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Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Summary:
Given constants a1, a0 ∈ R, consider the differential equation

y ′′ + a1y
′ + a0y = 0

with characteristic polynomial having roots

r± = −a1

2
± 1

2

√
a2

1 − 4a0.

(1) If a2
1 − 4a0 > 0, then y1(t) = er+t and y2(t) = er−t .

(2) If a2
1 − 4a0 < 0, then introducing α = −a1

2
, β =

1

2

√
4a0 − a2

1 ,

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).

(3) If a2
1 − 4a0 = 0, then y1(t) = e−

a1
2

t .
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Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Question:

Consider the case (3), with a2
1 − 4a0 = 0, that is, a0 =

a2
1

4
.

I Does the equation

y ′′ + a1y
′ +

a2
1

4
y = 0

have two linearly independent solutions?

I Or, every solution to the equation above is proportional to

y1(t) = e−
a1
2

t .
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Repeated roots as a limit case.

Remark:

I Case (3), where 4a0 − a2
1 = 0 can be obtained as the limit

β → 0 in case (2).

I Let us study the solutions of the differential equation in the
case (2) as β → 0 for fixed t.

I Since cos(βt) → 1 as β → 0, we conclude that

y1β(t) = e−
a1
2

t cos(βt) → e−
a1
2

t = y1(t).

I Since
sin(βt)

βt
→ 1 as β → 0, that is, sin(βt) → βt,

y2β(t) = e−
a1
2

t sin(βt) → βt e−
a1
2

t → 0.

I Is y2(t) = t y1(t) solution of the differential equation?
Introducing y2 in the differential equation one obtains: Yes.

I Since y2 is not proportional to y1, the functions y1, y2 are a
fundamental set for the differential equation in case (3).
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Main result for repeated roots.

Theorem
If a1, a0 ∈ R satisfy that a2

1 = 4a0, then the functions

y1(t) = e−
a1
2

t , y2(t) = t e−
a1
2

t ,

are a fundamental solution set for the differential equation

y ′′ + a1y
′ + a0y = 0.

Example

Find the general solution of 9y ′′ + 6y ′ + y = 0.

Solution: The characteristic equation is 9r2 + 6r + 1 = 0, so

r± =
1

(2)(9)

[
−6±

√
36− 36

]
⇒ r± = −1

3
.

The Theorem above implies that the general solution is

y(t) = (c1 + c2t) e−t/3. C
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Reduction of the order method: Constant coefficients.

Proof case a2
1 − 4a0 = 0:

Recall: The characteristic equation is r2 + a1r + a0 = 0,

and its
solutions are r± = (1/2)

[
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√
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1 − 4a0

]
.

The hypothesis a2
1 = 4a0 implies r+ = r− = −a1/2.

So, the solution r+ of the characteristic equation satisfies both

r2
+ + a1r+ + a0 = 0, 2r+ + a1 = 0.

It is clear that y1(t) = er+t is solutions of the differential equation.

A second solution y2 not proportional to y1 can be found as
follows: (D’Alembert ∼ 1750.)

Express: y2(t) = v(t) y1(t), and find the equation that function v
satisfies from the condition y ′′2 + a1y

′
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+ver+t .

Introducing this information into the differential equation[
v ′′ + 2r+v ′ + r2

+v
]
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[
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er+t + a0v er+t = 0.[
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(
2r+ + a1

)
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r2
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)
v = 0

Recall that r+ satisfies: r2
+ + a1r+ + a0 = 0 and 2r+ + a1 = 0.

v ′′ = 0 ⇒ v = (c1 + c2t) ⇒ y2 = (c1 + c2t) er+t .
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Reduction of the order method: Constant coefficients.

Recall: We have obtained that y2(t) = (c1 + c2t) er+t .

If c2 = 0, then y2 = c1e
r+t and y1 = er+t are linearly dependent

functions.

If c2 6= 0, then y2 = (c1 + c2t) er+t and y1 = er+t are linearly
independent functions.

Simplest choice: c1 = 0 and c2 = 1. Then, a fundamental solution
set to the differential equation is

y1(t) = er+t , y2(t) = t er+t

The general solution to the differential equation is

y(t) = (c1 + c2t) er+t .
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Reduction of the order method: Constant coefficients.

Example

Find the solution to the initial value problem

9y ′′ + 6y ′ + y = 0, y(0) = 1, y ′(0) =
5

3
.

Solution: The solutions of 9r2 + 6r + 1 = 0, are r+ = r− = −1

3
.

The Theorem above says that the general solution is

y(t) = c1e
−t/3 +c2te

−t/3 ⇒ y ′(t) = −c1

3
e−t/3 +c2

(
1− t

3

)
e−t/3.

The initial conditions imply that

1 = y(0) = c1,

5

3
= y ′(0) = −c1

3
+ c2

 ⇒ c1 = 1, c2 = 2.

We conclude that y(t) = (1 + 2t) e−t/3. C
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Reduction of the order method: Variable coefficients.

Remark: The same idea used to prove the constant coefficients
Theorem above can be used in variable coefficients equations.

Theorem
Given continuous functions p, q : (t1, t2) → R, let y1 : (t1, t2) → R
be a solution of

y ′′ + p(t) y ′ + q(t) y = 0,

If the function v : (t1, t2) → R is solution of

y1(t) v ′′ +
[
2y ′(t) + p(t)y1(t)

]
v ′ = 0. (1)

then the functions y1 and y2 = v y1 are fundamental solutions to
the differential equation above.

Remark: The reason for the name Reduction of order method is
that the function v does not appear in Eq. (1). This is a first order
equation in v ′.
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Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Express y2(t) = v(t) y1(t). The equation for v comes
from t2y ′′2 + 2ty ′2 − 2y2 = 0. We need to compute

y2 = v t, y ′2 = t v ′ + v , y ′′2 = t v ′′ + 2v ′.

So, the equation for v is given by

t2
(
t v ′′ + 2v ′

)
+ 2t

(
t v ′ + v

)
− 2t v = 0

t3 v ′′ + (2t2 + 2t2) v ′ + (2t − 2t) v = 0

t3 v ′′ + (4t2) v ′ = 0 ⇒ v ′′ +
4

t
v ′ = 0.
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Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′, given by w ′ +
4

t
w = 0, so

w ′

w
= −4

t
⇒ ln(w) = −4 ln(t) + c0 ⇒ w(t) = c1t

−4, c1 ∈ R.

Integrating w we obtain v , that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v we then conclude that y2 = c2t
−2 + c3t.

Choosing c2 = 1 and c3 = 0 we obtain the fundamental solutions

y1(t) = t and y2(t) =
1

t2
. C



Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′,

given by w ′ +
4

t
w = 0, so

w ′

w
= −4

t
⇒ ln(w) = −4 ln(t) + c0 ⇒ w(t) = c1t

−4, c1 ∈ R.

Integrating w we obtain v , that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v we then conclude that y2 = c2t
−2 + c3t.

Choosing c2 = 1 and c3 = 0 we obtain the fundamental solutions

y1(t) = t and y2(t) =
1

t2
. C



Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′, given by w ′ +
4

t
w = 0,

so

w ′

w
= −4

t
⇒ ln(w) = −4 ln(t) + c0 ⇒ w(t) = c1t

−4, c1 ∈ R.

Integrating w we obtain v , that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v we then conclude that y2 = c2t
−2 + c3t.

Choosing c2 = 1 and c3 = 0 we obtain the fundamental solutions

y1(t) = t and y2(t) =
1

t2
. C



Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′, given by w ′ +
4

t
w = 0, so

w ′

w
= −4

t

⇒ ln(w) = −4 ln(t) + c0 ⇒ w(t) = c1t
−4, c1 ∈ R.

Integrating w we obtain v , that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v we then conclude that y2 = c2t
−2 + c3t.

Choosing c2 = 1 and c3 = 0 we obtain the fundamental solutions

y1(t) = t and y2(t) =
1

t2
. C



Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′, given by w ′ +
4

t
w = 0, so

w ′

w
= −4

t
⇒ ln(w) = −4 ln(t) + c0

⇒ w(t) = c1t
−4, c1 ∈ R.

Integrating w we obtain v , that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v we then conclude that y2 = c2t
−2 + c3t.

Choosing c2 = 1 and c3 = 0 we obtain the fundamental solutions

y1(t) = t and y2(t) =
1

t2
. C



Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′, given by w ′ +
4

t
w = 0, so

w ′

w
= −4

t
⇒ ln(w) = −4 ln(t) + c0 ⇒ w(t) = c1t

−4, c1 ∈ R.

Integrating w we obtain v , that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v we then conclude that y2 = c2t
−2 + c3t.

Choosing c2 = 1 and c3 = 0 we obtain the fundamental solutions

y1(t) = t and y2(t) =
1

t2
. C



Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′, given by w ′ +
4

t
w = 0, so

w ′

w
= −4

t
⇒ ln(w) = −4 ln(t) + c0 ⇒ w(t) = c1t

−4, c1 ∈ R.

Integrating w we obtain v ,

that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v we then conclude that y2 = c2t
−2 + c3t.

Choosing c2 = 1 and c3 = 0 we obtain the fundamental solutions

y1(t) = t and y2(t) =
1

t2
. C



Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′, given by w ′ +
4

t
w = 0, so

w ′

w
= −4

t
⇒ ln(w) = −4 ln(t) + c0 ⇒ w(t) = c1t

−4, c1 ∈ R.

Integrating w we obtain v , that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v we then conclude that y2 = c2t
−2 + c3t.

Choosing c2 = 1 and c3 = 0 we obtain the fundamental solutions

y1(t) = t and y2(t) =
1

t2
. C



Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′, given by w ′ +
4

t
w = 0, so

w ′

w
= −4

t
⇒ ln(w) = −4 ln(t) + c0 ⇒ w(t) = c1t

−4, c1 ∈ R.

Integrating w we obtain v , that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v

we then conclude that y2 = c2t
−2 + c3t.

Choosing c2 = 1 and c3 = 0 we obtain the fundamental solutions

y1(t) = t and y2(t) =
1

t2
. C



Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′, given by w ′ +
4

t
w = 0, so

w ′

w
= −4

t
⇒ ln(w) = −4 ln(t) + c0 ⇒ w(t) = c1t

−4, c1 ∈ R.

Integrating w we obtain v , that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v we then conclude that y2 = c2t
−2 + c3t.

Choosing c2 = 1 and c3 = 0 we obtain the fundamental solutions

y1(t) = t and y2(t) =
1

t2
. C



Reduction of the order method: Variable coefficients.

Example

Find a fundamental set of solutions to

t2y ′′ + 2ty ′ − 2y = 0,

knowing that y1(t) = t is a solution.

Solution: Recall: v ′′ +
4

t
v ′ = 0.

This is a first order equation for w = v ′, given by w ′ +
4

t
w = 0, so

w ′

w
= −4

t
⇒ ln(w) = −4 ln(t) + c0 ⇒ w(t) = c1t

−4, c1 ∈ R.

Integrating w we obtain v , that is, v = c2t
−3 + c3, with c2, c3 ∈ R.

Recalling that y2 = t v we then conclude that y2 = c2t
−2 + c3t.

Choosing c2 = 1 and c3 = 0 we obtain the fundamental solutions

y1(t) = t and y2(t) =
1

t2
. C



Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of y2 = vy1 implies

y ′2 = v ′ y1 + v y ′1, y ′′2 = v ′′ y1 + 2v ′ y ′1 + v y ′′1 .

This information introduced into the differential equation says that

(v ′′ y1 + 2v ′ y ′1 + v y ′′1 ) + p (v ′ y1 + v y ′1) + qv y1 = 0

y1 v ′′ + (2y ′1 + p y1) v ′ + (y ′′1 + p y ′1 + q y1) v = 0.

The function y1 is solution of y ′′1 + p y ′1 + q y1 = 0.

Then, the equation for v is given by Eq. (1), that is,

y1 v ′′ + (2y ′1 + p y1) v ′ = 0.
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Non-homogeneous equations (Sect. 3.5).

I We study: y ′′ + a1 y ′ + a0 y = b(t).

I Operator notation and preliminary results.

I Summary of the undetermined coefficients method.

I Using the method in few examples.

I The guessing solution table.



Operator notation and preliminary results.

Notation: Given functions p, q, denote

L(y) = y ′′ + p(t) y ′ + q(t) y .

Therefore, the differential equation

y ′′ + p(t) y ′ + q(t) y = f (t)

can be written as
L(y) = f .

The homogeneous equation can be written as

L(y) = 0.

The function L acting on a function y is called an operator.
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Operator notation and preliminary results.

Remark: The operator L is a linear function of y .

Theorem
For every continuously differentiable functions y1, y2 : (t1, t2) → R
and every c1, c2 ∈ R holds that

L(c1y1 + c2y2) = c1L(y1) + c2L(y2).

Proof:

L(c1y1 +c2y2) = (c1y1 +c2y2)
′′+p(t) (c1y1 +c2y2)

′+q(t) (c1y1 +c2y2)

L(c1y1 + c2y2) =
(
c1y

′′
1 + p(t) c1y

′
1 + q(t) c1y1

)
+

(
c2y

′′
2 + p(t) c2y

′
2 + q(t) c2y2

)
L(c1y1 + c2y2) = c1L(y1) + c2L(y2).
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Operator notation and preliminary results.
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Given functions p, q, f , let L(y) = y ′′ + p(t) y ′ + q(t) y.
If the functions y1 and y2 are fundamental solutions of the
homogeneous equation

L(y) = 0,

and yp is any solution of the non-homogeneous equation

L(yp) = f , (2)

then any other solution y of the non-homogeneous equation above
is given by

y(t) = c1y1(t) + c2y2(t) + yp(t), (3)

where c1, c2 ∈ R.

Notation: The expression for y in Eq. (3) is called the general
solution of the non-homogeneous Eq. (2).
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Operator notation and preliminary results.

Theorem
Given functions p, q, let L(y) = y ′′ + p(t) y ′ + q(t) y.
If the function f can be written as f (t) = f1(t) + · · ·+ fn(t), with
n > 1, and if there exist functions yp1 , · · · , ypn such that

L(ypi ) = fi , i = 1, · · · , n,

then the function yp = yp1 + · · ·+ ypn satisfies the
non-homogeneous equation

L(yp) = f .
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Summary of the undetermined coefficients method.

Problem: Given a constant coefficients linear operator
L(y) = y ′′ + a1y

′ + a0y , with a1, a2 ∈ R, find every solution of the
non-homogeneous differential equation

L(y) = f .

Remarks:

I The undetermined coefficients is a method to find solutions to
linear, non-homogeneous, constant coefficients, differential
equations.

I It consists in guessing the solution yp of the non-homogeneous
equation

L(yp) = f ,

for particularly simple source functions f .
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Summary of the undetermined coefficients method.

Summary:

(1) Find the general solution of the homogeneous equation
L(yh) = 0.

(2) If f has the form f = f1 + · · ·+ fn, with n > 1, then look for
solutions ypi , with i = 1, · · · , n to the equations

L(ypi ) = fi .

Once the functions ypi are found, then construct

yp = yp1 + · · ·+ ypn .

(3) Given the source functions fi , guess the solutions functions ypi

following the Table below.
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Summary of the undetermined coefficients method.

Summary (cont.):

fi (t) (K , m, a, b, given.) ypi (t) (Guess) (k not given.)

Keat keat

Ktm kmtm + km−1t
m−1 + · · · + k0

K cos(bt) k1 cos(bt) + k2 sin(bt)

K sin(bt) k1 cos(bt) + k2 sin(bt)

Ktmeat eat(kmtm + · · · + k0)

Keat cos(bt) eat
ˆ
k1 cos(bt) + k2 sin(bt)

˜
KKeat sin(bt) eat

ˆ
k1 cos(bt) + k2 sin(bt)

˜
Ktm cos(bt)

`
kmtm + · · · + k0

´ˆ
a1 cos(bt) + a2 sin(bt)

˜
Ktm sin(bt)

`
kmtm + · · · + k0

´ˆ
a1 cos(bt) + a2 sin(bt)

˜



Summary of the undetermined coefficients method.

Summary (cont.):

(4) If any guessed function ypi satisfies the homogeneous equation
L(ypi ) = 0, then change the guess to the function

tsypi , with s > 1,

and s sufficiently large such that L(tsypi ) 6= 0.

(5) Impose the equation L(ypi ) = fi to find the undetermined
constants k1, · · · , km, for the appropriate m, given in the table
above.

(6) The general solution to the original differential equation
L(y) = f is then given by

y(t) = yh(t) + yp1 + · · ·+ ypn .
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Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y ′′ − 3y ′ − 4y = 3e2t .

Solution: Notice: L(y) = y ′′ − 3y ′ − 4y and f (t) = 3e2t .

(1) Find all solutions yh to the homogeneous equation L(yh) = 0.
The characteristic equation is

r2 − 3r − 4 = 0 ⇒

{
r1 = 4,

r2 = −1.

yh(t) = c1 e4t + c2 e−t .

(2) Trivial in our case. The source function f (t) = 3e2t cannot be
simplified into a sum of simpler functions.

(3) Table says: For f (t) = 3e2t guess yp(t) = k e2t
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Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y ′′ − 3y ′ − 4y = 3e2t .

Solution: Recall: yp(t) = k e2t . We need to find k.

(4) Trivial here, since L(yp) 6= 0, we do not modify our guess.
(Recall: L(yh) = 0 iff yh(t) = c1 e4t + c2 e−t .)

(5) Introduce yp into L(yp) = f and find k.

(22 − 6− 4)ke2t = 3e2t ⇒ −6k = 3 ⇒ k = −1

2
.

We have obtained that yp(t) = −1

2
e2t .

(6) The general solution to the inhomogeneous equation is

y(t) = c1e
4t + c2e

−t − 1

2
e2t . C
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Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y ′′ − 3y ′ − 4y = 3e4t .

Solution: We know that the general solution to homogeneous
equation is yh(t) = c1e

4t + c2e
−t .

Following the table we guess yp as yp = k e4t .

However, this guess satisfies L(yp) = 0.

So we modify the guess to yp = kt e4t .

Introduce the guess into L(yp) = f . We need to compute

y ′p = k e4t + 4kt e4t , y ′′p = 8k e4t + 16kt e4t .



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y ′′ − 3y ′ − 4y = 3e4t .

Solution: We know that the general solution to homogeneous
equation is yh(t) = c1e

4t + c2e
−t .

Following the table we guess yp as yp = k e4t .

However, this guess satisfies L(yp) = 0.

So we modify the guess to yp = kt e4t .

Introduce the guess into L(yp) = f . We need to compute

y ′p = k e4t + 4kt e4t , y ′′p = 8k e4t + 16kt e4t .



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y ′′ − 3y ′ − 4y = 3e4t .

Solution: We know that the general solution to homogeneous
equation is yh(t) = c1e

4t + c2e
−t .

Following the table we guess yp as yp = k e4t .

However, this guess satisfies L(yp) = 0.

So we modify the guess to yp = kt e4t .

Introduce the guess into L(yp) = f . We need to compute

y ′p = k e4t + 4kt e4t , y ′′p = 8k e4t + 16kt e4t .



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y ′′ − 3y ′ − 4y = 3e4t .

Solution: We know that the general solution to homogeneous
equation is yh(t) = c1e

4t + c2e
−t .

Following the table we guess yp as yp = k e4t .

However, this guess satisfies L(yp) = 0.

So we modify the guess to yp = kt e4t .

Introduce the guess into L(yp) = f . We need to compute

y ′p = k e4t + 4kt e4t , y ′′p = 8k e4t + 16kt e4t .



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y ′′ − 3y ′ − 4y = 3e4t .

Solution: We know that the general solution to homogeneous
equation is yh(t) = c1e

4t + c2e
−t .

Following the table we guess yp as yp = k e4t .

However, this guess satisfies L(yp) = 0.

So we modify the guess to yp = kt e4t .

Introduce the guess into L(yp) = f . We need to compute

y ′p = k e4t + 4kt e4t , y ′′p = 8k e4t + 16kt e4t .



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y ′′ − 3y ′ − 4y = 3e4t .

Solution: We know that the general solution to homogeneous
equation is yh(t) = c1e

4t + c2e
−t .

Following the table we guess yp as yp = k e4t .

However, this guess satisfies L(yp) = 0.

So we modify the guess to yp = kt e4t .

Introduce the guess into L(yp) = f .

We need to compute

y ′p = k e4t + 4kt e4t , y ′′p = 8k e4t + 16kt e4t .



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y ′′ − 3y ′ − 4y = 3e4t .

Solution: We know that the general solution to homogeneous
equation is yh(t) = c1e

4t + c2e
−t .

Following the table we guess yp as yp = k e4t .

However, this guess satisfies L(yp) = 0.

So we modify the guess to yp = kt e4t .

Introduce the guess into L(yp) = f . We need to compute

y ′p = k e4t + 4kt e4t , y ′′p = 8k e4t + 16kt e4t .



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y ′′ − 3y ′ − 4y = 3e4t .

Solution: Recall:

yp = kt e4t , y ′p = k e4t + 4kt e4t , y ′′p = 8k e4t + 16kt e4t .

[
(8k + 16kt)− 3(k + 4kt)− 4kt

]
e4t = 3e4t .[

(8+16t)−3(1+4t)−4t
]
k = 3 ⇒

[
5+(16−12−4) t

]
k = 3

We obtain that k =
3

5
. Therefore, yp(t) =

3

5
t e4t , and

y(t) = c1e
4t + c2e

−t +
3

5
t e4t . C
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Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

y ′′ − 3y ′ − 4y = 2 sin(t).

Solution: We know that the general solution to homogeneous
equation is y(t) = c1e

4t + c2e
−t .

Following the table: Since f = 2 sin(t), then we guess

yp = k1 sin(t) + k2 cos(t).

This guess satisfies L(yp) 6= 0.

Compute: y ′p = k1 cos(t)− k2 sin(t), y ′′p = −k1 sin(t)− k2 cos(t).

L(yp) = [−k1 sin(t)− k2 cos(t)]− 3[k1 cos(t)− k2 sin(t)]

−4[k1 sin(t) + k2 cos(t)] = 2 sin(t),
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2
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−5k1 + 3k2 = 2,

−3k1 − 5k2 = 0,
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,

k2 =
3
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We have just found out that

yp(t) = −1

2
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.
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y(t) = c1e
4t + c2e

2t − 1

2
e2t +

1

17

[
−5 sin(t) + 3 cos(t)

]
. C



Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

y ′′ − 3y ′ − 4y = 3e2t + 2 sin(t).

Solution: We know that the general solution y is given by

y(t) = yh(t) + yp1(t) + yp2(t),

where yh(t) = c1e
4t + c2e

2t , L(yp1) = 3e2t , and L(yp2) = 2 sin(t).
We have just found out that

yp(t) = −1

2
e2t , yp2(t) =

1

17

[
−5 sin(t) + 3 cos(t)

]
.

We conclude that

y(t) = c1e
4t + c2e

2t − 1

2
e2t +

1

17

[
−5 sin(t) + 3 cos(t)

]
. C



Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

y ′′ − 3y ′ − 4y = 3e2t + 2 sin(t).

Solution: We know that the general solution y is given by

y(t) = yh(t) + yp1(t) + yp2(t),

where yh(t) = c1e
4t + c2e

2t ,

L(yp1) = 3e2t , and L(yp2) = 2 sin(t).
We have just found out that

yp(t) = −1

2
e2t , yp2(t) =

1

17

[
−5 sin(t) + 3 cos(t)

]
.

We conclude that

y(t) = c1e
4t + c2e

2t − 1

2
e2t +

1

17

[
−5 sin(t) + 3 cos(t)

]
. C



Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

y ′′ − 3y ′ − 4y = 3e2t + 2 sin(t).

Solution: We know that the general solution y is given by

y(t) = yh(t) + yp1(t) + yp2(t),

where yh(t) = c1e
4t + c2e

2t , L(yp1) = 3e2t ,

and L(yp2) = 2 sin(t).
We have just found out that

yp(t) = −1

2
e2t , yp2(t) =

1

17

[
−5 sin(t) + 3 cos(t)

]
.

We conclude that

y(t) = c1e
4t + c2e

2t − 1

2
e2t +

1

17

[
−5 sin(t) + 3 cos(t)

]
. C



Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

y ′′ − 3y ′ − 4y = 3e2t + 2 sin(t).

Solution: We know that the general solution y is given by

y(t) = yh(t) + yp1(t) + yp2(t),

where yh(t) = c1e
4t + c2e

2t , L(yp1) = 3e2t , and L(yp2) = 2 sin(t).

We have just found out that

yp(t) = −1

2
e2t , yp2(t) =

1

17

[
−5 sin(t) + 3 cos(t)

]
.

We conclude that

y(t) = c1e
4t + c2e

2t − 1

2
e2t +

1

17

[
−5 sin(t) + 3 cos(t)

]
. C



Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

y ′′ − 3y ′ − 4y = 3e2t + 2 sin(t).

Solution: We know that the general solution y is given by

y(t) = yh(t) + yp1(t) + yp2(t),

where yh(t) = c1e
4t + c2e

2t , L(yp1) = 3e2t , and L(yp2) = 2 sin(t).
We have just found out that

yp(t) = −1

2
e2t , yp2(t) =

1

17

[
−5 sin(t) + 3 cos(t)

]
.

We conclude that

y(t) = c1e
4t + c2e

2t − 1

2
e2t +

1

17

[
−5 sin(t) + 3 cos(t)

]
. C



Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

y ′′ − 3y ′ − 4y = 3e2t + 2 sin(t).

Solution: We know that the general solution y is given by

y(t) = yh(t) + yp1(t) + yp2(t),

where yh(t) = c1e
4t + c2e

2t , L(yp1) = 3e2t , and L(yp2) = 2 sin(t).
We have just found out that

yp(t) = −1

2
e2t , yp2(t) =

1

17

[
−5 sin(t) + 3 cos(t)

]
.

We conclude that

y(t) = c1e
4t + c2e

2t − 1

2
e2t +

1

17

[
−5 sin(t) + 3 cos(t)

]
. C



Using the method in few examples.

Example

I For y ′′ − 3y ′ − 4y = 3e2t sin(t),

guess

yp(t) =
[
k1 sin(t) + k2 cos(t)

]
e2t .

I For y ′′ − 3y ′ − 4y = 2t2 e3t , guess

yp(t) =
(
k0 + k1t + k2t

2
)
e3t .

I For y ′′ − 3y ′ − 4y = 3t sin(t), guess

yp(t) = (1 + k1t)
[
k2 sin(t) + k3 cos(t)

]
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Non-homogeneous equations (Sect. 3.5).

I We study: y ′′ + a1 y ′ + a0 y = b(t).

I Operator notation and preliminary results.

I Summary of the undetermined coefficients method.

I Using the method in few examples.

I The guessing solution table.



The guessing solution table.

Guessing Solution Table.

fi (t) (K , m, a, b, given.) ypi (t) (Guess) (k not given.)

Keat keat

Ktm kmtm + km−1t
m−1 + · · · + k0

K cos(bt) k1 cos(bt) + k2 sin(bt)

K sin(bt) k1 cos(bt) + k2 sin(bt)

Ktmeat eat(kmtm + · · · + k0)

Keat cos(bt) eat
ˆ
k1 cos(bt) + k2 sin(bt)

˜
KKeat sin(bt) eat

ˆ
k1 cos(bt) + k2 sin(bt)

˜
Ktm cos(bt)

`
kmtm + · · · + k0

´ˆ
a1 cos(bt) + a2 sin(bt)

˜
Ktm sin(bt)

`
kmtm + · · · + k0

´ˆ
a1 cos(bt) + a2 sin(bt)

˜



Non-homogeneous equations (Sect. 3.6).
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Method of variation of parameters.

Remarks:

I This is a general method to find solutions to equations having
variable coefficients and non-homogeneous with a continuous
but otherwise arbitrary source function,

y ′′ + p(t) y ′ + q(t) y = f (t).

I The variation of parameter method can be applied to more
general equations than the undetermined coefficients method.

I The variation of parameter method usually takes more time to
implement than the simpler method of undetermined
coefficients.
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Method of variation of parameters.

Theorem (Variation of parameters)

Let p, q, f : (t1, t2) → R be continuous functions, let y1,
y2 : (t1, t2) → R be linearly independent solutions to the
homogeneous equation

y ′′ + p(t) y ′ + q(t) y = 0,

and let Wy1y2 be the Wronskian of y1 and y2. If the functions u1

and u2 are defined by

u1(t) =

∫
−y2(t)f (t)

Wy1y2(t)
dt, u2(t) =

∫
y1(t)f (t)

Wy1y2(t)
dt,

then the function yp = u1y1 + u2y2 is a particular solution to the
non-homogeneous equation

y ′′ + p(t) y ′ + q(t) y = f (t).
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Using the method in an example.

Example

Find the general solution of the inhomogeneous equation

y ′′ − 5y ′ + 6y = 2et .

Solution:
First: Find fundamental solutions to the homogeneous equation.
The characteristic equation is

r2 − 5r + 6 = 0 ⇒ r =
1

2

(
5±

√
25− 24

)
⇒

{
r1 = 3,

r2 = 2.

Hence, y1(t) = e3t and y2(t) = e2t . Compute their Wronskian,

Wy1y2(t) = (e3t)(2e2t)− (3e3t)(e2t) ⇒ Wy1y2(t) = −e5t .

Second: We compute the functions u1 and u2. By definition,

u′1 = − y2f

Wy1y2

, u′2 =
y1f

Wy1y2

.
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The general solution is y(t) = c1e
3t + c2e

2t + et , c1, c2 ∈ R. C
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Non-homogeneous equations (Sect. 3.6).

I We study: y ′′ + p(t) y ′ + q(t) y = f (t).

I Method of variation of parameters.

I Using the method in an example.

I The proof of the variation of parameter method.

I Using the method in another example.



The proof of the variation of parameter method.

Proof: Denote L(y) = y ′′ + p(t) y ′ + q(t) y .

We need to find yp solution of L(yp) = f .

We know y1 and y2 solutions of L(y1) = 0 and L(y2) = 0.

Idea: The reduction of order method: Find y2 proposing y2 = uy1.

First idea: Propose that yp is given by yp = u1y1 + u2y2.

We hope that the equation for u1 and u2 will be simpler than the
original equation for yp, since y1 and y2 are solutions to the
homogeneous equation. Compute:

y ′p = u′1y1 + u1y
′
1 + u′2y2 + u2y

′
2,

y ′′p = u′′1 y1 + 2u′1y
′
1 + u1y

′′
1 + u′′2 y2 + 2u′2y

′
2 + u2y

′′
2 .
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The proof of the variation of parameter method.

Proof: Summary: If u1 and u2 satisfy u′1y1 + u′2y2 = 0 and
u′1y

′
1 + u′2y

′
2 = f , then yp = u1y1 + u2y2 satisfies L(yp) = f .

The equations above are simple to solve for u1 and u2,

u′2 = −y1

y2

u′1 ⇒ u′1y
′
1−

y1y
′
2

y2

u′1 = f ⇒ u′1
(y ′1y2 − y1y

′
2

y2

)
= f .

Since Wy1y2 = y1y
′
2 − y ′1y2,

u′1 = − y2f

Wy1y2

⇒ u′2 =
y1f

Wy1y2

.

Integrating in the variable t we obtain

u1(t) =

∫
−y2(t)f (t)

Wy1y2(t)
dt, u2(t) =

∫
y1(t)f (t)

Wy1y2(t)
dt,

This establishes the Theorem.



The proof of the variation of parameter method.

Proof: Summary: If u1 and u2 satisfy u′1y1 + u′2y2 = 0 and
u′1y

′
1 + u′2y

′
2 = f , then yp = u1y1 + u2y2 satisfies L(yp) = f .

The equations above are simple to solve for u1 and u2,

u′2 = −y1

y2

u′1

⇒ u′1y
′
1−

y1y
′
2

y2

u′1 = f ⇒ u′1
(y ′1y2 − y1y

′
2

y2

)
= f .

Since Wy1y2 = y1y
′
2 − y ′1y2,

u′1 = − y2f

Wy1y2

⇒ u′2 =
y1f

Wy1y2

.

Integrating in the variable t we obtain

u1(t) =

∫
−y2(t)f (t)

Wy1y2(t)
dt, u2(t) =

∫
y1(t)f (t)

Wy1y2(t)
dt,

This establishes the Theorem.



The proof of the variation of parameter method.

Proof: Summary: If u1 and u2 satisfy u′1y1 + u′2y2 = 0 and
u′1y

′
1 + u′2y

′
2 = f , then yp = u1y1 + u2y2 satisfies L(yp) = f .

The equations above are simple to solve for u1 and u2,

u′2 = −y1

y2

u′1 ⇒ u′1y
′
1−

y1y
′
2

y2

u′1 = f

⇒ u′1
(y ′1y2 − y1y

′
2

y2

)
= f .

Since Wy1y2 = y1y
′
2 − y ′1y2,

u′1 = − y2f

Wy1y2

⇒ u′2 =
y1f

Wy1y2

.

Integrating in the variable t we obtain

u1(t) =

∫
−y2(t)f (t)

Wy1y2(t)
dt, u2(t) =

∫
y1(t)f (t)

Wy1y2(t)
dt,

This establishes the Theorem.



The proof of the variation of parameter method.

Proof: Summary: If u1 and u2 satisfy u′1y1 + u′2y2 = 0 and
u′1y

′
1 + u′2y

′
2 = f , then yp = u1y1 + u2y2 satisfies L(yp) = f .

The equations above are simple to solve for u1 and u2,

u′2 = −y1

y2

u′1 ⇒ u′1y
′
1−

y1y
′
2

y2

u′1 = f ⇒ u′1
(y ′1y2 − y1y

′
2

y2

)
= f .

Since Wy1y2 = y1y
′
2 − y ′1y2,

u′1 = − y2f

Wy1y2

⇒ u′2 =
y1f

Wy1y2

.

Integrating in the variable t we obtain

u1(t) =

∫
−y2(t)f (t)

Wy1y2(t)
dt, u2(t) =

∫
y1(t)f (t)

Wy1y2(t)
dt,

This establishes the Theorem.



The proof of the variation of parameter method.

Proof: Summary: If u1 and u2 satisfy u′1y1 + u′2y2 = 0 and
u′1y

′
1 + u′2y

′
2 = f , then yp = u1y1 + u2y2 satisfies L(yp) = f .

The equations above are simple to solve for u1 and u2,

u′2 = −y1

y2

u′1 ⇒ u′1y
′
1−

y1y
′
2

y2

u′1 = f ⇒ u′1
(y ′1y2 − y1y

′
2

y2

)
= f .

Since Wy1y2 = y1y
′
2 − y ′1y2,

u′1 = − y2f

Wy1y2

⇒ u′2 =
y1f

Wy1y2

.

Integrating in the variable t we obtain

u1(t) =

∫
−y2(t)f (t)

Wy1y2(t)
dt, u2(t) =

∫
y1(t)f (t)

Wy1y2(t)
dt,

This establishes the Theorem.



The proof of the variation of parameter method.

Proof: Summary: If u1 and u2 satisfy u′1y1 + u′2y2 = 0 and
u′1y

′
1 + u′2y

′
2 = f , then yp = u1y1 + u2y2 satisfies L(yp) = f .

The equations above are simple to solve for u1 and u2,

u′2 = −y1

y2

u′1 ⇒ u′1y
′
1−

y1y
′
2

y2

u′1 = f ⇒ u′1
(y ′1y2 − y1y

′
2

y2

)
= f .

Since Wy1y2 = y1y
′
2 − y ′1y2,

u′1 = − y2f

Wy1y2

⇒ u′2 =
y1f

Wy1y2

.

Integrating in the variable t we obtain

u1(t) =

∫
−y2(t)f (t)

Wy1y2(t)
dt, u2(t) =

∫
y1(t)f (t)

Wy1y2(t)
dt,

This establishes the Theorem.



The proof of the variation of parameter method.

Proof: Summary: If u1 and u2 satisfy u′1y1 + u′2y2 = 0 and
u′1y

′
1 + u′2y

′
2 = f , then yp = u1y1 + u2y2 satisfies L(yp) = f .

The equations above are simple to solve for u1 and u2,

u′2 = −y1

y2

u′1 ⇒ u′1y
′
1−

y1y
′
2

y2

u′1 = f ⇒ u′1
(y ′1y2 − y1y

′
2

y2

)
= f .

Since Wy1y2 = y1y
′
2 − y ′1y2,

u′1 = − y2f

Wy1y2

⇒ u′2 =
y1f

Wy1y2

.

Integrating in the variable t we obtain

u1(t) =

∫
−y2(t)f (t)

Wy1y2(t)
dt, u2(t) =

∫
y1(t)f (t)

Wy1y2(t)
dt,

This establishes the Theorem.



The proof of the variation of parameter method.

Proof: Summary: If u1 and u2 satisfy u′1y1 + u′2y2 = 0 and
u′1y

′
1 + u′2y

′
2 = f , then yp = u1y1 + u2y2 satisfies L(yp) = f .

The equations above are simple to solve for u1 and u2,

u′2 = −y1

y2

u′1 ⇒ u′1y
′
1−

y1y
′
2

y2

u′1 = f ⇒ u′1
(y ′1y2 − y1y

′
2

y2

)
= f .

Since Wy1y2 = y1y
′
2 − y ′1y2,

u′1 = − y2f

Wy1y2

⇒ u′2 =
y1f

Wy1y2

.

Integrating in the variable t we obtain

u1(t) =

∫
−y2(t)f (t)

Wy1y2(t)
dt, u2(t) =

∫
y1(t)f (t)

Wy1y2(t)
dt,

This establishes the Theorem.



Non-homogeneous equations (Sect. 3.6).

I We study: y ′′ + p(t) y ′ + q(t) y = f (t).

I Method of variation of parameters.

I Using the method in an example.

I The proof of the variation of parameter method.

I Using the method in another example.
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