Review for Exam 2.

5 or 6 problems.
No multiple choice questions.
No notes, no books, no calculators.

Problems similar to homeworks.
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Exam covers:
» Regular-singular points (5.5).
Euler differential equation (5.4).
Power series solutions (5.2).
Variation of parameters (3.6).
Undetermined coefficients (3.5)
Constant coefficients, homogeneous, (3.1)-(3.4).
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Regular-singular points (5.5).
Summary:
» Look for solutions y(x Z an(x — x,)(" 7).

> Recall: Smce r # 0, holds
y = Z(nJrr)a,,(x Xo)(”-‘rr 1) £ Z n4+r a,,(x X)(n+r 1)

n=0 n=1
» Find the indicial equation for r, the recurrence relation for a,.

» Introduce the larger root ry of the indicial polynomial into the
recurrence relation and solve for a,.

(a) If (ry — r—) is not an integer, then each ry and r_ define
linearly independent solutions.

(b) If (ry — r—) is an integer, then both ry and r_ define
proportional solutions.



Regular-singular points (5.5).

Example

Consider the equation x2 y” + <x2 + %) y = 0. Use a power series
centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.
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Regular-singular points (5.5).

Example
Consider the equation x? y” + <x2 + %) y = 0. Use a power series

centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.
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Regular-singular points (5.5).

Example
Consider the equation x2 y” + <x2 + %) y = 0. Use a power series

centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

e [e§)
Solution: y = Z apx("t), y = Z(n +r)(n+r—1)axrtr=2),
n=0 n=0
o0
2y =3 "(n+r)(n+ 1 — 1))
n=0

We also need to compute

1 oo OOl
2 4 _Z (n+r+2) 2:7 (n+r)
(X +4)y—n_oanxn r _|_n:04anxn r7
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Regular-singular points (5.5).

Example
Consider the equation x2 y” + <x2 + %) y = 0. Use a power series

centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.
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Re-label m = n + 2 in the first term and then switch back to n,



Regular-singular points (5.5).

Example
Consider the equation x2 y” + <x2 + %) y = 0. Use a power series

centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: (x + ) Za s (n+r+2) +Z an s(ntr).

Re-label m=n+2 in the f|rst term and then switch back to n,
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Regular-singular points (5.5).

Example
Consider the equation x2 y” + <x2 + %) y = 0. Use a power series

centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: (x + ) Za s (n+r+2) +Z an s(ntr).

Re-label m=n+2 in the f|rst term and then switch back to n,

1 oo
2 (n+r n+r
(X Z)y Z;a(,, 2)X ) Z ax( )
I'he equation is

n+r)(n+r—1)a,x\"" 4 a(n—2) x(ntr) 4 ax”” =
> () Japx {4y Z

n=0 n=2



Regular-singular points (5.5).

Example

Consider the equation x2 y” + <x2 + %) y = 0. Use a power series
centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution:

[ee]
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Regular-singular points (5.5).

Example
Consider the equation x2 y” + <x2 + %) y = 0. Use a power series

centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution:
Z(n+r)(n+r—1)anx(”+')+z a(n_z)x(”+r)+z %a,,x(”*’) =0.
n=0 n=2 n=0

[r(r —-1)+ H agx" + [(r +1)r+ ﬂ ay x4

o0

1
Z [(n +r)(n+r—1)an+ am—2) + Za,,} x(mtr) = o,
n=2
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Example

Consider the equation x2 y” + <x2 + %) y = 0. Use a power series
centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
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Solution: [r(r -1)+ }J ap =0, [(r +1)r+ ﬂ a; =0,

1
[(n +r)(n+r—1)+ ﬂ an + a(p—2) = 0.
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Example
Consider the equation x2 y” + <x2 + %) y = 0. Use a power series

centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
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Solution: [r(r -1)+ ﬂ ap =0, [(r +1)r+ ﬂ a; =0,

1
[(n +r)(n+r—1)+ ﬂ an + a(p—2) = 0.

2

1 1
The indicial equation r* — r 4 i 0 implies rp = 5
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Example
Consider the equation x2 y” + <x2 + %) y = 0. Use a power series

centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
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Regular-singular points (5.5).

Example
Consider the equation x2 y” + <x2 + %) y = 0. Use a power series

centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: [r(r -1)+ ﬂ ap =0, [(r +1)r+ ﬂ a; =0,
[(n +r)(n+r—-1)+ ﬂ an +ag—2 = 0.

The indicial equation r?

+ L 0 impli L
—r+— =0 implies rp = ~.
4 PR == 3

1 1
The indicial equation r? 4 r + i 0 implies ry = —5

1
Choose r = 5 That implies ag arbitrary and a; = 0.



Regular-singular points (5.5).

Example

Consider the equation x2 y” + <x2 + %) y = 0. Use a power series
centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the

indicial polynomial.
1
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Regular-singular points (5.5).

Example

Consider the equation x2 y” + <x2 + %) y = 0. Use a power series
centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the

indicial polynomial.
1 1
Solution: r = 5 A =0, [(n+r)(n+r—1)+f}a,,: —a(n-2)-

4
(043033 = -
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Example

Consider the equation x2 y” + <x2 + %) y = 0. Use a power series
centered at the regular-singular point x, = 0 to find the three first
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Regular-singular points (5.5).

Example

Consider the equation x2 y” + <x2 + %) y = 0. Use a power series
centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: r = % a; =0, [(n +r)(n+r—1)+ ﬂ an = —a(p-2)-
(D R AT

2
n-a, = —a(,,,z)



Regular-singular points (5.5).

Example

Consider the equation x2 y” + <x2 + %) y = 0. Use a power series
centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

Solution: r = % a; =0, [(n +r)(n+r—1)+ ﬂ an = —a(p-2)-
(A
n“ap = —a(h—2) = an= — a(n;2)



Regular-singular points (5.5).

Example

Consider the equation x2 y” + <x2 + %) y = 0. Use a power series
centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

1 1
Solution: r = =, a3 =0, [(n +r)(n+r—-1)+ f} an = —a(p-2)-
2 4
1 1y 1 , 11
[(7+3)(7=3)+3)an =202 = [ =3+ 3]an = —200-a
a 20
d(n-2 27T T
M"an = —a(n-2) = an = — (nz ) ;2
dg = ———



Regular-singular points (5.5).

Example

Consider the equation x2 y” + <x2 + %) y = 0. Use a power series
centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

1 1
Solution: r = S A= 0, [(n +r)(n+r—-1)+ ﬂ an = —a(p-2)-
1 1 17 , 117
[(7+3)(7=3)+3)an =202 = [ =3+ 3]an = —200-a
a0
a) = ——
a(p—2 ’
nN“an = —a(p—2) = an= — (22 ) ;2 ag
a=—-——=—



Regular-singular points (5.5).

Example
Consider the equation x2 y” + <x2 + %) y = 0. Use a power series
centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

a0

1
Solution: r=s a; =0, aZ:—?,and 3=y
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Recall: a; = 0 and the recurrence relation imply a, = 0 for n odd.



Regular-singular points (5.5).

Example
Consider the equation x2 y” + <x2 + %) y = 0. Use a power series

centered at the regular-singular point x, = 0 to find the three first
terms of the solution corresponding to the larger root of the
indicial polynomial.

1
Solution: r = 5 a1 =0, ap = —?, and a4 = g—z. Then,

y(x) = Xr(ao + aix + 32X2 + a3x3 + a4x4 N )
Recall: a; = 0 and the recurrence relation imply a, = 0 for n odd.
Therefore,

1 1
1/2 2 4
y(x):aox/(l—zx +6—4x —i—) <
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Power series solutions (5.2).
Variation of parameters (3.6).
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Constant coefficients, homogeneous, (3.1)-(3.4).
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Yi = Ix—x|™, y- =|x—x|".



Euler differential equation (5.4).

Summary:
(X_X0)2YI/+(X_Xo)Poy/+QOy =0.
Find ry solutions of r(r — 1) + por + g, = 0.

v

v

v

If ry 2 r_ and both are real, then fundamental solutions are

ye = Ix—x|", y-=|x—x|".
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If - = o+ ip, then real-valued fundamental solutions are

Vi = |x—=x|* cos(BIn |x—x|), y— = [x—x|* sin(BIn|x—x]).
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Summary:
(X_X0)2YI/+(X_Xo)Poy/+QOy =0.
Find ry solutions of r(r — 1) + por + g, = 0.

v

v

v

If ry 2 r_ and both are real, then fundamental solutions are

ye = Ix—x|", y-=|x—x|".

v

If - = o+ ip, then real-valued fundamental solutions are

Vi = |x—=x|* cos(BIn |x—x|), y— = [x—x|* sin(BIn|x—x]).

v

If i = r_ and both are real, then fundamental solutions are

ye = Ix—=x|™, y- =|x—x|" In|x — x|.
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Euler differential equation (5.4).

Example
Find real-valued fundamental solutions of

(x —2)2y" +5(x—2)y' +8y =0.

Solution: This is an Euler equation. Find r solution of
r(r—1)+5r+8=0, thatis, r> +4r+8=0,



Euler differential equation (5.4).

Example
Find real-valued fundamental solutions of

(x —2)2y" +5(x—2)y' +8y =0.

Solution: This is an Euler equation. Find r solution of
r(r—1)+5r+8=0, thatis, r> +4r+8=0,

1
ri:E[—4j: 16 — 32



Euler differential equation (5.4).

Example
Find real-valued fundamental solutions of

(x —2)2y" +5(x—2)y' +8y =0.

Solution: This is an Euler equation. Find r solution of
r(r—1)+5r+8=0, thatis, r> +4r+8=0,

1
ri:E[—4j: 16 -32] = rp=-2+2i



Euler differential equation (5.4).

Example
Find real-valued fundamental solutions of

(x —2)2y" +5(x—2)y' +8y =0.

Solution: This is an Euler equation. Find r solution of
r(r—1)+5r+8=0, thatis, r> +4r+8=0,
1
=3 [-4+V16-32] = r=-2+2i

Real valued fundamental solutions are

yi(x) =[x — 2|72 cos(2In|x —2)

9

y_(x)=|x—2|7? sin(2In]x —2[).
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Power series solutions (5.2).

Example

Using a power series centered at x, = 0 find the three first terms of
the general solution of (4 —x?)y” +2y = 0.
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Example

Using a power series centered at x, = 0 find the three first terms of
the general solution of (4 —x?)y” +2y = 0.
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Solution: We look for solutions y = Z anx".
n=0



Power series solutions (5.2).

Example
Using a power series centered at x, = 0 find the three first terms of
the general solution of (4 —x?)y” +2y = 0.

o0
Solution: We look for solutions y = Z anp x". Therefore,
n=0

o0
Zn (n—1)a, x(1=2)
n=0



Power series solutions (5.2).

Example
Using a power series centered at x, = 0 find the three first terms of
the general solution of (4 —x?)y” +2y = 0.

o0
Solution: We look for solutions y = Z anp x". Therefore,

n=0
[e.e]
y" = Z n(n—1)a,x("=2
n=0

The differential equation is then given by

[e.9]

(4 — x?) Z n(n—1)a,x("=2) 42 Z apx" =0,

n=0 n=0



Power series solutions (5.2).

Example
Using a power series centered at x, = 0 find the three first terms of
the general solution of (4 —x?)y” +2y = 0.

o0
Solution: We look for solutions y = Z anp x". Therefore,

n=0
[e.e]
y" = Z n(n—1)a,x("=2
n=0

The differential equation is then given by

(4 — x?) Z n(n—1)a,x("=2) 42 Z apx" =0,
n=0 n=0

o0

illn(n —1)a,x("2) — Z n(n—1)a, x" + i2an x"=0.
n=0

n=0 n=0



Power series solutions (5.2).

Example

Using a power series centered at x, = 0 find the three first terms of
the general solution of (4 —x?)y” +2y = 0.

Solution:
oo o0

Z4n(n —1)a,x("2) — Z n(n—1)a, x" + i2an x"=0.
n=2

n=0 n=0



Power series solutions (5.2).

Example
Using a power series centered at x, = 0 find the three first terms of
the general solution of (4 —x?)y” +2y = 0.

Solution:
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n=2 n=0 n=0

Re-label the first sum, m = n — 2 and then switch back to n



Power series solutions (5.2).

Example

Using a power series centered at x, = 0 find the three first terms of
the general solution of (4 —x?)y” +2y = 0.

Solution:

o0 [ee] [ee]

Z 4n(n—1)a, x("2) — Z n(n—1)a, x" + Z 2a,x" =0.
n=2 n=0 n=0

Re-label the first sum, m = n — 2 and then switch back to n

o0

> 4(n+2)(n+ Dansax" =Y n(n—1)apx"+ Y 2a,x" =0.

n=0 n=0 n=0



Power series solutions (5.2).

Example

Using a power series centered at x, = 0 find the three first terms of
the general solution of (4 —x?)y” +2y = 0.

Solution:
o0 o0 (o]
Z4n(n —1)a,x("2) — Z n(n—1)a, x" + Z2an x"=0.
n=2 n=0 n=0
Re-label the first sum, m = n — 2 and then switch back to n
o (e.) o
> 4(n+2)(n+ Dansax" =Y n(n—1)apx"+ Y 2a,x" =0.

n=0 n=0 n=0
oo

Z[4(n +2)(n+ 1)aps2 — n(n — 1)a, + 2a,) x" = 0.
n=0



Power series solutions (5.2).

Example

Using a power series centered at x, = 0 find the three first terms of
the general solution of (4 —x?)y” +2y = 0.

Solution:
o0 o0 (o]
Z 4n(n—1)a, x("2) — Z n(n—1)a, x" + Z 2a,x" =0.
n=2 n=0 n=0
Re-label the first sum, m = n — 2 and then switch back to n
o (e.) o
> 4(n+2)(n+ Dansax" =Y n(n—1)apx"+ Y 2a,x" =0.
n=0 n=0 n=0
o0
Z[4(n +2)(n+ 1)aps2 — n(n — 1)a, + 2a,) x" = 0.
n=0

4(n+2)(n+ 1)apt2 + (—n* + n+2)a, = 0.



Power series solutions (5.2).

Example
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Example
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Example
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Example

Using a power series centered at x, = 0 find the three first terms of
the general solution of (4 — x?)y” 42y = 0.

Solution: 4(n +2)(n+ 1)api2 + (—n?> + n+2)a, = 0.
Notice: —n? +n+2 = —(n—2)(n+1), hence
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Review for Exam 2.

5 problems.
No multiple choice questions.
No notes, no books, no calculators.

Problems similar to homeworks.
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Exam covers:
» Regular-singular points (5.5).
Euler differential equation (5.4).
Power series solutions (5.2).
Variation of parameters (3.6).
Undetermined coefficients (3.5)
Constant coefficients, homogeneous, (3.1)-(3.4).
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Example
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y// + 4y/ + 4y — X—2 ef2x‘
Solution: We find the solutions of the homogeneous equation,

1
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Example
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Solution: We find the solutions of the homogeneous equation,

1
rP+4r+4=0 = rizi[—4j:\/16—16] = rp=-2.
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Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of
y// + 4y/ + 4y — X—2 ef2x‘

Solution: We find the solutions of the homogeneous equation,

P4+4r+4=0 = r= % [-4+£V16—-16] = ri=-2.

Fundamental solutions of the homogeneous equations are

We now compute their Wronskian,

yi oy

W =
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Example
Use the variation of parameters to find the general solution of
v+ a4y + 4y = x"2e X,
Solution: We find the solutions of the homogeneous equation,

1
rP+4r+4=0 = rizi[—4j:\/16—16] = rp=-2.

Fundamental solutions of the homogeneous equations are

We now compute their Wronskian,

e xe~
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Variation of parameters (3.6).
Example
Use the variation of parameters to find the general solution of
v+ a4y + 4y = x"2e X,
Solution: We find the solutions of the homogeneous equation,

1
rP+4r+4=0 = rizi[—4j:\/16—16] = rp=-2.

Fundamental solutions of the homogeneous equations are

We now compute their Wronskian,

672)( X ef2x
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Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

y// + 4y/ + 4y — X—2 ef2x‘
Solution: We find the solutions of the homogeneous equation,
P4+4r+4=0 = r= % [-4+£V16—-16] = ri=-2.

Fundamental solutions of the homogeneous equations are

We now compute their Wronskian,

672)( X ef2x

e —2e7% (1—2x)e = (12 e™ +2xe™.

i ¥

W:

Hence W = e **.
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Example

Use the variation of parameters to find the general solution of
y// +4y/ + 4y = Xf2 ef2x.

Solution: y; = e %X, Vo = xe 2%, g = x2e X W =e ¥

Now we find the functions u; and ws,
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Variation of parameters (3.6).

Example

Use the variation of parameters to find the general solution of

y// +4y/ +4y — Xf2 ef2x.

Solution: y;, = €72, y, =xe 2, g=x"2e"2, W =e*
Now we find the functions u; and ws,
Y- xe X x?e—2x 1 o
GETW T T e T T



Variation of parameters (3.6).
Example
Use the variation of parameters to find the general solution of
y'+ay +4y =x2e >
Solution: y; = e 2, Vo = xe X, g = x"2e X, W =e ¥,
Now we find the functions u; and ws,

, Vg xe X x?e—2x 1
uy — — —= — e
! w e—4x X

= u=—In|x|.
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Example
Use the variation of parameters to find the general solution of
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Solution: y;, = ™%, y, =xe %, g = x2e X W =e ¥

Now we find the functions u; and ws,
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Solution: y;, = ™%, y, =xe %, g = x2e X W =e ¥
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Variation of parameters (3.6).
Example
Use the variation of parameters to find the general solution of
y'+ay +4y =x2e >

2x —2x

Solution: y;, = ™%, y, =xe %, g = x2e X W =e ¥

Now we find the functions u; and ws,

, Vg xe X x?e—2x 1
U =— - _ Z =—= = u=—In|x|
w e~ X
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w e X

Yp = Uiy1 + Ly,
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Example
Use the variation of parameters to find the general solution of
y// +4y/ + 4y = Xf2 ef2x.
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Solution: y;, = ™%, y, =xe %, g = x2e X W =e ¥

Now we find the functions u; and ws,
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Example
Use the variation of parameters to find the general solution of
y'+ay +4y =x2e >

2x —2x

Solution: y;, = ™%, y, =xe %, g = x2e X W =e ¥

Now we find the functions u; and ws,
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Example
Use the variation of parameters to find the general solution of
y// +4y/ + 4y = Xf2 ef2x.

Solution: y; = e 2%, y, =xe 2, g=x"2e" 2, W=e*

Now we find the functions u; and ws,

, Vg xe X x?e—2x 1
ulz—iz— 7 = —— = U1:—|n’X‘.
w e~ X
Y- e x72 e—2x 2 B
Uy =~ = —ax X = U=——.
w e X
_ 1 _
Yp=yi + Wy, = —In|x|e 2X—;xe 2 — _(1+1In|x|)e2x.

Since 7, = — In |x| e72¥ is solution,



Variation of parameters (3.6).
Example
Use the variation of parameters to find the general solution of
y'+ay +4y =x2e >

2x —2x

Solution: y;, = ™%, y, =xe %, g = x2e X W =e ¥

Now we find the functions u; and ws,

—2x ,,—2
g xe X xTce—2x 1
Ui:—W:— o—4x :_; = U1:—|n’X‘.
—2x ,,—2
;g e X Te-2x ., B
uz—W—T—X = u2——;.
1
Yo = Uy + thy, = —In|x| e — ;xefzx = —(1+In|x|) e %
Since 7, = —In |x| e72¥ is solution, y = (¢, + &x — In |x|) e . <
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No multiple choice questions.
No notes, no books, no calculators.
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» Regular-singular points (5.5).
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Power series solutions (5.2).
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Undetermined coefficients (3.5)
Constant coefficients, homogeneous, (3.1)-(3.4).
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Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + ¥
Solution: Find the solutions of the homogeneous problem,
rP+4=0 = r.==+2i
y, = cos(2x), y, = sin(2x).
Start with the first source, fi(x) = 3sin(2x).

The function y,, = k; sin(2x) + k, cos(2x) is the wrong guess,
since it is solution of the homogeneous equation.



Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + ¥
Solution: Find the solutions of the homogeneous problem,
rP+4=0 = r.==+2i
y, = cos(2x), y, = sin(2x).
Start with the first source, fi(x) = 3sin(2x).

The function y,, = k; sin(2x) + k, cos(2x) is the wrong guess,
since it is solution of the homogeneous equation. We guess:

¥p = x [ ki sin(2x) + k;, cos(2x)].



Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + ¥
Solution: Find the solutions of the homogeneous problem,
rP+4=0 = r.==+2i
y, = cos(2x), y, = sin(2x).
Start with the first source, fi(x) = 3sin(2x).

The function y,, = k; sin(2x) + k, cos(2x) is the wrong guess,
since it is solution of the homogeneous equation. We guess:

¥p = x [ ki sin(2x) + k;, cos(2x)].

y[’7 = [kl sin(2x) + k; cos(2x)] + 2x[k1 cos(2x) — k, sin(2x)].



Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + &>
Solution: Find the solutions of the homogeneous problem,
rP+4=0 = r.==2]
y, = cos(2x), y, = sin(2x).

Start with the first source, fi(x) = 3sin(2x).
The function y,, = k; sin(2x) + k, cos(2x) is the wrong guess,
since it is solution of the homogeneous equation. We guess:

¥p = x [ ki sin(2x) + k;, cos(2x)].
y[’7 = [kl sin(2x) + k; cos(2x)] + 2x[k1 cos(2x) — k, sin(2x)].
vy = 4[ki cos(2x) — k,sin(2x)] + 4x[—k, sin(2x) — k, cos(2x)].
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Example
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Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .
Solution: Recall: y; = sin(2x), and y, = cos(2x).
4[k; cos(2x) — kysin(2x)] + 4x[—k; sin(2x) — k, cos(2x)]+
4x [k, sin(2x) + k; cos(2x)] = 3sin(2x),

Therefore, 4 [k, cos(2x) — k; sin(2x)] = 3sin(2x).
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Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .
Solution: Recall: y; = sin(2x), and y, = cos(2x).
4[k; cos(2x) — kysin(2x)] + 4x[—k; sin(2x) — k, cos(2x)]+
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Evaluating at x =0 and x = 7 /4 we get

4k1 - 0, _4k2 - 3



Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .
Solution: Recall: y; = sin(2x), and y, = cos(2x).
4[k; cos(2x) — kysin(2x)] + 4x[—k; sin(2x) — k, cos(2x)]+
4x [k, sin(2x) + k; cos(2x)] = 3sin(2x),
Therefore, 4 [k, cos(2x) — k; sin(2x)] = 3sin(2x).

Evaluating at x =0 and x = 7 /4 we get

4k1:0, _4k2:3 = k1:O7 k2:_§.



Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .
Solution: Recall: y; = sin(2x), and y, = cos(2x).
4[k; cos(2x) — kysin(2x)] + 4x[—k; sin(2x) — k, cos(2x)]+
4x [k, sin(2x) + k; cos(2x)] = 3sin(2x),
Therefore, 4 [k, cos(2x) — k; sin(2x)] = 3sin(2x).

Evaluating at x =0 and x = 7 /4 we get

4k1:0, _4k2:3 = k1:O7 k2:_§.

3
Therefore, y, = ~2 x cos(2x).
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Solution: Recall: y,, = —Zxcos(2x).
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Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .

3
Solution: Recall: y,, = —Zxcos(2x).

We now compute y,, for f(x) = e3*.

We guess: y,, = k e3*. Then, Yo =9 e3,

1
9+4)ke> =¥ = k=_
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Undetermined coefficients (3.5)

Example
Use the undetermined coefficients to find the general solution of

y" + 4y = 3sin(2x) + .

3
Solution: Recall: y,, = —Zxcos(2x).

We now compute y,, for f(x) = e3*.

We guess: y,, = k e3*. Then, Yo =9 e3,

1 1
4k3X: 3x k= — :73X.
(9+4)ke e = 3 T Ym=13¢

Therefore, the general solution is

_ 3 1 5,
y(x) = ¢ sin(2x) + <C2 2 X) cos(2x) + e e,
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The definition of the Laplace Transform.

Definition
The function F : D — R is the Laplace transform of a function
f :]0,00) — R iff for all s € D¢ holds,

oo
F(s) = / St (1) d,
0
where D C R is the set where the integral converges.

Remark: The domain D, of F depends on the function f.

Notation: We often denote: F(s) = L[f(t)].
» This notation L[ | emphasizes that the Laplace transform
defines a map from a set of functions into a set of functions.
» Functions are denoted as t — f(t).

» The Laplace transform is also a function: f — L[f].
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Review: Improper integrals.

Recall: Improper integral are defined as a limit.

/toog(t) dt = lim /tNg(t) dt.

0 N=o0 Jt,
» The integral converges iff the limit exists.

» The integral diverges iff the limit does not exist.

Example
o0

Compute the improper integral / e 2t dt, with a > 0.
0

Solution: / e % dt = lim / et dt — lim —- (e—aN _ 1)_
0 N—oo 0 N—oo a

o0 1
Since lim e N =0 for a > 0, we conclude / e dt==.
a
0

N—oo
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Examples of Laplace Transforms.

Example
Compute L[1].

Solution: We have to find the Laplace Transform of f(t) = 1.
Following the definition we obtain,

L[1] = / e fldt= / e ' dt
0 0

[ee]
1
But / et dt = = for a > 0, and diverges for a < 0.
o a

1
Therefore L[1] = o for s > 0, and L[1] does not exists for s < 0.

In other words, F(s) = L[1] is the function F : D — R given by

ft)=1, F(s)=-, D= (0,00). §
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Examples of Laplace Transforms.

Example
Compute L[e?!], where a € R.

Solution: Following the definition of Laplace Transform,
oo [ee]
L[e’"] = / e Ste? dt = / e~ (s=a)t gp.
0 0

We have seen that the improper integral is given by

[ee] 1
—(s—a) - - .
e dt = for (s—a)>0.
/0 (5 - 3) ( )

1
We conclude that £[e"] = for s > a. In other words,
s—a
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Example

Compute L[sin(at)], where a € R.

Solution: In this case we need to compute

N
L[sin(at)] = Iim/0 e *'sin(at) dt.

N—oo

Integrating by parts twice it is not difficult to obtain:

N
/ e *'sin(at) dt =
0

1 N

s [e7"sin(at)]

0 S

This identity implies

2

(1 + %) /ON e *'sin(at) dt = —% [e~*" sin(at)]
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Examples of Laplace Transforms.

Example
Compute L[sin(at)], where a € R.

Solution: Recall the identity:

2

(1 + j—z) /ON e *'sin(at) dt = —% [e="sin(at)]

Hence, it is not difficult to see that

2 2 00
<S —f;a )/ e *'sin(at) dt = %,
0

S S

which is equivalent to

L[sin(at)] = ﬁ s> 0.
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A table of Laplace Transforms.

fe) =1 Fis) = - s> 0,
f(t) =e™ F(s) = < i ; s > max{a, 0},
f(t)y=1t" F(s):s(:iil) s> 0,
£(t) = sin(at) F(s) = 52;% s>0,
£(t) = cos(at) F(s) = s2—|—;a2 s>0,
f(t) = sinh(at) F(s) = é s>0,
f(t) = cosh(at) F(s) = ﬁ s>0,
f(t) =t"e F(s) = 5= Z;(nﬂ) s > max{a, 0},
F(6) = esin(bt)  F(s) = ———— s> max{a,O0}.
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Properties of the Laplace Transform.

Theorem (Sufficient conditions)

If the function f : [0,00) — R is piecewise continuous and there
exist positive constants k and a such that

F(t)] < ke,
then the Laplace Transform of f exists for all s > a.

Theorem (Linear combination)
If the L[f] and L|g] are well-defined and a, b are constants, then

Llaf + bg] = aL[f]+ bL[g].

Proof: Integration is a linear operation:

/[af(t)+bg(t)] dt:a/f(t) dt~|—b/g(t)dt.
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Properties of the Laplace Transform.

Theorem (Derivatives)
If the L[f] and L[f'] are well-defined, then holds,

L[f"] = s L[f] — £(0). (1)
Furthermore, if L[f"] is well-defined, then it also holds
L[f"] = s? L[f] — s f(0) — '(0). (2)
Proof of Eq (2): Use Eq. (1) twice:
L[] = L[(F')] = sLI(F)] - £'(0) = s(sL[f] - £(0)) — £'(0),

that is,
L[f"] = s> L[f] — s f(0) — f'(0).
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Proof of Eq (1): Recall the definition of the Laplace Transform,

[ = / e=tF/(t) dt = lim / eStF/(£) dt
0 0

n—oo

Integrating by parts,

lim /nesff’(t)dt: lim Ke’“f(t))

n—oo n—oo

- /0"(—s)e5ff(t) dt

L[f'] = nILET;o [e*S”f(n)—f(O)} +s /OOO e *'f(t) dt = —£(0)+s L[f],

where we used that lim,_,., e7*"f(n) = 0 for s big enough, and we
also used that L[f] is well-defined.

We then conclude that £[f'] = s L[f] — f(0).
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Laplace Transform and differential equations.

Remark: Laplace Transforms can be used to find solutions to
differential equations with constant coefficients.

Idea of the method:

Differential Eq. 1) Algebraic Eq. 2)
— —
for y(t). for L[y(t)].

Solve the Transform back

@, Algebraic Eq. 3), to obtain y(t).

for L[y(t)]. (Using the table.)
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Example
Use the Laplace transform to find the solution y(t) to the IVP

y' +2y =0, y(0) = 3.

Solution: We know the solution: y(t) = 3e~2t.

(1): Compute the Laplace transform of the differential equation,
Lly'+2y]=L[0] = L[y +2y]=0.
Find an algebraic equation for L[y]. Recall linearity:

Lly'1+2L[y] =0.



Laplace Transform and differential equations.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y' +2y =0, y(0) = 3.

Solution: We know the solution: y(t) = 3e~2t.

(1): Compute the Laplace transform of the differential equation,
Lly' +2y]=L[0] = L[y +2y]=0.
Find an algebraic equation for L[y]. Recall linearity:
Lly'1+2L[y] =0.

Also recall the property: L[y'] = s L[y] — y(0),



Laplace Transform and differential equations.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y' +2y =0, y(0) = 3.

Solution: We know the solution: y(t) = 3e~2t.

(1): Compute the Laplace transform of the differential equation,
Lly' +2y]=L[0] = L[y +2y]=0.
Find an algebraic equation for L[y]. Recall linearity:
Lly'1+2L[y] =0.
Also recall the property: L[y'] = s L[y] — y(0), that is,

[sL - ()] +2£L1=0 = (s+2)Lly] = ¥(0).



Laplace Transform and differential equations.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'+2y=0, y(0)=3.

Solution: Recall: (s + 2)L[y] = y(0).



Laplace Transform and differential equations.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'+2y=0, y(0)=3.

Solution: Recall: (s + 2)L[y] = y(0).
(2): Solve the algebraic equation for L[y].



Laplace Transform and differential equations.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y' +2y =0, y(0) =3.
Solution: Recall: (s + 2)L[y] = y(0).
(2): Solve the algebraic equation for L[y].

y(0)

E[y]:s+2’




Laplace Transform and differential equations.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y' +2y =0, y(0) =3.
Solution: Recall: (s + 2)L[y] = y(0).
(2): Solve the algebraic equation for L[y].

y(0)

L[y]:s+2’

y(0) =3,



Laplace Transform and differential equations.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'+2y=0, y(0)=3.

Solution: Recall: (s + 2)L[y] = y(0).
(2): Solve the algebraic equation for L[y].

Lly] =



Laplace Transform and differential equations.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y' +2y =0, y(0) =3.
Solution: Recall: (s + 2)L[y] = y(0).
(2): Solve the algebraic equation for L[y].

y(0) 3

L[y]:m, y(0)=3, = £[Y]:s+2-

(3): Transform back to y(t).



Laplace Transform and differential equations.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y' +2y =0, y(0) =3.
Solution: Recall: (s + 2)L[y] = y(0).
(2): Solve the algebraic equation for L[y].

y(0) 3

L[y]:ma y(0)=3, = £[Y]:s+2-

(3): Transform back to y(t). From the table:

Cfe)=

a



Laplace Transform and differential equations.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'+2y =0 y(0)=3.
Solution: Recall: (s + 2)L[y] = y(0).
(2): Solve the algebraic equation for L[y].

y(0) 3

L[y]:ma y(0)=3, = E[Y]:erz-

(3): Transform back to y(t). From the table:

1 3
at 2t
ﬁ[e]—s a:>5 2—3£[e ]




Laplace Transform and differential equations.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'+2y =0 y(0)=3.
Solution: Recall: (s + 2)L[y] = y(0).
(2): Solve the algebraic equation for L[y].

y(0) 3

Lly] = y(0)=3, = Lly]=

s+2 s+2
(3): Transform back to y(t). From the table:
1 3 3
aty] __ _ —2t — —2t
Lle ]_s—a = S+2—3£[e ] = 12 L[3e™].



Laplace Transform and differential equations.

Example

Use the Laplace transform to find the solution y(t) to the IVP
y' +2y =0, y(0) =3.

Solution: Recall: (s + 2)L[y] = y(0).

(2): Solve the algebraic equation for L[y].

0 0)=3 = o=

Lly] =

s+2 s+2
(3): Transform back to y(t). From the table:
1 3 3
aty] __ _ —2t — —2t
Lle ]_s—a = S+2—3£[e ] = 12 L[3e™].

Hence, L[y] = £[3e™?!]



Laplace Transform and differential equations.

Example

Use the Laplace transform to find the solution y(t) to the IVP
y' +2y =0, y(0) =3.

Solution: Recall: (s + 2)L[y] = y(0).

(2): Solve the algebraic equation for L[y].

0 0)=3 = o=

Lly] =

s+2 s+2
(3): Transform back to y(t). From the table:
1 3 3
aty] __ _ —2t — —2t
Lle ]_s—a = S+2—3£[e ] = 12 L[3e™].

Hence, L[y] = L[3e7?"] = y(t)=3e %"



The Laplace Transform and the IVP (Sect. 6.2).

» Solving differential equations using L[ ].
» Homogeneous IVP.
» First, second, higher order equations.
» Non-homogeneous IVP.
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Remark: The method works with:
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» First, second, higher order equations.
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Differential Eq. (1) Algebraic Eq.
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for y(t). for L[y(t)].



Solving differential equations using L] |.

Remark: The method works with:

» Constant coefficient equations.

» Homogeneous and non-homogeneous equations.

» First, second, higher order equations.

Idea of the method:

[Differential Eq.] (1) Algebraic Eq.
—_—

for y(t). for L[y(t)].
Solve the
ﬂ Algebraic Eq.

for L[y(t)].

(2)
—



Solving differential equations using L] |.

Remark: The method works with:
» Constant coefficient equations.
» Homogeneous and non-homogeneous equations.

» First, second, higher order equations.

Idea of the method:

Differential Eq. (1) Algebraic Eq.  (2)
—_— —
for y(t). for L[y(t)].

Solve the Transform back

Algebraic Eq. 9 to obtain y(t).

for L[y(t)]. (Using the table.)

(2)
—
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for L[y(t)]. (Using the table.)
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for y(t). for L[y(t)].
Solve the Transform back
@), Algebraic Eq. 3, to obtain y(t).
for L[y(t)]. (Using the table.)

Recall:
(a) L[af(t)+ bg(t)] =aL[f(t)] + bL[g(t)];



Solving differential equations using L] |.

Idea of the method:

[Differential Eq.] (1)  Algebraic Eq. (2
— —_—

for y(t). for L[y(t)].
Solve the Transform back
@), Algebraic Eq. 3, to obtain y(t).
for L[y(t)]. (Using the table.)

Recall:
(a) L[af(t)+ bg(t)] =aL[f(t)] + bL[g(t)];

(b) LlyM] =s"L[y] - s y(0) = 572 y'(0) —--- — y("1)(0).



The Laplace Transform and the IVP (Sect. 6.2).

» Solving differential equations using L[ ].
» Homogeneous IVP.
» First, second, higher order equations.
» Non-homogeneous IVP.
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Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'=y'=2y=0,  y(0)=1  y(0)=0.
Solution: Compute the L[ | of the differential equation,

Lly" —y" —2y] = L[]
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Example
Use the Laplace transform to find the solution y(t) to the IVP

y'=y'=2y=0,  y(0)=1  y(0)=0.
Solution: Compute the L[ | of the differential equation,

Lly"—y' =2yl =L[0] = L[y"—-y —2y]=0.
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Example
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y'=y'=2y=0, y(0)=1, y(0)=0.
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The L[] is a linear function, so
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Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'=y'=2y=0, y(0)=1, y(0)=0.
Solution: Compute the L[ | of the differential equation,
Ly —y' =2yl =L[0] = LI -y -2]=0.
The L[] is a linear function, so
Lly"] - Lly'] -2 L[y] = 0.

Derivatives are transformed into power functions,

|52 LIy = s ¥(0) = ¥'(0)| = [s £Iy] = y(0)] —2£ly] =0,



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'=y'=2y=0, y(0)=1, y(0)=0.
Solution: Compute the L[ | of the differential equation,
Ly —y' =2yl =L[0] = LI -y -2]=0.
The L[] is a linear function, so

Lly"] - Lly'] -2 L[y] = 0.

Derivatives are transformed into power functions,
(52211 = sy(0) ~ y'(0)] = [s £Iy] - y(0)| —2£Iy] =0,

We the obtain (s> —s —2) L[y] = (s — 1) y(0) + y/(0).
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Solution: Recall: (s> —s —2) L[y] = (s — 1) y(0) + y/(0).
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Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y —2y=0, y0)=1,  y'(0)=0.
Solution: Recall: (s> —s —2) L[y] = (s — 1) y(0) + y/(0).

Differential equation for y £ Algebraic equation for L[y].

Introduce the initial condition,
(s2 —s—=2)L[y] =(s—1).
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Homogeneous IVP.
Example

Use the Laplace transform to find the solution y(t) to the IVP
y'—y =2y =0, y(0) =1, y'(0) = 0.

Solution: Recall: (s> —s —2) L[y] = (s — 1) y(0) + y/(0).

Differential equation for y £ Algebraic equation for L[y].

Introduce the initial condition,
(s> —s—2)L[y] =(s—1).
We can solve for the unknown L[y] as follows,

(s—1)

Lly] = m



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.
(s—1)

SO|uti0n2 Recall: ,C[y] = m
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Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.
(s—1)

(s2—s—-2)

The partial fraction method: Find the zeros of the denominator,

Solution: Recall: L[y] =

s —5-2=0



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.
(s—1)

(s2—s—-2)

The partial fraction method: Find the zeros of the denominator,

Solution: Recall: L[y] =

1
?—s—2=0 = sizi[li 1438



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.
(s—1)

(s2—s—-2)

The partial fraction method: Find the zeros of the denominator,

Solution: Recall: L[y] =

5+:27

1
?—s—2=0 = si:f[li 1438 =
2 s =-—1,



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.
(s—1)

(s2—s—-2)

The partial fraction method: Find the zeros of the denominator,

Solution: Recall: L[y] =
1 S =2,
s$—5s-2=0 = S:tzi[li 1+8] = {+ /

(s—1)
(s—2)(s+1)

s =-—1,

Therefore, we rewrite: L[y] =



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.
(s—1)

(s2—s—-2)

The partial fraction method: Find the zeros of the denominator,

Solution: Recall: L[y] =

1 Sy =2,
$$—5-2=0 = s =-[1£V1+8 = .
2 s =-—1,
. (s—1)
Theref te: ="
erefore, we rewrite: L[y] G-2(s+1)
Find constants a and b such that
(s—1) a b

G241 s—2 s+1



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

. ) (5 — 1) . a b
Solution: Recall: -2 i) P 4 p




Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

. ) (5 — 1) _a b
Solution: Recall: =211 P 4 p

A simple calculation shows

(s—1)  a b
G241 s—2 s+1




Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

. ) (5 — 1) _a b
Solution: Recall: =211 P 4 p

A simple calculation shows

(s—1)  a n b a(s+ 1)+ b(s—2)
(s—2)(s+1) s—-2 s+1  (s=2)(s+1)




Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

. ) (5 — 1) _a b
Solution: Recall: =211 P 4 p

A simple calculation shows

(s—1)  a n b a(s+ 1)+ b(s—2)
(s—2)(s+1) s—-2 s+1  (s=2)(s+1)

(s—1)=s(a+ b)+ (a—2b)



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

. ) (5 — 1) _a b
Solution: Recall: =211 P 4 1

A simple calculation shows

(s—1)  a n b a(s+ 1)+ b(s—2)
(s—2)(s+1) s—-2 s+1  (s=2)(s+1)

a+b=1»
(s—1)=s(a+b)+(a—2b) = {a2b:1



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

. ) (5 — 1) _a b
Solution: Recall: =211 P 4 p

A simple calculation shows

(s—1)  a n b a(s+ 1)+ b(s—2)
(s—2)(s+1) s—-2 s+1  (s=2)(s+1)

a+b=1,
(s—1)=s(a+b)+(a—2b) = {a2b:1

1 2
Hence, a = 3 and b = —.



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

. ) (5 — 1) _a b
Solution: Recall: =211 P 4 p

A simple calculation shows

(s—1)  a n b a(s+ 1)+ b(s—2)
(s—2)(s+1) s—-2 s+1  (s=2)(s+1)

(s—1)=s(a+b)+(a—2b) = {a+b=1,

a—2b=-1

1 2 1 1 2 1
H ,a=—-and b= -. Then, L[y| = = = .
ence, = an 3 en, L[y] 3(5=2) +3 11



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

1

1 1
3 (s—2)

(s+1)

2
Solution: Recall: L[y] = + 3



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

1 1
3 (s—2)

2 1
+ 3 . From the table:

Solution: Recall: L[y] = (s +1)

1
s—a

Lle] =



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

1 1
3 (s—2)

2 1
+ 3 . From the table:

Solution: Recall: L[y] = (s +1)

1 1
s—a s—2

Lle] =



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

1 1 2 1
Solution: Recall: L[y] = 3(5=2) + 3611 From the table:
1 1 1
at] _ _ a2t — pla—t
£[e]—s_a = 5_2—£[e ], ] Lle™"].



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

1 1 2 1
Solution: Recall: L[y] = 3(5=2) + 3611 From the table:
1 1 1
Lle?t] = _ a2t — rle 1.
== = =L =Ll

So we arrive at the equation

£l = 5 £ + 5 £le ]



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

1 1 2 1
Solution: Recall: L[y] = 3(5=2) + 3611 From the table:
1 1 1
Lle?t] = _ a2t — rle 1.
== = =L =Ll

So we arrive at the equation

£l = § £+ 3 cle~] = £[5 (2 + 267)



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—y' =2y=0, y(0)=1,  y'(0)=0.

1 1 2 1
Solution: Recall: L[y] = 3(5=2) + 3611 From the table:
1 1 1
Lle?t] = _ a2t — rle 1.
== = =L =Ll

So we arrive at the equation
_1 2t Z —t1 _ 1 2t —t
Lly) = 5 £le*]+ 5 Lle ]_5[3(e +2e )}

1
We conclude that: y(t) = g(ezt +2e7t).



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y' +4y=0, y(0)=1, y(0)=1



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y' +4y=0, y(0)=1, y(0)=1

Solution: Compute the L[ | of the differential equation,



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y'+4y=0 y(0)=1, y(0)=1
Solution: Compute the L[ | of the differential equation,

Lly” — 4y’ +4y] = L[0] = 0.



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y'+4y =0, y(0)=1, y(0)=1
Solution: Compute the L[ | of the differential equation,
Lly" — 4y’ +4y] = L[0] = 0.
The L[] is a linear function,

Lly"] = 4Lly']+4Ly] =0.



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'=4y+4y=0,  y(0)=1 y(0)=1
Solution: Compute the L[ | of the differential equation,
Lly" — 4y’ +4y] = L[0] = 0.
The L[] is a linear function,
LY"T-4LY T+ 4Lyl =0.

Derivatives are transformed into power functions,

|52 LIyl = s9(0) = Y'(0)] — 4 |s LIy] = y(0)| +4L[y] = 0.



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'=4y+4y=0,  y(0)=1 y(0)=1
Solution: Compute the L[ | of the differential equation,
L[y” — 4y’ +4y] = L[0] = 0.
The L[] is a linear function,
LY"T-4LY T+ 4Lyl =0.
Derivatives are transformed into power functions,

|52 LIyl = s9(0) = Y'(0)] — 4 |s LIy] = y(0)| +4L[y] = 0.

Therefore, (s°> —4s+4)L[y] = (s — 4) y(0) + y'(0).



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y' +4y=0, y(0)=1, y(0)=1

Solution: Recall: (s? —4s+4) L[y] = (s — 4) y(0) + y/(0).



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y' +4y=0, y(0)=1, y(0)=1

Solution: Recall: (s? —4s+4) L[y] = (s — 4) y(0) + y/(0).

Introduce the initial conditions,



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'=4y'+4y=0,  y(0)=1  y(0)=1
Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y' +4y=0, y(0)=1, y(0)=1

Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.

Solve for L[y] as follows:



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'=4y+4y=0,  y(0)=1  y(0)=1

Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.

(s —3)

Solve for L[y] as follows: L[y] = m



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1, y(0)=1.
Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.

(s —3)

Solve for L[y] as follows: L[y] = m

The partial fraction method:



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'=4y+4y=0,  y(0)=1  y(0)=1

Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.

(s —3)

(s2—4s+4)

The partial fraction method: Find the roots of the denominator,

Solve for L[y] as follows: L[y] =

s°—4s+4=0



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1, y(0)=1.
Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.

(s —3)

(s2—4s+4)

The partial fraction method: Find the roots of the denominator,

. (4416 — 16]

Solve for L[y] as follows: L[y] =

?—4s+4=0 = s =

N |



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1, y(0)=1.
Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.

(s —3)

(s2—4s+4)

The partial fraction method: Find the roots of the denominator,

. [4+V16-16] = s =s_=2.

Solve for L[y] as follows: L[y] =

?—4s+4=0 = s =

N |



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1, y(0)=1.
Solution: Recall: (s? —4s+ 4) L[y] = (s — 4) y(0) + y'(0).
Introduce the initial conditions, (s —4s+4)L[y] =s — 3.

(s —3)

(s2—4s+4)

The partial fraction method: Find the roots of the denominator,

. [4+V16-16] = s =s_=2.

Solve for L[y] as follows: L[y] =

?—4s+4=0 = s =

N |

(s —3)
(s—2)

We obtain: L[y] =



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0, y(0)=1, y(0)=1
(s —3)
(s —2)>

Solution: Recall: L[y] =



Homogeneous IVP.

Example

Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1  y(0)=1

(s —3)

(s —2)*

(s—3) a b

(527 (5-2)  (s—2p

Solution: Recall: L[y] = We find the partial fraction,




Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1  y(0)=1
(s—3)
(s —2)*
(s—3) a

b
(s-22 (-2 " (s_2p T ST3TAST AL

Solution: Recall: L[y] = We find the partial fraction,




Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y' +4y=0, y(0)=1, y(0)=1
(s—3)

(s —2)*
((55:23))2 _ (552)+(s—[)2)2 = s—3=a(s—2)+b

If s =2,

Solution: Recall: L[y] = We find the partial fraction,




Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1  y(0)=1
(s—3)
(s —2)*
(s—3) a

b
(s-22 (-2 " (s_2p T ST3TAST AL

Solution: Recall: L[y] = We find the partial fraction,

If s=2, then b= —1.



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y' +4y=0, y(0)=1, y(0)=1
(s—3)

(s —2)*
((55:23))2 _ (552)+(s—[)2)2 = s—3=a(s—2)+b

If s=2,then b= —1. If s =3,

Solution: Recall: L[y] = We find the partial fraction,




Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1  y(0)=1
(s—3)
(s —2)*
(s—3) a

b
(s-22 (-2 " (s_2p T ST3TAST AL

Solution: Recall: L[y] = We find the partial fraction,

If s=2,then b= —1. If s =3, then a = 1.



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1  y(0)=1
(s—3)
(s —2)*
(s—3) a

b
(s-22 (-2 " (s_2p T ST3TAST AL

Solution: Recall: L[y] = We find the partial fraction,

If s=2,then b= —1. If s =3, then a = 1. Hence

1 1
== "o




Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1  y(0)=1
(s—3)
(s —2)*
(s—3) a

b
(s-22 (-2 " (s_2p T ST3TAST AL

Solution: Recall: L[y] = We find the partial fraction,

If s =2, then b= —1. If s =3, then a = 1. Hence
1 1
Lly] = — .
V== "G
From the Laplace transforms table:
1

Lle™) = —




Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1  y(0)=1
(s—3)
(s —2)*
(s—3) a

b
(s-22 (-2 " (s_2p T ST3TAST AL

Solution: Recall: L[y] = We find the partial fraction,

If s =2, then b= —1. If s =3, then a = 1. Hence
1 1
Lly] = — .
V== "G
From the Laplace transforms table:

1 1
at1 _ — 2t




Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1  y(0)=1
(s—3)
(s —2)*
(s—3) a

b
(s-22 (-2 " (s_2p T ST3TAST AL

Solution: Recall: L[y] = We find the partial fraction,

If s =2, then b= —1. If s =3, then a = 1. Hence
1 1
Lly] = — .
V== "G
From the Laplace transforms table:

1 1
at1 _ — 2t

nl

ﬁ[t”eat] - (5 — a)(n+1)



Homogeneous IVP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y'—4y'+4y=0,  y(0)=1  y(0)=1
(s—3)
(s —2)*
(s—3) a

b
(s-22 (-2 " (s_2p T ST3TAST AL

Solution: Recall: L[y] = We find the partial fraction,

If s =2, then b= —1. If s =3, then a = 1. Hence
1 1
Lly] = — .
V== "G
From the Laplace transforms table:
1 1
r at] _ = - 2t
n! 1

m = (S — 2)2 = ﬁ[tezt].

E[tneat] —



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y'+4y=0, y(0)=1, y(0)=1

1 1
Solution: Recall: L[y| = =2 (s_27 and

1
s—2

= L[e*], o~ L[te*].



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y'+4y=0, y(0)=1, y(0)=1

1 1
Solution: Recall: L[y| = =2 (s_27 and

1
s—2

= L[e*], o~ L[te?!].

So we arrive at the equation

Lly] = L[e*] — L[te*]



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y'+4y=0, y(0)=1, y(0)=1

1 1
Solution: Recall: L[y| = =2 (s_27 and

1
s—2

= L[e*], G 12)2 = L[te?!].

So we arrive at the equation

L[y] = L[e*!] — L[te*] = [,[e2t - tezt].



Homogeneous IVP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y'+4y=0, y(0)=1, y(0)=1

1 1
Solution: Recall: L[y| = =2 (s_27 and

1
s—2

= L[e*], G 12)2 = L[te?!].

So we arrive at the equation

L[y] = L[e*!] — L[te*] = [,[e2t - tezt].

We conclude that y(t) = et — te’t,



The Laplace Transform and the IVP (Sect. 6.2).

» Solving differential equations using L[ ].
» Homogeneous IVP.
» First, second, higher order equations.
» Non-homogeneous IVP.



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(*) — 4y =0,

y(0)=1, y(0)=1, y"(0)=-2, y"(0)=0.



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(*) — 4y =0,

y(O) = 17 yI(O) = 17 y”(O) = _2, y”/(O) =0.
Solution: Compute the L[ ] of the equation,

cly®] —acpi=o.



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(*) — 4y =0,

y(O) = 17 yI(O) = 17 y”(O) = _2, y”/(O) =0.
Solution: Compute the L[ ] of the equation,

cly®] —acpi=o.

[s* Ly] — s> y(0) — s?y'(0) — sy"(0) — y""(0)] — 4 L[y] = 0.



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(*) — 4y =0,

y(O) = 17 yI(O) = 17 y”(O) = _2, _)/”/(0) =0.
Solution: Compute the L[ ] of the equation,
cly®] —acpi=o.

[s* Ly] — s> y(0) — s?y'(0) — sy"(0) — y""(0)] — 4 L[y] = 0.

[s*Lly] —s*> +2s] —4L[y] =0



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(*) — 4y =0,

y(O) = 17 yI(O) = 17 y”(O) = _2, _)/”/(0) =0.
Solution: Compute the L[ ] of the equation,
cly®] —acpi=o.

[s* Ly] — s> y(0) — s?y'(0) — sy"(0) — y""(0)] — 4 L[y] = 0.

[s* Lly] - s+ 25| —4L[y]=0 = (s*-4)Ly]= s — 2s,



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(*) — 4y =0,

y(O) = 17 yI(O) = 17 y”(O) = _2, _)/”/(0) =0.
Solution: Compute the L[ ] of the equation,

cly®] —acpi=o.
[s* Ly] — s> y(0) — s?y'(0) — sy"(0) — y""(0)] — 4 L[y] = 0.
[s* Lly] - s+ 25| —4L[y]=0 = (s*-4)Ly]= s — 2s,

s3—2s

We obtain, L[y| = ")




First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(4) —4y =0,

y(0)=1, y'(0)=1, y"(0)=-2, y"(0)=0.



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(4) —4y =0,
y(0)=1, y'(0)=1, y"(0)=-2, y"(0)=0.

s3—2s
(s*—4)

Solution: Recall: L[y| =



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(4) —4y =0,

y(0)=1, y'(0)=1, y"(0)=-2, y"(0)=0.

3 _
Solution: Recall: L[y] = (554 _245)
s(s?> —2)

W= 2



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(4) —4y =0,

y(0)=1, y'(0)=1, y"(0)=-2, y"(0)=0.

s3—2s
Solution: Recall: L[y] = & _24)
o s(s*=2) s
Meaerm 7 Yy



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(4) —4y =0,

y(0)=1, y'(0)=1, y"(0)=-2, y"(0)=0.

s3—2s
Solution: Recall: L[y] = & _24)
o s(s*=2) s
Meaerm 7 Yy

The last expression is in the table of Laplace Transforms,



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(4) —4y =0,

y(0)=1, y'(0)=1, y"(0)=-2, y"(0)=0.

s3—2s
Solution: Recall: L[y] = & _24)
o s(s*=2) s
Meaerm 7 Yy

The last expression is in the table of Laplace Transforms,

Lly] =

(s2+ [Va])



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(4) —4y =0,

y(0)=1, y'(0)=1, y"(0)=-2, y"(0)=0.

s3—2s
Solution: Recall: L[y] = & _24)
o s(s*=2) s
Meaerm 7 Yy

The last expression is in the table of Laplace Transforms,

Lly] = = E[cos(\@ t)].

(s2+ [Va])



First, second, higher order equations.

Example
Use the Laplace Transform to find the solution of y(4) —4y =0,

y(0)=1, y'(0)=1, y"(0)=-2, y"(0)=0.

s3—2s
Solution: Recall: L[y] = & _24)
o s(s*=2) s
Meaerm 7 Yy

The last expression is in the table of Laplace Transforms,

Lly] = = E[cos(\@ t)].

(s2+ [Va])

We conclude that y(t) = cos(v/2t). <



The Laplace Transform and the IVP (Sect. 6.2).

» Solving differential equations using L[ ].
» Homogeneous IVP.
» First, second, higher order equations.
» Non-homogeneous IVP.



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.

Solution: Compute the Laplace transform of the equation,



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: Compute the Laplace transform of the equation,

L[y" — 4y’ + 4y] = L[3sin(2t)].



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: Compute the Laplace transform of the equation,
Lly" —4y' + 4y] = L[3sin(2t)].

The right-hand side above can be expressed as follows,



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y'—4y' +4y =3sin(2t), y(0)=1, y(0)=1.
Solution: Compute the Laplace transform of the equation,
Lly" — 4y" + 4y] = L[3sin(2t)].
The right-hand side above can be expressed as follows,

L[3sin(2t)] = 3 L[sin(2t)]



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: Compute the Laplace transform of the equation,
Lly" —4y' + 4y] = L[3sin(2t)].

The right-hand side above can be expressed as follows,

2

L[3sin(2t)] =3 L[sin(2t)] =3 ——=5 212



Non-homogeneous |VP.
Example

Use the Laplace transform to find the solution y(t) to the IVP
y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: Compute the Laplace transform of the equation,
Lly" —4y' + 4y] = L[3sin(2t)].

The right-hand side above can be expressed as follows,

. , 2 6
LBsin(2t)] =3 L[sin(20)] =3 55 = 5




Non-homogeneous |VP.
Example

Use the Laplace transform to find the solution y(t) to the IVP
y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: Compute the Laplace transform of the equation,
Lly" —4y' + 4y] = L[3sin(2t)].

The right-hand side above can be expressed as follows,

. , 2 6
LBsin(2t)] =3 L[sin(20)] =3 55 = 5

Introduce this source term in the differential equation,



Non-homogeneous |VP.
Example

Use the Laplace transform to find the solution y(t) to the IVP
y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: Compute the Laplace transform of the equation,
Lly" —4y' + 4y] = L[3sin(2t)].

The right-hand side above can be expressed as follows,

. , 2 6
LBsin(2t)] =3 L[sin(20)] =3 55 = 5

Introduce this source term in the differential equation,

6

Lly" —4Ly]+4Ly] = e



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

Y/~ 4y £y =3sin(2t),  y(0)=1, y(0)=1

Solution: Recall: L[y"] —4L[y'| +4L[y] = a7



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: Recall: L[y"] —4L[y'| +4L[y] = 5.
olution: Recall: £[y"] ~ 4£[y') + 4Ll = - —
Derivatives are transformed into power functions,

[ 1]~ s(0) ~ y'(0)] 4 [s £1] — y(0)] +4Ll] = 5°

s24+4°



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

Y/~ 4y £y =3sin(2t),  y(0)=1, y(0)=1

Solution: Recall: ,C[y"] — 4£[y’] +4L[y] = vt

Derivatives are transformed into power functions,
|52 LIy = 5y(0) = Y'(0)] — 4 |s £Iy] - ¥(0)] + 4 £Iy] =
Rewrite the above equation,

(s* —4s+4) Lyl = (s — 4) y(0) +y'(0) +

6
s24+4°

_ 6
s2+4



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.

Solution: Recall: ,C[y"] — 4£[y’] +4L[y] = vt

Derivatives are transformed into power functions,
|52 LIy = 5y(0) = Y'(0)] — 4 |s £Iy] - ¥(0)] + 4 £Iy] =

Rewrite the above equation,
(s* —4s+4) Lyl = (s — 4) y(0) +y'(0) +

Introduce the initial conditions,

6
s24+4°

_ 6
s2+4

6

2 _
(s —4s+4)£[y]—s—3+52+4.




Non-homogeneous |VP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y" —4y' +4y =3sin(2t), y(0)=1, y'(0)=1.
6

Solution: Recall: (s> —4s+4)L[y] =53+ 5.
olution: Recall: (s s+4)Lly]=s +52+4



Non-homogeneous |VP.

Example

Use the Laplace transform to find the solution y(t) to the IVP
y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.
6
Solution: Recall: (s> —4s+4)Lly]=5—3+ .
olution: Recall: (s s+4)Lly]=s +S2+4
(s—3) N 6
(s2—4s+4) (s2—4+4)(s2+4)

Therefore, L[y] =



Non-homogeneous |VP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y" —4y' +4y =3sin(2t), y(0)=1, y'(0)=1.
6

Solution: Recall: (s> —4s+4)L[y]=s—3+ ——.
olution: Recall: (s s+4)Lly]=s +S2+4

(-3 g
Therefore, L[y] = (52 —45+4) + (32— 4+ 8)(2+4)

From an Example above: s? —4s + 4 = (s — 2)2,



Non-homogeneous |VP.

Example

Use the Laplace transform to find the solution y(t) to the IVP
y" —4y' +4y =3sin(2t), y(0)=1, y(0)=1.
6
Solution: Recall: (s*> —4s+4)L[y]=5—3+ ——.
olution: Recall: (s s+4)Lly]=s +S2+4
(s—3) N 6
(s2—4s+4) (s2—4+4)(s2+4)

Therefore, L[y] =

From an Example above: s? —4s + 4 = (s — 2)2,

1 1 6
M=o Y ooy




Non-homogeneous |VP.
Example
Use the Laplace transform to find the solution y(t) to the IVP
y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.
6
Solution: Recall: (s*> —4s+4)L[y]=5—3+ ——.
olution: Recall: (s s+4)Lly]l=s +S2+4

(-3 g
Therefore, L[y] = (52 —45+4) + (32— 4+ 8)(2+4)

From an Example above: s? —4s +4 = (s — 2)?,
1 1 6
Lly] = — :
M= o Y o
From an Example above we know that

1 1
2t 2t
L[e te”'] = =2 (s_2)2




Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.

. _ _ pr2 2
Solution: Recall: L[y] = L[e*" — te*"] + (s —2)2(s2 + 4)°



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.
6

(s —2)%(s2+4)

Use Partial fractions to simplify the last term above.

Solution: Recall: L[y] = L[e*t — te®] +




Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
6

(s —2)%(s2+4)

Use Partial fractions to simplify the last term above.

Solution: Recall: L[y] = L[e*t — te®] +

Find constants a, b, ¢, d, such that

6 as+ b c d

_22(2+4) 244 (s5-2)  (s-2p




Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
6

(s —2)%(s2+4)

Use Partial fractions to simplify the last term above.

Solution: Recall: L[y] = L[e*t — te®] +

Find constants a, b, ¢, d, such that

6 as+b c d

G _22(s214) 214 (s—2) (s_27

6 (as+b)(s —2)> +c(s —2)(s®> +4)+ d(s> + 4)

(s —2)2(s2+4) (s> +4)(s—2)?



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
6

(s —2)%(s2+4)

Use Partial fractions to simplify the last term above.

Solution: Recall: L[y] = L[e*t — te®] +

Find constants a, b, ¢, d, such that

6 as+b c d

G _22(s214) 214 (s—2) (s_27

6 (as+b)(s —2)> +c(s —2)(s®> +4)+ d(s> + 4)

(s —2)2(s2+4) (s> +4)(s—2)?

6 = (as + b)(s — 2)*> + c(s — 2)(s* + 4) + d(s* + 4).



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.

Solution: 6 = (as + b)(s — 2)® + c(s — 2)(s* + 4) + d(s* + 4).



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: 6 = (as + b)(s — 2)% 4 c(s — 2)(s* +4) + d(s*> + 4).

6 = (as + b)(s> — 4s + 4) + c(s> + 4s — 25° — 8) + d(s? + 4)



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: 6 = (as + b)(s — 2)% 4 c(s — 2)(s* +4) + d(s*> + 4).
6 = (as + b)(s> — 4s + 4) + c(s> + 4s — 25° — 8) + d(s? + 4)

6 = a(s>—4s>+45)+b(s>—4s+4)+c(s3+4s5—25>—8)+d(s>+4).



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: 6 = (as + b)(s — 2)% 4 c(s — 2)(s* +4) + d(s*> + 4).
6 = (as + b)(s> — 4s + 4) + c(s> + 4s — 25° — 8) + d(s? + 4)
6 = a(s>—4s>+45)+b(s>—4s+4)+c(s3+4s5—25>—8)+d(s>+4).

6=(a+tc)s®+(—4a+b—2c+d)s?
+ (4a — 4b+4c)s + (4b — 8c + 4d).



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
Solution: 6 = (as + b)(s — 2)% 4 c(s — 2)(s* +4) + d(s*> + 4).
6 = (as + b)(s> — 4s + 4) + c(s> + 4s — 25° — 8) + d(s? + 4)
6 = a(s>—4s>+45)+b(s>—4s+4)+c(s3+4s5—25>—8)+d(s>+4).

6=(a+tc)s®+(—4a+b—2c+d)s?
+ (4a — 4b+4c)s + (4b — 8c + 4d).
We obtain the system

a+c=0, —4a+b—2c+d=0,
4a —4b+ 4c= 0, 4b —8c+4d = 6.



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.

Solution: The solution for this linear system is



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.

Solution: The solution for this linear system is

3 3 3
a 3’ b=0, c —g’ d_Z
6 3 s 3 1 3 1
(s—2)2(s2+4) 8s2+4 8(s—2) 4(s—2)2



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.

Solution: The solution for this linear system is

6 3 s 3 1 +§ 1
(s—2)2(s2+4) 8s2+4 8(s—2) 4(s—2)2

Use the table of Laplace Transforms

6
(-27(+4)

3 3 t 3 t
= g Lleos(20)] = £ L[e*] + 7 L[te*].



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.

Solution: The solution for this linear system is

6 3 s 3 1 +§ 1
(s—2)2(s2+4) 8s2+4 8(s—2) 4(s—2)2

Use the table of Laplace Transforms
6

-2 +4)

6 R

G-22(+4)

3 3 t 3 t
= g Lleos(20)] = £ L[e*] + 7 L[te*].

3 3 2t 3 2t
£[8cos(2t) g€ +g e



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
6

Solution: Summary: L[y] = L[e** — te*!] + (s — 2)2(s2 + 4)’

6
(- 27 (7 +4)

_ A3 3 2t 3 ot
—£[8cos(2t) g€ +Zte .



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) =1.
6
(s~ 2% +4)'

Solution: Summary: L[y] = L[e** — te®'] +

6
(s —2)2(s2 + 4)

_ A3 3 2t 3 ot
—£[§cos(2t)—§e +Zte }

Lly(t)] = L[(1 - 1) e + g (—1+2t) e + g cos(2t)].



Non-homogeneous |VP.

Example
Use the Laplace transform to find the solution y(t) to the IVP

y" — 4y’ + 4y = 3sin(2t), y(0) =1, y'(0) = 1.
6

Solution: Summary: L[y] = L[e** — te*!] + (s — 2)2(s2 + 4)’

6
(s —2)2(s2 + 4)

_ A3 3 2t 3 ot
—£[§cos(2t)—§e +Zte }

Lly(t)] = L[(1 - 1) e + g (—1+2t) e + g cos(2t)].

We conclude that

y(t)=(1—t)e’ + g (2t —1)e** + g cos(2t).



