Second order linear homogeneous ODE (Sect. 3.4).

• Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
 - Constant coefficients equations.
 - Variable coefficients equations.

Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

with characteristic polynomial having roots

$$r_{\pm} = -rac{a_1}{2} \pm rac{1}{2} \sqrt{a_1^2 - 4a_0}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

with characteristic polynomial having roots

$$r_{\pm} = -rac{a_1}{2} \pm rac{1}{2}\sqrt{a_1^2 - 4a_0}.$$

(1) If $a_1^2 - 4a_0 > 0$,

Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

with characteristic polynomial having roots

$$r_{\pm} = -rac{a_1}{2} \pm rac{1}{2} \sqrt{a_1^2 - 4a_0}.$$

(1) If $a_1^2 - 4a_0 > 0$, then $y_1(t) = e^{r_+ t}$ and $y_2(t) = e^{r_- t}$.

Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

with characteristic polynomial having roots

$$r_{\pm} = -\frac{a_1}{2} \pm \frac{1}{2}\sqrt{a_1^2 - 4a_0}.$$
(1) If $a_1^2 - 4a_0 > 0$, then $y_1(t) = e^{r_+t}$ and $y_2(t) = e^{r_-t}.$
(2) If $a_1^2 - 4a_0 < 0$,

Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

with characteristic polynomial having roots

$$r_{\pm} = -rac{a_1}{2} \pm rac{1}{2}\sqrt{a_1^2 - 4a_0}.$$

(1) If $a_1^2 - 4a_0 > 0$, then $y_1(t) = e^{r_+ t}$ and $y_2(t) = e^{r_- t}$. (2) If $a_1^2 - 4a_0 < 0$, then introducing $\alpha = -\frac{a_1}{2}$, $\beta = \frac{1}{2}\sqrt{4a_0 - a_1^2}$,

Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

with characteristic polynomial having roots

$$r_{\pm} = -rac{a_1}{2} \pm rac{1}{2}\sqrt{a_1^2 - 4a_0}.$$

(1) If $a_1^2 - 4a_0 > 0$, then $y_1(t) = e^{r_+ t}$ and $y_2(t) = e^{r_- t}$. (2) If $a_1^2 - 4a_0 < 0$, then introducing $\alpha = -\frac{a_1}{2}$, $\beta = \frac{1}{2}\sqrt{4a_0 - a_1^2}$,

 $y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$

Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

with characteristic polynomial having roots

$$r_{\pm} = -\frac{a_1}{2} \pm \frac{1}{2}\sqrt{a_1^2 - 4a_0}.$$

(1) If $a_1^2 - 4a_0 > 0$, then $y_1(t) = e^{r_+ t}$ and $y_2(t) = e^{r_- t}$. (2) If $a_1^2 - 4a_0 < 0$, then introducing $\alpha = -\frac{a_1}{2}$, $\beta = \frac{1}{2}\sqrt{4a_0 - a_1^2}$,

 $y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(3) If $a_1^2 - 4a_0 = 0$,

Summary:

Given constants a_1 , $a_0 \in \mathbb{R}$, consider the differential equation

 $y^{\prime\prime}+a_1y^\prime+a_0y=0$

with characteristic polynomial having roots

$$r_{\pm} = -\frac{a_1}{2} \pm \frac{1}{2}\sqrt{a_1^2 - 4a_0}.$$

(1) If $a_1^2 - 4a_0 > 0$, then $y_1(t) = e^{r_+ t}$ and $y_2(t) = e^{r_- t}$. (2) If $a_1^2 - 4a_0 < 0$, then introducing $\alpha = -\frac{a_1}{2}$, $\beta = \frac{1}{2}\sqrt{4a_0 - a_1^2}$,

 $y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$

(3) If $a_1^2 - 4a_0 = 0$, then $y_1(t) = e^{-\frac{a_1}{2}t}$.

Question:

Consider the case (3), with $a_1^2 - 4a_0 = 0$, that is, $a_0 = \frac{a_1^2}{4}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Question:

Consider the case (3), with $a_1^2 - 4a_0 = 0$, that is, $a_0 = \frac{a_1^2}{4}$.

Does the equation

$$y'' + a_1 y' + \frac{a_1^2}{4} y = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

have two linearly independent solutions?

Question:

Consider the case (3), with $a_1^2 - 4a_0 = 0$, that is, $a_0 = \frac{a_1^2}{4}$.

Does the equation

$$y'' + a_1 y' + \frac{a_1^2}{4} y = 0$$

have two linearly independent solutions?

Or, every solution to the equation above is proportional to

$$y_1(t)=e^{-\frac{a_1}{2}t}.$$

Second order linear homogeneous ODE (Sect. 3.4).

• Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
 - Constant coefficients equations.
 - Variable coefficients equations.

Remark:

• Case (3), where $4a_0 - a_1^2 = 0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.

• Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$,

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.

• Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

 $y_{1\beta}(t) = e^{-\frac{a_1}{2}t}\cos(\beta t)$

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.

• Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-rac{a_1}{2}t}\cos(\beta t)
ightarrow e^{-rac{a_1}{2}t}$$

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed t.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1eta}(t) = e^{-rac{a_1}{2}t}\cos(eta t) o e^{-rac{a_1}{2}t} = y_1(t).$$

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- ► Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed *t*.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-rac{a_1}{2}t}\cos(eta t) o e^{-rac{a_1}{2}t} = y_1(t).$$

• Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$,

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- ► Let us study the solutions of the differential equation in the case (2) as $\beta \rightarrow 0$ for fixed *t*.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-\frac{a_1}{2}t} \cos(\beta t) \to e^{-\frac{a_1}{2}t} = y_1(t).$$

• Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$, that is, $\sin(\beta t) \rightarrow \beta t$,

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as β → 0 for fixed t.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-\frac{a_1}{2}t} \cos(\beta t) \rightarrow e^{-\frac{a_1}{2}t} = y_1(t).$$

► Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$, that is, $\sin(\beta t) \rightarrow \beta t$,
 $y_{2\beta}(t) = e^{-\frac{a_1}{2}t} \sin(\beta t)$

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as β → 0 for fixed t.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-\frac{a_1}{2}t} \cos(\beta t) \rightarrow e^{-\frac{a_1}{2}t} = y_1(t).$$

► Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$, that is, $\sin(\beta t) \rightarrow \beta t$,
 $y_{2\beta}(t) = e^{-\frac{\partial_1}{2}t} \sin(\beta t) \rightarrow \beta t e^{-\frac{\partial_1}{2}t}$

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as β → 0 for fixed t.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-\frac{a_1}{2}t} \cos(\beta t) \rightarrow e^{-\frac{a_1}{2}t} = y_1(t).$$

► Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$, that is, $\sin(\beta t) \rightarrow \beta t$,
 $y_{2\beta}(t) = e^{-\frac{a_1}{2}t} \sin(\beta t) \rightarrow \beta t e^{-\frac{a_1}{2}t} \rightarrow 0$.

Remark:

- ► Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \rightarrow 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as β → 0 for fixed t.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-rac{a_1}{2}t} \cos(\beta t) o e^{-rac{a_1}{2}t} = y_1(t).$$

► Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$, that is, $\sin(\beta t) \rightarrow \beta t$,
 $y_{2\beta}(t) = e^{-\frac{a_1}{2}t} \sin(\beta t) \rightarrow \beta t e^{-\frac{a_1}{2}t} \rightarrow 0$.

▶ Is $y_2(t) = t y_1(t)$ solution of the differential equation?

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as β → 0 for fixed t.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-\frac{a_1}{2}t} \cos(\beta t) \rightarrow e^{-\frac{a_1}{2}t} = y_1(t).$$

► Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$, that is, $\sin(\beta t) \rightarrow \beta t$,
 $y_{2\beta}(t) = e^{-\frac{a_1}{2}t} \sin(\beta t) \rightarrow \beta t e^{-\frac{a_1}{2}t} \rightarrow 0$.

Is y₂(t) = t y₁(t) solution of the differential equation?
 Introducing y₂ in the differential equation one obtains: Yes.

Remark:

- Case (3), where $4a_0 a_1^2 = 0$ can be obtained as the limit $\beta \to 0$ in case (2).
- Let us study the solutions of the differential equation in the case (2) as β → 0 for fixed t.
- Since $\cos(\beta t) \rightarrow 1$ as $\beta \rightarrow 0$, we conclude that

$$y_{1\beta}(t) = e^{-rac{a_1}{2}t} \cos(\beta t) o e^{-rac{a_1}{2}t} = y_1(t).$$

► Since
$$\frac{\sin(\beta t)}{\beta t} \rightarrow 1$$
 as $\beta \rightarrow 0$, that is, $\sin(\beta t) \rightarrow \beta t$,
 $y_{2\beta}(t) = e^{-\frac{a_1}{2}t} \sin(\beta t) \rightarrow \beta t e^{-\frac{a_1}{2}t} \rightarrow 0$.

- Is y₂(t) = t y₁(t) solution of the differential equation?
 Introducing y₂ in the differential equation one obtains: Yes.
- Since y₂ is not proportional to y₁, the functions y₁, y₂ are a fundamental set for the differential equation in case (3).

Second order linear homogeneous ODE (Sect. 3.4).

• Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

- Repeated roots as a limit case.
- ► Main result for repeated roots.
- Reduction of the order method:
 - Constant coefficients equations.
 - Variable coefficients equations.

Theorem If a_1 , $a_0 \in R$ satisfy that $a_1^2 = 4a_0$, then the functions $y_1(t) = e^{-\frac{a_1}{2}t}$, $y_2(t) = t e^{-\frac{a_1}{2}t}$, are a fundamental solution set for the differential equation

 $y^{\prime\prime}+a_1y^{\prime}+a_0y=0.$

Theorem If a_1 , $a_0 \in R$ satisfy that $a_1^2 = 4a_0$, then the functions $y_1(t) = e^{-\frac{a_1}{2}t}$, $y_2(t) = t e^{-\frac{a_1}{2}t}$,

are a fundamental solution set for the differential equation

$$y^{\prime\prime}+a_1y^{\prime}+a_0y=0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find the general solution of 9y'' + 6y' + y = 0.

Theorem If a_1 , $a_0 \in R$ satisfy that $a_1^2 = 4a_0$, then the functions $y_1(t) = e^{-\frac{a_1}{2}t}$, $y_2(t) = t e^{-\frac{a_1}{2}t}$,

are a fundamental solution set for the differential equation

$$y^{\prime\prime}+a_1y^{\prime}+a_0y=0.$$

Example

Find the general solution of 9y'' + 6y' + y = 0.

Solution: The characteristic equation is $9r^2 + 6r + 1 = 0$,

Theorem If a_1 , $a_0 \in R$ satisfy that $a_1^2 = 4a_0$, then the functions $y_1(t) = e^{-\frac{a_1}{2}t}$, $y_2(t) = t e^{-\frac{a_1}{2}t}$,

are a fundamental solution set for the differential equation

$$y^{\prime\prime}+a_1y^{\prime}+a_0y=0.$$

Example

Find the general solution of 9y'' + 6y' + y = 0.

Solution: The characteristic equation is $9r^2 + 6r + 1 = 0$, so

$$r_{\pm} = \frac{1}{(2)(9)} \left[-6 \pm \sqrt{36 - 36} \right]$$

Theorem If a_1 , $a_0 \in R$ satisfy that $a_1^2 = 4a_0$, then the functions $y_1(t) = e^{-\frac{a_1}{2}t}$, $y_2(t) = t e^{-\frac{a_1}{2}t}$,

are a fundamental solution set for the differential equation

$$y^{\prime\prime}+a_1y^{\prime}+a_0y=0.$$

Example

Find the general solution of 9y'' + 6y' + y = 0.

Solution: The characteristic equation is $9r^2 + 6r + 1 = 0$, so

$$r_{\pm} = \frac{1}{(2)(9)} \left[-6 \pm \sqrt{36 - 36} \right] \quad \Rightarrow \quad r_{\pm} = -\frac{1}{3}.$$

Theorem If a_1 , $a_0 \in R$ satisfy that $a_1^2 = 4a_0$, then the functions $y_1(t) = e^{-\frac{a_1}{2}t}$, $y_2(t) = t e^{-\frac{a_1}{2}t}$,

are a fundamental solution set for the differential equation

$$y^{\prime\prime}+a_1y^{\prime}+a_0y=0.$$

Example

Find the general solution of 9y'' + 6y' + y = 0.

Solution: The characteristic equation is $9r^2 + 6r + 1 = 0$, so

$$r_{\pm} = rac{1}{(2)(9)} \left[-6 \pm \sqrt{36 - 36}
ight] \quad \Rightarrow \quad r_{\pm} = -rac{1}{3}.$$

The Theorem above implies that the general solution is

$$y(t) = (c_1 + c_2 t) e^{-t/3}.$$

Second order linear homogeneous ODE (Sect. 3.4).

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
 - Constant coefficients equations.

Variable coefficients equations.

Reduction of the order method: Constant coefficients.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Proof case $a_1^2 - 4a_0 = 0$: Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$,
Proof case $a_1^2 - 4a_0 = 0$:

Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2) \left[-a_1 \pm \sqrt{a_1^2 - 4a_0} \right]$.

Proof case $a_1^2 - 4a_0 = 0$: Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2) \left[-a_1 \pm \sqrt{a_1^2 - 4a_0} \right]$. The hypothesis $a_1^2 = 4a_0$ implies $r_{\pm} = r_{-} = -a_1/2$.

Proof case $a_1^2 - 4a_0 = 0$: Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2) \left[-a_1 \pm \sqrt{a_1^2 - 4a_0} \right]$. The hypothesis $a_1^2 = 4a_0$ implies $r_+ = r_- = -a_1/2$. So, the solution r_+ of the characteristic equation satisfies both

$$r_{+}^{2} + a_{1}r_{+} + a_{0} = 0, \qquad 2r_{+} + a_{1} = 0.$$

Proof case $a_1^2 - 4a_0 = 0$: Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2) \left[-a_1 \pm \sqrt{a_1^2 - 4a_0} \right]$. The hypothesis $a_1^2 = 4a_0$ implies $r_+ = r_- = -a_1/2$. So, the solution r_+ of the characteristic equation satisfies both

$$r_{+}^{2} + a_{1}r_{+} + a_{0} = 0, \qquad 2r_{+} + a_{1} = 0.$$

It is clear that $y_1(t) = e^{r_+ t}$ is solutions of the differential equation.

Proof case $a_1^2 - 4a_0 = 0$: Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2) \left[-a_1 \pm \sqrt{a_1^2 - 4a_0} \right]$. The hypothesis $a_1^2 = 4a_0$ implies $r_+ = r_- = -a_1/2$. So, the solution r_+ of the characteristic equation satisfies both

$$r_{+}^{2} + a_{1}r_{+} + a_{0} = 0, \qquad 2r_{+} + a_{1} = 0.$$

It is clear that $y_1(t) = e^{r_+ t}$ is solutions of the differential equation.

A second solution y_2 not proportional to y_1 can be found as follows: (D'Alembert ~ 1750.)

Proof case $a_1^2 - 4a_0 = 0$: Recall: The characteristic equation is $r^2 + a_1r + a_0 = 0$, and its solutions are $r_{\pm} = (1/2) \left[-a_1 \pm \sqrt{a_1^2 - 4a_0} \right]$. The hypothesis $a_1^2 = 4a_0$ implies $r_+ = r_- = -a_1/2$. So, the solution r_+ of the characteristic equation satisfies both

$$r_{+}^{2} + a_{1}r_{+} + a_{0} = 0, \qquad 2r_{+} + a_{1} = 0$$

It is clear that $y_1(t) = e^{r_+ t}$ is solutions of the differential equation.

A second solution y_2 not proportional to y_1 can be found as follows: (D'Alembert ~ 1750.)

Express: $y_2(t) = v(t) y_1(t)$, and find the equation that function v satisfies from the condition $y_2'' + a_1y_2' + a_0y_2 = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Recall: $y_2 = vy_1$ and $y_2'' + a_1y_2' + a_0y_2 = 0$.

Recall: $y_2 = vy_1$ and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

Introducing this information into the differential equation

$$\left[v''+2r_{+}v'+r_{+}^{2}v\right]e^{r_{+}t}+a_{1}\left[v'+r_{+}v\right]e^{r_{+}t}+a_{0}v\,e^{r_{+}t}=0.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

Introducing this information into the differential equation

$$\begin{bmatrix} v'' + 2r_+v' + r_+^2v \end{bmatrix} e^{r_+t} + a_1 [v' + r_+v] e^{r_+t} + a_0v e^{r_+t} = 0.$$
$$\begin{bmatrix} v'' + 2r_+v' + r_+^2v \end{bmatrix} + a_1 [v' + r_+v] + a_0v = 0$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

Introducing this information into the differential equation

$$\begin{bmatrix} v'' + 2r_+v' + r_+^2v \end{bmatrix} e^{r_+t} + a_1 \begin{bmatrix} v' + r_+v \end{bmatrix} e^{r_+t} + a_0v e^{r_+t} = 0.$$
$$\begin{bmatrix} v'' + 2r_+v' + r_+^2v \end{bmatrix} + a_1 \begin{bmatrix} v' + r_+v \end{bmatrix} + a_0v = 0$$
$$v'' + (2r_+ + a_1)v' + (r_+^2 + a_1r_+ + a_0)v = 0$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

Introducing this information into the differential equation

$$\begin{bmatrix} v'' + 2r_{+}v' + r_{+}^{2}v \end{bmatrix} e^{r_{+}t} + a_{1} [v' + r_{+}v] e^{r_{+}t} + a_{0}v e^{r_{+}t} = 0.$$
$$\begin{bmatrix} v'' + 2r_{+}v' + r_{+}^{2}v \end{bmatrix} + a_{1} [v' + r_{+}v] + a_{0}v = 0$$
$$v'' + (2r_{+} + a_{1})v' + (r_{+}^{2} + a_{1}r_{+} + a_{0})v = 0$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recall that r_{+} satisfies: $r_{+}^{2} + a_{1}r_{+} + a_{0} = 0$ and $2r_{+} + a_{1} = 0$.

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

Introducing this information into the differential equation

$$\begin{bmatrix} v'' + 2r_{+}v' + r_{+}^{2}v \end{bmatrix} e^{r_{+}t} + a_{1} \begin{bmatrix} v' + r_{+}v \end{bmatrix} e^{r_{+}t} + a_{0}v e^{r_{+}t} = 0.$$
$$\begin{bmatrix} v'' + 2r_{+}v' + r_{+}^{2}v \end{bmatrix} + a_{1} \begin{bmatrix} v' + r_{+}v \end{bmatrix} + a_{0}v = 0$$
$$v'' + (2r_{+} + a_{1})v' + (r_{+}^{2} + a_{1}r_{+} + a_{0})v = 0$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recall that r_+ satisfies: $r_+^2 + a_1r_+ + a_0 = 0$ and $2r_+ + a_1 = 0$.

$$v''=0$$

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

Introducing this information into the differential equation

$$\begin{bmatrix} v'' + 2r_{+}v' + r_{+}^{2}v \end{bmatrix} e^{r_{+}t} + a_{1} \begin{bmatrix} v' + r_{+}v \end{bmatrix} e^{r_{+}t} + a_{0}v e^{r_{+}t} = 0.$$
$$\begin{bmatrix} v'' + 2r_{+}v' + r_{+}^{2}v \end{bmatrix} + a_{1} \begin{bmatrix} v' + r_{+}v \end{bmatrix} + a_{0}v = 0$$
$$v'' + (2r_{+} + a_{1})v' + (r_{+}^{2} + a_{1}r_{+} + a_{0})v = 0$$

Recall that r_{+} satisfies: $r_{+}^{2} + a_{1}r_{+} + a_{0} = 0$ and $2r_{+} + a_{1} = 0$.

$$v''=0 \quad \Rightarrow \quad v=(c_1+c_2t)$$

Recall:
$$y_2 = vy_1$$
 and $y_2'' + a_1y_2' + a_0y_2 = 0$. So, $y_2 = ve^{r_+t}$ and
 $y_2' = v'e^{r_+t} + r_+ve^{r_+t}$, $y_2'' = v''e^{r_+t} + 2r_+v'e^{r_+t} + r_+^2ve^{r_+t}$.

Introducing this information into the differential equation

$$\begin{bmatrix} v'' + 2r_{+}v' + r_{+}^{2}v \end{bmatrix} e^{r_{+}t} + a_{1} \begin{bmatrix} v' + r_{+}v \end{bmatrix} e^{r_{+}t} + a_{0}v e^{r_{+}t} = 0.$$
$$\begin{bmatrix} v'' + 2r_{+}v' + r_{+}^{2}v \end{bmatrix} + a_{1} \begin{bmatrix} v' + r_{+}v \end{bmatrix} + a_{0}v = 0$$
$$v'' + (2r_{+} + a_{1})v' + (r_{+}^{2} + a_{1}r_{+} + a_{0})v = 0$$

Recall that r_{+} satisfies: $r_{+}^{2} + a_{1}r_{+} + a_{0} = 0$ and $2r_{+} + a_{1} = 0$.

$$v''=0 \quad \Rightarrow \quad v=(c_1+c_2t) \quad \Rightarrow \quad y_2=(c_1+c_2t)e^{r_+t}.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r_+ t}$.

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r_+ t}$.

If $c_2 = 0$, then $y_2 = c_1 e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly dependent functions.

・ロト・日本・モート モー うへぐ

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r_+ t}$.

If $c_2 = 0$, then $y_2 = c_1 e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly dependent functions.

If $c_2 \neq 0$, then $y_2 = (c_1 + c_2 t) e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly independent functions.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r_+ t}$.

If $c_2 = 0$, then $y_2 = c_1 e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly dependent functions.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If $c_2 \neq 0$, then $y_2 = (c_1 + c_2 t) e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly independent functions.

Simplest choice: $c_1 = 0$ and $c_2 = 1$.

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r_+ t}$.

If $c_2 = 0$, then $y_2 = c_1 e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly dependent functions.

If $c_2 \neq 0$, then $y_2 = (c_1 + c_2 t) e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly independent functions.

Simplest choice: $c_1 = 0$ and $c_2 = 1$. Then, a fundamental solution set to the differential equation is

$$y_1(t) = e^{r_+ t}, \qquad y_2(t) = t e^{r_+ t}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall: We have obtained that $y_2(t) = (c_1 + c_2 t) e^{r_+ t}$.

If $c_2 = 0$, then $y_2 = c_1 e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly dependent functions.

If $c_2 \neq 0$, then $y_2 = (c_1 + c_2 t) e^{r_+ t}$ and $y_1 = e^{r_+ t}$ are linearly independent functions.

Simplest choice: $c_1 = 0$ and $c_2 = 1$. Then, a fundamental solution set to the differential equation is

$$y_1(t) = e^{r_+ t}, \qquad y_2(t) = t e^{r_+ t}$$

The general solution to the differential equation is

 $y(t) = (c_1 + c_2 t) e^{r_+ t}.$

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$

-

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_+ = r_- = -\frac{1}{3}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_+ = r_- = -\frac{1}{3}.$

(ロ)、(型)、(E)、(E)、 E、 の(の)

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3}$$

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_+ = r_- = -\frac{1}{3}.$

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_+ = r_- = -\frac{1}{3}.$

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$1 = y(0)$$

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_+ = r_- = -\frac{1}{3}.$

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$1=y(0)=c_1,$$

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_+ = r_- = -\frac{1}{3}.$

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$1 = y(0) = c_1,$$

$$\frac{5}{3} = y'(0)$$

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_+ = r_- = -\frac{1}{3}.$

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$1 = y(0) = c_1,$$

$$\frac{5}{3} = y'(0) = -\frac{c_1}{3} + c_2$$

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_+ = r_- = -\frac{1}{3}.$

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}$$

The initial conditions imply that

$$1 = y(0) = c_1, \frac{5}{3} = y'(0) = -\frac{c_1}{3} + c_2$$
 $\Rightarrow c_1 = 1, c_2 = 2.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Example

Find the solution to the initial value problem

$$9y'' + 6y' + y = 0,$$
 $y(0) = 1,$ $y'(0) = \frac{5}{3}.$
Solution: The solutions of $9r^2 + 6r + 1 = 0$, are $r_+ = r_- = -\frac{1}{3}.$

The Theorem above says that the general solution is

$$y(t) = c_1 e^{-t/3} + c_2 t e^{-t/3} \Rightarrow y'(t) = -\frac{c_1}{3} e^{-t/3} + c_2 \left(1 - \frac{t}{3}\right) e^{-t/3}$$

The initial conditions imply that

$$1 = y(0) = c_1,
\frac{5}{3} = y'(0) = -\frac{c_1}{3} + c_2$$
 $\Rightarrow c_1 = 1, c_2 = 2.$

<1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We conclude that $y(t) = (1+2t) e^{-t/3}$.

Second order linear homogeneous ODE (Sect. 3.4).

- Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- Repeated roots as a limit case.
- Main result for repeated roots.
- Reduction of the order method:
 - Constant coefficients equations.
 - ► Variable coefficients equations.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark: The same idea used to prove the constant coefficients Theorem above can be used in variable coefficients equations.

Remark: The same idea used to prove the constant coefficients Theorem above can be used in variable coefficients equations.

Theorem

Given continuous functions p, $q:(t_1,t_2) \to \mathbb{R}$, let $y_1:(t_1,t_2) \to \mathbb{R}$ be a solution of

y'' + p(t)y' + q(t)y = 0,

If the function $v : (t_1, t_2) \rightarrow \mathbb{R}$ is solution of

$$y_{I}(t) v'' + [2y'(t) + p(t)y_{I}(t)] v' = 0.$$
 (1)

then the functions y_1 and $y_2 = v y_1$ are fundamental solutions to the differential equation above.

Remark: The same idea used to prove the constant coefficients Theorem above can be used in variable coefficients equations.

Theorem

Given continuous functions p, $q:(t_1,t_2) \to \mathbb{R}$, let $y_1:(t_1,t_2) \to \mathbb{R}$ be a solution of

y'' + p(t)y' + q(t)y = 0,

If the function $v : (t_1, t_2) \rightarrow \mathbb{R}$ is solution of

$$y_{I}(t) v'' + [2y'(t) + p(t)y_{I}(t)] v' = 0.$$
 (1)

then the functions y_1 and $y_2 = v y_1$ are fundamental solutions to the differential equation above.

Remark: The reason for the name Reduction of order method is that the function v does not appear in Eq. (1). This is a first order equation in v'.

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

knowing that $y_1(t) = t$ is a solution.
Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$.

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$.

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$. We need to compute

$$y_2 = v t$$
,

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$. We need to compute

$$y_2 = v t, \qquad y'_2 = t v' + v,$$

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$. We need to compute

$$y_2 = v t,$$
 $y'_2 = t v' + v,$ $y''_2 = t v'' + 2v'.$

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$. We need to compute

$$y_2 = v t, \qquad y'_2 = t v' + v, \qquad y''_2 = t v'' + 2v'.$$

So, the equation for v is given by

$$t^{2}(t v'' + 2v') + 2t(t v' + v) - 2t v = 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$. We need to compute

$$y_2 = v t,$$
 $y'_2 = t v' + v,$ $y''_2 = t v'' + 2v'.$

So, the equation for v is given by

$$t^{2}(t v'' + 2v') + 2t(t v' + v) - 2t v = 0$$

$$t^{3} v'' + (2t^{2} + 2t^{2}) v' + (2t - 2t) v = 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$. We need to compute

$$y_2 = v t,$$
 $y'_2 = t v' + v,$ $y''_2 = t v'' + 2v'.$

So, the equation for v is given by

$$t^{2}(t v'' + 2v') + 2t(t v' + v) - 2t v = 0$$

$$t^{3} v'' + (2t^{2} + 2t^{2}) v' + (2t - 2t) v = 0$$

$$t^{3} v'' + (4t^{2}) v' = 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Express $y_2(t) = v(t) y_1(t)$. The equation for v comes from $t^2 y_2'' + 2ty_2' - 2y_2 = 0$. We need to compute

$$y_2 = v t,$$
 $y'_2 = t v' + v,$ $y''_2 = t v'' + 2v'.$

So, the equation for v is given by

$$t^{2}(tv'' + 2v') + 2t(tv' + v) - 2tv = 0$$

$$t^{3}v'' + (2t^{2} + 2t^{2})v' + (2t - 2t)v = 0$$

$$t^{3}v'' + (4t^{2})v' = 0 \implies v'' + \frac{4}{t}v' = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v',

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$, so

$$\frac{w'}{w} = -\frac{4}{t}$$

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v', given by $w' + \frac{4}{r}w = 0$, so

$$\frac{w'}{w} = -\frac{4}{t} \Rightarrow \ln(w) = -4\ln(t) + c_0$$

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$, so

$$rac{w'}{w}=-rac{4}{t}\ \Rightarrow\ \ln(w)=-4\ln(t)+c_{\scriptscriptstyle 0}\ \Rightarrow\ w(t)=c_{\scriptscriptstyle 1}t^{-4},\ c_{\scriptscriptstyle 1}\in\mathbb{R}.$$

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$. This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$, so $\frac{w'}{w} = -\frac{4}{t} \Rightarrow \ln(w) = -4\ln(t) + c_0 \Rightarrow w(t) = c_1t^{-4}, c_1 \in \mathbb{R}.$

Integrating w we obtain v,

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0.$

This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$, so

$$rac{w'}{w}=-rac{4}{t}\ \Rightarrow\ \ln(w)=-4\ln(t)+c_{\scriptscriptstyle 0}\ \Rightarrow\ w(t)=c_{\scriptscriptstyle 1}t^{-4},\ c_{\scriptscriptstyle 1}\in\mathbb{R}.$$

Integrating w we obtain v, that is, $v = c_2 t^{-3} + c_3$, with $c_2, c_3 \in \mathbb{R}$.

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$, so

$$rac{w'}{w}=-rac{4}{t}\ \Rightarrow\ \ln(w)=-4\ln(t)+c_{\scriptscriptstyle 0}\ \Rightarrow\ w(t)=c_{\scriptscriptstyle 1}t^{-4},\ c_{\scriptscriptstyle 1}\in\mathbb{R}.$$

Integrating w we obtain v, that is, $v = c_2 t^{-3} + c_3$, with $c_2, c_3 \in \mathbb{R}$. Recalling that $y_2 = t v$

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$, so

$$rac{w'}{w}=-rac{4}{t}\ \Rightarrow\ \ln(w)=-4\ln(t)+c_{\scriptscriptstyle 0}\ \Rightarrow\ w(t)=c_{\scriptscriptstyle 1}t^{-4},\ c_{\scriptscriptstyle 1}\in\mathbb{R}.$$

Integrating w we obtain v, that is, $v = c_2 t^{-3} + c_3$, with $c_2, c_3 \in \mathbb{R}$. Recalling that $y_2 = t v$ we then conclude that $y_2 = c_2 t^{-2} + c_3 t$.

Example

Find a fundamental set of solutions to

$$t^2y'' + 2ty' - 2y = 0,$$

knowing that $y_1(t) = t$ is a solution.

Solution: Recall: $v'' + \frac{4}{t}v' = 0$.

This is a first order equation for w = v', given by $w' + \frac{4}{t}w = 0$, so

$$rac{w'}{w}=-rac{4}{t}\ \Rightarrow\ \ln(w)=-4\ln(t)+c_{\scriptscriptstyle 0}\ \Rightarrow\ w(t)=c_{\scriptscriptstyle 1}t^{-4},\ c_{\scriptscriptstyle 1}\in\mathbb{R}.$$

Integrating w we obtain v, that is, $v = c_2 t^{-3} + c_3$, with $c_2, c_3 \in \mathbb{R}$. Recalling that $y_2 = t v$ we then conclude that $y_2 = c_2 t^{-2} + c_3 t$. Choosing $c_2 = 1$ and $c_3 = 0$ we obtain the fundamental solutions $y_1(t) = t$ and $y_2(t) = \frac{1}{t^2}$.

Proof of the Theorem: The choice of $y_2 = vy_1$ implies

$$y'_2 = v' y_1 + v y'_1, \qquad y''_2 = v'' y_1 + 2v' y'_1 + v y''_1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Proof of the Theorem: The choice of $y_2 = vy_1$ implies

$$y'_2 = v' y_1 + v y'_1, \qquad y''_2 = v'' y_1 + 2v' y'_1 + v y''_1.$$

This information introduced into the differential equation says that

$$(v'' y_1 + 2v' y_1' + v y_1'') + p(v' y_1 + v y_1') + qv y_1 = 0$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Proof of the Theorem: The choice of $y_2 = vy_1$ implies

$$y'_2 = v' y_1 + v y'_1, \qquad y''_2 = v'' y_1 + 2v' y'_1 + v y''_1.$$

This information introduced into the differential equation says that

$$(v'' y_1 + 2v' y_1' + v y_1'') + p (v' y_1 + v y_1') + qv y_1 = 0$$

 $y_1 v'' + (2y_1' + p y_1) v' + (y_1'' + p y_1' + q y_1) v = 0.$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Proof of the Theorem: The choice of $y_2 = vy_1$ implies

$$y'_2 = v' y_1 + v y'_1, \qquad y''_2 = v'' y_1 + 2v' y'_1 + v y''_1.$$

This information introduced into the differential equation says that

- ロ ト - 4 回 ト - 4 □ - 4

$$(v'' y_1 + 2v' y_1' + v y_1'') + p (v' y_1 + v y_1') + qv y_1 = 0$$
$$y_1 v'' + (2y_1' + p y_1) v' + (y_1'' + p y_1' + q y_1) v = 0.$$
he function y_1 is solution of $y_1'' + p y_1' + q y_1 = 0.$

Т

Proof of the Theorem: The choice of $y_2 = vy_1$ implies

$$y'_2 = v' y_1 + v y'_1, \qquad y''_2 = v'' y_1 + 2v' y'_1 + v y''_1.$$

This information introduced into the differential equation says that

$$(v'' y_1 + 2v' y'_1 + v y''_1) + p(v' y_1 + v y'_1) + qv y_1 = 0$$
$$y_1 v'' + (2y'_1 + p y_1) v' + (y''_1 + p y'_1 + q y_1) v = 0.$$
The function y_1 is solution of $y''_1 + p y'_1 + q y_1 = 0$.
Then, the equation for v is given by Eq. (1), that is,

Т

 $y_1 v'' + (2y_1' + p y_1) v' = 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$.

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

 $W_{y_1y_2}$

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix}$$

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y'_1 & (v'y_1 + vy'_1) \end{vmatrix} = y_1(v'y_1 + vy'_1) - vy_1y'_1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We obtain $W_{y_1y_2} = v'y_1^2$.

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y_1' & (v'y_1 + vy_1') \end{vmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

- ロ ト - 4 回 ト - 4 □ - 4

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'.

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y'_1 & (v'y_1 + vy'_1) \end{vmatrix} = y_1(v'y_1 + vy'_1) - vy_1y'_1.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v',

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y_1' + p y_1) w = 0$$

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y_1' + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2\frac{y_1'}{y_1} - p.$$

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y'_1 + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2\frac{y'_1}{y_1} - p.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let P be a primitive of p, that is, P'(t) = p(t),
Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y'_1 + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2\frac{y'_1}{y_1} - p.$$

Let P be a primitive of p, that is, P'(t) = p(t), then

$$\ln(w) = -2\ln(y_1) - P$$

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y_1' + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2\frac{y_1'}{y_1} - p.$$

Let P be a primitive of p, that is, P'(t) = p(t), then

 $\ln(w) = -2\ln(y_1) - P \Rightarrow w = e^{[\ln(y_1^{-2}) - P]}$

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y_1' + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2\frac{y_1'}{y_1} - p.$$

Let P be a primitive of p, that is, P'(t) = p(t), then

$$\ln(w) = -2\ln(y_1) - P \implies w = e^{[\ln(y_1^{-2}) - P]} \implies w = y_1^{-2} e^{-P}.$$

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = egin{bmatrix} y_1 & vy_1 \ y_1' & (v'y_1 + vy_1') \end{bmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y_1' + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2\frac{y_1'}{y_1} - p.$$

Let P be a primitive of p, that is, P'(t) = p(t), then

$$\ln(w) = -2\ln(y_1) - P \Rightarrow w = e^{[\ln(y_1^{-2}) - P]} \Rightarrow w = y_1^{-2} e^{-P}.$$

We obtain $v'y_1^2 = e^{-P}$, hence $W_{y_1y_2} = e^{-P}$, which is non-zero.

Proof: Recall $y_1 v'' + (2y'_1 + p y_1) v' = 0$. We now need to show that y_1 and $y_2 = vy_1$ are linearly independent.

$$W_{y_1y_2} = \begin{vmatrix} y_1 & vy_1 \\ y_1' & (v'y_1 + vy_1') \end{vmatrix} = y_1(v'y_1 + vy_1') - vy_1y_1'.$$

We obtain $W_{y_1y_2} = v'y_1^2$. We need to find v'. Denote w = v', so

$$y_1 w' + (2y_1' + p y_1) w = 0 \quad \Rightarrow \quad \frac{w'}{w} = -2\frac{y_1'}{y_1} - p.$$

Let P be a primitive of p, that is, P'(t) = p(t), then

$$\ln(w) = -2\ln(y_1) - P \Rightarrow w = e^{[\ln(y_1^{-2}) - P]} \Rightarrow w = y_1^{-2} e^{-P}.$$

We obtain $v'y_1^2 = e^{-P}$, hence $W_{y_1y_2} = e^{-P}$, which is non-zero. We conclude that y_1 and $y_2 = vy_1$ are linearly independent.

Non-homogeneous equations (Sect. 3.5).

- We study: $y'' + a_1 y' + a_0 y = b(t)$.
- Operator notation and preliminary results.
- Summary of the undetermined coefficients method.

- Using the method in few examples.
- The guessing solution table.

Notation: Given functions p, q, denote

$$L(y) = y'' + p(t) y' + q(t) y.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Notation: Given functions p, q, denote

L(y) = y'' + p(t)y' + q(t)y.

Therefore, the differential equation

$$y'' + p(t) y' + q(t) y = f(t)$$

can be written as

L(y) = f.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Notation: Given functions p, q, denote

L(y) = y'' + p(t)y' + q(t)y.

Therefore, the differential equation

$$y'' + p(t) y' + q(t) y = f(t)$$

can be written as

$$L(y) = f$$
.

The homogeneous equation can be written as

L(y)=0.

Notation: Given functions p, q, denote

L(y) = y'' + p(t)y' + q(t)y.

Therefore, the differential equation

$$y'' + p(t) y' + q(t) y = f(t)$$

can be written as

$$L(y)=f.$$

The homogeneous equation can be written as

L(y)=0.

The function L acting on a function y is called an operator.

Remark: The operator L is a linear function of y.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Remark: The operator L is a linear function of y.

Theorem

For every continuously differentiable functions y_1 , $y_2 : (t_1, t_2) \to \mathbb{R}$ and every c_1 , $c_2 \in \mathbb{R}$ holds that

 $L(c_1y_1 + c_2y_2) = c_1L(y_1) + c_2L(y_2).$

Remark: The operator L is a linear function of y.

Theorem

For every continuously differentiable functions y_1 , $y_2 : (t_1, t_2) \rightarrow \mathbb{R}$ and every c_1 , $c_2 \in \mathbb{R}$ holds that

$$L(c_1y_1 + c_2y_2) = c_1L(y_1) + c_2L(y_2).$$

Proof:

$$L(c_1y_1+c_2y_2) = (c_1y_1+c_2y_2)'' + p(t)(c_1y_1+c_2y_2)' + q(t)(c_1y_1+c_2y_2)$$

Remark: The operator L is a linear function of y.

Theorem

For every continuously differentiable functions y_1 , $y_2 : (t_1, t_2) \to \mathbb{R}$ and every c_1 , $c_2 \in \mathbb{R}$ holds that

$$L(c_1y_1 + c_2y_2) = c_1L(y_1) + c_2L(y_2).$$

Proof:

$$L(c_1y_1 + c_2y_2) = (c_1y_1 + c_2y_2)'' + p(t)(c_1y_1 + c_2y_2)' + q(t)(c_1y_1 + c_2y_2)$$

$$\begin{split} \mathcal{L}(c_1y_1+c_2y_2) &= \left(c_1y_1''+p(t)\,c_1y_1'+q(t)\,c_1y_1\right) \\ &+ \left(c_2y_2''+p(t)\,c_2y_2'+q(t)\,c_2y_2\right) \end{split}$$

Remark: The operator L is a linear function of y.

Theorem

For every continuously differentiable functions y_1 , $y_2 : (t_1, t_2) \to \mathbb{R}$ and every c_1 , $c_2 \in \mathbb{R}$ holds that

$$L(c_1y_1 + c_2y_2) = c_1L(y_1) + c_2L(y_2).$$

Proof:

$$L(c_1y_1 + c_2y_2) = (c_1y_1 + c_2y_2)'' + p(t)(c_1y_1 + c_2y_2)' + q(t)(c_1y_1 + c_2y_2)$$

$$L(c_1y_1 + c_2y_2) = (c_1y_1'' + p(t) c_1y_1' + q(t) c_1y_1) + (c_2y_2'' + p(t) c_2y_2' + q(t) c_2y_2)$$

$$L(c_1y_1 + c_2y_2) = c_1L(y_1) + c_2L(y_2).$$

Theorem

Given functions p, q, f, let L(y) = y'' + p(t) y' + q(t) y. If the functions y_1 and y_2 are fundamental solutions of the homogeneous equation

L(y)=0,

and y_p is any solution of the non-homogeneous equation

$$L(y_p) = f, (2)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

then any other solution y of the non-homogeneous equation above is given by

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + y_p(t),$$
 (3)

where c_1 , $c_2 \in \mathbb{R}$.

Theorem

Given functions p, q, f, let L(y) = y'' + p(t) y' + q(t) y. If the functions y_1 and y_2 are fundamental solutions of the homogeneous equation

L(y)=0,

and y_p is any solution of the non-homogeneous equation

$$L(y_p) = f, \tag{2}$$

then any other solution y of the non-homogeneous equation above is given by

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + y_p(t),$$
 (3)

where c_1 , $c_2 \in \mathbb{R}$.

Notation: The expression for y in Eq. (3) is called the general solution of the non-homogeneous Eq. (2).

Theorem

Given functions p, q, let L(y) = y'' + p(t) y' + q(t) y. If the function f can be written as $f(t) = f_1(t) + \cdots + f_n(t)$, with $n \ge 1$, and if there exist functions y_{p_1}, \cdots, y_{p_n} such that

$$L(y_{p_i}) = f_i, \qquad i = 1, \cdots, n,$$

then the function $y_p = y_{p_1} + \cdots + y_{p_n}$ satisfies the non-homogeneous equation

$$L(y_p)=f.$$

Non-homogeneous equations (Sect. 3.5).

- We study: $y'' + a_1 y' + a_0 y = b(t)$.
- Operator notation and preliminary results.
- Summary of the undetermined coefficients method.

- Using the method in few examples.
- The guessing solution table.

Problem: Given a constant coefficients linear operator $L(y) = y'' + a_1y' + a_0y$, with $a_1, a_2 \in \mathbb{R}$, find every solution of the non-homogeneous differential equation

L(y) = f.

Problem: Given a constant coefficients linear operator $L(y) = y'' + a_1y' + a_0y$, with $a_1, a_2 \in \mathbb{R}$, find every solution of the non-homogeneous differential equation

L(y) = f.

Remarks:

The undetermined coefficients is a method to find solutions to linear, non-homogeneous, constant coefficients, differential equations.

Problem: Given a constant coefficients linear operator $L(y) = y'' + a_1y' + a_0y$, with $a_1, a_2 \in \mathbb{R}$, find every solution of the non-homogeneous differential equation

L(y) = f.

Remarks:

- The undetermined coefficients is a method to find solutions to linear, non-homogeneous, constant coefficients, differential equations.
- It consists in guessing the solution y_p of the non-homogeneous equation

 $L(y_p)=f,$

for particularly simple source functions f.

Summary:

<ロト (個) (目) (目) (目) (目) (の)</p>

Summary:

(1) Find the general solution of the homogeneous equation $L(y_h) = 0.$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Summary:

- (1) Find the general solution of the homogeneous equation $L(y_h) = 0$.
- (2) If f has the form $f = f_1 + \cdots + f_n$, with $n \ge 1$, then look for solutions y_{p_i} , with $i = 1, \cdots, n$ to the equations

 $L(y_{p_i})=f_i.$

Summary:

- (1) Find the general solution of the homogeneous equation $L(y_h) = 0$.
- (2) If f has the form $f = f_1 + \cdots + f_n$, with $n \ge 1$, then look for solutions y_{p_i} , with $i = 1, \cdots, n$ to the equations

 $L(y_{p_i})=f_i.$

Once the functions y_{p_i} are found, then construct

 $y_p = y_{p_1} + \cdots + y_{p_n}.$

Summary:

- (1) Find the general solution of the homogeneous equation $L(y_h) = 0$.
- (2) If f has the form $f = f_1 + \cdots + f_n$, with $n \ge 1$, then look for solutions y_{p_i} , with $i = 1, \cdots, n$ to the equations

 $L(y_{p_i})=f_i.$

Once the functions y_{p_i} are found, then construct

$$y_p = y_{p_1} + \cdots + y_{p_n}.$$

(3) Given the source functions f_i , guess the solutions functions y_{p_i} following the Table below.

Summary (cont.):

$f_i(t)$ (K, m, a, b, given.)	$y_{p_i}(t)$ (Guess) (k not given.)
Ke ^{at}	ke ^{at}
Kt ^m	$k_m t^m + k_{m-1} t^{m-1} + \dots + k_0$
$K\cos(bt)$	$k_1\cos(bt)+k_2\sin(bt)$
K sin(bt)	$k_1\cos(bt)+k_2\sin(bt)$
Kt ^m e ^{at}	$e^{at}(k_mt^m+\cdots+k_0)$
$Ke^{at}\cos(bt)$	$e^{at}[k_1\cos(bt)+k_2\sin(bt)]$
<i>KKe^{at}</i> sin(<i>bt</i>)	$e^{at}[k_1\cos(bt)+k_2\sin(bt)]$
$Kt^m \cos(bt)$	$(k_m t^m + \cdots + k_0) [a_1 \cos(bt) + a_2 \sin(bt)]$
$Kt^m \sin(bt)$	$(k_m t^m + \cdots + k_0) [a_1 \cos(bt) + a_2 \sin(bt)]$

Summary (cont.):

(4) If any guessed function y_{p_i} satisfies the homogeneous equation $L(y_{p_i}) = 0$, then change the guess to the function

 $t^{s}y_{p_{i}}$, with $s \ge 1$, and s sufficiently large such that $L(t^{s}y_{p_{i}}) \ne 0$.

Summary (cont.):

(4) If any guessed function y_{p_i} satisfies the homogeneous equation $L(y_{p_i}) = 0$, then change the guess to the function

 $t^{s}y_{p_{i}}$, with $s \ge 1$,

and s sufficiently large such that $L(t^s y_{p_i}) \neq 0$.

(5) Impose the equation $L(y_{p_i}) = f_i$ to find the undetermined constants k_1, \dots, k_m , for the appropriate m, given in the table above.

Summary (cont.):

(4) If any guessed function y_{p_i} satisfies the homogeneous equation $L(y_{p_i}) = 0$, then change the guess to the function

 $t^{s}y_{p_{i}}$, with $s \ge 1$,

and s sufficiently large such that $L(t^s y_{p_i}) \neq 0$.

- (5) Impose the equation $L(y_{p_i}) = f_i$ to find the undetermined constants k_1, \dots, k_m , for the appropriate m, given in the table above.
- (6) The general solution to the original differential equation L(y) = f is then given by

 $y(t) = y_h(t) + y_{p_1} + \cdots + y_{p_n}.$

Non-homogeneous equations (Sect. 3.5).

- We study: $y'' + a_1 y' + a_0 y = b(t)$.
- Operator notation and preliminary results.
- Summary of the undetermined coefficients method.

- Using the method in few examples.
- The guessing solution table.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}.$$

- ロ ト - 4 回 ト - 4 □ - 4

Solution: Notice: L(y) = y'' - 3y' - 4y and $f(t) = 3e^{2t}$.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}.$$

Solution: Notice: L(y) = y'' - 3y' - 4y and $f(t) = 3e^{2t}$.

(1) Find all solutions y_h to the homogeneous equation $L(y_h) = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}.$$

Solution: Notice: L(y) = y'' - 3y' - 4y and $f(t) = 3e^{2t}$.

(1) Find all solutions y_h to the homogeneous equation $L(y_h) = 0$. The characteristic equation is

・ロト・日本・日本・日本・日本・今日・

$$r^2 - 3r - 4 = 0$$
Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}.$$

Solution: Notice: L(y) = y'' - 3y' - 4y and $f(t) = 3e^{2t}$.

(1) Find all solutions y_h to the homogeneous equation $L(y_h) = 0$. The characteristic equation is

$$r^2 - 3r - 4 = 0 \quad \Rightarrow \quad \begin{cases} r_1 = 4, \\ r_2 = -1 \end{cases}$$

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}.$$

Solution: Notice: L(y) = y'' - 3y' - 4y and $f(t) = 3e^{2t}$.

(1) Find all solutions y_h to the homogeneous equation $L(y_h) = 0$. The characteristic equation is

$$r^2-3r-4=0$$
 \Rightarrow $\begin{cases} r_1=4, \\ r_2=-1. \end{cases}$

$$y_h(t) = c_1 e^{4t} + c_2 e^{-t}.$$

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}$$

Solution: Notice: L(y) = y'' - 3y' - 4y and $f(t) = 3e^{2t}$.

(1) Find all solutions y_h to the homogeneous equation $L(y_h) = 0$. The characteristic equation is

$$r^2 - 3r - 4 = 0 \quad \Rightarrow \quad \begin{cases} r_1 = 4, \\ r_2 = -1. \end{cases}$$

$$y_h(t) = c_1 e^{4t} + c_2 e^{-t}.$$

(2) Trivial in our case. The source function $f(t) = 3e^{2t}$ cannot be simplified into a sum of simpler functions.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}$$

Solution: Notice: L(y) = y'' - 3y' - 4y and $f(t) = 3e^{2t}$.

(1) Find all solutions y_h to the homogeneous equation $L(y_h) = 0$. The characteristic equation is

$$r^2-3r-4=0 \quad \Rightarrow \quad \begin{cases} r_1=4, \\ r_2=-1. \end{cases}$$

$$y_h(t) = c_1 e^{4t} + c_2 e^{-t}.$$

(2) Trivial in our case. The source function $f(t) = 3e^{2t}$ cannot be simplified into a sum of simpler functions.

(日) (同) (三) (三) (三) (○) (○)

(3) Table says: For $f(t) = 3e^{2t}$ guess $y_p(t) = k e^{2t}$

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Solution: Recall: $y_p(t) = k e^{2t}$. We need to find k.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}.$$

Solution: Recall: $y_p(t) = k e^{2t}$. We need to find k.

(4) Trivial here, since $L(y_p) \neq 0$, we do not modify our guess.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: Recall: $y_p(t) = k e^{2t}$. We need to find k.

(4) Trivial here, since $L(y_p) \neq 0$, we do not modify our guess. (Recall: $L(y_h) = 0$ iff $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.)

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}$$

Solution: Recall: $y_p(t) = k e^{2t}$. We need to find k.

(4) Trivial here, since $L(y_p) \neq 0$, we do not modify our guess. (Recall: $L(y_h) = 0$ iff $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.)

(5) Introduce y_p into $L(y_p) = f$ and find k.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}$$

Solution: Recall: $y_p(t) = k e^{2t}$. We need to find k.

(4) Trivial here, since $L(y_p) \neq 0$, we do not modify our guess. (Recall: $L(y_h) = 0$ iff $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.)

(5) Introduce y_p into $L(y_p) = f$ and find k.

$$(2^2 - 6 - 4)ke^{2t} = 3e^{2t}$$

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}$$

Solution: Recall: $y_p(t) = k e^{2t}$. We need to find k.

(4) Trivial here, since $L(y_p) \neq 0$, we do not modify our guess. (Recall: $L(y_h) = 0$ iff $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.)

(5) Introduce y_p into $L(y_p) = f$ and find k.

$$(2^2 - 6 - 4)ke^{2t} = 3e^{2t} \Rightarrow -6k = 3$$

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}$$

Solution: Recall: $y_p(t) = k e^{2t}$. We need to find k.

(4) Trivial here, since $L(y_p) \neq 0$, we do not modify our guess. (Recall: $L(y_h) = 0$ iff $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.)

(5) Introduce y_p into $L(y_p) = f$ and find k.

$$(2^2-6-4)ke^{2t}=3e^{2t}$$
 \Rightarrow $-6k=3$ \Rightarrow $k=-\frac{1}{2}$.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}$$

Solution: Recall: $y_p(t) = k e^{2t}$. We need to find k.

(4) Trivial here, since $L(y_p) \neq 0$, we do not modify our guess. (Recall: $L(y_h) = 0$ iff $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.)

(5) Introduce y_p into $L(y_p) = f$ and find k.

$$(2^2-6-4)ke^{2t}=3e^{2t}$$
 \Rightarrow $-6k=3$ \Rightarrow $k=-\frac{1}{2}$

-1

We have obtained that $y_p(t) = -\frac{1}{2}e^{2t}$.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{2t}$$

Solution: Recall: $y_p(t) = k e^{2t}$. We need to find k.

(4) Trivial here, since $L(y_p) \neq 0$, we do not modify our guess. (Recall: $L(y_h) = 0$ iff $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.)

(5) Introduce y_p into $L(y_p) = f$ and find k.

$$(2^2-6-4)ke^{2t}=3e^{2t}$$
 \Rightarrow $-6k=3$ \Rightarrow $k=-\frac{1}{2}$.

We have obtained that $y_p(t) = -\frac{1}{2}e^{2t}$.

(6) The general solution to the inhomogeneous equation is

$$y(t) = c_1 e^{4t} + c_2 e^{-t} - \frac{1}{2} e^{2t}.$$

<1

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}.$$

Solution: We know that the general solution to homogeneous equation is $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}$$

Solution: We know that the general solution to homogeneous equation is $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.

Following the table we guess y_p as $y_p = k e^{4t}$.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: We know that the general solution to homogeneous equation is $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.

Following the table we guess y_p as $y_p = k e^{4t}$.

However, this guess satisfies $L(y_p) = 0$.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: We know that the general solution to homogeneous equation is $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.

Following the table we guess y_p as $y_p = k e^{4t}$.

However, this guess satisfies $L(y_p) = 0$.

So we modify the guess to $y_p = kt e^{4t}$.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}$$

Solution: We know that the general solution to homogeneous equation is $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.

Following the table we guess y_p as $y_p = k e^{4t}$.

However, this guess satisfies $L(y_p) = 0$.

So we modify the guess to $y_p = kt e^{4t}$.

Introduce the guess into $L(y_p) = f$.

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}$$

Solution: We know that the general solution to homogeneous equation is $y_h(t) = c_1 e^{4t} + c_2 e^{-t}$.

Following the table we guess y_p as $y_p = k e^{4t}$.

However, this guess satisfies $L(y_p) = 0$.

So we modify the guess to $y_p = kt e^{4t}$.

Introduce the guess into $L(y_p) = f$. We need to compute

$$y'_{p} = k e^{4t} + 4kt e^{4t}, \qquad y''_{p} = 8k e^{4t} + 16kt e^{4t}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}.$$

Solution: Recall:

 $y_{\rho} = kt e^{4t}, \quad y'_{\rho} = k e^{4t} + 4kt e^{4t}, \quad y''_{\rho} = 8k e^{4t} + 16kt e^{4t}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}.$$

Solution: Recall:

$$y_{p} = kt e^{4t}, \quad y'_{p} = k e^{4t} + 4kt e^{4t}, \quad y''_{p} = 8k e^{4t} + 16kt e^{4t}.$$
$$\left[(8k + 16kt) - 3(k + 4kt) - 4kt \right] e^{4t} = 3e^{4t}.$$

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}.$$

Solution: Recall:

$$y_{p} = kt e^{4t}, \quad y'_{p} = k e^{4t} + 4kt e^{4t}, \quad y''_{p} = 8k e^{4t} + 16kt e^{4t}.$$
$$[(8k + 16kt) - 3(k + 4kt) - 4kt] e^{4t} = 3e^{4t}.$$
$$[(8 + 16t) - 3(1 + 4t) - 4t] k = 3$$

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}.$$

Solution: Recall:

$$y_{\rho} = kt e^{4t}, \quad y'_{\rho} = k e^{4t} + 4kt e^{4t}, \quad y''_{\rho} = 8k e^{4t} + 16kt e^{4t}.$$
$$[(8k + 16kt) - 3(k + 4kt) - 4kt] e^{4t} = 3e^{4t}.$$
$$[(8 + 16t) - 3(1 + 4t) - 4t] k = 3 \quad \Rightarrow \quad [5 + (16 - 12 - 4) t] k = 3$$

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}.$$

Solution: Recall:

$$y_{p} = kt e^{4t}, \quad y_{p}' = k e^{4t} + 4kt e^{4t}, \quad y_{p}'' = 8k e^{4t} + 16kt e^{4t}.$$

$$[(8k + 16kt) - 3(k + 4kt) - 4kt] e^{4t} = 3e^{4t}.$$

$$[(8 + 16t) - 3(1 + 4t) - 4t] k = 3 \quad \Rightarrow \quad [5 + (16 - 12 - 4) t] k = 3$$
We obtain that $k = \frac{3}{5}.$

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}.$$

Solution: Recall:

$$y_{p} = kt e^{4t}, \quad y_{p}' = k e^{4t} + 4kt e^{4t}, \quad y_{p}'' = 8k e^{4t} + 16kt e^{4t}.$$

$$[(8k + 16kt) - 3(k + 4kt) - 4kt] e^{4t} = 3e^{4t}.$$

$$[(8 + 16t) - 3(1 + 4t) - 4t] k = 3 \quad \Rightarrow \quad [5 + (16 - 12 - 4) t] k = 3$$
We obtain that $k = \frac{3}{5}$. Therefore, $y_{p}(t) = \frac{3}{5} t e^{4t}$,

Example

Find all solutions to the non-homogeneous equation

$$y'' - 3y' - 4y = 3e^{4t}.$$

Solution: Recall:

$$y_{\rho} = kt e^{4t}, \quad y_{\rho}' = k e^{4t} + 4kt e^{4t}, \quad y_{\rho}'' = 8k e^{4t} + 16kt e^{4t}.$$

$$[(8k + 16kt) - 3(k + 4kt) - 4kt] e^{4t} = 3e^{4t}.$$

$$[(8 + 16t) - 3(1 + 4t) - 4t] k = 3 \quad \Rightarrow \quad [5 + (16 - 12 - 4) t] k = 3$$
We obtain that $k = \frac{3}{5}$. Therefore, $y_{\rho}(t) = \frac{3}{5} t e^{4t}$, and
$$y(t) = c_1 e^{4t} + c_2 e^{-t} + \frac{3}{5} t e^{4t}.$$

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: We know that the general solution to homogeneous equation is $y(t) = c_1 e^{4t} + c_2 e^{-t}$.

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: We know that the general solution to homogeneous equation is $y(t) = c_1 e^{4t} + c_2 e^{-t}$.

Following the table: Since $f = 2\sin(t)$,

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

Solution: We know that the general solution to homogeneous equation is $y(t) = c_1 e^{4t} + c_2 e^{-t}$.

Following the table: Since $f = 2\sin(t)$, then we guess

$$y_p = k_1 \sin(t) + k_2 \cos(t).$$

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

Solution: We know that the general solution to homogeneous equation is $y(t) = c_1 e^{4t} + c_2 e^{-t}$.

Following the table: Since $f = 2\sin(t)$, then we guess

$$y_p = k_1 \sin(t) + k_2 \cos(t).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This guess satisfies $L(y_p) \neq 0$.

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

Solution: We know that the general solution to homogeneous equation is $y(t) = c_1 e^{4t} + c_2 e^{-t}$.

Following the table: Since $f = 2\sin(t)$, then we guess

$$y_p = k_1 \sin(t) + k_2 \cos(t).$$

This guess satisfies $L(y_p) \neq 0$.

Compute: $y'_p = k_1 \cos(t) - k_2 \sin(t)$, $y''_p = -k_1 \sin(t) - k_2 \cos(t)$.

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

Solution: We know that the general solution to homogeneous equation is $y(t) = c_1 e^{4t} + c_2 e^{-t}$.

Following the table: Since $f = 2\sin(t)$, then we guess

$$y_p = k_1 \sin(t) + k_2 \cos(t).$$

This guess satisfies $L(y_p) \neq 0$.

Compute: $y'_p = k_1 \cos(t) - k_2 \sin(t)$, $y''_p = -k_1 \sin(t) - k_2 \cos(t)$.

 $L(y_p) = [-k_1 \sin(t) - k_2 \cos(t)] - 3[k_1 \cos(t) - k_2 \sin(t)]$ $-4[k_1 \sin(t) + k_2 \cos(t)] = 2\sin(t),$

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

Solution: Recall:

$$L(y_p) = [-k_1 \sin(t) - k_2 \cos(t)] - 3[k_1 \cos(t) - k_2 \sin(t)] -4[k_1 \sin(t) + k_2 \cos(t)] = 2\sin(t),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

Solution: Recall:

$$\begin{split} L(y_p) &= [-k_1 \sin(t) - k_2 \cos(t)] - 3[k_1 \cos(t) - k_2 \sin(t)] \\ &- 4[k_1 \sin(t) + k_2 \cos(t)] = 2 \sin(t), \end{split}$$

 $(-5k_1+3k_2)\sin(t)+(-3k_1-5k_2)\cos(t)=2\sin(t).$

▲□▶▲□▶▲□▶▲□▶ □ のQ@
Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

Solution: Recall:

$$L(y_p) = [-k_1 \sin(t) - k_2 \cos(t)] - 3[k_1 \cos(t) - k_2 \sin(t)] -4[k_1 \sin(t) + k_2 \cos(t)] = 2\sin(t),$$

$$(-5k_1+3k_2)\sin(t)+(-3k_1-5k_2)\cos(t)=2\sin(t).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This equation holds for all $t \in \mathbb{R}$. In particular, at $t = \frac{\pi}{2}$, t = 0.

$$\begin{aligned} -5k_1 + 3k_2 &= 2, \\ -3k_1 - 5k_2 &= 0, \end{aligned}$$

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

Solution: Recall:

$$\begin{split} L(y_p) &= [-k_1 \sin(t) - k_2 \cos(t)] - 3[k_1 \cos(t) - k_2 \sin(t)] \\ &- 4[k_1 \sin(t) + k_2 \cos(t)] = 2 \sin(t), \end{split}$$

$$(-5k_1+3k_2)\sin(t)+(-3k_1-5k_2)\cos(t)=2\sin(t).$$

This equation holds for all $t \in \mathbb{R}$. In particular, at $t = \frac{\pi}{2}$, t = 0.

$$\begin{array}{c} -5k_1 + 3k_2 = 2, \\ -3k_1 - 5k_2 = 0, \end{array} \Rightarrow \begin{cases} k_1 = -\frac{5}{17}, \\ k_2 = \frac{3}{17}. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Solution: Recall: $k_1 = -\frac{5}{17}$ and $k_2 = \frac{3}{17}$.

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

Solution: Recall: $k_1 = -\frac{5}{17}$ and $k_2 = \frac{3}{17}$.

So the particular solution to the inhomogeneous equation is

$$y_p(t) = \frac{1}{17} \left[-5\sin(t) + 3\cos(t) \right].$$

Example

Find all the solutions to the inhomogeneous equation

$$y^{\prime\prime}-3y^{\prime}-4y=2\sin(t).$$

Solution: Recall: $k_1 = -\frac{5}{17}$ and $k_2 = \frac{3}{17}$.

So the particular solution to the inhomogeneous equation is

$$y_{p}(t) = \frac{1}{17} \left[-5\sin(t) + 3\cos(t) \right].$$

The general solution is

$$y(t) = c_1 e^{4t} + c_2 e^{-t} + \frac{1}{17} \left[-5\sin(t) + 3\cos(t) \right].$$

Example

Find all the solutions to the inhomogeneous equation

$$y'' - 3y' - 4y = 3e^{2t} + 2\sin(t).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find all the solutions to the inhomogeneous equation

$$y'' - 3y' - 4y = 3e^{2t} + 2\sin(t).$$

Solution: We know that the general solution y is given by

$$y(t) = y_h(t) + y_{p_1}(t) + y_{p_2}(t),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find all the solutions to the inhomogeneous equation

$$y'' - 3y' - 4y = 3e^{2t} + 2\sin(t).$$

Solution: We know that the general solution y is given by

$$y(t) = y_h(t) + y_{p_1}(t) + y_{p_2}(t),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $y_h(t) = c_1 e^{4t} + c_2 e^{2t}$,

Example

Find all the solutions to the inhomogeneous equation

$$y'' - 3y' - 4y = 3e^{2t} + 2\sin(t).$$

Solution: We know that the general solution y is given by

$$y(t) = y_h(t) + y_{p_1}(t) + y_{p_2}(t),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $y_h(t) = c_1 e^{4t} + c_2 e^{2t}$, $L(y_{p_1}) = 3e^{2t}$,

Example

Find all the solutions to the inhomogeneous equation

$$y'' - 3y' - 4y = 3e^{2t} + 2\sin(t).$$

Solution: We know that the general solution y is given by

$$y(t) = y_h(t) + y_{p_1}(t) + y_{p_2}(t),$$

where $y_h(t) = c_1 e^{4t} + c_2 e^{2t}$, $L(y_{p_1}) = 3e^{2t}$, and $L(y_{p_2}) = 2\sin(t)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find all the solutions to the inhomogeneous equation

$$y'' - 3y' - 4y = 3e^{2t} + 2\sin(t).$$

Solution: We know that the general solution y is given by

$$y(t) = y_h(t) + y_{p_1}(t) + y_{p_2}(t),$$

where $y_h(t) = c_1 e^{4t} + c_2 e^{2t}$, $L(y_{p_1}) = 3e^{2t}$, and $L(y_{p_2}) = 2\sin(t)$. We have just found out that

$$y_p(t) = -\frac{1}{2} e^{2t}, \qquad y_{p_2}(t) = \frac{1}{17} \left[-5\sin(t) + 3\cos(t)\right].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find all the solutions to the inhomogeneous equation

$$y'' - 3y' - 4y = 3e^{2t} + 2\sin(t).$$

Solution: We know that the general solution y is given by

$$y(t) = y_h(t) + y_{p_1}(t) + y_{p_2}(t),$$

where $y_h(t) = c_1 e^{4t} + c_2 e^{2t}$, $L(y_{p_1}) = 3e^{2t}$, and $L(y_{p_2}) = 2\sin(t)$. We have just found out that

$$y_{p}(t) = -\frac{1}{2}e^{2t}, \qquad y_{p_{2}}(t) = \frac{1}{17}\left[-5\sin(t) + 3\cos(t)\right].$$

We conclude that

$$y(t) = c_1 e^{4t} + c_2 e^{2t} - \frac{1}{2} e^{2t} + \frac{1}{17} \left[-5\sin(t) + 3\cos(t) \right].$$

Example

• For
$$y'' - 3y' - 4y = 3e^{2t}\sin(t)$$
,

Example

• For
$$y'' - 3y' - 4y = 3e^{2t}\sin(t)$$
, guess

 $y_p(t) = [k_1 \sin(t) + k_2 \cos(t)] e^{2t}.$

Example

• For
$$y'' - 3y' - 4y = 3e^{2t} \sin(t)$$
, guess
 $y_p(t) = [k_1 \sin(t) + k_2 \cos(t)] e^{2t}$.

• For
$$y'' - 3y' - 4y = 2t^2 e^{3t}$$
,

Example

• For
$$y'' - 3y' - 4y = 3e^{2t} \sin(t)$$
, guess
 $y_p(t) = [k_1 \sin(t) + k_2 \cos(t)] e^{2t}$.

► For
$$y'' - 3y' - 4y = 2t^2 e^{3t}$$
, guess
 $y_p(t) = (k_0 + k_1 t + k_2 t^2) e^{3t}$.

Example

► For
$$y'' - 3y' - 4y = 3e^{2t} \sin(t)$$
, guess
 $y_p(t) = [k_1 \sin(t) + k_2 \cos(t)] e^{2t}$.

► For
$$y'' - 3y' - 4y = 2t^2 e^{3t}$$
, guess
 $y_p(t) = (k_0 + k_1 t + k_2 t^2) e^{3t}$.

• For
$$y'' - 3y' - 4y = 3t \sin(t)$$
,

Example

► For
$$y'' - 3y' - 4y = 3e^{2t} \sin(t)$$
, guess
 $y_p(t) = [k_1 \sin(t) + k_2 \cos(t)] e^{2t}$.

► For
$$y'' - 3y' - 4y = 2t^2 e^{3t}$$
, guess
 $y_p(t) = (k_0 + k_1t + k_2t^2) e^{3t}$.

► For
$$y'' - 3y' - 4y = 3t \sin(t)$$
, guess
 $y_p(t) = (1 + k_1 t) [k_2 \sin(t) + k_3 \cos(t)].$

Non-homogeneous equations (Sect. 3.5).

- We study: $y'' + a_1 y' + a_0 y = b(t)$.
- Operator notation and preliminary results.
- Summary of the undetermined coefficients method.

- Using the method in few examples.
- The guessing solution table.

The guessing solution table.

Guessing Solution Table.

$f_i(t)$ (K, m, a, b, given.)	$y_{p_i}(t)$ (Guess) (k not given.)
Ke ^{at}	ke ^{at}
Kt ^m	$k_m t^m + k_{m-1} t^{m-1} + \dots + k_0$
K cos(bt)	$k_1\cos(bt)+k_2\sin(bt)$
K sin(bt)	$k_1\cos(bt)+k_2\sin(bt)$
Kt ^m e ^{at}	$e^{at}(k_mt^m+\cdots+k_0)$
$Ke^{at}\cos(bt)$	$e^{at}[k_1\cos(bt)+k_2\sin(bt)]$
<i>KKe^{at}</i> sin(<i>bt</i>)	$e^{at}[k_1\cos(bt)+k_2\sin(bt)]$
$Kt^m \cos(bt)$	$(k_m t^m + \cdots + k_0) [a_1 \cos(bt) + a_2 \sin(bt)]$
$Kt^m \sin(bt)$	$(k_m t^m + \cdots + k_0) [a_1 \cos(bt) + a_2 \sin(bt)]$

Non-homogeneous equations (Sect. 3.6).

- We study: y'' + p(t)y' + q(t)y = f(t).
- Method of variation of parameters.
- Using the method in an example.
- The proof of the variation of parameter method.

Using the method in another example.

Remarks:

 This is a general method to find solutions to equations having variable coefficients and non-homogeneous with a continuous but otherwise arbitrary source function,

$$y'' + p(t) y' + q(t) y = f(t).$$

Remarks:

 This is a general method to find solutions to equations having variable coefficients and non-homogeneous with a continuous but otherwise arbitrary source function,

$$y'' + p(t) y' + q(t) y = f(t).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The variation of parameter method can be applied to more general equations than the undetermined coefficients method.

Remarks:

 This is a general method to find solutions to equations having variable coefficients and non-homogeneous with a continuous but otherwise arbitrary source function,

$$y'' + p(t) y' + q(t) y = f(t).$$

- The variation of parameter method can be applied to more general equations than the undetermined coefficients method.
- The variation of parameter method usually takes more time to implement than the simpler method of undetermined coefficients.

Theorem (Variation of parameters)

Let $p, q, f: (t_1, t_2) \to \mathbb{R}$ be continuous functions, let y_1 , $y_2: (t_1, t_2) \to \mathbb{R}$ be linearly independent solutions to the homogeneous equation

y'' + p(t) y' + q(t) y = 0,

and let $W_{y_1y_2}$ be the Wronskian of y_1 and y_2 . If the functions u_1 and u_2 are defined by

$$u_1(t) = \int -\frac{y_2(t)f(t)}{W_{y_1y_2}(t)} dt, \qquad u_2(t) = \int \frac{y_1(t)f(t)}{W_{y_1y_2}(t)} dt,$$

then the function $y_p = u_1y_1 + u_2y_2$ is a particular solution to the non-homogeneous equation

$$y'' + p(t) y' + q(t) y = f(t).$$

Non-homogeneous equations (Sect. 3.6).

- We study: y'' + p(t)y' + q(t)y = f(t).
- Method of variation of parameters.
- Using the method in an example.
- The proof of the variation of parameter method.

• Using the method in another example.

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution:

First: Find fundamental solutions to the homogeneous equation.

(ロ)、(型)、(E)、(E)、 E、 のQの

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution:

First: Find fundamental solutions to the homogeneous equation. The characteristic equation is

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $r^2 - 5r + 6 = 0$

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution:

First: Find fundamental solutions to the homogeneous equation. The characteristic equation is

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

$$r^2 - 5r + 6 = 0 \quad \Rightarrow \quad r = \frac{1}{2} (5 \pm \sqrt{25 - 24})$$

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution:

First: Find fundamental solutions to the homogeneous equation. The characteristic equation is

$$r^2 - 5r + 6 = 0 \quad \Rightarrow \quad r = \frac{1}{2} (5 \pm \sqrt{25 - 24}) \quad \Rightarrow \quad \begin{cases} r_1 = 3, \\ r_2 = 2. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution:

First: Find fundamental solutions to the homogeneous equation. The characteristic equation is

$$r^{2}-5r+6=0 \Rightarrow r=\frac{1}{2}(5\pm\sqrt{25-24}) \Rightarrow \begin{cases} r_{1}=3, \\ r_{2}=2. \end{cases}$$

・ロト・日本・日本・日本・日本・今日・

Hence, $y_1(t) = e^{3t}$ and $y_2(t) = e^{2t}$.

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution:

First: Find fundamental solutions to the homogeneous equation. The characteristic equation is

$$r^2 - 5r + 6 = 0 \quad \Rightarrow \quad r = \frac{1}{2} (5 \pm \sqrt{25 - 24}) \quad \Rightarrow \quad \begin{cases} r_1 = 3, \\ r_2 = 2. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hence, $y_1(t) = e^{3t}$ and $y_2(t) = e^{2t}$. Compute their Wronskian,

$$W_{y_1y_2}(t) = (e^{3t})(2e^{2t}) - (3e^{3t})(e^{2t})$$

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution:

First: Find fundamental solutions to the homogeneous equation. The characteristic equation is

$$r^2 - 5r + 6 = 0 \quad \Rightarrow \quad r = \frac{1}{2} (5 \pm \sqrt{25 - 24}) \quad \Rightarrow \quad \begin{cases} r_1 = 3, \\ r_2 = 2. \end{cases}$$

Hence, $y_1(t) = e^{3t}$ and $y_2(t) = e^{2t}$. Compute their Wronskian,

$$W_{y_1y_2}(t) = (e^{3t})(2e^{2t}) - (3e^{3t})(e^{2t}) \quad \Rightarrow \quad W_{y_1y_2}(t) = -e^{5t}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution:

First: Find fundamental solutions to the homogeneous equation. The characteristic equation is

$$r^2 - 5r + 6 = 0 \quad \Rightarrow \quad r = \frac{1}{2} (5 \pm \sqrt{25 - 24}) \quad \Rightarrow \quad \begin{cases} r_1 = 3, \\ r_2 = 2. \end{cases}$$

Hence, $y_1(t) = e^{3t}$ and $y_2(t) = e^{2t}$. Compute their Wronskian,

$$W_{y_1y_2}(t) = (e^{3t})(2e^{2t}) - (3e^{3t})(e^{2t}) \quad \Rightarrow \quad W_{y_1y_2}(t) = -e^{5t}.$$

Second: We compute the functions u_1 and u_2 .

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution:

First: Find fundamental solutions to the homogeneous equation. The characteristic equation is

$$r^2 - 5r + 6 = 0 \quad \Rightarrow \quad r = \frac{1}{2} (5 \pm \sqrt{25 - 24}) \quad \Rightarrow \quad \begin{cases} r_1 = 3, \\ r_2 = 2. \end{cases}$$

Hence, $y_1(t) = e^{3t}$ and $y_2(t) = e^{2t}$. Compute their Wronskian,

$$W_{y_1y_2}(t) = (e^{3t})(2e^{2t}) - (3e^{3t})(e^{2t}) \quad \Rightarrow \quad W_{y_1y_2}(t) = -e^{5t}.$$

Second: We compute the functions u_1 and u_2 . By definition,

$$u'_1 = -\frac{y_2 f}{W_{y_1 y_2}}, \qquad u'_2 = \frac{y_1 f}{W_{y_1 y_2}}.$$
Example

Find the general solution of the inhomogeneous equation

$$y''-5y'+6y=2e^t.$$

Solution: Recall: $y_1(t) = e^{3t}$, $y_2(t) = e^{2t}$, $W_{y_1y_2}(t) = -e^{5t}$, and

$$u'_1 = -\frac{y_2 f}{W_{y_1 y_2}}, \qquad u'_2 = \frac{y_1 f}{W_{y_1 y_2}}.$$

Example

Find the general solution of the inhomogeneous equation

$$y''-5y'+6y=2e^t.$$

Solution: Recall: $y_1(t) = e^{3t}$, $y_2(t) = e^{2t}$, $W_{y_1y_2}(t) = -e^{5t}$, and

$$u_1' = -\frac{y_2 f}{W_{y_1 y_2}}, \qquad u_2' = \frac{y_1 f}{W_{y_1 y_2}}.$$

$$u_1' = -e^{2t}(2e^t)(-e^{-5t})$$

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution: Recall: $y_1(t) = e^{3t}$, $y_2(t) = e^{2t}$, $W_{y_1y_2}(t) = -e^{5t}$, and

$$u'_{1} = -\frac{y_{2}f}{W_{y_{1}y_{2}}}, \qquad u'_{2} = \frac{y_{1}f}{W_{y_{1}y_{2}}}.$$
$$u'_{1} = -e^{2t}(2e^{t})(-e^{-5t}) \quad \Rightarrow \quad u'_{1} = 2e^{-2t}$$

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution: Recall: $y_1(t) = e^{3t}$, $y_2(t) = e^{2t}$, $W_{y_1y_2}(t) = -e^{5t}$, and

$$u'_{1} = -\frac{y_{2}f}{W_{y_{1}y_{2}}}, \qquad u'_{2} = \frac{y_{1}f}{W_{y_{1}y_{2}}}.$$
$$u'_{1} = -e^{2t}(2e^{t})(-e^{-5t}) \implies u'_{1} = 2e^{-2t} \implies u_{1} = -e^{-2t},$$

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution: Recall: $y_1(t) = e^{3t}$, $y_2(t) = e^{2t}$, $W_{y_1y_2}(t) = -e^{5t}$, and

$$u_{1}' = -\frac{y_{2}f}{W_{y_{1}y_{2}}}, \qquad u_{2}' = \frac{y_{1}f}{W_{y_{1}y_{2}}}.$$
$$u_{1}' = -e^{2t}(2e^{t})(-e^{-5t}) \implies u_{1}' = 2e^{-2t} \implies u_{1} = -e^{-2t},$$
$$u_{2}' = e^{3t}(2e^{t})(-e^{-5t})$$

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution: Recall: $y_1(t) = e^{3t}$, $y_2(t) = e^{2t}$, $W_{y_1y_2}(t) = -e^{5t}$, and

$$u'_{1} = -\frac{y_{2}f}{W_{y_{1}y_{2}}}, \qquad u'_{2} = \frac{y_{1}f}{W_{y_{1}y_{2}}}.$$
$$u'_{1} = -e^{2t}(2e^{t})(-e^{-5t}) \quad \Rightarrow \quad u'_{1} = 2e^{-2t} \quad \Rightarrow \quad u_{1} = -e^{-2t},$$
$$u'_{2} = e^{3t}(2e^{t})(-e^{-5t}) \quad \Rightarrow \quad u'_{2} = -2e^{-t}$$

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution: Recall: $y_1(t) = e^{3t}$, $y_2(t) = e^{2t}$, $W_{y_1y_2}(t) = -e^{5t}$, and

$$u_{1}' = -\frac{y_{2}f}{W_{y_{1}y_{2}}}, \qquad u_{2}' = \frac{y_{1}f}{W_{y_{1}y_{2}}}.$$
$$u_{1}' = -e^{2t}(2e^{t})(-e^{-5t}) \implies u_{1}' = 2e^{-2t} \implies u_{1} = -e^{-2t},$$
$$u_{2}' = e^{3t}(2e^{t})(-e^{-5t}) \implies u_{2}' = -2e^{-t} \implies u_{2} = 2e^{-t}.$$

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution: Recall: $y_1(t) = e^{3t}$, $y_2(t) = e^{2t}$, $W_{y_1y_2}(t) = -e^{5t}$, and

$$u_{1}' = -\frac{y_{2}f}{W_{y_{1}y_{2}}}, \qquad u_{2}' = \frac{y_{1}f}{W_{y_{1}y_{2}}}.$$
$$u_{1}' = -e^{2t}(2e^{t})(-e^{-5t}) \quad \Rightarrow \quad u_{1}' = 2e^{-2t} \quad \Rightarrow \quad u_{1} = -e^{-2t},$$
$$u_{2}' = e^{3t}(2e^{t})(-e^{-5t}) \quad \Rightarrow \quad u_{2}' = -2e^{-t} \quad \Rightarrow \quad u_{2} = 2e^{-t}.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Third: The particular solution is

$$y_{p} = (-e^{-2t})(e^{3t}) + (2e^{-t})(e^{2t})$$

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution: Recall: $y_1(t) = e^{3t}$, $y_2(t) = e^{2t}$, $W_{y_1y_2}(t) = -e^{5t}$, and

$$u'_{1} = -\frac{y_{2}f}{W_{y_{1}y_{2}}}, \qquad u'_{2} = \frac{y_{1}f}{W_{y_{1}y_{2}}}.$$
$$u'_{1} = -e^{2t}(2e^{t})(-e^{-5t}) \quad \Rightarrow \quad u'_{1} = 2e^{-2t} \quad \Rightarrow \quad u_{1} = -e^{-2t},$$
$$u'_{2} = e^{3t}(2e^{t})(-e^{-5t}) \quad \Rightarrow \quad u'_{2} = -2e^{-t} \quad \Rightarrow \quad u_{2} = 2e^{-t}.$$

Third: The particular solution is

$$y_{\rho} = (-e^{-2t})(e^{3t}) + (2e^{-t})(e^{2t}) \quad \Rightarrow \quad y_{\rho} = e^{t}.$$

Example

Find the general solution of the inhomogeneous equation

$$y^{\prime\prime}-5y^{\prime}+6y=2e^t.$$

Solution: Recall: $y_1(t) = e^{3t}$, $y_2(t) = e^{2t}$, $W_{y_1y_2}(t) = -e^{5t}$, and

$$u'_{1} = -\frac{y_{2}f}{W_{y_{1}y_{2}}}, \qquad u'_{2} = \frac{y_{1}f}{W_{y_{1}y_{2}}}.$$
$$u'_{1} = -e^{2t}(2e^{t})(-e^{-5t}) \quad \Rightarrow \quad u'_{1} = 2e^{-2t} \quad \Rightarrow \quad u_{1} = -e^{-2t},$$
$$u'_{2} = e^{3t}(2e^{t})(-e^{-5t}) \quad \Rightarrow \quad u'_{2} = -2e^{-t} \quad \Rightarrow \quad u_{2} = 2e^{-t}.$$

Third: The particular solution is

$$y_p = (-e^{-2t})(e^{3t}) + (2e^{-t})(e^{2t}) \quad \Rightarrow \quad y_p = e^t.$$

The general solution is $y(t) = c_1 e^{3t} + c_2 e^{2t} + e^t$, $c_1, c_2 \in \mathbb{R}$.

Non-homogeneous equations (Sect. 3.6).

- We study: y'' + p(t)y' + q(t)y = f(t).
- Method of variation of parameters.
- Using the method in an example.
- ► The proof of the variation of parameter method.

Using the method in another example.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Proof: Denote L(y) = y'' + p(t)y' + q(t)y.

・ロト・日本・モート モー うへぐ

Proof: Denote L(y) = y'' + p(t)y' + q(t)y. We need to find y_p solution of $L(y_p) = f$.

Proof: Denote L(y) = y'' + p(t) y' + q(t) y. We need to find y_p solution of $L(y_p) = f$. We know y_1 and y_2 solutions of $L(y_1) = 0$ and $L(y_2) = 0$.

・ロト・日本・モート モー うへぐ

Proof: Denote L(y) = y'' + p(t) y' + q(t) y. We need to find y_p solution of $L(y_p) = f$. We know y_1 and y_2 solutions of $L(y_1) = 0$ and $L(y_2) = 0$. Idea: The reduction of order method:

Proof: Denote L(y) = y'' + p(t)y' + q(t)y.

We need to find y_p solution of $L(y_p) = f$.

We know y_1 and y_2 solutions of $L(y_1) = 0$ and $L(y_2) = 0$.

Idea: The reduction of order method: Find y_2 proposing $y_2 = uy_1$.

Proof: Denote L(y) = y'' + p(t) y' + q(t) y. We need to find y_p solution of $L(y_p) = f$. We know y_1 and y_2 solutions of $L(y_1) = 0$ and $L(y_2) = 0$. Idea: The reduction of order method: Find y_2 proposing $y_2 = uy_1$. First idea: Propose that y_p is given by $y_p = u_1y_1 + u_2y_2$.

Proof: Denote L(y) = y'' + p(t) y' + q(t) y. We need to find y_p solution of $L(y_p) = f$. We know y_1 and y_2 solutions of $L(y_1) = 0$ and $L(y_2) = 0$. Idea: The reduction of order method: Find y_2 proposing $y_2 = uy_1$. First idea: Propose that y_p is given by $y_p = u_1y_1 + u_2y_2$.

We hope that the equation for u_1 and u_2 will be simpler than the original equation for y_p ,

Proof: Denote L(y) = y'' + p(t) y' + q(t) y.

We need to find y_p solution of $L(y_p) = f$.

We know y_1 and y_2 solutions of $L(y_1) = 0$ and $L(y_2) = 0$.

Idea: The reduction of order method: Find y_2 proposing $y_2 = uy_1$.

First idea: Propose that y_p is given by $y_p = u_1y_1 + u_2y_2$.

We hope that the equation for u_1 and u_2 will be simpler than the original equation for y_p , since y_1 and y_2 are solutions to the homogeneous equation.

Proof: Denote L(y) = y'' + p(t)y' + q(t)y.

We need to find y_p solution of $L(y_p) = f$.

We know y_1 and y_2 solutions of $L(y_1) = 0$ and $L(y_2) = 0$.

Idea: The reduction of order method: Find y_2 proposing $y_2 = uy_1$. First idea: Propose that y_p is given by $y_p = u_1y_1 + u_2y_2$.

We hope that the equation for u_1 and u_2 will be simpler than the original equation for y_p , since y_1 and y_2 are solutions to the homogeneous equation. Compute:

$$y'_p = u'_1y_1 + u_1y'_1 + u'_2y_2 + u_2y'_2,$$

Proof: Denote L(y) = y'' + p(t)y' + q(t)y.

We need to find y_p solution of $L(y_p) = f$.

We know y_1 and y_2 solutions of $L(y_1) = 0$ and $L(y_2) = 0$.

Idea: The reduction of order method: Find y_2 proposing $y_2 = uy_1$. First idea: Propose that y_p is given by $y_p = u_1y_1 + u_2y_2$.

We hope that the equation for u_1 and u_2 will be simpler than the original equation for y_p , since y_1 and y_2 are solutions to the homogeneous equation. Compute:

$$y'_{p} = u'_{1}y_{1} + u_{1}y'_{1} + u'_{2}y_{2} + u_{2}y'_{2},$$

$$y_p'' = u_1''y_1 + 2u_1'y_1' + u_1y_1'' + u_2''y_2 + 2u_2'y_2' + u_2y_2''.$$

The proof of the variation of parameter method. Proof: Then $L(y_p) = f$ is given by

$$\left[u_1''y_1 + 2u_1'y_1' + u_1y_1'' + u_2''y_2 + 2u_2'y_2' + u_2y_2''\right]$$

 $p(t)[u'_1y_1 + u_1y'_1 + u'_2y_2 + u_2y'_2] + q(t)[u_1y_1 + u_2y_2] = f(t).$

The proof of the variation of parameter method. Proof: Then $L(y_p) = f$ is given by

$$\left[u_1''y_1 + 2u_1'y_1' + u_1y_1'' + u_2''y_2 + 2u_2'y_2' + u_2y_2''\right]$$

 $p(t)[u'_1y_1 + u_1y'_1 + u'_2y_2 + u_2y'_2] + q(t)[u_1y_1 + u_2y_2] = f(t).$

$$u_1''y_1 + u_2''y_2 + 2(u_1'y_1' + u_2y_2') + p(u_1'y_1 + u_2'y_2)$$

+ $u_1(y_1'' + py_1' + qy_1) + u_2(y_2'' + py_2' + qy_2) = f$

The proof of the variation of parameter method. **Proof:** Then $L(y_p) = f$ is given by $\left[u_{1}^{\prime\prime}v_{1}+2u_{1}^{\prime}v_{1}^{\prime}+u_{1}v_{1}^{\prime\prime}+u_{2}^{\prime\prime}v_{2}+2u_{2}^{\prime}v_{2}^{\prime}+u_{2}v_{2}^{\prime\prime}\right]$ $p(t)\left[u_1'y_1+u_1y_1'+u_2'y_2+u_2y_2'\right]+q(t)\left[u_1y_1+u_2y_2\right]=f(t).$ $u_1'' v_1 + u_2'' v_2 + 2(u_1' v_1' + u_2 v_2') + p(u_1' v_1 + u_2' v_2)$ $+u_1(v_1'' + p v_1' + q v_1) + u_2(v_2'' + p v_2' + q v_2) = f$

Recall: $y_1'' + p y_1' + q y_1 = 0$ and $y_2'' + p y_2' + q y_2 = 0$.

The proof of the variation of parameter method. Proof: Then $L(y_p) = f$ is given by $\begin{bmatrix} u_1''y_1 + 2u_1'y_1' + u_1y_1'' + u_2''y_2 + 2u_2'y_2' + u_2y_2'' \end{bmatrix}$ $p(t) \begin{bmatrix} u_1'y_1 + u_1y_1' + u_2'y_2 + u_2y_2' \end{bmatrix} + q(t) \begin{bmatrix} u_1y_1 + u_2y_2 \end{bmatrix} = f(t).$ $u_1''y_1 + u_2''y_2 + 2(u_1'y_1' + u_2y_2') + p(u_1'y_1 + u_2'y_2)$

$$+u_1(y_1'' + p y_1' + q y_1) + u_2(y_2'' + p y_2' + q y_2) = f$$

Recall: $y_1'' + p y_1' + q y_1 = 0$ and $y_2'' + p y_2' + q y_2 = 0$. Hence,

$$u_1''y_1 + u_2''y_2 + 2(u_1'y_1' + u_2'y_2') + p(u_1'y_1 + u_2'y_2) = f$$

The proof of the variation of parameter method. **Proof:** Then $L(y_p) = f$ is given by $\left[u_{1}^{\prime\prime}v_{1}+2u_{1}^{\prime}v_{1}^{\prime}+u_{1}v_{1}^{\prime\prime}+u_{2}^{\prime\prime}v_{2}+2u_{2}^{\prime}v_{2}^{\prime}+u_{2}v_{2}^{\prime\prime}\right]$ $p(t)\left[u_1'y_1+u_1y_1'+u_2'y_2+u_2y_2'\right]+q(t)\left[u_1y_1+u_2y_2\right]=f(t).$ $u_1'' v_1 + u_2'' v_2 + 2(u_1' v_1' + u_2 v_2') + p(u_1' v_1 + u_2' v_2)$ $+u_1(v_1'' + p v_1' + q v_1) + u_2(v_2'' + p v_2' + q v_2) = f$

Recall: $y_1'' + p y_1' + q y_1 = 0$ and $y_2'' + p y_2' + q y_2 = 0$. Hence,

$$u_1''y_1 + u_2''y_2 + 2(u_1'y_1' + u_2'y_2') + p(u_1'y_1 + u_2'y_2) = f$$

Second idea: Look for u_1 and u_2 that satisfy the extra equation

$$u_1'y_1 + u_2'y_2 = 0.$$

Proof: Recall: $u'_1y_1 + u'_2y_2 = 0$ and

 $u_1''y_1 + u_2''y_2 + 2(u_1'y_1' + u_2'y_2') + p(u_1'y_1 + u_2'y_2) = f.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof: Recall: $u'_1y_1 + u'_2y_2 = 0$ and

 $u_1''y_1 + u_2''y_2 + 2(u_1'y_1' + u_2'y_2') + p(u_1'y_1 + u_2'y_2) = f.$

These two equations imply that $L(y_p) = f$ is

 $u_1''y_1 + u_2''y_2 + 2(u_1'y_1' + u_2'y_2') = f.$

Proof: Recall: $u'_1y_1 + u'_2y_2 = 0$ and

 $u_1''y_1 + u_2''y_2 + 2(u_1'y_1' + u_2'y_2') + p(u_1'y_1 + u_2'y_2) = f.$

These two equations imply that $L(y_p) = f$ is

 $u_1''y_1 + u_2''y_2 + 2(u_1'y_1' + u_2'y_2') = f.$

From $u'_1y_1 + u'_2y_2 = 0$ we get $[u'_1y_1 + u'_2y_2]' = 0$,

Proof: Recall: $u'_1y_1 + u'_2y_2 = 0$ and

 $u_1''y_1 + u_2''y_2 + 2(u_1'y_1' + u_2'y_2') + p(u_1'y_1 + u_2'y_2) = f.$

These two equations imply that $L(y_p) = f$ is

 $u_1''y_1 + u_2''y_2 + 2(u_1'y_1' + u_2'y_2') = f.$

From $u'_1y_1 + u'_2y_2 = 0$ we get $[u'_1y_1 + u'_2y_2]' = 0$, that is

$$u_1''y_1 + u_2''y_2 + (u_1'y_1' + u_2'y_2') = 0.$$

Proof: Recall: $u'_1y_1 + u'_2y_2 = 0$ and

 $u_1''y_1 + u_2''y_2 + 2(u_1'y_1' + u_2'y_2') + p(u_1'y_1 + u_2'y_2) = f.$

These two equations imply that $L(y_p) = f$ is

 $u_1''y_1 + u_2''y_2 + 2(u_1'y_1' + u_2'y_2') = f.$

From $u'_1y_1 + u'_2y_2 = 0$ we get $[u'_1y_1 + u'_2y_2]' = 0$, that is

$$u_1''y_1 + u_2''y_2 + (u_1'y_1' + u_2'y_2') = 0.$$

This information in $L(y_p) = f$ implies

 $u_1'y_1' + u_2'y_2' = f.$

Proof: Recall: $u'_1y_1 + u'_2y_2 = 0$ and

 $u_1''y_1 + u_2''y_2 + 2(u_1'y_1' + u_2'y_2') + p(u_1'y_1 + u_2'y_2) = f.$

These two equations imply that $L(y_p) = f$ is

 $u_1''y_1 + u_2''y_2 + 2(u_1'y_1' + u_2'y_2') = f.$

From $u'_1y_1 + u'_2y_2 = 0$ we get $[u'_1y_1 + u'_2y_2]' = 0$, that is

$$u_1''y_1 + u_2''y_2 + (u_1'y_1' + u_2'y_2') = 0.$$

This information in $L(y_p) = f$ implies

$$u_1'y_1' + u_2'y_2' = f.$$

Summary: If u_1 and u_2 satisfy $u'_1y_1 + u'_2y_2 = 0$ and $u'_1y'_1 + u'_2y'_2 = f$, then $y_p = u_1y_1 + u_2y_2$ satisfies $L(y_p) = f$.

Proof: Summary: If u_1 and u_2 satisfy $u'_1y_1 + u'_2y_2 = 0$ and $u'_1y'_1 + u'_2y'_2 = f$, then $y_p = u_1y_1 + u_2y_2$ satisfies $L(y_p) = f$.

・ロト・日本・モート モー うへぐ

Proof: Summary: If u_1 and u_2 satisfy $u'_1y_1 + u'_2y_2 = 0$ and $u'_1y'_1 + u'_2y'_2 = f$, then $y_p = u_1y_1 + u_2y_2$ satisfies $L(y_p) = f$.

The equations above are simple to solve for u_1 and u_2 ,

Proof: Summary: If u_1 and u_2 satisfy $u'_1y_1 + u'_2y_2 = 0$ and $u'_1y'_1 + u'_2y'_2 = f$, then $y_p = u_1y_1 + u_2y_2$ satisfies $L(y_p) = f$.

The equations above are simple to solve for u_1 and u_2 ,

$$u_2' = -\frac{y_1}{y_2} u_1'$$

Proof: Summary: If u_1 and u_2 satisfy $u'_1y_1 + u'_2y_2 = 0$ and $u'_1y'_1 + u'_2y'_2 = f$, then $y_p = u_1y_1 + u_2y_2$ satisfies $L(y_p) = f$.

The equations above are simple to solve for u_1 and u_2 ,

$$u'_{2} = -\frac{y_{1}}{y_{2}} u'_{1} \quad \Rightarrow \quad u'_{1}y'_{1} - \frac{y_{1}y'_{2}}{y_{2}} u'_{1} = f$$
Proof: Summary: If u_1 and u_2 satisfy $u'_1y_1 + u'_2y_2 = 0$ and $u'_1y'_1 + u'_2y'_2 = f$, then $y_p = u_1y_1 + u_2y_2$ satisfies $L(y_p) = f$.

The equations above are simple to solve for u_1 and u_2 ,

$$u_2' = -\frac{y_1}{y_2} u_1' \quad \Rightarrow \quad u_1' y_1' - \frac{y_1 y_2'}{y_2} u_1' = f \quad \Rightarrow \quad u_1' \left(\frac{y_1' y_2 - y_1 y_2'}{y_2} \right) = f.$$

Proof: Summary: If u_1 and u_2 satisfy $u'_1y_1 + u'_2y_2 = 0$ and $u'_1y'_1 + u'_2y'_2 = f$, then $y_p = u_1y_1 + u_2y_2$ satisfies $L(y_p) = f$.

The equations above are simple to solve for u_1 and u_2 ,

$$u'_{2} = -\frac{y_{1}}{y_{2}} u'_{1} \Rightarrow u'_{1} y'_{1} - \frac{y_{1}y'_{2}}{y_{2}} u'_{1} = f \Rightarrow u'_{1} \left(\frac{y'_{1}y_{2} - y_{1}y'_{2}}{y_{2}}\right) = f.$$

Since $W_{y_1y_2} = y_1y_2' - y_1'y_2$,

Proof: Summary: If u_1 and u_2 satisfy $u'_1y_1 + u'_2y_2 = 0$ and $u'_1y'_1 + u'_2y'_2 = f$, then $y_p = u_1y_1 + u_2y_2$ satisfies $L(y_p) = f$.

The equations above are simple to solve for u_1 and u_2 ,

$$u_{2}' = -\frac{y_{1}}{y_{2}}u_{1}' \quad \Rightarrow \quad u_{1}'y_{1}' - \frac{y_{1}y_{2}'}{y_{2}}u_{1}' = f \quad \Rightarrow \quad u_{1}'\left(\frac{y_{1}'y_{2} - y_{1}y_{2}'}{y_{2}}\right) = f.$$

Since $W_{y_{1}y_{2}} = y_{1}y_{2}' - y_{1}'y_{2},$
 $u_{1}' = -\frac{y_{2}f}{W_{y_{1}y_{2}}}$

Proof: Summary: If u_1 and u_2 satisfy $u'_1y_1 + u'_2y_2 = 0$ and $u'_1y'_1 + u'_2y'_2 = f$, then $y_p = u_1y_1 + u_2y_2$ satisfies $L(y_p) = f$.

The equations above are simple to solve for u_1 and u_2 ,

$$u'_{2} = -\frac{y_{1}}{y_{2}}u'_{1} \Rightarrow u'_{1}y'_{1} - \frac{y_{1}y'_{2}}{y_{2}}u'_{1} = f \Rightarrow u'_{1}\left(\frac{y'_{1}y_{2} - y_{1}y'_{2}}{y_{2}}\right) = f.$$

Since $W_{y_1y_2} = y_1y_2' - y_1'y_2$,

$$u'_1 = -\frac{y_2 f}{W_{y_1 y_2}} \quad \Rightarrow \quad u'_2 = \frac{y_1 f}{W_{y_1 y_2}}.$$

Proof: Summary: If u_1 and u_2 satisfy $u'_1y_1 + u'_2y_2 = 0$ and $u'_1y'_1 + u'_2y'_2 = f$, then $y_p = u_1y_1 + u_2y_2$ satisfies $L(y_p) = f$.

The equations above are simple to solve for u_1 and u_2 ,

$$u'_{2} = -\frac{y_{1}}{y_{2}} u'_{1} \quad \Rightarrow \quad u'_{1}y'_{1} - \frac{y_{1}y'_{2}}{y_{2}} u'_{1} = f \quad \Rightarrow \quad u'_{1} \left(\frac{y'_{1}y_{2} - y_{1}y'_{2}}{y_{2}}\right) = f.$$

Since $W_{y_1y_2} = y_1y_2' - y_1'y_2$,

$$u_1' = -\frac{y_2 f}{W_{y_1 y_2}} \quad \Rightarrow \quad u_2' = \frac{y_1 f}{W_{y_1 y_2}}.$$

Integrating in the variable t we obtain

$$u_1(t) = \int -rac{y_2(t)f(t)}{W_{y_1y_2}(t)} \, dt, \qquad u_2(t) = \int rac{y_1(t)f(t)}{W_{y_1y_2}(t)} \, dt,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This establishes the Theorem.

Non-homogeneous equations (Sect. 3.6).

- We study: y'' + p(t)y' + q(t)y = f(t).
- Method of variation of parameters.
- Using the method in an example.
- The proof of the variation of parameter method.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Using the method in another example.

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

- ロ ト - 4 回 ト - 4 □ - 4

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: First, write the equation in the form of the Theorem.

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^2 ,

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^2 ,

$$y'' - \frac{2}{t^2}y = 3 - \frac{1}{t^2}$$

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^2 ,

$$y'' - \frac{2}{t^2}y = 3 - \frac{1}{t^2} \quad \Rightarrow \quad f(t) = 3 - \frac{1}{t^2}.$$

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^2 ,

$$y'' - \frac{2}{t^2}y = 3 - \frac{1}{t^2} \quad \Rightarrow \quad f(t) = 3 - \frac{1}{t^2}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We know that $y_1 = t^2$ and $y_2 = 1/t$.

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^2 ,

$$y'' - \frac{2}{t^2}y = 3 - \frac{1}{t^2} \quad \Rightarrow \quad f(t) = 3 - \frac{1}{t^2}.$$

We know that $y_1 = t^2$ and $y_2 = 1/t$. Their Wronskian is

$$W_{y_1y_2}(t) = (t^2) \left(\frac{-1}{t^2}\right) - (2t) \left(\frac{1}{t}\right)$$

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: First, write the equation in the form of the Theorem. That is, divide the whole equation by t^2 ,

$$y'' - \frac{2}{t^2}y = 3 - \frac{1}{t^2} \quad \Rightarrow \quad f(t) = 3 - \frac{1}{t^2}.$$

We know that $y_1 = t^2$ and $y_2 = 1/t$. Their Wronskian is

$$W_{y_1y_2}(t) = (t^2) \Big(\frac{-1}{t^2} \Big) - (2t) \Big(\frac{1}{t} \Big) \quad \Rightarrow \quad W_{y_1y_2}(t) = -3.$$

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution:
$$y_1 = t^2$$
, $y_2 = 1/t$, $f(t) = 3 - \frac{1}{t^2}$, $W_{y_1y_2}(t) = -3$.

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution:
$$y_1 = t^2$$
, $y_2 = 1/t$, $f(t) = 3 - \frac{1}{t^2}$, $W_{y_1y_2}(t) = -3$.

We now compute y_1 and u_2 ,

$$u_1' = -\frac{1}{t} \left(3 - \frac{1}{t^2}\right) \frac{1}{-3}$$

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution:
$$y_1 = t^2$$
, $y_2 = 1/t$, $f(t) = 3 - \frac{1}{t^2}$, $W_{y_1y_2}(t) = -3$.

We now compute y_1 and u_2 ,

$$u_1' = -\frac{1}{t} \left(3 - \frac{1}{t^2}\right) \frac{1}{-3} = \frac{1}{t} - \frac{1}{3} t^{-3}$$

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution:
$$y_1 = t^2$$
, $y_2 = 1/t$, $f(t) = 3 - \frac{1}{t^2}$, $W_{y_1y_2}(t) = -3$.

We now compute y_1 and u_2 ,

$$u_1' = -rac{1}{t} \left(3 - rac{1}{t^2}
ight) rac{1}{-3} = rac{1}{t} - rac{1}{3} t^{-3} \quad \Rightarrow \quad u_1 = \ln(t) + rac{1}{6} t^{-2},$$

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution:
$$y_1 = t^2$$
, $y_2 = 1/t$, $f(t) = 3 - \frac{1}{t^2}$, $W_{y_1y_2}(t) = -3$.

We now compute y_1 and u_2 ,

$$u_1' = -\frac{1}{t} \left(3 - \frac{1}{t^2}\right) \frac{1}{-3} = \frac{1}{t} - \frac{1}{3} t^{-3} \Rightarrow u_1 = \ln(t) + \frac{1}{6} t^{-2},$$

$$u_2' = (t^2) \left(3 - \frac{1}{t^2}\right) \frac{1}{-3}$$

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution:
$$y_1 = t^2$$
, $y_2 = 1/t$, $f(t) = 3 - \frac{1}{t^2}$, $W_{y_1y_2}(t) = -3$.

We now compute y_1 and u_2 ,

$$u_1' = -rac{1}{t} \left(3 - rac{1}{t^2}
ight) rac{1}{-3} = rac{1}{t} - rac{1}{3} t^{-3} \quad \Rightarrow \quad u_1 = \ln(t) + rac{1}{6} t^{-2},$$

$$u_2' = (t^2) \left(3 - \frac{1}{t^2}\right) \frac{1}{-3} = -t^2 + \frac{1}{3}$$

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution:
$$y_1 = t^2$$
, $y_2 = 1/t$, $f(t) = 3 - \frac{1}{t^2}$, $W_{y_1y_2}(t) = -3$.

We now compute y_1 and u_2 ,

$$u_1' = -rac{1}{t} \left(3 - rac{1}{t^2}
ight) rac{1}{-3} = rac{1}{t} - rac{1}{3} t^{-3} \quad \Rightarrow \quad u_1 = \ln(t) + rac{1}{6} t^{-2},$$

$$u_2' = (t^2) \left(3 - rac{1}{t^2}
ight) rac{1}{-3} = -t^2 + rac{1}{3} \quad \Rightarrow \quad u_2 = -rac{1}{3} t^3 + rac{1}{3} t.$$

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: The particular solution $\tilde{y}_p = u_1 y_1 + u_2 y_2$ is

$$\tilde{y}_{\rho} = \left[\ln(t) + \frac{1}{6}t^{-2}\right](t^2) + \frac{1}{3}(-t^3 + t)(t^{-1})$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: The particular solution $\tilde{y}_p = u_1 y_1 + u_2 y_2$ is

$$\tilde{y}_{p} = \left[\ln(t) + \frac{1}{6}t^{-2} \right](t^{2}) + \frac{1}{3}(-t^{3} + t)(t^{-1})$$
$$\tilde{y}_{p} = t^{2}\ln(t) + \frac{1}{6} - \frac{1}{3}t^{2} + \frac{1}{3}$$

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: The particular solution $\tilde{y}_p = u_1 y_1 + u_2 y_2$ is

$$\tilde{y}_{p} = \left[\ln(t) + \frac{1}{6}t^{-2}\right](t^{2}) + \frac{1}{3}(-t^{3} + t)(t^{-1})$$
$$\tilde{y}_{p} = t^{2}\ln(t) + \frac{1}{6} - \frac{1}{3}t^{2} + \frac{1}{3} = t^{2}\ln(t) + \frac{1}{2} - \frac{1}{3}t^{2}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: The particular solution $\tilde{y}_p = u_1 y_1 + u_2 y_2$ is

$$\begin{split} \tilde{y}_{\rho} &= \Big[\ln(t) + \frac{1}{6}t^{-2} \Big] (t^2) + \frac{1}{3}(-t^3 + t)(t^{-1}) \\ \tilde{y}_{\rho} &= t^2 \ln(t) + \frac{1}{6} - \frac{1}{3}t^2 + \frac{1}{3} = t^2 \ln(t) + \frac{1}{2} - \frac{1}{3}t^2 \\ \tilde{y}_{\rho} &= t^2 \ln(t) + \frac{1}{2} - \frac{1}{3}y_1(t). \end{split}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: The particular solution $\tilde{y}_p = u_1 y_1 + u_2 y_2$ is

$$\begin{split} \tilde{y}_{p} &= \left[\ln(t) + \frac{1}{6}t^{-2} \right] (t^{2}) + \frac{1}{3}(-t^{3} + t)(t^{-1}) \\ \tilde{y}_{p} &= t^{2}\ln(t) + \frac{1}{6} - \frac{1}{3}t^{2} + \frac{1}{3} = t^{2}\ln(t) + \frac{1}{2} - \frac{1}{3}t^{2} \\ \tilde{y}_{p} &= t^{2}\ln(t) + \frac{1}{2} - \frac{1}{3}y_{1}(t). \end{split}$$
A simpler expression is $y_{p} = t^{2}\ln(t) + \frac{1}{2}.$

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: If we do not remember the formulas for u_1 , u_2 , we can always solve the system

 $u'_1y_1 + u'_2y_2 = 0$ $u'_1y'_1 + u'_2y'_2 = f.$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: If we do not remember the formulas for u_1 , u_2 , we can always solve the system

$$\begin{aligned} u_1'y_1 + u_2'y_2 &= 0\\ u_1'y_1' + u_2'y_2' &= f. \end{aligned}$$

$$t^2 u_1' + u_2'\frac{1}{t} = 0, \quad 2t u_1' + u_2'\frac{(-1)}{t^2} = 3 - \frac{1}{t^2}. \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

 $u_{2}' = -t^{3} u_{1}'$

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: If we do not remember the formulas for u_1 , u_2 , we can always solve the system

$$u'_{1}y_{1} + u'_{2}y_{2} = 0$$

$$u'_{1}y'_{1} + u'_{2}y'_{2} = f.$$

$$t^{2} u'_{1} + u'_{2}\frac{1}{t} = 0, \quad 2t u'_{1} + u'_{2}\frac{(-1)}{t^{2}} = 3 - \frac{1}{t^{2}}.$$

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: If we do not remember the formulas for u_1 , u_2 , we can always solve the system

$$u'_{1}y_{1} + u'_{2}y_{2} = 0$$

$$u'_{1}y'_{1} + u'_{2}y'_{2} = f.$$

$$t^{2} u'_{1} + u'_{2}\frac{1}{t} = 0, \quad 2t u'_{1} + u'_{2}\frac{(-1)}{t^{2}} = 3 - \frac{1}{t^{2}}.$$

$$u'_{2} = -t^{3} u'_{1} \Rightarrow 2t u'_{1} + t u'_{1} = 3 - \frac{1}{t^{2}}.$$

Example

Find a particular solution to the differential equation

$$t^2y'' - 2y = 3t^2 - 1,$$

knowing that the functions $y_1 = t^2$ and $y_2 = 1/t$ are solutions to the homogeneous equation $t^2y'' - 2y = 0$.

Solution: If we do not remember the formulas for u_1 , u_2 , we can always solve the system

$$u'_{1}y_{1} + u'_{2}y_{2} = 0$$

$$u'_{1}y'_{1} + u'_{2}y'_{2} = f.$$

$$t^{2} u'_{1} + u'_{2}\frac{1}{t} = 0, \quad 2t u'_{1} + u'_{2}\frac{(-1)}{t^{2}} = 3 - \frac{1}{t^{2}}.$$

$$u'_{2} = -t^{3} u'_{1} \Rightarrow 2t u'_{1} + t u'_{1} = 3 - \frac{1}{t^{2}} \Rightarrow \begin{cases} u'_{1} = \frac{1}{t} - \frac{1}{3t^{3}} \\ u'_{2} = -t^{2} + \frac{1}{3}. \end{cases}$$