficients.

Remark: Laplace Transforms can be used to find solutions to differential equations with constant coefficients.

$$\mathcal{L}\begin{bmatrix} \text{Differential Eq.} \\ \text{for } y(t). \end{bmatrix}$$

Remark: Laplace Transforms can be used to find solutions to differential equations with constant coefficients.

$$\mathcal{L} \left[egin{array}{ll} \mbox{Differential Eq.} \\ \mbox{for } y(t). \end{array}
ight] \qquad \stackrel{ ext{(1)}}{\longrightarrow} \qquad \mbox{Algebraic Eq.} \\ \mbox{for } \mathcal{L}[y(t)]. \end{array}$$

Remark: Laplace Transforms can be used to find solutions to differential equations with constant coefficients.

$$\mathcal{L} \left[egin{array}{ll} \mbox{Differential Eq.} \\ \mbox{for } y(t). \end{array}
ight] \qquad \stackrel{\mbox{\scriptsize (1)}}{\longrightarrow} \qquad \mbox{Algebraic Eq.} \qquad \stackrel{\mbox{\scriptsize (2)}}{\longrightarrow} \qquad \qquad \end{array}$$

Solve the

Solve the
Algebraic Eq.
for
$$\mathcal{L}[y(t)]$$
.

Remark: Laplace Transforms can be used to find solutions to differential equations with constant coefficients.

$$\mathcal{L} \begin{bmatrix} \text{Differential Eq.} \\ \text{for } y(t). \end{bmatrix} \xrightarrow{\text{(1)}} & \text{Algebraic Eq.} \\ \text{for } \mathcal{L}[y(t)]. \end{bmatrix} \xrightarrow{\text{(2)}} \\ & \text{Solve the} \\ \xrightarrow{\text{(2)}} & \text{Algebraic Eq.} \\ & \text{for } \mathcal{L}[y(t)]. \end{bmatrix} \xrightarrow{\text{(3)}} & \text{Transform back} \\ & \text{to obtain } y(t). \\ & \text{(Using the table.)} \\ \end{cases}$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: We know the solution: $y(t) = 3e^{-2t}$.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: We know the solution: $y(t) = 3e^{-2t}$.

(1): Compute the Laplace transform of the differential equation,

$$\mathcal{L}[y'+2y] = \mathcal{L}[0]$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: We know the solution: $y(t) = 3e^{-2t}$.

(1): Compute the Laplace transform of the differential equation,

$$\mathcal{L}[y'+2y] = \mathcal{L}[0] \quad \Rightarrow \quad \mathcal{L}[y'+2y] = 0.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: We know the solution: $y(t) = 3e^{-2t}$.

(1): Compute the Laplace transform of the differential equation,

$$\mathcal{L}[y'+2y] = \mathcal{L}[0] \quad \Rightarrow \quad \mathcal{L}[y'+2y] = 0.$$

Find an algebraic equation for $\mathcal{L}[y]$.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: We know the solution: $y(t) = 3e^{-2t}$.

(1): Compute the Laplace transform of the differential equation,

$$\mathcal{L}[y'+2y] = \mathcal{L}[0] \quad \Rightarrow \quad \mathcal{L}[y'+2y] = 0.$$

Find an algebraic equation for $\mathcal{L}[y]$. Recall linearity:

$$\mathcal{L}[y'] + 2\mathcal{L}[y] = 0.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: We know the solution: $y(t) = 3e^{-2t}$.

(1): Compute the Laplace transform of the differential equation,

$$\mathcal{L}[y'+2y] = \mathcal{L}[0] \quad \Rightarrow \quad \mathcal{L}[y'+2y] = 0.$$

Find an algebraic equation for $\mathcal{L}[y]$. Recall linearity:

$$\mathcal{L}[y'] + 2\mathcal{L}[y] = 0.$$

Also recall the property: $\mathcal{L}[y'] = s \mathcal{L}[y] - y(0)$,

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: We know the solution: $y(t) = 3e^{-2t}$.

(1): Compute the Laplace transform of the differential equation,

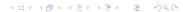
$$\mathcal{L}[y'+2y] = \mathcal{L}[0] \quad \Rightarrow \quad \mathcal{L}[y'+2y] = 0.$$

Find an algebraic equation for $\mathcal{L}[y]$. Recall linearity:

$$\mathcal{L}[y'] + 2\mathcal{L}[y] = 0.$$

Also recall the property: $\mathcal{L}[y'] = s \mathcal{L}[y] - y(0)$, that is,

$$\left[s \mathcal{L}[y] - y(0) \right] + 2 \mathcal{L}[y] = 0 \quad \Rightarrow \quad (s+2)\mathcal{L}[y] = y(0).$$



Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: Recall: $(s+2)\mathcal{L}[y] = y(0)$.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: Recall: $(s+2)\mathcal{L}[y] = y(0)$.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: Recall: $(s+2)\mathcal{L}[y] = y(0)$.

$$\mathcal{L}[y] = \frac{y(0)}{s+2},$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: Recall: $(s+2)\mathcal{L}[y] = y(0)$.

$$\mathcal{L}[y] = \frac{y(0)}{s+2}, \quad y(0) = 3,$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: Recall: $(s+2)\mathcal{L}[y] = y(0)$.

$$\mathcal{L}[y] = \frac{y(0)}{s+2}, \quad y(0) = 3, \quad \Rightarrow \quad \mathcal{L}[y] = \frac{3}{s+2}.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: Recall: $(s+2)\mathcal{L}[y] = y(0)$.

(2): Solve the algebraic equation for $\mathcal{L}[y]$.

$$\mathcal{L}[y] = \frac{y(0)}{s+2}, \quad y(0) = 3, \quad \Rightarrow \quad \mathcal{L}[y] = \frac{3}{s+2}.$$

(3): Transform back to y(t).

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: Recall: $(s+2)\mathcal{L}[y] = y(0)$.

(2): Solve the algebraic equation for $\mathcal{L}[y]$.

$$\mathcal{L}[y] = \frac{y(0)}{s+2}, \quad y(0) = 3, \quad \Rightarrow \quad \mathcal{L}[y] = \frac{3}{s+2}.$$

(3): Transform back to y(t). From the table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a}$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: Recall: $(s+2)\mathcal{L}[y] = y(0)$.

(2): Solve the algebraic equation for $\mathcal{L}[y]$.

$$\mathcal{L}[y] = \frac{y(0)}{s+2}, \quad y(0) = 3, \quad \Rightarrow \quad \mathcal{L}[y] = \frac{3}{s+2}.$$

(3): Transform back to y(t). From the table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a} \Rightarrow \frac{3}{s+2} = 3\mathcal{L}[e^{-2t}]$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: Recall: $(s+2)\mathcal{L}[y] = y(0)$.

(2): Solve the algebraic equation for $\mathcal{L}[y]$.

$$\mathcal{L}[y] = \frac{y(0)}{s+2}, \quad y(0) = 3, \quad \Rightarrow \quad \mathcal{L}[y] = \frac{3}{s+2}.$$

(3): Transform back to y(t). From the table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a} \Rightarrow \frac{3}{s+2} = 3\mathcal{L}[e^{-2t}] \Rightarrow \frac{3}{s+2} = \mathcal{L}[3e^{-2t}].$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: Recall: $(s+2)\mathcal{L}[y] = y(0)$.

(2): Solve the algebraic equation for $\mathcal{L}[y]$.

$$\mathcal{L}[y] = \frac{y(0)}{s+2}, \quad y(0) = 3, \quad \Rightarrow \quad \mathcal{L}[y] = \frac{3}{s+2}.$$

(3): Transform back to y(t). From the table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a} \Rightarrow \frac{3}{s+2} = 3\mathcal{L}[e^{-2t}] \Rightarrow \frac{3}{s+2} = \mathcal{L}[3e^{-2t}].$$

Hence, $\mathcal{L}[y] = \mathcal{L}[3e^{-2t}]$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y' + 2y = 0,$$
 $y(0) = 3.$

Solution: Recall: $(s+2)\mathcal{L}[y] = y(0)$.

(2): Solve the algebraic equation for $\mathcal{L}[y]$.

$$\mathcal{L}[y] = \frac{y(0)}{s+2}, \quad y(0) = 3, \quad \Rightarrow \quad \mathcal{L}[y] = \frac{3}{s+2}.$$

(3): Transform back to y(t). From the table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a} \Rightarrow \frac{3}{s+2} = 3\mathcal{L}[e^{-2t}] \Rightarrow \frac{3}{s+2} = \mathcal{L}[3e^{-2t}].$$

Hence,
$$\mathcal{L}[v] = \mathcal{L}[3e^{-2t}] \Rightarrow v(t) = 3e^{-2t}$$
.

 $\langle 1 \rangle$

The Laplace Transform and the IVP (Sect. 6.2).

- ▶ Solving differential equations using $\mathcal{L}[$].
 - Homogeneous IVP.
 - First, second, higher order equations.
 - Non-homogeneous IVP.

Solving differential equations using $\mathcal{L}[\].$

Remark: The method works with:

Solving differential equations using $\mathcal{L}[\]$.

Remark: The method works with:

Constant coefficient equations.

Remark: The method works with:

- Constant coefficient equations.
- ► Homogeneous and non-homogeneous equations.

Remark: The method works with:

- Constant coefficient equations.
- ▶ Homogeneous and non-homogeneous equations.
- First, second, higher order equations.

Remark: The method works with:

- Constant coefficient equations.
- ▶ Homogeneous and non-homogeneous equations.
- First, second, higher order equations.

Remark: The method works with:

- Constant coefficient equations.
- ▶ Homogeneous and non-homogeneous equations.
- First, second, higher order equations.

$$\mathcal{L} \begin{bmatrix} \mathsf{Differential} \ \mathsf{Eq.} \\ \mathsf{for} \ y(t). \end{bmatrix}$$

Remark: The method works with:

- Constant coefficient equations.
- ▶ Homogeneous and non-homogeneous equations.
- First, second, higher order equations.

$$\mathcal{L} \left[egin{array}{ll} \mbox{Differential Eq.} \\ \mbox{for } y(t). \end{array}
ight] \stackrel{(1)}{\longrightarrow} \mbox{Algebraic Eq.} \\ \mbox{for } \mathcal{L}[y(t)]. \end{array}$$

Remark: The method works with:

- Constant coefficient equations.
- ▶ Homogeneous and non-homogeneous equations.
- First, second, higher order equations.

$$\mathcal{L} \left[egin{array}{ll} \mbox{Differential Eq.} \\ \mbox{for } y(t). \end{array}
ight] \qquad rac{\mbox{(1)}}{\mbox{for } \mathcal{L}[y(t)].} \qquad rac{\mbox{(2)}}{\mbox{or } \mathcal{L}[y(t)].}$$

Solve the

Algebraic Eq.
for
$$\mathcal{L}[y(t)]$$
.

Remark: The method works with:

- Constant coefficient equations.
- ▶ Homogeneous and non-homogeneous equations.
- First, second, higher order equations.

$$\mathcal{L} \begin{bmatrix} \mathsf{Differential} \ \mathsf{Eq.} \\ \mathsf{for} \ y(t). \end{bmatrix} \xrightarrow{\underbrace{(1)}} \begin{array}{c} \mathsf{Algebraic} \ \mathsf{Eq.} \\ \mathsf{for} \ \mathcal{L}[y(t)]. \end{array} \xrightarrow{\underbrace{(2)}} \\ & \mathsf{Solve} \ \mathsf{the} \\ & \underbrace{(2)} \\ \mathsf{Algebraic} \ \mathsf{Eq.} \\ & \mathsf{for} \ \mathcal{L}[y(t)]. \end{array} \xrightarrow{\underbrace{(3)}} \begin{array}{c} \mathsf{Transform} \ \mathsf{back} \\ \mathsf{to} \ \mathsf{obtain} \ y(t). \\ \mathsf{(Using the table.)} \\ \end{array}$$

$$\mathcal{L} \begin{bmatrix} \text{Differential Eq.} \\ \text{for } y(t). \end{bmatrix} \xrightarrow{\text{(1)}} & \text{Algebraic Eq.} \\ \text{for } \mathcal{L}[y(t)]. \end{bmatrix} \xrightarrow{\text{(2)}} \\ & \text{Solve the} \\ \xrightarrow{\text{(2)}} & \text{Algebraic Eq.} \\ & \text{for } \mathcal{L}[y(t)]. \end{bmatrix} \xrightarrow{\text{(3)}} & \text{to obtain } y(t). \\ & \text{for } \mathcal{L}[y(t)]. & \text{(Using the table.)} \\ \end{aligned}$$

Idea of the method:

$$\mathcal{L}\begin{bmatrix} \text{Differential Eq.} \\ \text{for } y(t). \end{bmatrix} \xrightarrow{\text{(1)}} & \text{Algebraic Eq.} \\ \text{for } \mathcal{L}[y(t)]. \end{bmatrix} \xrightarrow{\text{(2)}} \\ & \text{Solve the} \\ \xrightarrow{\text{(2)}} & \text{Algebraic Eq.} \\ & \text{for } \mathcal{L}[y(t)]. \end{bmatrix} \xrightarrow{\text{(3)}} & \text{to obtain } y(t). \\ & \text{for } \mathcal{L}[y(t)]. & \text{(Using the table.)} \\ \end{aligned}$$

Recall:

(a)
$$\mathcal{L}[af(t) + bg(t)] = a\mathcal{L}[f(t)] + b\mathcal{L}[g(t)];$$

Idea of the method:

$$\mathcal{L}\begin{bmatrix} \text{Differential Eq.} \\ \text{for } y(t). \end{bmatrix} \xrightarrow{\text{(1)}} & \text{Algebraic Eq.} \\ \text{for } \mathcal{L}[y(t)]. \end{bmatrix} \xrightarrow{\text{(2)}} \\ & \text{Solve the} \\ \xrightarrow{\text{(2)}} & \text{Algebraic Eq.} \\ & \text{for } \mathcal{L}[y(t)]. \end{bmatrix} \xrightarrow{\text{(3)}} & \text{to obtain } y(t). \\ & \text{for } \mathcal{L}[y(t)]. & \text{(Using the table.)} \\ \end{aligned}$$

Recall:

(a)
$$\mathcal{L}[af(t) + bg(t)] = a\mathcal{L}[f(t)] + b\mathcal{L}[g(t)];$$

(b)
$$\mathcal{L}[y^{(n)}] = s^n \mathcal{L}[y] - s^{(n-1)} y(0) - s^{(n-2)} y'(0) - \dots - y^{(n-1)}(0)$$
.

The Laplace Transform and the IVP (Sect. 6.2).

- ▶ Solving differential equations using $\mathcal{L}[$].
 - ► Homogeneous IVP.
 - ▶ First, second, higher order equations.
 - Non-homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Compute the $\mathcal{L}[\]$ of the differential equation,

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Compute the $\mathcal{L}[\]$ of the differential equation,

$$\mathcal{L}[y'' - y' - 2y] = \mathcal{L}[0]$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Compute the $\mathcal{L}[\]$ of the differential equation,

$$\mathcal{L}[y''-y'-2y] = \mathcal{L}[0] \quad \Rightarrow \quad \mathcal{L}[y''-y'-2y] = 0.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Compute the $\mathcal{L}[\]$ of the differential equation,

$$\mathcal{L}[y''-y'-2y] = \mathcal{L}[0] \quad \Rightarrow \quad \mathcal{L}[y''-y'-2y] = 0.$$

The $\mathcal{L}[\]$ is a linear function,

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Compute the $\mathcal{L}[\]$ of the differential equation,

$$\mathcal{L}[y''-y'-2y] = \mathcal{L}[0] \quad \Rightarrow \quad \mathcal{L}[y''-y'-2y] = 0.$$

The $\mathcal{L}[]$ is a linear function, so

$$\mathcal{L}[y''] - \mathcal{L}[y'] - 2\mathcal{L}[y] = 0.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Compute the $\mathcal{L}[\]$ of the differential equation,

$$\mathcal{L}[y''-y'-2y] = \mathcal{L}[0] \quad \Rightarrow \quad \mathcal{L}[y''-y'-2y] = 0.$$

The $\mathcal{L}[\]$ is a linear function, so

$$\mathcal{L}[y''] - \mathcal{L}[y'] - 2\mathcal{L}[y] = 0.$$

Derivatives are transformed into power functions,

$$\left[s^2 \mathcal{L}[y] - s y(0) - y'(0)\right] - \left[s \mathcal{L}[y] - y(0)\right] - 2 \mathcal{L}[y] = 0,$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Compute the $\mathcal{L}[\]$ of the differential equation,

$$\mathcal{L}[y''-y'-2y] = \mathcal{L}[0] \quad \Rightarrow \quad \mathcal{L}[y''-y'-2y] = 0.$$

The $\mathcal{L}[]$ is a linear function, so

$$\mathcal{L}[y''] - \mathcal{L}[y'] - 2\mathcal{L}[y] = 0.$$

Derivatives are transformed into power functions,

$$\left[s^2 \mathcal{L}[y] - s y(0) - y'(0)\right] - \left[s \mathcal{L}[y] - y(0)\right] - 2 \mathcal{L}[y] = 0,$$

We the obtain $(s^2 - s - 2) \mathcal{L}[y] = (s - 1) y(0) + y'(0)$.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$(s^2 - s - 2) \mathcal{L}[y] = (s - 1) y(0) + y'(0)$$
.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$(s^2 - s - 2) \mathcal{L}[y] = (s - 1) y(0) + y'(0)$$
.

Differential equation for $y \xrightarrow{\mathcal{L}[]}$ Algebraic equation for $\mathcal{L}[y]$.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$(s^2 - s - 2) \mathcal{L}[y] = (s - 1) y(0) + y'(0)$$
.

Differential equation for $y \xrightarrow{\mathcal{L}[]}$ Algebraic equation for $\mathcal{L}[y]$.

Introduce the initial condition,

Example

Use the Laplace transform to find the solution y(t) to the IVP

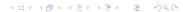
$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$(s^2 - s - 2) \mathcal{L}[y] = (s - 1) y(0) + y'(0)$$
.

Differential equation for $y \xrightarrow{\mathcal{L}[]}$ Algebraic equation for $\mathcal{L}[y]$.

Introduce the initial condition,

$$(s^2 - s - 2) \mathcal{L}[y] = (s - 1).$$



Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$(s^2 - s - 2) \mathcal{L}[y] = (s - 1) y(0) + y'(0)$$
.

Differential equation for $y \xrightarrow{\mathcal{L}[]}$ Algebraic equation for $\mathcal{L}[y]$.

Introduce the initial condition,

$$(s^2 - s - 2) \mathcal{L}[y] = (s - 1).$$

We can solve for the unknown $\mathcal{L}[y]$ as follows,

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$(s^2 - s - 2) \mathcal{L}[y] = (s - 1) y(0) + y'(0)$$
.

Differential equation for $y \xrightarrow{\mathcal{L}[]}$ Algebraic equation for $\mathcal{L}[y]$.

Introduce the initial condition,

$$(s^2 - s - 2) \mathcal{L}[y] = (s - 1).$$

We can solve for the unknown $\mathcal{L}[y]$ as follows,

$$\mathcal{L}[y] = \frac{(s-1)}{(s^2-s-2)}.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-1)}{(s^2-s-2)}$$
.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-1)}{(s^2-s-2)}$$
.

$$s^2-s-2=0$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-1)}{(s^2-s-2)}$$
.

$$s^2 - s - 2 = 0$$
 \Rightarrow $s_{\pm} = \frac{1}{2} [1 \pm \sqrt{1+8}]$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-1)}{(s^2-s-2)}$$
.

$$s^2-s-2=0 \quad \Rightarrow \quad s_\pm=rac{1}{2}igl[1\pm\sqrt{1+8}igr] \quad \Rightarrow \quad egin{cases} s_+=2, \ s_-=-1, \end{cases}$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-1)}{(s^2-s-2)}$$
.

$$s^2-s-2=0 \quad \Rightarrow \quad s_\pm=rac{1}{2}igl[1\pm\sqrt{1+8}igr] \quad \Rightarrow \quad egin{cases} s_+=2, \ s_-=-1, \end{cases}$$

Therefore, we rewrite:
$$\mathcal{L}[y] = \frac{(s-1)}{(s-2)(s+1)}$$
.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-1)}{(s^2-s-2)}$$
.

The partial fraction method: Find the zeros of the denominator,

$$s^2-s-2=0 \quad \Rightarrow \quad s_\pm=rac{1}{2}igl[1\pm\sqrt{1+8}igr] \quad \Rightarrow \quad egin{cases} s_+=2, \ s_-=-1, \end{cases}$$

Therefore, we rewrite: $\mathcal{L}[y] = \frac{(s-1)}{(s-2)(s+1)}$.

Find constants a and b such that

$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1}.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1}.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1}.$$

$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1}$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1}.$$

$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1} = \frac{a(s+1) + b(s-2)}{(s-2)(s+1)}$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1}.$$

$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1} = \frac{a(s+1) + b(s-2)}{(s-2)(s+1)}$$

$$(s-1) = s(a+b) + (a-2b)$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1}.$$

$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1} = \frac{a(s+1) + b(s-2)}{(s-2)(s+1)}$$

$$(s-1) = s(a+b) + (a-2b)$$
 \Rightarrow
$$\begin{cases} a+b=1, \\ a-2b=-1 \end{cases}$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1}.$$

A simple calculation shows

$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1} = \frac{a(s+1) + b(s-2)}{(s-2)(s+1)}$$

$$(s-1) = s(a+b) + (a-2b)$$
 \Rightarrow
$$\begin{cases} a+b=1, \\ a-2b=-1 \end{cases}$$

Hence,
$$a = \frac{1}{3}$$
 and $b = \frac{2}{3}$.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1}.$$

A simple calculation shows

$$\frac{(s-1)}{(s-2)(s+1)} = \frac{a}{s-2} + \frac{b}{s+1} = \frac{a(s+1) + b(s-2)}{(s-2)(s+1)}$$

$$(s-1) = s(a+b) + (a-2b)$$
 \Rightarrow
$$\begin{cases} a+b=1, \\ a-2b=-1 \end{cases}$$

Hence,
$$a = \frac{1}{3}$$
 and $b = \frac{2}{3}$. Then, $\mathcal{L}[y] = \frac{1}{3} \frac{1}{(s-2)} + \frac{2}{3} \frac{1}{(s+1)}$.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{1}{3} \frac{1}{(s-2)} + \frac{2}{3} \frac{1}{(s+1)}$$
.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{1}{3} \frac{1}{(s-2)} + \frac{2}{3} \frac{1}{(s+1)}$$
. From the table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a}$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall: $\mathcal{L}[y] = \frac{1}{3} \frac{1}{(s-2)} + \frac{2}{3} \frac{1}{(s+1)}$. From the table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a} \quad \Rightarrow \quad \frac{1}{s-2} = \mathcal{L}[e^{2t}],$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall: $\mathcal{L}[y] = \frac{1}{3} \frac{1}{(s-2)} + \frac{2}{3} \frac{1}{(s+1)}$. From the table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a} \quad \Rightarrow \quad \frac{1}{s-2} = \mathcal{L}[e^{2t}], \qquad \frac{1}{s+1} = \mathcal{L}[e^{-t}].$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall: $\mathcal{L}[y] = \frac{1}{3} \frac{1}{(s-2)} + \frac{2}{3} \frac{1}{(s+1)}$. From the table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a} \quad \Rightarrow \quad \frac{1}{s-2} = \mathcal{L}[e^{2t}], \qquad \frac{1}{s+1} = \mathcal{L}[e^{-t}].$$

So we arrive at the equation

$$\mathcal{L}[y] = \frac{1}{3} \mathcal{L}[e^{2t}] + \frac{2}{3} \mathcal{L}[e^{-t}]$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall: $\mathcal{L}[y] = \frac{1}{3} \frac{1}{(s-2)} + \frac{2}{3} \frac{1}{(s+1)}$. From the table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a} \quad \Rightarrow \quad \frac{1}{s-2} = \mathcal{L}[e^{2t}], \qquad \frac{1}{s+1} = \mathcal{L}[e^{-t}].$$

So we arrive at the equation

$$\mathcal{L}[y] = \frac{1}{3}\mathcal{L}[e^{2t}] + \frac{2}{3}\mathcal{L}[e^{-t}] = \mathcal{L}\Big[\frac{1}{3}(e^{2t} + 2e^{-t})\Big]$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - y' - 2y = 0,$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Recall: $\mathcal{L}[y] = \frac{1}{3} \frac{1}{(s-2)} + \frac{2}{3} \frac{1}{(s+1)}$. From the table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a} \quad \Rightarrow \quad \frac{1}{s-2} = \mathcal{L}[e^{2t}], \qquad \frac{1}{s+1} = \mathcal{L}[e^{-t}].$$

So we arrive at the equation

$$\mathcal{L}[y] = \frac{1}{3}\mathcal{L}[e^{2t}] + \frac{2}{3}\mathcal{L}[e^{-t}] = \mathcal{L}\Big[\frac{1}{3}(e^{2t} + 2e^{-t})\Big]$$

We conclude that:
$$y(t) = \frac{1}{3}(e^{2t} + 2e^{-t}).$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Compute the $\mathcal{L}[\]$ of the differential equation,

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Compute the $\mathcal{L}[\]$ of the differential equation,

$$\mathcal{L}[y'' - 4y' + 4y] = \mathcal{L}[0] = 0.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Compute the $\mathcal{L}[\]$ of the differential equation,

$$\mathcal{L}[y'' - 4y' + 4y] = \mathcal{L}[0] = 0.$$

The $\mathcal{L}[]$ is a linear function,

$$\mathcal{L}[y''] - 4 \mathcal{L}[y'] + 4 \mathcal{L}[y] = 0.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Compute the $\mathcal{L}[\]$ of the differential equation,

$$\mathcal{L}[y'' - 4y' + 4y] = \mathcal{L}[0] = 0.$$

The $\mathcal{L}[]$ is a linear function,

$$\mathcal{L}[y''] - 4 \mathcal{L}[y'] + 4 \mathcal{L}[y] = 0.$$

Derivatives are transformed into power functions,

$$\[s^2 \mathcal{L}[y] - s y(0) - y'(0)\] - 4 \left[s \mathcal{L}[y] - y(0)\right] + 4 \mathcal{L}[y] = 0,\]$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Compute the $\mathcal{L}[\]$ of the differential equation,

$$\mathcal{L}[y'' - 4y' + 4y] = \mathcal{L}[0] = 0.$$

The $\mathcal{L}[\]$ is a linear function,

$$\mathcal{L}[y''] - 4 \mathcal{L}[y'] + 4 \mathcal{L}[y] = 0.$$

Derivatives are transformed into power functions,

$$\[s^2 \mathcal{L}[y] - s y(0) - y'(0)\] - 4 \left[s \mathcal{L}[y] - y(0)\right] + 4 \mathcal{L}[y] = 0,\]$$

Therefore,
$$(s^2 - 4s + 4) \mathcal{L}[y] = (s - 4) y(0) + y'(0)$$
.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = (s - 4) y(0) + y'(0)$$
.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = (s - 4) y(0) + y'(0)$$
.

Introduce the initial conditions,

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = (s - 4) y(0) + y'(0)$$
.

Introduce the initial conditions, $(s^2 - 4s + 4) \mathcal{L}[y] = s - 3$.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall: $(s^2 - 4s + 4) \mathcal{L}[y] = (s - 4) y(0) + y'(0)$.

Introduce the initial conditions, $(s^2 - 4s + 4) \mathcal{L}[y] = s - 3$.

Solve for $\mathcal{L}[y]$ as follows:

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = (s - 4) y(0) + y'(0)$$
.

Introduce the initial conditions, $(s^2 - 4s + 4) \mathcal{L}[y] = s - 3$.

Solve for
$$\mathcal{L}[y]$$
 as follows: $\mathcal{L}[y] = \frac{(s-3)}{(s^2-4s+4)}$.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = (s - 4) y(0) + y'(0)$$
.

Introduce the initial conditions, $(s^2 - 4s + 4) \mathcal{L}[y] = s - 3$.

Solve for
$$\mathcal{L}[y]$$
 as follows: $\mathcal{L}[y] = \frac{(s-3)}{(s^2-4s+4)}$.

The partial fraction method:

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = (s - 4) y(0) + y'(0)$$
.

Introduce the initial conditions, $(s^2 - 4s + 4) \mathcal{L}[y] = s - 3$.

Solve for
$$\mathcal{L}[y]$$
 as follows: $\mathcal{L}[y] = \frac{(s-3)}{(s^2-4s+4)}$.

$$s^2 - 4s + 4 = 0$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = (s - 4) y(0) + y'(0)$$
.

Introduce the initial conditions, $(s^2 - 4s + 4) \mathcal{L}[y] = s - 3$.

Solve for
$$\mathcal{L}[y]$$
 as follows: $\mathcal{L}[y] = \frac{(s-3)}{(s^2-4s+4)}$.

$$s^2 - 4s + 4 = 0$$
 \Rightarrow $s_{\pm} = \frac{1}{2} [4 \pm \sqrt{16 - 16}]$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = (s - 4) y(0) + y'(0)$$
.

Introduce the initial conditions, $(s^2 - 4s + 4) \mathcal{L}[y] = s - 3$.

Solve for
$$\mathcal{L}[y]$$
 as follows: $\mathcal{L}[y] = \frac{(s-3)}{(s^2-4s+4)}$.

$$s^2 - 4s + 4 = 0$$
 \Rightarrow $s_{\pm} = \frac{1}{2} [4 \pm \sqrt{16 - 16}]$ \Rightarrow $s_{+} = s_{-} = 2.$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = (s - 4) y(0) + y'(0)$$
.

Introduce the initial conditions, $(s^2 - 4s + 4) \mathcal{L}[y] = s - 3$.

Solve for
$$\mathcal{L}[y]$$
 as follows: $\mathcal{L}[y] = \frac{(s-3)}{(s^2-4s+4)}$.

$$s^2 - 4s + 4 = 0$$
 \Rightarrow $s_{\pm} = \frac{1}{2} [4 \pm \sqrt{16 - 16}]$ \Rightarrow $s_{+} = s_{-} = 2.$

We obtain:
$$\mathcal{L}[y] = \frac{(s-3)}{(s-2)^2}$$
.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s-3)}{(s-2)^2}$$
.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

$$\frac{(s-3)}{(s-2)^2} = \frac{a}{(s-2)} + \frac{b}{(s-2)^2}$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

$$\frac{(s-3)}{(s-2)^2} = \frac{a}{(s-2)} + \frac{b}{(s-2)^2} \implies s-3 = a(s-2) + b$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

$$\frac{(s-3)}{(s-2)^2} = \frac{a}{(s-2)} + \frac{b}{(s-2)^2} \implies s-3 = a(s-2) + b$$

If
$$s=2$$
,

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall: $\mathcal{L}[y] = \frac{(s-3)}{(s-2)^2}$. We find the partial fraction,

$$\frac{(s-3)}{(s-2)^2} = \frac{a}{(s-2)} + \frac{b}{(s-2)^2} \implies s-3 = a(s-2) + b$$

If s = 2, then b = -1.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

$$\frac{(s-3)}{(s-2)^2} = \frac{a}{(s-2)} + \frac{b}{(s-2)^2} \implies s-3 = a(s-2) + b$$

If
$$s = 2$$
, then $b = -1$. If $s = 3$,

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall: $\mathcal{L}[y] = \frac{(s-3)}{(s-2)^2}$. We find the partial fraction,

$$\frac{(s-3)}{(s-2)^2} = \frac{a}{(s-2)} + \frac{b}{(s-2)^2} \implies s-3 = a(s-2) + b$$

If s = 2, then b = -1. If s = 3, then a = 1.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall: $\mathcal{L}[y] = \frac{(s-3)}{(s-2)^2}$. We find the partial fraction,

$$\frac{(s-3)}{(s-2)^2} = \frac{a}{(s-2)} + \frac{b}{(s-2)^2} \implies s-3 = a(s-2) + b$$

If s = 2, then b = -1. If s = 3, then a = 1. Hence

$$\mathcal{L}[y] = \frac{1}{s-2} - \frac{1}{(s-2)^2}.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall: $\mathcal{L}[y] = \frac{(s-3)}{(s-2)^2}$. We find the partial fraction,

$$\frac{(s-3)}{(s-2)^2} = \frac{a}{(s-2)} + \frac{b}{(s-2)^2} \implies s-3 = a(s-2) + b$$

If s = 2, then b = -1. If s = 3, then a = 1. Hence

$$\mathcal{L}[y] = \frac{1}{s-2} - \frac{1}{(s-2)^2}.$$

From the Laplace transforms table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a}$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall: $\mathcal{L}[y] = \frac{(s-3)}{(s-2)^2}$. We find the partial fraction,

$$\frac{(s-3)}{(s-2)^2} = \frac{a}{(s-2)} + \frac{b}{(s-2)^2} \implies s-3 = a(s-2) + b$$

If s = 2, then b = -1. If s = 3, then a = 1. Hence

$$\mathcal{L}[y] = \frac{1}{s-2} - \frac{1}{(s-2)^2}.$$

From the Laplace transforms table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a} \quad \Rightarrow \quad \frac{1}{s-2} = \mathcal{L}[e^{2t}],$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall: $\mathcal{L}[y] = \frac{(s-3)}{(s-2)^2}$. We find the partial fraction,

$$\frac{(s-3)}{(s-2)^2} = \frac{a}{(s-2)} + \frac{b}{(s-2)^2} \implies s-3 = a(s-2) + b$$

If s = 2, then b = -1. If s = 3, then a = 1. Hence

$$\mathcal{L}[y] = \frac{1}{s-2} - \frac{1}{(s-2)^2}.$$

From the Laplace transforms table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a} \quad \Rightarrow \quad \frac{1}{s-2} = \mathcal{L}[e^{2t}],$$

$$\mathcal{L}[t^n e^{at}] = \frac{n!}{(s-a)^{(n+1)}}$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall: $\mathcal{L}[y] = \frac{(s-3)}{(s-2)^2}$. We find the partial fraction,

$$\frac{(s-3)}{(s-2)^2} = \frac{a}{(s-2)} + \frac{b}{(s-2)^2} \implies s-3 = a(s-2) + b$$

If s = 2, then b = -1. If s = 3, then a = 1. Hence

$$\mathcal{L}[y] = \frac{1}{s-2} - \frac{1}{(s-2)^2}.$$

From the Laplace transforms table:

$$\mathcal{L}[e^{at}] = \frac{1}{s-a} \quad \Rightarrow \quad \frac{1}{s-2} = \mathcal{L}[e^{2t}],$$

$$\mathcal{L}[t^n e^{at}] = \frac{n!}{(s-a)^{(n+1)}} \quad \Rightarrow \quad \frac{1}{(s-2)^2} = \mathcal{L}[te^{2t}].$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{1}{s-2} - \frac{1}{(s-2)^2}$$
 and

$$\frac{1}{s-2} = \mathcal{L}[e^{2t}], \qquad \frac{1}{(s-2)^2} = \mathcal{L}[te^{2t}].$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{1}{s-2} - \frac{1}{(s-2)^2}$$
 and

$$\frac{1}{s-2} = \mathcal{L}[e^{2t}], \qquad \frac{1}{(s-2)^2} = \mathcal{L}[te^{2t}].$$

So we arrive at the equation

$$\mathcal{L}[y] = \mathcal{L}[e^{2t}] - \mathcal{L}[te^{2t}]$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{1}{s-2} - \frac{1}{(s-2)^2}$$
 and

$$\frac{1}{s-2} = \mathcal{L}[e^{2t}], \qquad \frac{1}{(s-2)^2} = \mathcal{L}[te^{2t}].$$

So we arrive at the equation

$$\mathcal{L}[y] = \mathcal{L}[e^{2t}] - \mathcal{L}[te^{2t}] = \mathcal{L}[e^{2t} - te^{2t}].$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 0,$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y] = \frac{1}{s-2} - \frac{1}{(s-2)^2}$$
 and

$$\frac{1}{s-2} = \mathcal{L}[e^{2t}], \qquad \frac{1}{(s-2)^2} = \mathcal{L}[te^{2t}].$$

So we arrive at the equation

$$\mathcal{L}[y] = \mathcal{L}[e^{2t}] - \mathcal{L}[te^{2t}] = \mathcal{L}[e^{2t} - te^{2t}].$$

We conclude that $y(t) = e^{2t} - te^{2t}$.

 \triangleleft

The Laplace Transform and the IVP (Sect. 6.2).

- ▶ Solving differential equations using $\mathcal{L}[$].
 - ► Homogeneous IVP.
 - ► First, second, higher order equations.
 - Non-homogeneous IVP.

Example

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

Example

Use the Laplace Transform to find the solution of $y^{(4)} - 4y = 0$,

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

$$\mathcal{L}[y^{(4)}] - 4\mathcal{L}[y] = 0.$$

Example

Use the Laplace Transform to find the solution of $y^{(4)} - 4y = 0$,

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

$$\mathcal{L}[y^{(4)}] - 4\mathcal{L}[y] = 0.$$

$$[s^4 \mathcal{L}[y] - s^3 y(0) - s^2 y'(0) - s y''(0) - y'''(0)] - 4 \mathcal{L}[y] = 0.$$

Example

Use the Laplace Transform to find the solution of $y^{(4)} - 4y = 0$,

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

$$\mathcal{L}\big[y^{(4)}\big] - 4\,\mathcal{L}[y] = 0.$$

$$[s^4 \mathcal{L}[y] - s^3 y(0) - s^2 y'(0) - s y''(0) - y'''(0)] - 4 \mathcal{L}[y] = 0.$$

$$\left[s^4 \mathcal{L}[y] - s^3 + 2s\right] - 4 \mathcal{L}[y] = 0$$

Example

Use the Laplace Transform to find the solution of $y^{(4)} - 4y = 0$,

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

$$\mathcal{L}[y^{(4)}] - 4\mathcal{L}[y] = 0.$$

$$[s^4 \mathcal{L}[y] - s^3 y(0) - s^2 y'(0) - s y''(0) - y'''(0)] - 4 \mathcal{L}[y] = 0.$$

$$[s^4 \mathcal{L}[y] - s^3 + 2s] - 4 \mathcal{L}[y] = 0 \quad \Rightarrow \quad (s^4 - 4) \mathcal{L}[y] = s^3 - 2s,$$

Example

Use the Laplace Transform to find the solution of $y^{(4)} - 4y = 0$,

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

$$\mathcal{L}[y^{(4)}] - 4\mathcal{L}[y] = 0.$$

$$[s^4 \mathcal{L}[y] - s^3 y(0) - s^2 y'(0) - s y''(0) - y'''(0)] - 4 \mathcal{L}[y] = 0.$$

$$[s^4 \mathcal{L}[y] - s^3 + 2s] - 4 \mathcal{L}[y] = 0 \implies (s^4 - 4) \mathcal{L}[y] = s^3 - 2s,$$

We obtain,
$$\mathcal{L}[y] = \frac{s^3 - 2s}{(s^4 - 4)}$$
.

Example

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

Example

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

Solution: Recall:
$$\mathcal{L}[y] = \frac{s^3 - 2s}{(s^4 - 4)}$$
.

Example

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

Solution: Recall:
$$\mathcal{L}[y] = \frac{s^3 - 2s}{(s^4 - 4)}$$
.

$$\mathcal{L}[y] = \frac{s(s^2 - 2)}{(s^2 - 2)(s^2 + 2)}$$

Example

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

Solution: Recall:
$$\mathcal{L}[y] = \frac{s^3 - 2s}{(s^4 - 4)}$$
.

$$\mathcal{L}[y] = \frac{s(s^2 - 2)}{(s^2 - 2)(s^2 + 2)} \quad \Rightarrow \quad \mathcal{L}[y] = \frac{s}{(s^2 + 2)}.$$

Example

Use the Laplace Transform to find the solution of $y^{(4)} - 4y = 0$,

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

Solution: Recall: $\mathcal{L}[y] = \frac{s^3 - 2s}{(s^4 - 4)}$.

$$\mathcal{L}[y] = \frac{s(s^2 - 2)}{(s^2 - 2)(s^2 + 2)} \quad \Rightarrow \quad \mathcal{L}[y] = \frac{s}{(s^2 + 2)}.$$

The last expression is in the table of Laplace Transforms,

Example

Use the Laplace Transform to find the solution of $y^{(4)} - 4y = 0$,

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

Solution: Recall: $\mathcal{L}[y] = \frac{s^3 - 2s}{(s^4 - 4)}$.

$$\mathcal{L}[y] = \frac{s(s^2 - 2)}{(s^2 - 2)(s^2 + 2)} \quad \Rightarrow \quad \mathcal{L}[y] = \frac{s}{(s^2 + 2)}.$$

The last expression is in the table of Laplace Transforms,

$$\mathcal{L}[y] = \frac{s}{\left(s^2 + \left\lceil\sqrt{2}\right\rceil^2\right)}$$

Example

Use the Laplace Transform to find the solution of $y^{(4)} - 4y = 0$,

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

Solution: Recall: $\mathcal{L}[y] = \frac{s^3 - 2s}{(s^4 - 4)}$.

$$\mathcal{L}[y] = \frac{s(s^2 - 2)}{(s^2 - 2)(s^2 + 2)} \quad \Rightarrow \quad \mathcal{L}[y] = \frac{s}{(s^2 + 2)}.$$

The last expression is in the table of Laplace Transforms,

$$\mathcal{L}[y] = \frac{s}{\left(s^2 + \left\lceil \sqrt{2} \right\rceil^2\right)} = \mathcal{L}\left[\cos(\sqrt{2}t)\right].$$

Example

Use the Laplace Transform to find the solution of $y^{(4)} - 4y = 0$,

$$y(0) = 1$$
, $y'(0) = 1$, $y''(0) = -2$, $y'''(0) = 0$.

Solution: Recall: $\mathcal{L}[y] = \frac{s^3 - 2s}{(s^4 - 4)}$.

$$\mathcal{L}[y] = \frac{s(s^2 - 2)}{(s^2 - 2)(s^2 + 2)} \quad \Rightarrow \quad \mathcal{L}[y] = \frac{s}{(s^2 + 2)}.$$

The last expression is in the table of Laplace Transforms,

$$\mathcal{L}[y] = \frac{s}{\left(s^2 + \left[\sqrt{2}\right]^2\right)} = \mathcal{L}\left[\cos(\sqrt{2}t)\right].$$

We conclude that $y(t) = \cos(\sqrt{2}t)$.

<1

The Laplace Transform and the IVP (Sect. 6.2).

- ▶ Solving differential equations using $\mathcal{L}[$].
 - ► Homogeneous IVP.
 - First, second, higher order equations.
 - ► Non-homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Compute the Laplace transform of the equation,

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Compute the Laplace transform of the equation,

$$\mathcal{L}[y''-4y'+4y]=\mathcal{L}[3\sin(2t)].$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Compute the Laplace transform of the equation,

$$\mathcal{L}[y'' - 4y' + 4y] = \mathcal{L}[3\sin(2t)].$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Compute the Laplace transform of the equation,

$$\mathcal{L}[y'' - 4y' + 4y] = \mathcal{L}[3\sin(2t)].$$

$$\mathcal{L}[3\sin(2t)] = 3\,\mathcal{L}[\sin(2t)]$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Compute the Laplace transform of the equation,

$$\mathcal{L}[y'' - 4y' + 4y] = \mathcal{L}[3\sin(2t)].$$

$$\mathcal{L}[3\sin(2t)] = 3\mathcal{L}[\sin(2t)] = 3\frac{2}{s^2 + 2^2}$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Compute the Laplace transform of the equation,

$$\mathcal{L}[y'' - 4y' + 4y] = \mathcal{L}[3\sin(2t)].$$

$$\mathcal{L}[3\sin(2t)] = 3\mathcal{L}[\sin(2t)] = 3\frac{2}{s^2 + 2^2} = \frac{6}{s^2 + 4}.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Compute the Laplace transform of the equation,

$$\mathcal{L}[y''-4y'+4y]=\mathcal{L}[3\sin(2t)].$$

The right-hand side above can be expressed as follows,

$$\mathcal{L}[3\sin(2t)] = 3\mathcal{L}[\sin(2t)] = 3\frac{2}{s^2 + 2^2} = \frac{6}{s^2 + 4}.$$

Introduce this source term in the differential equation,

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Compute the Laplace transform of the equation,

$$\mathcal{L}[y''-4y'+4y]=\mathcal{L}[3\sin(2t)].$$

The right-hand side above can be expressed as follows,

$$\mathcal{L}[3\sin(2t)] = 3\mathcal{L}[\sin(2t)] = 3\frac{2}{s^2 + 2^2} = \frac{6}{s^2 + 4}.$$

Introduce this source term in the differential equation,

$$\mathcal{L}[y''] - 4\mathcal{L}[y'] + 4\mathcal{L}[y] = \frac{6}{s^2 + 4}.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y''] - 4\mathcal{L}[y'] + 4\mathcal{L}[y] = \frac{6}{s^2 + 4}$$
.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y''] - 4\mathcal{L}[y'] + 4\mathcal{L}[y] = \frac{6}{s^2 + 4}$$
.

Derivatives are transformed into power functions,

$$\left[s^2 \mathcal{L}[y] - s y(0) - y'(0)\right] - 4\left[s \mathcal{L}[y] - y(0)\right] + 4 \mathcal{L}[y] = \frac{6}{s^2 + 4}.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y''] - 4\mathcal{L}[y'] + 4\mathcal{L}[y] = \frac{6}{s^2 + 4}$$
.

Derivatives are transformed into power functions,

$$\left[s^{2} \mathcal{L}[y] - s y(0) - y'(0)\right] - 4\left[s \mathcal{L}[y] - y(0)\right] + 4 \mathcal{L}[y] = \frac{6}{s^{2} + 4}.$$

Rewrite the above equation,

$$(s^2-4s+4)\mathcal{L}[y]=(s-4)y(0)+y'(0)+\frac{6}{s^2+4}.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y''] - 4\mathcal{L}[y'] + 4\mathcal{L}[y] = \frac{6}{s^2 + 4}$$
.

Derivatives are transformed into power functions,

$$\left[s^{2} \mathcal{L}[y] - s y(0) - y'(0)\right] - 4\left[s \mathcal{L}[y] - y(0)\right] + 4 \mathcal{L}[y] = \frac{6}{s^{2} + 4}.$$

Rewrite the above equation,

$$(s^2-4s+4)\mathcal{L}[y]=(s-4)y(0)+y'(0)+\frac{6}{s^2+4}.$$

Introduce the initial conditions,

$$(s^2 - 4s + 4) \mathcal{L}[y] = s - 3 + \frac{6}{s^2 + 4}.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = s - 3 + \frac{6}{s^2 + 4}$$
.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = s - 3 + \frac{6}{s^2 + 4}$$
.

Therefore,
$$\mathcal{L}[y] = \frac{(s-3)}{(s^2-4s+4)} + \frac{6}{(s^2-4+4)(s^2+4)}$$
.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = s - 3 + \frac{6}{s^2 + 4}$$
.

Therefore,
$$\mathcal{L}[y] = \frac{(s-3)}{(s^2-4s+4)} + \frac{6}{(s^2-4+4)(s^2+4)}$$
.

From an Example above: $s^2 - 4s + 4 = (s-2)^2$,

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = s - 3 + \frac{6}{s^2 + 4}$$
.

Therefore,
$$\mathcal{L}[y] = \frac{(s-3)}{(s^2-4s+4)} + \frac{6}{(s^2-4+4)(s^2+4)}$$
.

From an Example above: $s^2 - 4s + 4 = (s-2)^2$,

$$\mathcal{L}[y] = \frac{1}{s-2} - \frac{1}{(s-2)^2} + \frac{6}{(s-2)^2(s^2+4)}.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$(s^2 - 4s + 4) \mathcal{L}[y] = s - 3 + \frac{6}{s^2 + 4}$$
.

Therefore,
$$\mathcal{L}[y] = \frac{(s-3)}{(s^2-4s+4)} + \frac{6}{(s^2-4+4)(s^2+4)}$$
.

From an Example above: $s^2 - 4s + 4 = (s-2)^2$,

$$\mathcal{L}[y] = \frac{1}{s-2} - \frac{1}{(s-2)^2} + \frac{6}{(s-2)^2(s^2+4)}.$$

From an Example above we know that

$$\mathcal{L}[e^{2t} - te^{2t}] = \frac{1}{s-2} - \frac{1}{(s-2)^2}.$$

Example

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y] = \mathcal{L}[e^{2t} - te^{2t}] + \frac{6}{(s-2)^2(s^2+4)}$$
.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y] = \mathcal{L}[e^{2t} - te^{2t}] + \frac{6}{(s-2)^2(s^2+4)}$$
.

Use Partial fractions to simplify the last term above.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y] = \mathcal{L}[e^{2t} - te^{2t}] + \frac{6}{(s-2)^2(s^2+4)}$$
.

Use Partial fractions to simplify the last term above.

Find constants a, b, c, d, such that

$$\frac{6}{(s-2)^2(s^2+4)} = \frac{as+b}{s^2+4} + \frac{c}{(s-2)} + \frac{d}{(s-2)^2}$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y] = \mathcal{L}[e^{2t} - te^{2t}] + \frac{6}{(s-2)^2(s^2+4)}$$
.

Use Partial fractions to simplify the last term above.

Find constants a, b, c, d, such that

$$\frac{6}{(s-2)^2(s^2+4)} = \frac{as+b}{s^2+4} + \frac{c}{(s-2)} + \frac{d}{(s-2)^2}$$

$$\frac{6}{(s-2)^2(s^2+4)} = \frac{(as+b)(s-2)^2 + c(s-2)(s^2+4) + d(s^2+4)}{(s^2+4)(s-2)^2}$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Recall:
$$\mathcal{L}[y] = \mathcal{L}[e^{2t} - te^{2t}] + \frac{6}{(s-2)^2(s^2+4)}$$
.

Use Partial fractions to simplify the last term above.

Find constants a, b, c, d, such that

$$\frac{6}{(s-2)^2(s^2+4)} = \frac{as+b}{s^2+4} + \frac{c}{(s-2)} + \frac{d}{(s-2)^2}$$

$$\frac{6}{(s-2)^2(s^2+4)} = \frac{(as+b)(s-2)^2 + c(s-2)(s^2+4) + d(s^2+4)}{(s^2+4)(s-2)^2}$$

$$6 = (as + b)(s - 2)^{2} + c(s - 2)(s^{2} + 4) + d(s^{2} + 4).$$

Example

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution:
$$6 = (as + b)(s - 2)^2 + c(s - 2)(s^2 + 4) + d(s^2 + 4)$$
.

Example

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution:
$$6 = (as + b)(s - 2)^2 + c(s - 2)(s^2 + 4) + d(s^2 + 4)$$
.

$$6 = (as + b)(s^2 - 4s + 4) + c(s^3 + 4s - 2s^2 - 8) + d(s^2 + 4)$$

Example

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution:
$$6 = (as + b)(s - 2)^2 + c(s - 2)(s^2 + 4) + d(s^2 + 4)$$
.

$$6 = (as + b)(s^2 - 4s + 4) + c(s^3 + 4s - 2s^2 - 8) + d(s^2 + 4)$$

$$6 = a(s^3 - 4s^2 + 4s) + b(s^2 - 4s + 4) + c(s^3 + 4s - 2s^2 - 8) + d(s^2 + 4).$$

Example

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution:
$$6 = (as + b)(s - 2)^2 + c(s - 2)(s^2 + 4) + d(s^2 + 4)$$
.

$$6 = (as + b)(s^2 - 4s + 4) + c(s^3 + 4s - 2s^2 - 8) + d(s^2 + 4)$$

$$6 = a(s^3 - 4s^2 + 4s) + b(s^2 - 4s + 4) + c(s^3 + 4s - 2s^2 - 8) + d(s^2 + 4).$$

$$6 = (a+c)s^3 + (-4a+b-2c+d)s^2 + (4a-4b+4c)s + (4b-8c+4d).$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution:
$$6 = (as + b)(s - 2)^2 + c(s - 2)(s^2 + 4) + d(s^2 + 4)$$
.

$$6 = (as + b)(s^2 - 4s + 4) + c(s^3 + 4s - 2s^2 - 8) + d(s^2 + 4)$$

$$6 = a(s^3 - 4s^2 + 4s) + b(s^2 - 4s + 4) + c(s^3 + 4s - 2s^2 - 8) + d(s^2 + 4).$$

$$6 = (a+c)s^3 + (-4a+b-2c+d)s^2 + (4a-4b+4c)s + (4b-8c+4d).$$

We obtain the system

$$a + c = 0,$$
 $-4a + b - 2c + d = 0,$
 $4a - 4b + 4c = 0,$ $4b - 8c + 4d = 6.$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: The solution for this linear system is

$$a = \frac{3}{8}$$
, $b = 0$, $c = -\frac{3}{8}$, $d = \frac{3}{4}$.

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: The solution for this linear system is

$$a = \frac{3}{8}$$
, $b = 0$, $c = -\frac{3}{8}$, $d = \frac{3}{4}$.

$$\frac{6}{(s-2)^2(s^2+4)} = \frac{3}{8} \frac{s}{s^2+4} - \frac{3}{8} \frac{1}{(s-2)} + \frac{3}{4} \frac{1}{(s-2)^2}.$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: The solution for this linear system is

$$a = \frac{3}{8}$$
, $b = 0$, $c = -\frac{3}{8}$, $d = \frac{3}{4}$.

$$\frac{6}{(s-2)^2(s^2+4)} = \frac{3}{8} \frac{s}{s^2+4} - \frac{3}{8} \frac{1}{(s-2)} + \frac{3}{4} \frac{1}{(s-2)^2}.$$

Use the table of Laplace Transforms

$$\frac{6}{(s-2)^2(s^2+4)} = \frac{3}{8}\mathcal{L}[\cos(2t)] - \frac{3}{8}\mathcal{L}[e^{2t}] + \frac{3}{4}\mathcal{L}[te^{2t}].$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: The solution for this linear system is

$$a = \frac{3}{8},$$
 $b = 0,$ $c = -\frac{3}{8},$ $d = \frac{3}{4}.$
$$\frac{6}{(s-2)^2(s^2+4)} = \frac{3}{8}\frac{s}{s^2+4} - \frac{3}{8}\frac{1}{(s-2)} + \frac{3}{4}\frac{1}{(s-2)^2}.$$

Use the table of Laplace Transforms

$$\frac{6}{(s-2)^2(s^2+4)} = \frac{3}{8}\mathcal{L}[\cos(2t)] - \frac{3}{8}\mathcal{L}[e^{2t}] + \frac{3}{4}\mathcal{L}[te^{2t}].$$
$$\frac{6}{(s-2)^2(s^2+4)} = \mathcal{L}\left[\frac{3}{8}\cos(2t) - \frac{3}{8}e^{2t} + \frac{3}{4}te^{2t}\right].$$

Example

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Summary:
$$\mathcal{L}[y] = \mathcal{L}[e^{2t} - te^{2t}] + \frac{6}{(s-2)^2(s^2+4)}$$
,

$$\frac{6}{(s-2)^2(s^2+4)} = \mathcal{L}\Big[\frac{3}{8}\cos(2t) - \frac{3}{8}e^{2t} + \frac{3}{4}te^{2t}\Big].$$

Example

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Summary:
$$\mathcal{L}[y] = \mathcal{L}[e^{2t} - te^{2t}] + \frac{6}{(s-2)^2(s^2+4)}$$
,

$$\frac{6}{(s-2)^2(s^2+4)} = \mathcal{L}\Big[\frac{3}{8}\cos(2t) - \frac{3}{8}e^{2t} + \frac{3}{4}te^{2t}\Big].$$

$$\mathcal{L}[y(t)] = \mathcal{L}[(1-t)e^{2t} + \frac{3}{8}(-1+2t)e^{2t} + \frac{3}{8}\cos(2t)].$$

Example

Use the Laplace transform to find the solution y(t) to the IVP

$$y'' - 4y' + 4y = 3\sin(2t),$$
 $y(0) = 1,$ $y'(0) = 1.$

Solution: Summary:
$$\mathcal{L}[y] = \mathcal{L}[e^{2t} - te^{2t}] + \frac{6}{(s-2)^2(s^2+4)}$$
,

$$\frac{6}{(s-2)^2(s^2+4)} = \mathcal{L}\Big[\frac{3}{8}\cos(2t) - \frac{3}{8}e^{2t} + \frac{3}{4}te^{2t}\Big].$$

$$\mathcal{L}[y(t)] = \mathcal{L}[(1-t)e^{2t} + \frac{3}{8}(-1+2t)e^{2t} + \frac{3}{8}\cos(2t)].$$

We conclude that

$$y(t) = (1-t)e^{2t} + \frac{3}{8}(2t-1)e^{2t} + \frac{3}{8}\cos(2t).$$

