
Power series solutions near regular points (Sect. 5.2).

I We study: P(x) y ′′ + Q(x) y ′ + R(x) y = 0.

I Review of power series.

I Regular point equations.

I Solutions using power series.

I Examples of the power series method.



Review of power series.

Definition
The power series of a function y : R → R centered at x0 ∈ R is

y(x) =
∞∑

n=0

an (x − x0)
n.

Example

I
1

1− x
=

∞∑
n=0

xn = 1 + x + x2 + · · · . Here x0 = 0 and |x | < 1.

I ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+ · · · . Here x0 = 0 and x ∈ R.

I The Taylor series of y : R → R centered at x0 ∈ R is

y(x) =
∞∑

n=0

y (n)(x0)

n!
(x − x0)

n = y(x0) + y ′(x0) (x − x0) + · · · .
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Review of power series.

Example

Find the Taylor series of y(x) = sin(x) centered at x0 = 0.

Solution: y(x) = sin(x), y(0) = 0. y ′(x) = cos(x), y ′(0) = 1.

y ′′(x) = − sin(x), y ′′(0) = 0. y ′′′(x) = − cos(x), y ′′′(0) = −1.

sin(x) = x − x3

3!
+

x5

5!
− · · · ⇒ sin(x) =

∞∑
n=0

(−1)n

(2n + 1)!
x (2n+1).C

Remark: The Taylor series of y(x) = cos(x) centered at x0 = 0 is

cos(x) =
∞∑

n=0

(−1)n

(2n)!
x (2n).
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Review of power series.

Remark: The power series of a function may not be defined on the
whole domain of the function.

Example

The function y(x) =
1

1− x
is defined for x ∈ R− {1}.

1

1

)

y

x

y ( x ) =  1 / ( 1 − x )

(
−1

The power series

y(x) =
1

1− x
=

∞∑
n=0

xn

converges only for |x | < 1.

C
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Review of power series.

Definition

The power series y(x) =
∞∑

n=0

an (x − x0)
n converges absolutely

iff the series
∞∑

n=0

|an| |x − x0|n converges.

Example

The series s =
∞∑

n=1

(−1)n

n
converges, but it does not converge

absolutely, since
∞∑

n=1

1

n
diverges.
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Review of power series.

Definition
The radius of convergence of a power series

y(x) =
∞∑

n=0

an (x − x0)
n

is the number ρ > 0 that satisfies both

(a) the series converges absolutely for |x − x0| < ρ;

(b) the series diverges for |x − x0| > ρ.

diverges

( )
x

diverges

0

rho

x

converges absolutely
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Review of power series.

Example

(1)
1

1− x
=

∞∑
n=0

xn has radius of convergence ρ = 1.

(2) ex =
∞∑

n=0

xn

n!
has radius of convergence ρ = ∞.

(3) sin(x) =
∞∑

n=0

(−1)n

(2n + 1)!
x (2n+1) has radius ρ = ∞.

(4) cos(x) =
∞∑

n=0

(−1)n

(2n)!
x (2n) has radius of convergence ρ = ∞.
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Review of power series.

Theorem (Ratio test)

Given the power series y(x) =
∞∑

n=0

an (x − x0)
n, introduce the

number L = lim
n→∞

|an+1|
|an|

. Then, the following statements hold:

(1) The power series converges in the domain |x − x0|L < 1.

(2) The power series diverges in the domain |x − x0|L > 1.

(3) The power series may or may not converge at |x − x0|L = 1.

Therefore, if L 6= 0, then ρ =
1

L
is the series radius of convergence;

if L = 0, then the radius of convergence is ρ = ∞.



Review of power series.

Remarks: On summation indices:

y(x) =
∞∑

n=0

an (x − x0)
n

= a0 + a1(x − x0) + a2(x − x0)
2 + · · ·

y(x) =
∞∑

k=0

ak (x − x0)
k =

∞∑
m=−3

am+3 (x − x0)
m+3.

y ′(x) =
∞∑

n=0

n an (x − x0)
n−1 = a1 + 2a2(x − x0) + · · ·

y ′(x) =
∞∑

n=1

n an (x − x0)
n−1 =

∞∑
m=0

(m + 1) am+1 (x − x0)
m

where m = n − 1, that is, n = m + 1.
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Power series solutions near regular points (Sect. 5.2).

I We study: P(x) y ′′ + Q(x) y ′ + R(x) y = 0.

I Review of power series.

I Regular point equations.

I Solutions using power series.

I Examples of the power series method.



Regular point equations.

Problem: We look for solutions y of the variable coefficients
equation

P(x) y ′′ + Q(x) y ′ + R(x) y = 0.

around x0 ∈ R where P(x0) 6= 0 using a power series representation
of the solution centered at x0, that is,

y(x) =
∞∑

n=0

an (x − x0)
n.

Definition
Given continuous functions P, Q, R : (x1, x2) → R, a point
x0 ∈ (x1, x2) is called a regular point of the equation

P(x) y ′′ + Q(x) y ′ + R(x) y = 0.

iff P(x0) 6= 0. The point x0 is called a singular point iff P(x0) = 0.

Remark: The equation order does not change near regular points.
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Solutions using power series.

Summary for regular points:

(1) Propose a power series representation of the solution centered
at x0, given by

y(x) =
∞∑

n=0

an (x − x0)
n; (1)

(2) Introduce Eq. (1) into the differential equation
P(x) y ′′ + Q(x) y ′ + R(x) y = 0.

(3) Find a recurrence relation among the coefficients an;

(4) Solve the recurrence relation in terms of free coefficients;

(5) If possible, add up the resulting power series for the solution y .
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Examples of the power series method.

Example

Find a power series solution y(x) around the point x0 = 0 of the
equation

y ′ + c y = 0, c ∈ R.

Solution: Recall: The solution is y(x) = a0 e−c x .

We now use the power series method. We propose a power series
centered at x0 = 0:

y(x) =
∞∑

n=0

an xn ⇒ y ′(x) =
∞∑

n=0

nan x (n−1) =
∞∑

n=1

nan x (n−1).

Change the summation index: m = n − 1, so n = m + 1.

y ′(x) =
∞∑

m=0

(m + 1)am+1 xm =
∞∑

n=0

(n + 1)an+1 xn.



Examples of the power series method.

Example

Find a power series solution y(x) around the point x0 = 0 of the
equation

y ′ + c y = 0, c ∈ R.

Solution: Recall: The solution is y(x) = a0 e−c x .

We now use the power series method. We propose a power series
centered at x0 = 0:

y(x) =
∞∑

n=0

an xn ⇒ y ′(x) =
∞∑

n=0

nan x (n−1) =
∞∑

n=1

nan x (n−1).

Change the summation index: m = n − 1, so n = m + 1.

y ′(x) =
∞∑

m=0

(m + 1)am+1 xm =
∞∑

n=0

(n + 1)an+1 xn.



Examples of the power series method.

Example

Find a power series solution y(x) around the point x0 = 0 of the
equation

y ′ + c y = 0, c ∈ R.

Solution: Recall: The solution is y(x) = a0 e−c x .

We now use the power series method.

We propose a power series
centered at x0 = 0:

y(x) =
∞∑

n=0

an xn ⇒ y ′(x) =
∞∑

n=0

nan x (n−1) =
∞∑

n=1

nan x (n−1).

Change the summation index: m = n − 1, so n = m + 1.

y ′(x) =
∞∑

m=0

(m + 1)am+1 xm =
∞∑

n=0

(n + 1)an+1 xn.



Examples of the power series method.

Example

Find a power series solution y(x) around the point x0 = 0 of the
equation

y ′ + c y = 0, c ∈ R.

Solution: Recall: The solution is y(x) = a0 e−c x .

We now use the power series method. We propose a power series
centered at x0 = 0:

y(x) =
∞∑

n=0

an xn

⇒ y ′(x) =
∞∑

n=0

nan x (n−1) =
∞∑

n=1

nan x (n−1).

Change the summation index: m = n − 1, so n = m + 1.

y ′(x) =
∞∑

m=0

(m + 1)am+1 xm =
∞∑

n=0

(n + 1)an+1 xn.



Examples of the power series method.

Example

Find a power series solution y(x) around the point x0 = 0 of the
equation

y ′ + c y = 0, c ∈ R.

Solution: Recall: The solution is y(x) = a0 e−c x .

We now use the power series method. We propose a power series
centered at x0 = 0:

y(x) =
∞∑

n=0

an xn ⇒ y ′(x) =
∞∑

n=0

nan x (n−1)

=
∞∑

n=1

nan x (n−1).

Change the summation index: m = n − 1, so n = m + 1.

y ′(x) =
∞∑

m=0

(m + 1)am+1 xm =
∞∑

n=0

(n + 1)an+1 xn.



Examples of the power series method.

Example

Find a power series solution y(x) around the point x0 = 0 of the
equation

y ′ + c y = 0, c ∈ R.

Solution: Recall: The solution is y(x) = a0 e−c x .

We now use the power series method. We propose a power series
centered at x0 = 0:

y(x) =
∞∑

n=0

an xn ⇒ y ′(x) =
∞∑

n=0

nan x (n−1) =
∞∑

n=1

nan x (n−1).

Change the summation index: m = n − 1, so n = m + 1.

y ′(x) =
∞∑

m=0

(m + 1)am+1 xm =
∞∑

n=0

(n + 1)an+1 xn.



Examples of the power series method.

Example

Find a power series solution y(x) around the point x0 = 0 of the
equation

y ′ + c y = 0, c ∈ R.

Solution: Recall: The solution is y(x) = a0 e−c x .

We now use the power series method. We propose a power series
centered at x0 = 0:

y(x) =
∞∑

n=0

an xn ⇒ y ′(x) =
∞∑

n=0

nan x (n−1) =
∞∑

n=1

nan x (n−1).

Change the summation index: m = n − 1, so n = m + 1.

y ′(x) =
∞∑

m=0

(m + 1)am+1 xm =
∞∑

n=0

(n + 1)an+1 xn.



Examples of the power series method.

Example

Find a power series solution y(x) around the point x0 = 0 of the
equation

y ′ + c y = 0, c ∈ R.

Solution: Recall: The solution is y(x) = a0 e−c x .

We now use the power series method. We propose a power series
centered at x0 = 0:

y(x) =
∞∑

n=0

an xn ⇒ y ′(x) =
∞∑

n=0

nan x (n−1) =
∞∑

n=1

nan x (n−1).

Change the summation index: m = n − 1, so n = m + 1.

y ′(x) =
∞∑

m=0

(m + 1)am+1 xm

=
∞∑

n=0

(n + 1)an+1 xn.



Examples of the power series method.

Example

Find a power series solution y(x) around the point x0 = 0 of the
equation

y ′ + c y = 0, c ∈ R.

Solution: Recall: The solution is y(x) = a0 e−c x .

We now use the power series method. We propose a power series
centered at x0 = 0:

y(x) =
∞∑

n=0

an xn ⇒ y ′(x) =
∞∑

n=0

nan x (n−1) =
∞∑

n=1

nan x (n−1).

Change the summation index: m = n − 1, so n = m + 1.

y ′(x) =
∞∑

m=0

(m + 1)am+1 xm =
∞∑

n=0

(n + 1)an+1 xn.



Examples of the power series method.

Example

Find a power series solution y(x) around the point x0 = 0 of the
equation

y ′ + c y = 0, c ∈ R.

Solution: y(x) =
∞∑

n=0

an xn, and y ′(x) =
∞∑

n=0

(n + 1)an+1 xn.

Introduce y and y ′ into the differential equation,
∞∑

n=0

(n + 1)a(n+1) xn +
∞∑

n=0

c an xn = 0
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n=0

[
(n + 1)a(n+1) + c an

]
xn = 0

The recurrence relation is (n + 1)a(n+1) + c an = 0 for all n > 0.
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Solution: Recurrence relation: (n + 1)a(n+1) + c an = 0, n > 0.

Equivalently: an+1 = − c

n + 1
an. That is,

n = 0, a1 = −c a0 ⇒ a1 = −c a0,

n = 1, 2a2 = −c a1 ⇒ a2 =
c2

2!
a0,

n = 2, 3a3 = −c a2 ⇒ a3 = −c3

3!
a0,

n = 3, 4a4 = −c a3 ⇒ a4 =
c4

4!
a0.
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Solution: Recall: The characteristic polynomial is r2 + 1 = 0,
hence the general solution is y(x) = a0 cos(x) + a1 sin(x).

We re-obtain this solution using the power series method:

y =
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n=0
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∞∑

n=1
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∞∑

m=0

(m + 1)am+1 xm,

where m = n − 1, so n = m + 1;

y ′′ =
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n=2

n(n − 1)an x (n−2) =
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m=0

(m + 2)(m + 1)am+2 xm.

where m = n − 2, so n = m + 2.
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Equivalently: (n + 2)(n + 1) a(n+2) = −an,
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For n even: n = 0, (2)(1)a2 = −a0 ⇒ a2 = − 1
2! a0,

n = 2, (4)(3)a4 = −a2 ⇒ a4 =
1

4!
a0,

n = 4, (6)(5)a6 = −a4 ⇒ a6 = − 1

6!
a0.

We obtain: a2k =
(−1)k

(2k)!
a0, for k > 0.
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y(x) = a0 cos(x) + a1 sin(x). C



Examples of the power series method.

Example

Find a power series solution y(x) around the point x0 = 0 of the
equation

y ′′ + y = 0.

Solution: Recall: a2k =
(−1)k

(2k)!
a0 and a2k+1 =

(−1)k

(2k + 1)!
a1.

Therefore, the solution of the differential equation is given by

y(x) = a0

∞∑
k=0

(−1)k

(2k)!
x2k + a1

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1.

One can check that these are precisely the power series
representations of the cosine and sine functions, respectively,

y(x) = a0 cos(x) + a1 sin(x). C



Examples of the power series method.

Example

Find a power series solution y(x) around the point x0 = 0 of the
equation

y ′′ + y = 0.

Solution: Recall: a2k =
(−1)k

(2k)!
a0 and a2k+1 =

(−1)k

(2k + 1)!
a1.

Therefore, the solution of the differential equation is given by

y(x) = a0

∞∑
k=0

(−1)k

(2k)!
x2k + a1

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1.

One can check that these are precisely the power series
representations of the cosine and sine functions,

respectively,

y(x) = a0 cos(x) + a1 sin(x). C



Examples of the power series method.

Example

Find a power series solution y(x) around the point x0 = 0 of the
equation

y ′′ + y = 0.

Solution: Recall: a2k =
(−1)k

(2k)!
a0 and a2k+1 =

(−1)k

(2k + 1)!
a1.

Therefore, the solution of the differential equation is given by

y(x) = a0

∞∑
k=0

(−1)k

(2k)!
x2k + a1

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1.

One can check that these are precisely the power series
representations of the cosine and sine functions, respectively,

y(x) = a0 cos(x) + a1 sin(x). C



Examples of the power series method.

Example

Find the first three terms of the power series expansion around the
point x0 = 2 of each fundamental solution to the differential
equation

y ′′ − x y = 0.

Solution: We propose: y =
∞∑

n=0

an(x − 2)n.

It is convenient to rewrite the function xy as follows,

xy =
∞∑

n=0

anx(x − 2)n =
∞∑

n=0

an

[
(x − 2) + 2

]
(x − 2)n,

xy =
∞∑

n=0

an(x − 2)n+1 +
∞∑

n=0

2an(x − 2)n.

We relabel the first sum:
∞∑

n=0

an(x − 2)n+1 =
∞∑

n=1

a(n−1)(x − 2)n.
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a2−a0 = 0, (n+2)(n+1)a(n+2)−2an−a(n−1) = 0, n > 1.
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n = 0 a2 − a0 = 0 ⇒ a2 = a0,

n = 1 (3)(2)a3 − 2a1 − a0 = 0 ⇒ a3 =
a0

6
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The Euler equation (Sect. 5.4).

I Overview: Equations with singular points.

I We study the Euler Equation:
(x − x0)

2 y ′′ + p0 (x − x0) y ′ + q0 y = 0.

I Solutions to the Euler equation near x0.
I The roots of the indicial polynomial.

I Different real roots.
I Repeated roots.
I Different complex roots.



Overview: Equations with singular points.

Recall: The point x0 ∈ R is a singular point of the equation

P(x) y ′′ + Q(x) y ′ + R(x) y = 0

iff holds P(x0) = 0.

Remarks:

I We are interested in finding solutions to the equation above
arbitrary close to a singular point x0.

I The order of the differential equation changes in a
neighborhood of a singular point.

I In the limit x → x0 the following could happen:

(a) The two linearly independent solutions remain bounded.
(b) Only one solution remains bounded.
(c) None solution remains bounded.
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Overview: Equations with singular points.

Remarks:

I If the singular point of a differential equation is not so
singular, in a sense to be made precise later on, then it is
known how to find solutions to such equation.

I Singular points where the singular behavior of the solution is
somehow mild, in a sense to be made precise later, will be
called regular-singular points.

I The main example of a equation with a regular-singular point
is the Euler differential equation.
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The Euler equation

Definition
Given real constants p0, q0, the Euler differential equation for the
unknown y with singular point at x0 ∈ R is given by

(x − x0)
2 y ′′ + p0 (x − x0) y ′ + q0 y = 0.

Remarks:

I The Euler equation has variable coefficients.

I Functions y(x) = erx are not solutions of the Euler equation.

I The point x0 ∈ R is a singular point of the equation.

I The particular case x0 = 0 is is given by

x2 y ′′ + p0 x y ′ + q0 y = 0.
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Solutions to the Euler equation near x0.

Summary of the main idea:

I The main idea to find solution to the constant coefficients
equation y ′′ + a1 y ′ + a0 y = 0 was to look for functions of the
form y(x) = erx .

The exponential cancels out from the
equation and we obtain an equation only for r without x ,(

r2 + a1 r + a0

)
erx = 0 ⇔

(
r2 + a1 r + a0

)
= 0. (2)

I In the case of the Euler equation x2 y ′′ + p0 x y ′ + q0 y = 0 the
exponential functions erx do not have the property given in
Eq. (2), since(

x2 r2 + p0 x r + q0

)
erx = 0 ⇔ x2 r2 + p0 x r + q0 = 0,

but the later equation still involves the variable x .
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Solutions to the Euler equation near x0.

Summary of the main idea: Look for solutions like y(x) = x r .

These function have the following property:

y ′(x) = r x r−1 ⇒ x y ′(x) = r x r ;

y ′′(x) = r(r − 1) x r−2 ⇒ x2 y ′′(x) = r(r − 1) x r .

Introduce y = x r into Euler’s equation x2 y ′′ + p0 x y ′ + q0 y = 0,
for x 6= 0 we obtain[

r(r − 1) + p0r + q0

]
x r = 0 ⇔ r(r − 1) + p0r + q0 = 0.

The last equation involves only r , not x .

This equation is called the indicial equation, and is also called the
Euler characteristic equation.
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x r = 0 ⇔ r(r − 1) + p0r + q0 = 0.

The last equation involves only r , not x .

This equation is called the indicial equation, and is also called the
Euler characteristic equation.
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Solutions to the Euler equation near x0.

Theorem (Euler equation)

Given p0, q0, x0 ∈ R, consider the Euler equation

(x − x0)
2 y ′′ + p0 (x − x0) y ′ + q0 y = 0. (3)

Let r+, r− be solutions of r(r − 1) + p0r + q0 = 0.

(a) If r+ 6= r−, then a real-valued general solution of Eq. (3) is

y(x) = c0|x − x0|r+ + c1|x − x0|r− , x 6= x0, c0, c1 ∈ R.

(b) If r+ = r−, then a real-valued general solution of Eq. (3) is

y(x) =
[
c0 + c1 ln

(
|x − x0|

)]
|x − x0|r+ , x 6= x0, c0, c1 ∈ R.

Given x0 6= x1, y0, y1 ∈ R, there is a unique solution to the IVP

(x − x0)
2 y ′′ + p0 (x − x0) y ′ + q0 y = 0, y(x1) = y0, y ′(x1) = y1.



The Euler equation (Sect. 5.4).

I Overview: Equations with singular points.

I We study the Euler Equation:
(x − x0)

2 y ′′ + p0 (x − x0) y ′ + q0 y = 0.

I Solutions to the Euler equation near x0.
I The roots of the indicial polynomial.

I Different real roots.
I Repeated roots.
I Different complex roots.



Different real roots.

Example

Find the general solution of the Euler equation

x2 y ′′ + 4x y ′ + 2 y = 0.

Solution: We look for solutions of the form y(x) = x r ,

x y ′(x) = rx r , x2 y ′′(x) = r(r − 1) x r .

Introduce y(x) = x r into Euler equation,[
r(r − 1) + 4r + 2

]
x r = 0 ⇔ r(r − 1) + 4r + 2 = 0.

The solutions of r2 + 3r + 2 = 0 are given by

r± =
1

2

[
−3±

√
9− 8

]
⇒ r+ = −1 r− = −2.

The general solution is y(x) = c1 |x |−1 + c2 |x |−2. C
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Repeated roots.

Example

Find the general solution of x2 y ′′ − 3x y ′ + 4 y = 0.

Solution: We look for solutions of the form y(x) = x r ,

x y ′(x) = rx r , x2 y ′′(x) = r(r − 1) x r .

Introduce y(x) = x r into Euler equation,[
r(r − 1)− 3r + 4

]
x r = 0 ⇔ r(r − 1)− 3r + 4 = 0.

The solutions of r2 − 4r + 4 = 0 are given by

r± =
1

2

[
4±

√
16− 16

]
⇒ r+ = r− = 2.

Two linearly independent solutions are

y1(x) = x2, y2 = x2 ln(|x |).

The general solution is y(x) = c1 x2 + c2 x2 ln(|x |). C
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Different complex roots.

Example

Find the general solution of the Euler equation

x2 y ′′ − 3x y ′ + 13 y = 0.

Solution: We look for solutions of the form y(x) = x r ,

x y ′(x) = rx r , x2 y ′′(x) = r(r − 1) x r .

Introduce y(x) = x r into Euler equation[
r(r − 1)− 3r + 13

]
x r = 0 ⇔ r(r − 1)− 3r + 13 = 0.

The solutions of the indicial equation r2 − 4r + 13 = 0 are

r± =
1

2

[
4±

√
16− 52

]
⇒ r± =

1

2

[
4±

√
−36

]
⇒

{
r+ = 2 + 3i

r− = 2− 3i .

The general solution is y(x) = c1 |x |(2+3i) + c2 |x |(2−3i). C
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Different complex roots.

Theorem (Real-valued fundamental solutions)

If p0, q0 ∈ R satisfy that
[
(p0 − 1)2 − 4q0

]
< 0, then the indicial

polynomial p(r) = r(r − 1) + p0r + q0 of the Euler equation

x2 y ′′ + p0x y ′ + q0 y = 0 (4)

has complex roots r+ = α + iβ and r− = α− iβ, where

α = −(p0 − 1)

2
, β =

1

2

√
4q0 − (p0 − 1)2.

Furthermore, a fundamental set of solution to Eq. (4) is

ỹ1(x) = |x |(α+iβ), ỹ2(x) = |x |(α−iβ),

while another fundamental set of solutions to Eq. (4) is

y1(x) = |x |α cos
(
β ln |x |

)
, y2(x) = |x |α sin

(
β ln |x |

)
.



Different complex roots.

Proof: Given ỹ1 = |x |(α+iβ) and ỹ2 = |x |(α−iβ),
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1

2
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ỹ1 + ỹ2

)
, y1 =

1

2i

(
ỹ1 − ỹ2

)
.
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+ 1 sin
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ỹ1 − ỹ2
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ỹ1 = |x |(α+iβ) = |x |α |x |iβ = |x |α e ln(|x |iβ) = |x |α e iβ ln(|x |).
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ỹ1 + ỹ2
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ỹ1 = |x |α
[
cos

(
β ln |x |

)
+ 1 sin

(
β ln |x |

)]
,
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)
.

Use another Euler equation to rewrite ỹ1 and ỹ2,
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Different complex roots.

Example

Find a real-valued general solution of the Euler equation

x2 y ′′ − 3x y ′ + 13 y = 0.

Solution: The indicial equation is r(r − 1)− 3r + 13 = 0.

The solutions of the indicial equations are

r2 − 4r + 13 = 0 ⇒ r+ = 2 + 3i , r− = 2− 3i .

A complex-valued general solution is

y(x) = c̃1 |x |(2+3i) + c̃2 |x |(2−3i) c̃1, c̃2 ∈ C.

A real-valued general solution is

y(x) = c1 |x |2 cos
(
3 ln |x |

)
+ c2 |x |2 sin

(
3 ln |x |

)
, c1, c2 ∈ R. C
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Equations with regular-singular points (Sect. 5.5).

I Equations with regular-singular points.

I Examples: Equations with regular-singular points.

I Method to find solutions.

I Example: Method to find solutions.

Recall:
The point x0 ∈ R is a singular point of the equation

P(x) y ′′ + Q(x) y ′ + R(x) y = 0

iff holds that P(x0) = 0.
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Equations with regular-singular points.

Definition
A singular point x0 ∈ R of the equation

P(x) y ′′ + Q(x) y ′ + R(x) y = 0

is called a regular-singular point iff the following limits are finite,

lim
x→x0

(x − x0) Q(x)

P(x)
, lim

x→x0

(x − x0)
2 R(x)

P(x)
,

and both functions

(x − x0) Q(x)

P(x)
,

(x − x0)
2 R(x)

P(x)
,

admit convergent Taylor series expansions around x0.



Equations with regular-singular points.

Remark:

I If x0 is a regular-singular point of

P(x) y ′′ + Q(x) y ′ + R(x) y = 0

and P(x) ' (x − x0)
n near x0, then near x0 holds

Q(x) ' (x − x0)
n−1, R(x) ' (x − x0)

n−2.

I The main example is an Euler equation, case n = 2,

(x − x0)
2 y ′′ + p0(x − x0) y ′ + q0 y = 0.
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Equations with regular-singular points.

Example

Show that the singular point of every Euler equation is a
regular-singular point.

Solution: Consider the general Euler equation

(x − x0)
2 y ′′ + p0(x − x0) y ′ + q0 y = 0,

where p0, q0, x0, are real constants. This is an equation
Py ′′ + Qy ′ + Ry = 0 with

P(x) = (x − x0)
2, Q(x) = p0(x − x0), R(x) = q0.

Therefore, we obtain,

lim
x→x0

(x − x0) Q(x)

P(x)
= p0, lim

x→x0

(x − x0)
2 R(x)

P(x)
= q0.

We conclude that x0 is a regular-singular point. C
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Equations with regular-singular points.

Remark: Every equation Py ′′ + Qy ′ + Ry = 0 with a
regular-singular point at x0 is close to an Euler equation.

Proof:
For x 6= x0 divide the equation by P(x),

y ′′ +
Q(x)

P(x)
y ′ +

R(x)

P(x)
y = 0,

and multiply it by (x − x0)
2,

(x − x0)
2 y ′′ + (x − x0)

[(x − x0)Q(x)

P(x)

]
y ′ +

[(x − x0)
2R(x)

P(x)

]
y = 0.

The factors between [ ] approach constants, say p0, q0, as x → x0,

(x − x0)
2 y ′′ + (x − x0)p0 y ′ + q0 y = 0.
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Equations with regular-singular points (Sect. 5.5).

I Equations with regular-singular points.

I Examples: Equations with regular-singular points.
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Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

(1− x2) y ′′ − 2x y ′ + α(α + 1) y = 0,

where α is a real constant.

Solution: Find the singular points of this equation,

0 = P(x) = (1− x2) = (1− x)(1 + x) ⇒

{
x0 = 1,

x1 = −1.

Case x0 = 1: We then have

(x − 1) Q(x)

P(x)
=

(x − 1)(−2x)

(1− x)(1 + x)
=

2x

1 + x
,

(x − 1)2 R(x)

P(x)
=

(x − 1)2
[
α(α + 1)

]
(1− x)(1 + x)

=
(x − 1)

[
α(α + 1)

]
1 + x

;

both functions above have Taylor series around x0 = 1.
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Examples: Equations with regular-singular points.

Example

Find the regular-singular points of the differential equation

x y ′′ − x ln(|x |) y ′ + 3x y = 0.

Solution: The singular point is x0 = 0. We compute the limit

lim
x→0

xQ(x)

P(x)
= lim

x→0

x
[
−x ln(|x |)

]
x

= lim
x→0

− ln(|x |)
1
x

.

Use L’Hôpital’s rule: lim
x→0

xQ(x)

P(x)
= lim

x→0

− 1
x

− 1
x2

= lim
x→0

x = 0.

The other limit is: lim
x→0

x2R(x)

P(x)
= lim

x→0

x2(3x)

x
= lim

x→0
3x2 = 0.
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However, at the point x0 = 0 the function xQ/P does not have a
power series expansion around zero, since

xQ(x)

P(x)
= −x ln(|x |),

and the log function does not have a Taylor series at x0 = 0.

We conclude that x0 = 0 is not a regular-singular point. C
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Method to find solutions.

Recall: If x0 is a regular-singular point of

P(x) y ′′ + Q(x) y ′ + R(x) y = 0,

with limits lim
x→x0

(x − x0)Q(x)

P(x)
= p0 and lim

x→x0

(x − x0)
2R(x)

P(x)
= q0,

then the coefficients of the differential equation above near x0 are
close to the coefficients of the Euler equation

(x − x0)
2 y ′′ + p0(x − x0) y ′ + q0 y = 0.

Idea: If the differential equation is close to an Euler equation, then
the solutions of the differential equation might be close to the
solutions of an Euler equation.

Recall: One solution of an Euler equation is y(x) = (x − x0)
r .
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Method to find solutions.

Summary: Solutions for equations with regular-singular points:

(1) Look for a solution y of the form

y(x) =
∞∑

n=0

an (x − x0)
(n+r);

(2) Introduce this power series expansion into the differential
equation and find both a the exponent r and a recurrence
relation for the coefficients an;

(3) First find the solutions for the constant r . Then, introduce this
result for r into the recurrence relation for the coefficients an.
Only then, solve this latter recurrence relation for the
coefficients an.
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Example: Method to find solutions.

Example

Find the solution y near the regular-singular point x0 = 0 of

x2 y ′′ − x(x + 3) y ′ + (x + 3) y = 0.

Solution: We look for a solution y(x) =
∞∑

n=0

an x (n+r).

The first and second derivatives are given by

y ′ =
∞∑

n=0

(n + r)an x (n+r−1), y ′′ =
∞∑

n=0

(n + r)(n + r − 1)an x (n+r−2).

In the case r = 0 we had the relation
∞∑

n=0

nan x (n−1) =
∞∑

n=1

nan x (n−1),

but for r 6= 0 this relation is not true.
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Example
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Example: Method to find solutions.

Example

Find the solution y near the regular-singular point x0 = 0 of

x2 y ′′ − x(x + 3) y ′ + (x + 3) y = 0.

Solution: We compute the term x2 y ′′,

x2 y ′′ = x2
∞∑

n=0

(n + r)(n + r − 1)an x (n+r−2)

x2 y ′′ =
∞∑

n=0

(n + r)(n + r − 1)an x (n+r).

The guiding principle to rewrite each term is to have the power
function x (n+r) labeled in the same way on every term.
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Example

Find the solution y near the regular-singular point x0 = 0 of

x2 y ′′ − x(x + 3) y ′ + (x + 3) y = 0.

Solution: The differential equation is given by
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We split the sums into the term n = 0 and a sum containing the
terms with n > 1, that is,

0 =
[
r(r − 1)− 3r + 3

]
a0x

r+
∞∑

n=1

[
(n+r)(n+r−1)an−(n+r−1)a(n−1)−3(n+r)an+a(n−1)+3an

]
x (n+r)
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Example: Method to find solutions.

Example

Find the solution y near the regular-singular point x0 = 0 of

x2 y ′′ − x(x + 3) y ′ + (x + 3) y = 0.

Solution: Hence, the recurrence relation is given by the equations

r(r − 1)− 3r + 3 = 0,

(n + r − 1)(n + r − 3)an − (n + r − 2)a(n−1) = 0.

First: solve the first equation for r±.

Second: Introduce the first solution r+ into the second equation
above and solve for the an; the result is a solution y+ of the
original differential equation;

Third: Introduce the second solution r− into into the second
equation above and solve for the an; the result is a solution y− of
the original differential equation;
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equation above and solve for the an; the result is a solution y− of
the original differential equation;



Example: Method to find solutions.
Example

Find the solution y near the regular-singular point x0 = 0 of

x2 y ′′ − x(x + 3) y ′ + (x + 3) y = 0.

Solution: We first solve r(r − 1)− 3r + 3 = 0.

r2 − 4r + 3 = 0 ⇒ r± =
1

2

[
4±

√
16− 12

]
⇒

{
r+ = 3,

r− = 1.

Introduce r+ = 3 into the equation for an:

(n + 2)n an − (n + 1)an−1 = 0.

One can check that the solution y+ is

y+ = a0 x3
[
1 +

2

3
x +

1

4
x2 +

1

15
x3 + · · ·

]
.
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Example: Method to find solutions.

Example

Find the solution y near the regular-singular point x0 = 0 of

x2 y ′′ − x(x + 3) y ′ + (x + 3) y = 0.

Solution: The solutions y+ and y− are not linearly independent.

This Example shows that the method does not provide all solutions
of a differential equation near a regular-singular point, it only
provides at least one solution near a regular-singular point.

Remark: It can be shown the following result:
If the roots of the Euler characteristic polynomial r+, r− differ by
an integer, then the second solution y−, the solution corresponding
to the smaller root, is not given by the method above.
This solution involves logarithmic terms.
We do not study this type of solutions in these notes. C
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