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Review: On solutions of y”" +a,y' +a,y =0.

Question:

Consider the case (3), with 312 —4a, =0, that is, a, =

|8,

» Does the equation

a2
y“+aly’+jy=0

have two linearly independent solutions?

» Or, every solution to the equation above is proportional to

yi(t)=e 3t
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Repeated roots as a limit case.

Remark:

>

>

Case (3), where 4a, — a> = 0 can be obtained as the limit
B — 0 in case (2).

Let us study the solutions of the differential equation in the
case (2) as 3 — 0 for fixed t.

Since cos(ft) — 1 as § — 0, we conclude that
yp(t) = e 7 tcos(fBt) — et = yi(t).

Since sméft) — 1las 3 — 0, that is, sin(8t) — ¢,

yo8(t) = e 7 Lsin(Bt) — Bt e 2t 0.

Is y,(t) = t yi(t) solution of the differential equation?
Introducing y, in the differential equation one obtains: Yes.

Since y, is not proportional to y;, the functions y;, y, are a
fundamental set for the differential equation in case (3).
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Main result for repeated roots.

Theorem
If a;, a, € R satisfy that 312 = 4a,, then the functions

t 1t

p(t)=e 1t p(t)=te 7,
are a fundamental solution set for the differential equation
y" +ay + ay = 0.
Example

Find the general solution of 9y” + 6y’ +y = 0.

Solution: The characteristic equation is 9r2 4+ 6r +1 = 0, so

1

6+£v36-36] = n=—3

== e

The Theorem above implies that the general solution is

y(t) = (. + o t) e /3,
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Proof case a? — 4a, = 0:
Recall: The characteristic equation is r?> + a;r + a, = 0, and its
solutions are ry = (1/2)[—a, £+ /a2 — 4a).

The hypothesis a = 4a, implies ri. = r_ = —a; /2.

So, the solution ry of the characteristic equation satisfies both
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It is clear that y;(t) = e is solutions of the differential equation.

A second solution y, not proportional to y; can be found as
follows: (D’Alembert ~ 1750.)

Express: y,(t) = v(t) y2(t), and find the equation that function v
satisfies from the condition y) + a,y, + a,y, = 0.
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Example
Find the solution to the initial value problem
5
Wby +y=0 y(0)=1  y(0)=3.
1
Solution: The solutions of 9r2 + 6r +1 =0, are ry =r_= —3

The Theorem above says that the general solution is
t
)= Pt > () S a(i- )et

The initial conditions imply that

1=y(0) =q,
5 c = ¢ =1, G =2.
5 :y/(O) = _§1 + G

We conclude that y(t) = (1 4 2t) e /3. <



Second order linear homogeneous ODE (Sect. 3.4).

Review: On solutions of y” +a;y' +a,y = 0.
Repeated roots as a limit case.

Main result for repeated roots.

vV vy VvVy

Reduction of the order method:

» Constant coefficients equations.
» Variable coefficients equations.



Reduction of the order method: Variable coefficients.

Remark: The same idea used to prove the constant coefficients
Theorem above can be used in variable coefficients equations.



Reduction of the order method: Variable coefficients.
Remark: The same idea used to prove the constant coefficients
Theorem above can be used in variable coefficients equations.

Theorem
Given continuous functions p, q : (t;, t,) — R, let y, : (t;, t,) — R
be a solution of

Yy +p(t)y +q(t)y =0,

If the function v : (t;, t,) — R is solution of

yi(£) v + [2y/(t) + p(t)yi(t)] v/ = 0. (1)

then the functions y; and y, = v y; are fundamental solutions to
the differential equation above.



Reduction of the order method: Variable coefficients.

Remark: The same idea used to prove the constant coefficients
Theorem above can be used in variable coefficients equations.

Theorem
Given continuous functions p, q : (t;, t,) — R, let y, : (t;, t,) — R
be a solution of

Yy +p(t)y +q(t)y =0,

If the function v : (t;, t,) — R is solution of
yi(£) v + [2y/(t) + p(t)yi(t)] v/ = 0. (1)

then the functions y; and y, = v y; are fundamental solutions to
the differential equation above.

Remark: The reason for the name Reduction of order method is
that the function v does not appear in Eq. (1). This is a first order
equation in v/.



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,

knowing that y,(t) = t is a solution.



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

Solution: Express y,(t) = v(t) yi(t).



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

Solution: Express yo(t) = v(t) y2(t). The equation for v comes
from 2y + 2ty] — 2y, = 0.



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

Solution: Express yo(t) = v(t) y2(t). The equation for v comes
from t2y! + 2ty! — 2y, = 0. We need to compute

}’2:Vt,



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

Solution: Express yo(t) = v(t) y2(t). The equation for v comes
from t2y! + 2ty! — 2y, = 0. We need to compute

Y, = Vi, y2:tv+v,



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

Solution: Express yo(t) = v(t) y2(t). The equation for v comes
from t2y! + 2ty! — 2y, = 0. We need to compute

Yo=Vvt, vi=tv +v, vl =tv"+2v.



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

Solution: Express yo(t) = v(t) y2(t). The equation for v comes
from t2y! + 2ty! — 2y, = 0. We need to compute

Yo=Vvt, vi=tv +v, vl =tv"+2v.

So, the equation for v is given by

t?(tv” +2v) + 2t(tV + v) —2tv =0



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

Solution: Express yo(t) = v(t) y2(t). The equation for v comes
from t2y! + 2ty! — 2y, = 0. We need to compute

Yo=Vvt, vi=tv +v, vl =tv"+2v.
So, the equation for v is given by
t?(tv” +2v) + 2t(tV + v) —2tv =0

BV 4 (22 +2t°)V + (2t —2t)v =0



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

Solution: Express yo(t) = v(t) y2(t). The equation for v comes
from t2y! + 2ty! — 2y, = 0. We need to compute

Yo=Vvt, vi=tv +v, vl =tv"+2v.

So, the equation for v is given by
t?(tv” +2v) + 2t(tV + v) —2tv =0
BV 4 (22 +2t°)V + (2t —2t)v =0

B3V + (4*)V =0



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

Solution: Express yo(t) = v(t) y2(t). The equation for v comes
from t2y! + 2ty! — 2y, = 0. We need to compute

Yo=Vvt, vi=tv +v, vl =tv"+2v.

So, the equation for v is given by
t?(tv” +2v) + 2t(tV + v) —2tv =0
BV 4 (22 +2t°)V + (2t —2t)v =0

4
BV + @)V =0 = V' + -V =0



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

4
Solution: Recall: v + EV/ =0.



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.
H " 4 /
Solution: Recall: v + TV =0.

This is a first order equation for w = v/,



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.
H " 4 /
Solution: Recall: v + TV =0.

) . . 4
This is a first order equation for w = v/, given by w’ + ?W =0,



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.
H " 4 /
Solution: Recall: v + TV =0.

) . ) 4
This is a first order equation for w = v/, given by w + ?W =0, so



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.
. 1! 4 !
Solution: Recall: v’ + EV =0.
) . ) 4

This is a first order equation for w = v/, given by w + ?W =0, so

w' 4

w

=-7 = In(w) = —4In(t) + o



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

4
Solution: Recall: v + EV/ =0.

) . ) 4
This is a first order equation for w = v/, given by w + ?W =0, so

= —— = In(W) == —4In(t) + Co = W(t) == Clt_4, Cl (S R



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

4
Solution: Recall: v + ;v’ =0.
) . ) 4
This is a first order equation for w = v/, given by w + ?W =0, so

/
4
1:_; = In(w)=—4n(t)+ ¢ = w(t)=at™* ¢ eR.
w

Integrating w we obtain v,



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

4
Solution: Recall: v + ;v’ =0.
) . ) 4
This is a first order equation for w = v/, given by w + ?W =0, so

/
4
1:_; = In(w)=—4n(t)+ ¢ = w(t)=at™* ¢ eR.
w

Integrating w we obtain v, that is, v = ot 3 + ¢, with G, G € R.



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

4
Solution: Recall: v + ;v’ =0.
) . ) 4
This is a first order equation for w = v/, given by w + ?W =0, so

/
4
LA -7 = In(w) = —4In(t)+ ¢ = w(t)=cat* ¢ R,
w

Integrating w we obtain v, that is, v = ot 3 + ¢, with G, G € R.
Recalling that y, = tv



Reduction of the order method: Variable coefficients.

Example
Find a fundamental set of solutions to

t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

4
Solution: Recall: v + ;v’ =0.
) . ) 4
This is a first order equation for w = v/, given by w + ?W =0, so

/
4
LA -7 = In(w) = —4In(t)+ ¢ = w(t)=cat* ¢ R,
w

Integrating w we obtain v, that is, v = ot 3 + ¢, with G, G € R.
Recalling that y, = t v we then conclude that y, = czt_2 + Gt.



Reduction of the order method: Variable coefficients.
Example
Find a fundamental set of solutions to
t2y" 4+ 2ty —2y =0,
knowing that y,(t) = t is a solution.

4
Solution: Recall: v + ;v’ =0.
) . ) 4
This is a first order equation for w = v/, given by w + ?W =0, so

/
4
1:_; = In(w)=—4n(t)+ ¢ = w(t)=at™* ¢ eR.
w

Integrating w we obtain v, that is, v = ot 3 + ¢, with G, G € R.
Recalling that y, = t v we then conclude that y, = czt_2 + Gt.
Choosing ¢, = 1 and ¢; = 0 we obtain the fundamental solutions

1
y(t) =tand y(t) = 2 <



Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of y, = vy, implies

v=vyntvyl, oy =Vt y vyl



Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of y, = vy, implies
v=vVyutvy, =Vt y vyl
This information introduced into the differential equation says that

(V”}ﬁ +2V/.y1/ + Vy{/) +P(V,Y1 + V)/1/) +qvy =0



Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of y, = vy, implies
v=vyitvyl, oy =Vt y vyl
This information introduced into the differential equation says that
(V' +2vy +vy )+ p (Vi tvy)+ary =0

nwV'+@n+py)V+ 0 +pyi+ay)v=0.



Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of y, = vy, implies
v=vyitvyl, oy =Vt y vyl
This information introduced into the differential equation says that
(V' +2vy +vy )+ p (Vi tvy)+ary =0

v+ @2y +py) v+ + ey +ay)v=0.
The function y, is solution of y;’ + py, + gy, = 0.



Reduction of the order method: Variable coefficients.

Proof of the Theorem: The choice of y, = vy, implies
v=vyitvyl, oy =Vt y vyl
This information introduced into the differential equation says that
(V' +2vy +vy )+ p (Vi tvy)+ary =0

v+ @2y +py) v+ + ey +ay)v=0.
The function y, is solution of y;’ + py, + gy, = 0.
Then, the equation for v is given by Eq. (1), that is,

32! v’ + (2)/1, +py) v =0.



Reduction of the order method: Variable coefficients.

Proof: Recall y; v’/ + (2y; + py:) v/ = 0.



Reduction of the order method: Variable coefficients.

Proof: Recall y; v’ + (2y] + py,) v/ = 0. We now need to show
that y; and y, = vy, are linearly independent.



Reduction of the order method: Variable coefficients.

Proof: Recall y; v’ + (2y] + py,) v/ = 0. We now need to show
that y; and y, = vy, are linearly independent.

W}’U/z



Reduction of the order method: Variable coefficients.

Proof: Recall y; v’ + (2y] + py,) v/ = 0. We now need to show
that y; and y, = vy, are linearly independent.

34 vy

W. —
2yl (Vi vyy)




Reduction of the order method: Variable coefficients.

Proof: Recall y; v’ + (2y] + py,) v/ = 0. We now need to show
that y; and y, = vy, are linearly independent.

34 vy

W. —
2yl (Vi vyy)

=y(v'yi +w)) — vy




Reduction of the order method: Variable coefficients.

Proof: Recall y; v’ + (2y] + py,) v/ = 0. We now need to show
that y; and y, = vy, are linearly independent.

34 vy

W. —
2yl (Vi vyy)

=y(v'yi +w)) — vy

We obtain W,,,, = v/y?2.



Reduction of the order method: Variable coefficients.

Proof: Recall y; v’ + (2y] + py,) v/ = 0. We now need to show
that y; and y, = vy, are linearly independent.

34 vy

W. —
2yl (Vi vyy)

=y(v'yi +w)) — vy

We obtain W,,,, = v'y?. We need to find v'.



Reduction of the order method: Variable coefficients.

Proof: Recall y; v’ + (2y] + py,) v/ = 0. We now need to show
that y; and y, = vy, are linearly independent.

34 vy

W. —
2yl (Vi vyy)

=y(v'yi +w)) — vy

We obtain W,,,, = v'y?. We need to find v/. Denote w = v/,



Reduction of the order method: Variable coefficients.

Proof: Recall y; v’ + (2y] + py,) v/ = 0. We now need to show
that y; and y, = vy, are linearly independent.

34 vy

W. —
2yl (Vi vyy)

=y(v'yi +w)) — vy

We obtain W,,,, = v'y?. We need to find v/. Denote w = v/, so

B2 W/+(2)/1/+PY1)W:0



Reduction of the order method: Variable coefficients.

Proof: Recall y; v’ + (2y] + py,) v/ = 0. We now need to show
that y; and y, = vy, are linearly independent.

34 vy

W. —
2yl (Vi vyy)

=y(v'yi +w)) — vy

We obtain W,,,, = v'y?. We need to find v/. Denote w = v/, so

W/ y’
ww + @2y +pp)w=0 = —=-221_p
w N



Reduction of the order method: Variable coefficients.

Proof: Recall y; v’ + (2y] + py,) v/ = 0. We now need to show
that y; and y, = vy, are linearly independent.

34 vy

W. —
2yl (Vi vyy)

=y(v'yi +w)) — vy

We obtain W,,,, = v'y?. We need to find v/. Denote w = v/, so

Y1W/+(2)/1,+PY1)W:0 =

Let P be a primitive of p, that is, P'(t) = p(t),



Reduction of the order method: Variable coefficients.

Proof: Recall y; v’ + (2y] + py,) v/ = 0. We now need to show
that y; and y, = vy, are linearly independent.

34 vy

W. —
2yl (Vi vyy)

=y(v'yi +w)) — vy

We obtain W,,,, = v'y?. We need to find v/. Denote w = v/, so

nw' +Qy+ppn)w=0 =
Let P be a primitive of p, that is, P'(t) = p(t), then
In(w) = —=2In(y,) — P



Reduction of the order method: Variable coefficients.

Proof: Recall y; v’ + (2y] + py,) v/ = 0. We now need to show
that y; and y, = vy, are linearly independent.

34 vy

W. —
2yl (Vi vyy)

=n(V'ys + vy) — vyl

We obtain W,,,, = v'y?. We need to find v/. Denote w = v/, so
W/ y’
ww + @2y +pp)w=0 = —=-221_p
w 34!

Let P be a primitive of p, that is, P'(t) = p(t), then

In(w) ==2In(y,) — P = w= elin(r )—P]



Reduction of the order method: Variable coefficients.

Proof: Recall y; v’ + (2y] + py,) v/ = 0. We now need to show
that y; and y, = vy, are linearly independent.

34 vy

W. —
2yl (Vi vyy)

=y(v'yi +w)) — vy

We obtain W,,,, = v'y?. We need to find v/. Denote w = v/, so

W/ y’
ww + @2y +pp)w=0 = —=-221_p
w N

Let P be a primitive of p, that is, P'(t) = p(t), then

In(w) =—=2In(y,) —P = w= MO )=Pl oy = vy 2e P



Reduction of the order method: Variable coefficients.

Proof: Recall y; v’ + (2y] + py,) v/ = 0. We now need to show
that y; and y, = vy, are linearly independent.

34 vy

W. =
2yl (Vi vyy)

=y(v'yi +w)) — vy

We obtain W,,,, = v'y?. We need to find v/. Denote w = v/, so
W/ /
pwW A tpr)w=0 = =-2"_p
w N
Let P be a primitive of p, that is, P'(t) = p(t), then

In(w) =—=2In(y,) —P = w= MO )=Pl oy = vy 2e P

We obtain v'y2 = e~F, hence W,,,, = e~ ", which is non-zero.



Reduction of the order method: Variable coefficients.

Proof: Recall y; v’ + (2y] + py,) v/ = 0. We now need to show
that y; and y, = vy, are linearly independent.

34 vy

W. =
2yl (Vi vyy)

=y(v'yi +w)) — vy

We obtain W,,,, = v'y?. We need to find v/. Denote w = v/, so
W/ /
pwW A tpr)w=0 = =-2"_p
w N
Let P be a primitive of p, that is, P'(t) = p(t), then

In(w) =—=2In(y,) —P = w= MO )=Pl oy = vy 2e P

We obtain v'y2 = e~F, hence W,,,, = e~ ", which is non-zero.
We conclude that y; and y, = vy, are linearly independent.

O



Non-homogeneous equations (Sect. 3.5).

We study: y" +a,y' + a, y = b(t).
Operator notation and preliminary results.
Summary of the undetermined coefficients method.

Using the method in few examples.

vV vV.v.v Yy

The guessing solution table.



Operator notation and preliminary results.

Notation: Given functions p, g, denote

Lly)=y" +p(t)y +q(t)y.



Operator notation and preliminary results.

Notation: Given functions p, g, denote
Liy)=y"+p(t)y +a(t)y.
Therefore, the differential equation
y'+p(t)y' +aq(t)y = f(t)

can be written as
L(y)=f.



Operator notation and preliminary results.

Notation: Given functions p, g, denote
Liy)=y"+p(t)y +a(t)y.
Therefore, the differential equation
y'+p(t)y' +aq(t)y = f(t)

can be written as
L(y)=f.

The homogeneous equation can be written as

L(y) = 0.



Operator notation and preliminary results.

Notation: Given functions p, g, denote
Liy)=y"+p(t)y +a(t)y.
Therefore, the differential equation
y'+p(t)y' +aq(t)y = f(t)

can be written as

L(y)=f.
The homogeneous equation can be written as
L(y) = 0.

The function L acting on a function y is called an operator.



Operator notation and preliminary results.

Remark: The operator L is a linear function of y.



Operator notation and preliminary results.
Remark: The operator L is a linear function of y.

Theorem
For every continuously differentiable functions y;, y,: (t;,t;) — R
and every c¢;, ¢, € R holds that

L(ciy: + coys) = cil(y1) + cL(y2).



Operator notation and preliminary results.
Remark: The operator L is a linear function of y.

Theorem
For every continuously differentiable functions y;, y,: (t;,t;) — R
and every c¢;, ¢, € R holds that

L(ciy: + coys) = cil(y1) + cL(y2).
Proof:

Llayi+ay) = (an+ay)”+p(t) (an+ay.) +q(t) (an+cy.)



Operator notation and preliminary results.
Remark: The operator L is a linear function of y.

Theorem
For every continuously differentiable functions y;, y,: (t;,t;) — R
and every c¢;, ¢, € R holds that

L(ciy: + coys) = cil(y1) + cL(y2).
Proof:

Llayi+ay) = (an+ay)”+p(t) (an+ay.) +q(t) (an+cy.)

Llay: + o) = (C1y1” + p(t) Cl)ﬁl + q(t) Clyl)
+ (C2}/2” + p(t) C2Y2/ +q(t) Cz}’z)



Operator notation and preliminary results.
Remark: The operator L is a linear function of y.

Theorem
For every continuously differentiable functions y;, y,: (t;,t;) — R
and every c¢;, ¢, € R holds that

L(ciy: + coys) = cil(y1) + cL(y2).
Proof:

Llayi+ay) = (an+ay)”+p(t) (an+ay.) +q(t) (an+cy.)

Llay: + o) = (C1y1” + p(t) Cl)ﬁl + q(t) Clyl)
+ (C2}/2” + p(t) C2Y2/ +q(t) Cz}’z)

Liay + ay.) = al(n) + cl(y.)- O



Operator notation and preliminary results.

Theorem

Given functions p, q, f, let L(y) = y" + p(t)y' + q(t) y.
If the functions y, and y, are fundamental solutions of the
homogeneous equation

L(y) =0,
and yp is any solution of the non-homogeneous equation
then any other solution y of the non-homogeneous equation above
is given by
y(t) = cuyi(t) + caya(t) + yp(t), (3)

where ¢;, ¢, € R.



Operator notation and preliminary results.

Theorem

Given functions p, q, f, let L(y) = y" + p(t)y' + q(t) y.
If the functions y, and y, are fundamental solutions of the
homogeneous equation

L(y) =0,
and yp is any solution of the non-homogeneous equation

then any other solution y of the non-homogeneous equation above
is given by
y(t) = cuyi(t) + caya(t) + yp(t), (3)

where ¢;, ¢, € R.

Notation: The expression for y in Eq. (3) is called the general
solution of the non-homogeneous Eq. (2).



Operator notation and preliminary results.

Theorem

Given functions p, q, let L(y) = y" + p(t)y' + q(t) y.
If the function f can be written as f(t) = fi(t) + - -+ + fa(t), with
n > 1, and if there exist functions yp,, - - ,yp, such that

L(ypi):f}7 i:]-a"'ana

then the function y, = yp, + -+ - + yp, satisfies the
non-homogeneous equation

Llyp) = f.



Non-homogeneous equations (Sect. 3.5).

We study: y" +a,y' + a, y = b(t).
Operator notation and preliminary results.
Summary of the undetermined coefficients method.

Using the method in few examples.

vV V. v.v Yy

The guessing solution table.



Summary of the undetermined coefficients method.

Problem: Given a constant coefficients linear operator
L(y) =y" + a1y’ + apy, with a,, a, € R, find every solution of the
non-homogeneous differential equation

L(y)=f.



Summary of the undetermined coefficients method.

Problem: Given a constant coefficients linear operator
L(y) =y" + a1y’ + apy, with a,, a, € R, find every solution of the
non-homogeneous differential equation

L(y)=f.

Remarks:

» The undetermined coefficients is a method to find solutions to
linear, non-homogeneous, constant coefficients, differential
equations.



Summary of the undetermined coefficients method.

Problem: Given a constant coefficients linear operator
L(y) =y" + a1y’ + apy, with a,, a, € R, find every solution of the
non-homogeneous differential equation

L(y)=f.

Remarks:

» The undetermined coefficients is a method to find solutions to
linear, non-homogeneous, constant coefficients, differential
equations.

> It consists in guessing the solution y, of the non-homogeneous
equation

L(YP) = f>

for particularly simple source functions f.



Summary of the undetermined coefficients method.

Summary:



Summary of the undetermined coefficients method.

Summary:

(1) Find the general solution of the homogeneous equation
L(yn) = 0.



Summary of the undetermined coefficients method.

Summary:

(1) Find the general solution of the homogeneous equation
L(yn) = 0.

(2) If f has the form f = f, +--- + f,, with n > 1, then look for
solutions yp,, with i = 1,--- , n to the equations

L(yp,) = fi.



Summary of the undetermined coefficients method.

Summary:

(1) Find the general solution of the homogeneous equation
L(yn) = 0.

(2) If f has the form f = f, +--- + f,, with n > 1, then look for
solutions yp,, with i = 1,--- , n to the equations

L(yp,) = fi.
Once the functions y,, are found, then construct

Yp=VYpr t "+ Ypn-



Summary of the undetermined coefficients method.

Summary:

(1) Find the general solution of the homogeneous equation
L(yn) = 0.

(2) If f has the form f = f, +--- + f,, with n > 1, then look for
solutions yp,, with i = 1,--- , n to the equations

L(yp,) = fi.
Once the functions y,, are found, then construct
Yp=Yprt  F Yp,

(3) Given the source functions f;, guess the solutions functions y,,
following the Table below.



Summary of the undetermined coefficients method.

Summary (cont.):

’ fi(t) (K, m, a, b, given.) H

¥p;i(t) (Guess) (k not given.)

Ke™ ke®*

Kt™ kmt™ + k1 t" Tt ko

K cos(bt) ki cos(bt) + ko sin(bt)

K sin(bt) ki cos(bt) + ko sin(bt)

Ktme e (kmt™ + -+ + ko)

Ke®" cos(bt) e®* [k cos(bt) + ka sin(bt)]

KKe? sin(bt) e’ [k cos(bt) + ka sin(bt)]

Kt™ cos(bt) (kmt™ + - + ko) [a1 cos(bt) + a2 sin(bt)]
Kt™ sin(bt) (kmt™ + - + ko) [a1 cos(bt) + az sin(bt)]




Summary of the undetermined coefficients method.

Summary (cont.):

(4) If any guessed function yp, satisfies the homogeneous equation
L(yp;) = 0, then change the guess to the function
t°yp, Wwith s>1,
and s sufficiently large such that L(t°yp,) # 0.



Summary of the undetermined coefficients method.

Summary (cont.):
(4) If any guessed function yp, satisfies the homogeneous equation
L(yp;) = 0, then change the guess to the function
t°yp, Wwith s>1,
and s sufficiently large such that L(t°yp,) # 0.

(5) Impose the equation L(yp,) = f; to find the undetermined
constants ki, - , km, for the appropriate m, given in the table
above.



Summary of the undetermined coefficients method.

Summary (cont.):
(4) If any guessed function yp, satisfies the homogeneous equation
L(yp;) = 0, then change the guess to the function
t°yp, Wwith s>1,
and s sufficiently large such that L(t°yp,) # 0.

(5) Impose the equation L(yp,) = f; to find the undetermined
constants ki, - , km, for the appropriate m, given in the table
above.

(6) The general solution to the original differential equation
L(y) = f is then given by

y(t) = yn(t) T Ypy T Y



Non-homogeneous equations (Sect. 3.5).

We study: y" +a,y' + a, y = b(t).
Operator notation and preliminary results.
Summary of the undetermined coefficients method.

Using the method in few examples.

vV v v v .Y

The guessing solution table.



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y" =3y — 4y = 3e%.



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y" =3y — 4y = 3e%.

Solution: Notice: L(y) = y” — 3y’ — 4y and f(t) = 3e%t.



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation
y" =3y — 4y = 3e%.
Solution: Notice: L(y) = y” — 3y’ — 4y and f(t) = 3e%t.

(1) Find all solutions yp, to the homogeneous equation L(y) = 0.



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation
y" =3y — 4y = 3e%.
Solution: Notice: L(y) = y” — 3y’ — 4y and f(t) = 3e%t.

(1) Find all solutions yp, to the homogeneous equation L(y) = 0.
The characteristic equation is

rP—3r—4=0



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y" =3y — 4y = 3e%.

Solution: Notice: L(y) = y” — 3y’ — 4y and f(t) = 3e%t.

(1) Find all solutions yp, to the homogeneous equation L(y) = 0.
The characteristic equation is
I’l — 4‘7

rP—3r—4=0 = {
I’2:*1.



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y" =3y — 4y = 3e%.

Solution: Notice: L(y) = y” — 3y’ — 4y and f(t) = 3e%t.

(1) Find all solutions yp, to the homogeneous equation L(y) = 0.
The characteristic equation is
I’l — 4‘7

rP—3r—4=0 = {
I’2:*1.

yh(t) = ¢ et et



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y" =3y — 4y = 3e%.

Solution: Notice: L(y) = y” — 3y’ — 4y and f(t) = 3e%t.

(1) Find all solutions yp, to the homogeneous equation L(y) = 0.
The characteristic equation is

n =4,
rP—3r—4=0 = { '
I’2:*1.

yh(t) = ¢ et et

(2) Trivial in our case. The source function f(t) = 3e! cannot be
simplified into a sum of simpler functions.



Using the method in few examples.
Example
Find all solutions to the non-homogeneous equation

y" =3y — 4y = 3e%.

Solution: Notice: L(y) = y” — 3y’ — 4y and f(t) = 3e%t.

(1) Find all solutions yp, to the homogeneous equation L(y) = 0.
The characteristic equation is
n =4,
rP—3r—4=0 = { '
r2 — *1.

yh(t) = ¢ et et

(2) Trivial in our case. The source function f(t) = 3e! cannot be
simplified into a sum of simpler functions.

(3) Table says: For f(t) = 3e?t guess y,(t) = k et



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" =3y — 4y = 3e%,

Solution: Recall: y,(t) = k e**. We need to find k.



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" =3y — 4y = 3e%,

Solution: Recall: y,(t) = k e**. We need to find k.
(4) Trivial here, since L(yp) # 0, we do not modify our guess.



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" =3y —4y = 3e’t.
Solution: Recall: y,(t) = k e**. We need to find k.

(4) Trivial here, since L(yp) # 0, we do not modify our guess.
(Recall: L(yp) =0 iff yp(t) = c,e** + e t)



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" =3y —4y = 3e’t.
Solution: Recall: y,(t) = k e**. We need to find k.

(4) Trivial here, since L(yp) # 0, we do not modify our guess.
(Recall: L(yp) =0 iff yp(t) = c,e** + e t)

(5) Introduce yj into L(y,) = f and find k.



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" =3y —4y = 3e’t.
Solution: Recall: y,(t) = k e**. We need to find k.

(4) Trivial here, since L(yp) # 0, we do not modify our guess.
(Recall: L(yp) =0 iff yp(t) = c,e** + e t)

(5) Introduce yj into L(y,) = f and find k.

(22 — 6 — 4)ke®t = 3¢



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" =3y —4y = 3e’t.
Solution: Recall: y,(t) = k e**. We need to find k.

(4) Trivial here, since L(yp) # 0, we do not modify our guess.
(Recall: L(yp) =0 iff yp(t) = c,e** + e t)

(5) Introduce yj into L(y,) = f and find k.

(22 -6 —4)ke®* =3 = —6k=3



Using the method in few examples.
Example
Find all solutions to the non-homogeneous equation

y" =3y — 4y = 3e%,

Solution: Recall: y,(t) = k e**. We need to find k.
(4) Trivial here, since L(yp) # 0, we do not modify our guess.
(Recall: L(yp) =0 iff yy(t) = ce** +c e t)
(5) Introduce yj into L(y,) = f and find k.
1

(22 -6 —4)ke’* =3e** = —6k=3 = k=—5.



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" =3y — 4y = 3e%,

Solution: Recall: y,(t) = k e**. We need to find k.

(4) Trivial here, since L(yp) # 0, we do not modify our guess.
(Recall: L(yp) =0 iff yp(t) = c,e** + e t)

(5) Introduce yj into L(y,) = f and find k.

1
(22 -6 —4)ke’* =3e** = —6k=3 = k=—5.

1
- e2t.

We have obtained that y,(t) = ~3



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" =3y — 4y = 3e%,

Solution: Recall: y,(t) = k e**. We need to find k.

(4) Trivial here, since L(yp) # 0, we do not modify our guess.
(Recall: L(yp) =0 iff yp(t) = c,e** + e t)

(5) Introduce yj into L(y,) = f and find k.

(22 -6 —4)ke’* =3 = —6k=3 = k= —%.
We have obtained that y,(t) = —% et
(6) The general solution to the inhomogeneous equation is
y(t) = e’ + et — ! et

2



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" —3y' — 4y = 3e*t.



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" —3y' — 4y = 3e*t.

Solution: We know that the general solution to homogeneous
equation is y,(t) = ce*t + e t.



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" =3y — 4y = 3e™.
Solution: We know that the general solution to homogeneous
equation is y,(t) = ce*t + e L.

Following the table we guess y, as y, = k e**.



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" =3y — 4y = 3e™.
Solution: We know that the general solution to homogeneous
equation is y,(t) = ce*t + e L.
Following the table we guess y, as y, = k e**.

However, this guess satisfies L(y,) = 0.



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" —3y' — 4y = 3e*t.
Solution: We know that the general solution to homogeneous
equation is y,(t) = ce*t + e L.
Following the table we guess y, as y, = k e**.
However, this guess satisfies L(y,) = 0.

So we modify the guess to y, = kt e**.



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" —3y' — 4y = 3e*t.
Solution: We know that the general solution to homogeneous
equation is y,(t) = ce*t + e L.
Following the table we guess y, as y, = k e**.
However, this guess satisfies L(y,) = 0.
So we modify the guess to y, = kt e**.

Introduce the guess into L(y,) = f.



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" =3y — 4y = 3e*.
Solution: We know that the general solution to homogeneous
equation is y,(t) = ce*t + e L.
Following the table we guess y, as y, = k e**.
However, this guess satisfies L(y,) = 0.
So we modify the guess to y, = kt e**.

Introduce the guess into L(y,) = f. We need to compute

yh = ke* + 4kt ™, yy =8k e* + 16kt ™.



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y" — 3y’ — 4y = 3e*.

Solution: Recall:

yp = kte', yl =ke* +4kte*, y! =8ke* + 16kt e



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y" — 3y’ — 4y = 3e*.

Solution: Recall:

yp = kte', yl =ke* +4kte*, y! =8ke* + 16kt e

8k + 16kt) — 3(k + 4kt) — 4kt] e*t = 3e*t.
[( ) —3( ) ]



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y" — 3y’ — 4y = 3e*.
Solution: Recall:
yp = kte', yl =ke* +4kte*, y! =8ke* + 16kt e
[(8k + 16kt) — 3(k + 4kt) — 4kt] e* = 3e*.
[(8+16t)—3(1+4t)—4t] k=3



Using the method in few examples.

Example

Find all solutions to the non-homogeneous equation

y" — 3y’ — 4y = 3e*.
Solution: Recall:
yp = kte', yl =ke* +4kte*, y! =8ke* + 16kt e
[(8k + 16kt) — 3(k + 4kt) — 4kt] e* = 3e*.
[(8+16t)—3(1+4t)—4t] k=3 = [5+(16—12—4)t] k=3



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" — 3y’ — 4y = 3e*.

Solution: Recall:

yp = kte', yl =ke* +4kte*, y! =8ke* + 16kt e
[(8k + 16kt) — 3(k + 4kt) — 4kt] e* = 3e*.
[(8+16t)—3(1+4t)—4t] k=3 = [5+(16—12—4)t] k=3

3
We obtain that kK = 5



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" — 3y’ — 4y = 3e*.

Solution: Recall:

= kte, y = ke +4akte*t, y" =8ke* + 16kt ™.
Yp Yp P
[(8k + 16kt) — 3(k + 4kt) — 4kt] e* = 3e*.
[(8+16t)—3(1+4t)—4t] k=3 = [5+(16—12—4)t] k=3

3 3
We obtain that k = = Therefore, y,(t) = : tet,



Using the method in few examples.

Example
Find all solutions to the non-homogeneous equation

y" — 3y’ — 4y = 3e*.
Solution: Recall:
yp = kte', yl =ke* +4kte*, y! =8ke* + 16kt e
[(8k + 16kt) — 3(k + 4kt) — 4kt] e* = 3e*.
[(8+16t)—3(1+4t)—4t] k=3 = [5+(16—12—4)t] k=3

3 3
We obtain that k = 5 Therefore, y,(t) = B te*t and

3
y(t) = ce* + et + gt et 4



Using the method in few examples.

Example
Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 2sin(t).



Using the method in few examples.
Example
Find all the solutions to the inhomogeneous equation
y" =3y’ — 4y = 2sin(t).

Solution: We know that the general solution to homogeneous

equation is y(t) = ce* + ce L.



Using the method in few examples.
Example
Find all the solutions to the inhomogeneous equation
y" =3y’ — 4y = 2sin(t).

Solution: We know that the general solution to homogeneous

equation is y(t) = ce* + ce L.

Following the table: Since f = 2sin(t),



Using the method in few examples.
Example
Find all the solutions to the inhomogeneous equation
y" =3y’ — 4y = 2sin(t).

Solution: We know that the general solution to homogeneous

equation is y(t) = ce* + ce L.

Following the table: Since f = 2sin(t), then we guess
Yp = ki sin(t) + ko cos(t).



Using the method in few examples.

Example
Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 2sin(t).

Solution: We know that the general solution to homogeneous

equation is y(t) = ce* + ce L.

Following the table: Since f = 2sin(t), then we guess
Yp = ki sin(t) + ko cos(t).

This guess satisfies L(y,) # 0.



Using the method in few examples.

Example
Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 2sin(t).

Solution: We know that the general solution to homogeneous
t

equation is y(t) = ce* + ce L.
Following the table: Since f = 2sin(t), then we guess
Yp = ki sin(t) + ko cos(t).
This guess satisfies L(y,) # 0.
Compute: y;, = k; cos(t) — kysin(t), y, = —kisin(t) — k, cos(t).



Using the method in few examples.

Example
Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 2sin(t).

Solution: We know that the general solution to homogeneous
t

equation is y(t) = ce* + ce L.
Following the table: Since f = 2sin(t), then we guess
Yp = ki sin(t) + ko cos(t).
This guess satisfies L(y,) # 0.
Compute: y;, = k; cos(t) — kysin(t), y, = —kisin(t) — k, cos(t).
L(yp) = [—kisin(t) — k, cos(t)] — 3]k, cos(t) — k,sin(t)]
—A4[k, sin(t) + k, cos(t)] = 2sin(t),



Using the method in few examples.

Example
Find all the solutions to the inhomogeneous equation

Y — 3y’ — 4y = 2sin(t).
Solution: Recall:
L(yp) = [—kisin(t) — k, cos(t)] — 3[k; cos(t) — kysin(t)]
—4[ky sin(t) + k, cos(t)] = 2sin(t),



Using the method in few examples.

Example
Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 2sin(t).
Solution: Recall:

L(yp) = [—kisin(t) — k, cos(t)] — 3]k, cos(t) — k,sin(t)]
—4[ky sin(t) + k, cos(t)] = 2sin(t),

(—5k, + 3k,) sin(t) + (—3k, — 5k;) cos(t) = 2sin(t).



Using the method in few examples.

Example
Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 2sin(t).
Solution: Recall:
L(yp) = [—kisin(t) — k, cos(t)] — 3]k, cos(t) — k,sin(t)]
—4[ky sin(t) + k, cos(t)] = 2sin(t),
(—5ky + 3k,) sin(t) + (—3k, — 5k,) cos(t) = 2sin(t).

This equation holds for all t € R. In particular, at t = —, t = 0.

NS

5k, + 3k, = 2,
*3k1 - 5k2 - 0,



Using the method in few examples.

Example
Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 2sin(t).
Solution: Recall:

L(yp) = [—kisin(t) — k, cos(t)] — 3]k, cos(t) — k,sin(t)]
—4[ky sin(t) + k, cos(t)] = 2sin(t),

(—5ky + 3k,) sin(t) + (—3k, — 5k,) cos(t) = 2sin(t).

This equation holds for all t € R. In particular, at t = % t=0.
5
—5k, + 3k, = 2, _ k= —12;
*3k1*5k2:0, k _i
2



Using the method in few examples.

Example
Find all the solutions to the inhomogeneous equation
y" =3y’ — 4y = 2sin(t).
3

5
lution: Recall: k, = —— ky = —.
Solution: Reca 1 17 and k, 17



Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation
y" =3y’ — 4y = 2sin(t).
5 3
Solution: Recall: ky, = —— and k, = —.
olution: Recall: k, 7 k=2
So the particular solution to the inhomogeneous equation is

! [—5sin(t) + 3cos(t)].

yp(t) = 17



Using the method in few examples.

Example
Find all the solutions to the inhomogeneous equation
y" =3y’ — 4y = 2sin(t).
3

5
lution: Recall: k, = —— k, = —.
Solution: Reca 1 17 and k, 17

So the particular solution to the inhomogeneous equation is

! [—5sin(t) + 3cos(t)].

yp(t) = 17

The general solution is

1
y(t) = qe*t + et + = [—5sin(t) + 3cos(t)].



Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 3e?" + 2sin(t).



Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 3e*" 4 2sin(t).

Solution: We know that the general solution y is given by

y(t) = yu(t) + yp, (£) + ypy(t),



Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 3e*" 4 2sin(t).

Solution: We know that the general solution y is given by
y(t) = yn(t) + ypi (1) + yp (1),

where y,(t) = ce* + c,e?,



Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 3e*" 4 2sin(t).

Solution: We know that the general solution y is given by
y(t) = yn(t) + ypi (1) + yp (1),

where y,(t) = ce*t + €%, L(y,,) = 3e?,



Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 3e*" 4 2sin(t).

Solution: We know that the general solution y is given by
y(t) = yn(t) + ypi (1) + yp (1),

where y,(t) = ce*t + e, L(yp,) = 3€2t, and L(y,,) = 2sin(t).



Using the method in few examples.

Example

Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 3e*" 4 2sin(t).

Solution: We know that the general solution y is given by

y(t) = yn(t) + ypi (1) + yp (1),
where y,(t) = ce*t + e, L(yp,) = 3€2t, and L(y,,) = 2sin(t).
We have just found out that

yolt) = —% 2y (1) = 1% [—5sin(t) + 3cos(t)].



Using the method in few examples.

Example
Find all the solutions to the inhomogeneous equation

y" =3y’ — 4y = 3e*" 4 2sin(t).
Solution: We know that the general solution y is given by
y(t) = yn(t) + ypi (1) + yp (1),

where y,(t) = ce*t + e, L(yp,) = 3€2t, and L(y,,) = 2sin(t).
We have just found out that

1 1 )
yp(t) = -5 et Voo (t) = 7 [—5sin(t) + 3cos(t)].
We conclude that

1 1
y(t) = qe*t + ge?t — 5 e’ + T [—5sin(t) + 3cos(t)]. 4



Using the method in few examples.

Example

» For y" — 3y’ — 4y = 3e?tsin(t),



Using the method in few examples.

Example

> For y" — 3y’ — 4y = 3¢ sin(t), guess

Yp(t) = [kusin(t) + ko cos(t)] e*.



Using the method in few examples.

Example

» For y” — 3y’ — 4y = 3e?*sin(t), guess

Yp(t) = [kusin(t) + ko cos(t)] e*.

» For y" — 3y’ — 4y = 2t? €3,



Using the method in few examples.

Example

» For y” — 3y’ — 4y = 3e?*sin(t), guess

Yp(t) = [kusin(t) + ko cos(t)] e*.

» For y" — 3y’ — 4y = 2t? €3¢, guess

Yo(t) = (ko + kit + kot?) €°.



Using the method in few examples.

Example

» For y” — 3y’ — 4y = 3e?*sin(t), guess

Yp(t) = [kusin(t) + ko cos(t)] e*.

» For y" — 3y’ — 4y = 2t? €3¢, guess

Yo(t) = (ko + kit + kot?) €°.

» For y” — 3y’ — 4y = 3t sin(t),



Using the method in few examples.

Example

» For y” — 3y’ — 4y = 3e?*sin(t), guess

Yp(t) = [kusin(t) + ko cos(t)] e*.

» For y" — 3y’ — 4y = 2t? €3¢, guess

Yo(t) = (ko + kit + kot?) €°.

» For y"” — 3y’ — 4y = 3t sin(t), guess

yp(t) = (1 + kit) [kosin(t) + ks cos(t)].



Non-homogeneous equations (Sect. 3.5).

We study: y" +a,y' + a, y = b(t).
Operator notation and preliminary results.
Summary of the undetermined coefficients method.

Using the method in few examples.

vV vV.v.v Yy

The guessing solution table.



The guessing solution table.

Guessing Solution Table.

|

fi(t) (K, m, a, b, given.) H

¥p;i(t) (Guess) (k not given.)

Ke®* ke

Kt™ Kmt™ + km—1t™ '+ + ko

K cos(bt) ki cos(bt) + ko sin(bt)

K sin(bt) ki cos(bt) + ko sin(bt)

Ktme™ e (kmt™ + -+ + ko)

Ke®* cos(bt) e® [k cos(bt) + ky sin(bt)]

KKe® sin(bt) e’ [k cos(bt) + ky sin(bt)]

Kt™ cos(bt) (kmt™ + - -+ + ko) [a1 cos(bt) + a sin(bt)]
Kt™ sin(bt) (kmt™ + - + ko) [a1 cos(bt) + a2 sin(bt)]




Non-homogeneous equations (Sect. 3.6).

We study: y” + p(t)y’ + q(t)y = f(t).
Method of variation of parameters.
Using the method in an example.

The proof of the variation of parameter method.

vV vV.v.v Yy

Using the method in another example.



Method of variation of parameters.

Remarks:

» This is a general method to find solutions to equations having
variable coefficients and non-homogeneous with a continuous
but otherwise arbitrary source function,

y'+p(t)y' +q(t)y = f(t).



Method of variation of parameters.

Remarks:

» This is a general method to find solutions to equations having
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Method of variation of parameters.

Remarks:

» This is a general method to find solutions to equations having
variable coefficients and non-homogeneous with a continuous
but otherwise arbitrary source function,

y'+p(t)y' +q(t)y = f(t).

» The variation of parameter method can be applied to more
general equations than the undetermined coefficients method.

» The variation of parameter method usually takes more time to
implement than the simpler method of undetermined
coefficients.



Method of variation of parameters.

Theorem (Variation of parameters)

Let p, q, f : (t;, t;) — R be continuous functions, let y;,
¥2 : (t1, t,) — R be linearly independent solutions to the
homogeneous equation

y"+p(t)y' +q(t)y =0,

and let W,,,,, be the Wronskian of y, and y,. If the functions u;,
and u, are defined by

u(t) = —yz(t)f(t)dt, () = yl(t)f(t)dt’

Winy(t) Wy (t)

then the function y, = u,y; + u,y, is a particular solution to the
non-homogeneous equation

y'+p(t)y' + q(t)y = f(t).
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Using the method in an example.

Example
Find the general solution of the inhomogeneous equation

y" =5y 4+ 6y = 2et.
Solution:
First: Find fundamental solutions to the homogeneous equation.
The characteristic equation is

1 3,

rP—5r+6=0 = r=

N

r=

(5+£V25-24) = {rl:

Hence, yi(t) = €3 and y,(t) = e?t. Compute their Wronskian,
Wiy (t) = (€7)(26*) = (3*)(e*) = W, (1) = —€*.

Second: We compute the functions u, and u,. By definition,

’ 2
W}/ly2 WYI}/Q

;o yof J = wf
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Using the method in an example.
Example
Find the general solution of the inhomogeneous equation

y" — 5y’ + 6y = 2e'.
Solution: Recall: y(t)
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iy (t) = —e’", and
J o= — yf J = wnf
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Using the method in an example.
Example
Find the general solution of the inhomogeneous equation

y" — 5y’ + 6y = 2e'.

Solution: Recall: y(t)

e, y(t) = e, Wy, (t) = —e®t and

J o= — yof J = nf

' Wiy, L Wy,
ul = —e2t(2et)(—e_5t) = =22 = py=-e2
uh = e3(2ef)(—e™®) = u=-2e' = wu=2e"

Third: The particular solution is

Yo = (=) () + (2e7) () =y, =l

The general solution is y(t) = €3 + c,e** +ef, a, €R. <
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The proof of the variation of parameter method.

Proof: Denote L(y) = y” + p(t)y' + q(t) y.

We need to find y, solution of L(y,) = f.

We know y; and y, solutions of L(y;) =0 and L(y,) = 0.

Idea: The reduction of order method: Find y, proposing y, = uy;.
First idea: Propose that y, is given by y, = u1y; + t,y,.

We hope that the equation for u; and wu, will be simpler than the
original equation for y,, since y; and y, are solutions to the
homogeneous equation. Compute:

/I

Yp = Uyr + thy, + Uy, + thy,,

Yo = ulyi 2y + wny) + iy, + 20y 4wyl



The proof of the variation of parameter method.
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The proof of the variation of parameter method.
Proof: Then L(y,) = f is given by

[W'ys +2uy] + iyl + u)ys + 20y, + Wy,
p(t) [u;)ﬁ + U1Y1, + u;)/2 + Uz)’z/] +q(t) [U1Y1 + wy] = f(1).
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u;y1 + u;y2 =0.
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The proof of the variation of parameter method.
Proof: Recall: uly, + uly, =0 and
'y uye + 20y + ) + p (U + thys) = f.
These two equations imply that L(y,) = f is
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/

Summary: If u, and u, satisfy uly, + uly, =0 and uly] + uly, = f,
then y, = thy, + Wy, satisfies L(y,) = f.



The proof of the variation of parameter method.

Proof: Summary: If u, and u, satisfy u]y, + vy, = 0 and
uly] + ubys = f, then y, = uy, + Wy, satisfies L(y,) = f.



The proof of the variation of parameter method.

Proof: Summary: If u, and u, satisfy u]y, + vy, = 0 and
uly] + ubys = f, then y, = uy, + Wy, satisfies L(y,) = f.

The equations above are simple to solve for u; and u,,



The proof of the variation of parameter method.

Proof: Summary: If u, and u, satisfy u]y, + vy, = 0 and
uly] + ubys = f, then y, = uy, + Wy, satisfies L(y,) = f.
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YNy
U, =—=—u,

Y2
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Proof: Summary: If u, and u, satisfy u]y, + vy, = 0 and
uly] + ubys = f, then y, = uy, + Wy, satisfies L(y,) = f.
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/
r_ YNy 1o NYe oy
u,=—=—u, = uy— u =f

Yo Y2
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The proof of the variation of parameter method.

Proof: Summary: If u, and u, satisfy u]y, + vy, = 0 and
uly] + ubys = f, then y, = uy, + Wy, satisfies L(y,) = f.

The equations above are simple to solve for u; and u,,

’ N, /
u;:—&u{ = u{y{—&u{:f = u{(iyly2 y1y2):f.

Yo Y2 Y2

Since Wylyz = }/1)/2/ - Y1/)/2.

/ yof / nf
u, = — = u,= .
' Wywz ’ Wy1y2

Integrating in the variable t we obtain

_ [ y(D)f() _ [ n®f()
u(t) = —mdt, u2(t)/VVyly2(t)dt’

This establishes the Theorem. O
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Example
Find a particular solution to the differential equation

t2y" —2y =312 -1,
knowing that the functions y; = t and y, = 1/t are solutions to

the homogeneous equation t%y” — 2y = 0.
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Example
Find a particular solution to the differential equation
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y o 2 1
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We know that y, = t? and y, = 1/t.
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Using the method in another example.

Example
Find a particular solution to the differential equation

t2y" —2y =312 -1,

knowing that the functions y; = t and y, = 1/t are solutions to
the homogeneous equation t%y” — 2y = 0.

Solution: First, write the equation in the form of the Theorem.
That is, divide the whole equation by t2,

2 1 1

We know that y, = 2 and y, = 1/t. Their Wronskian is

W)= (2)(5) - 0(3) = Whn(t)= -3



Using the method in another example.

Example
Find a particular solution to the differential equation
t?y" —2y =3t* -1,

knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t2y” — 2y = 0.

1
Solution: y; = t2, y, =1/t, f(t)=3— 2 Wi,,,(t) = —3.



Using the method in another example.

Example
Find a particular solution to the differential equation

t2y" —2y =312 -1,
knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t2y” — 2y = 0.

1
Solution: y; = t2, y, =1/t, f(t)=3— 2 Wi,,,(t) = —3.

We now compute y; and u,,

1 1 1
w=-310-2)5



Using the method in another example.

Example
Find a particular solution to the differential equation

t?y" —2y =3t* -1,
knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t2y” — 2y = 0.
Solution: y; = t2, y, =1/t, f(t)=3— ?12 Wi,,,(t) = —3.
We now compute y; and u,,

1 1y 1 1 1
! 3
“ _;(3_?)7—3 ?_gt



Using the method in another example.

Example
Find a particular solution to the differential equation
t2y" —2y =312 -1,

knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t2y” — 2y = 0.

. 1
Solution: y; = t2, y, =1/t, f(t)=3— 2 Wy, (t) = =3.
We now compute y; and u,,
1 ( 1 ) 1 1 1 4 - 1 5

!
u = —— - | —=—- ==t
! t t2) -3 t 3
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Example
Find a particular solution to the differential equation
t2y" —2y =312 -1,

knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t2y” — 2y = 0.

. 1
Solution: y; = t2, y, =1/t, f(t)=3— 2 Wy, (t) = =3.
We now compute y; and u,,
1 ( 1 ) 1 1 1 4 - 1 5



Using the method in another example.

Example
Find a particular solution to the differential equation
t2y" —2y =312 -1,

knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t2y” — 2y = 0.

. 1
Solution: y; = t2, y, =1/t, f(t)=3— 2 Wy, (t) = =3.
We now compute y; and u,,
1 ( 1 ) 1 1 1 4 - 1 5



Using the method in another example.

Example
Find a particular solution to the differential equation

t2y" —2y =312 -1,
knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t2y” — 2y = 0.

1
Solution: y; = t2, y, =1/t, f(t)=3— 2 Wi,,,(t) = —3.

We now compute y; and u,,

1 1 1 1 1 1
!/ _ -3 _ -2
== (3-p)5=1-3t7 = w=h@+g
1 1 1 1 1
u=()(3-5) F=-r+3 = w--3r+5t



Using the method in another example.

Example
Find a particular solution to the differential equation

t2y" —2y =312 -1,

knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t2y” — 2y = 0.

Solution: The particular solution ¥, = thy, + ty, is

Vo = [In(t) + %t‘z](tz) + %(—t3 +t)(t7Y)



Using the method in another example.

Example
Find a particular solution to the differential equation
t?y" —2y =3t -1,

knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t2y” — 2y = 0.

Solution: The particular solution ¥, = thy, + ty, is
. 1 _ 1 _
Vo = [In(t) + 5t 2](152) + 5(—t3 +t)(t7Y)

1 1 1
Vo = t2In(t)+ = — —t2+ =



Using the method in another example.

Example
Find a particular solution to the differential equation
t?y" —2y =3t -1,

knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t2y” — 2y = 0.

Solution: The particular solution ¥, = thy, + ty, is
. 1 _ 1 _
Vo = [In(t) + 5t 2](152) + 5(—t3 +t)(t7Y)

1 1 1 1 1
7o =t2In(t)+ = — = t>+ = =t2In(t) + = — = t2



Using the method in another example.
Example
Find a particular solution to the differential equation
t2y" —2y =312 -1,

knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t2y” — 2y = 0.

Solution: The particular solution ¥, = thy, + ty, is
- 1 1 B
Vo= [In(t) + 5t 2](152) + 5(—t3 +t)(t7Y)

1 1 1 1 1
7o =t2In(t)+ = — = t>+ = =t2In(t) + = — = t2

1

N 1
Vp = tIn(t) + = gyl(t).



Using the method in another example.

Example
Find a particular solution to the differential equation

t2y" —2y =312 -1,

knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t2y” — 2y = 0.

Solution: The particular solution ¥, = thy, + ty, is

Vo = [In(t) + %t‘z](tz) + %(—t3 +t)(t7Y)

1 1 1 1 1
7o =t2In(t)+ = — = t>+ = =t2In(t) + = — = t2
5 1 1
Yp = t2|”(t)+§ - §Y1(t)'

1
A simpler expression is y, = t*In(t) + 5 <



Using the method in another example.
Example
Find a particular solution to the differential equation
t2y" —2y =312 -1,

knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t%y” — 2y = 0.



Using the method in another example.

Example
Find a particular solution to the differential equation
t2y" —2y =312 -1,
knowing that the functions y; = t? and y, = 1/t are solutions to

the homogeneous equation t%y” — 2y = 0.

Solution: If we do not remember the formulas for u;, u,, we can
always solve the system
/ /
upys + . =0
! AN A f
Uy, + Uy, =1.



Using the method in another example.

Example
Find a particular solution to the differential equation
t2y" —2y =312 -1,

knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t%y” — 2y = 0.

Solution: If we do not remember the formulas for u;, u,, we can

always solve the system
/ I
Upys + thy, = 0

uy, + oy, = f.

(=1) 1
> :3*5

1
t2u{+u;;:O, 2t + u)



Using the method in another example.

Example
Find a particular solution to the differential equation
t2y" —2y =312 -1,

knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t%y” — 2y = 0.

Solution: If we do not remember the formulas for u;, u,, we can

always solve the system
/ I
Upys + thy, = 0

uy, + oy, = f.

(=1) 1
> :3*5

1
t2u{+u;;:O, 2t + u)

/ /
u, = —t3 u;



Using the method in another example.

Example
Find a particular solution to the differential equation
t2y" —2y =312 -1,

knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t%y” — 2y = 0.

Solution: If we do not remember the formulas for u;, u,, we can

always solve the system
/ I
Upys + thy, = 0

uy, + oy, = f.

(=1) 1
> :3*5

1
t2u{+u;;:O, 2t + u)

1
u=—-t3d = 2tu{+tu{:3—p



Using the method in another example.

Example
Find a particular solution to the differential equation

t2y" —2y =312 -1,

knowing that the functions y; = t? and y, = 1/t are solutions to
the homogeneous equation t%y” — 2y = 0.

Solution: If we do not remember the formulas for u;, u,, we can
always solve the system
/ /
upys + . =0

uy, + oy, = f.

1 (-1) 1
t2u{+u;;:O, 2t + u) :375.
;1 1
1 1T 343
ugz—t3u{:>2tu{+tu{:3—p:> t 3t1
uéz—tz—i-



