
Autonomous systems (Sect. 2.5).

I Definition and examples.

I Qualitative analysis of the solutions.

I Equilibrium solutions and stability.

I Population growth equation.



Definition and examples

Definition
A first order ODE on the unknown function y : R→ R is called
autonomous iff the ODE has the form

dy

dt
= f (y).

Remark:

I The independent variable, t, does not appear explicitly in an
autonomous ODE.

I Autonomous systems are a particular case of separable
equations,

h(y) y ′ = g(t), g(t) = 1, f (y) =
1

h(y)
.

I It is simple to study the qualitative properties of solutions to
autonomous systems.
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Qualitative analysis of the solutions

Remark: It is simple to study the qualitative properties of solutions
to autonomous systems.

Example

Sketch a qualitative graph of solutions to y ′ = sin(y), for different
initial data conditions y(0) = y0.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

y ′(t)

sin
[
y(t)

] = 1 ⇒
∫ t

0

y ′(t)

sin
[
y(t)

] = t

Use the substitution u = y(t), du = y ′(t) dt,∫ y(t)

y0

du

sin(u)
= t ⇒ ln

[ sin(u)

1 + cos(u)

]∣∣∣y(t)

y0

= t.



Qualitative analysis of the solutions

Remark: It is simple to study the qualitative properties of solutions
to autonomous systems.

Example

Sketch a qualitative graph of solutions to y ′ = sin(y), for different
initial data conditions y(0) = y0.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

y ′(t)

sin
[
y(t)

] = 1 ⇒
∫ t

0

y ′(t)

sin
[
y(t)

] = t

Use the substitution u = y(t), du = y ′(t) dt,∫ y(t)

y0

du

sin(u)
= t ⇒ ln

[ sin(u)

1 + cos(u)

]∣∣∣y(t)

y0

= t.



Qualitative analysis of the solutions

Remark: It is simple to study the qualitative properties of solutions
to autonomous systems.

Example

Sketch a qualitative graph of solutions to y ′ = sin(y), for different
initial data conditions y(0) = y0.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

y ′(t)

sin
[
y(t)

] = 1 ⇒
∫ t

0

y ′(t)

sin
[
y(t)

] = t

Use the substitution u = y(t), du = y ′(t) dt,∫ y(t)

y0

du

sin(u)
= t ⇒ ln

[ sin(u)

1 + cos(u)

]∣∣∣y(t)

y0

= t.



Qualitative analysis of the solutions

Remark: It is simple to study the qualitative properties of solutions
to autonomous systems.

Example

Sketch a qualitative graph of solutions to y ′ = sin(y), for different
initial data conditions y(0) = y0.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

y ′(t)

sin
[
y(t)

] = 1 ⇒
∫ t

0

y ′(t)

sin
[
y(t)

] = t

Use the substitution u = y(t), du = y ′(t) dt,∫ y(t)

y0

du

sin(u)
= t ⇒ ln

[ sin(u)

1 + cos(u)

]∣∣∣y(t)

y0

= t.



Qualitative analysis of the solutions

Remark: It is simple to study the qualitative properties of solutions
to autonomous systems.

Example

Sketch a qualitative graph of solutions to y ′ = sin(y), for different
initial data conditions y(0) = y0.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

y ′(t)

sin
[
y(t)

] = 1

⇒
∫ t

0

y ′(t)

sin
[
y(t)

] = t

Use the substitution u = y(t), du = y ′(t) dt,∫ y(t)

y0

du

sin(u)
= t ⇒ ln

[ sin(u)

1 + cos(u)

]∣∣∣y(t)

y0

= t.



Qualitative analysis of the solutions

Remark: It is simple to study the qualitative properties of solutions
to autonomous systems.

Example

Sketch a qualitative graph of solutions to y ′ = sin(y), for different
initial data conditions y(0) = y0.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

y ′(t)

sin
[
y(t)

] = 1 ⇒
∫ t

0

y ′(t)

sin
[
y(t)

] = t

Use the substitution u = y(t), du = y ′(t) dt,∫ y(t)

y0

du

sin(u)
= t ⇒ ln

[ sin(u)

1 + cos(u)

]∣∣∣y(t)

y0

= t.



Qualitative analysis of the solutions

Remark: It is simple to study the qualitative properties of solutions
to autonomous systems.

Example

Sketch a qualitative graph of solutions to y ′ = sin(y), for different
initial data conditions y(0) = y0.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

y ′(t)

sin
[
y(t)

] = 1 ⇒
∫ t

0

y ′(t)

sin
[
y(t)

] = t

Use the substitution u = y(t),

du = y ′(t) dt,∫ y(t)

y0

du

sin(u)
= t ⇒ ln

[ sin(u)

1 + cos(u)

]∣∣∣y(t)

y0

= t.



Qualitative analysis of the solutions

Remark: It is simple to study the qualitative properties of solutions
to autonomous systems.

Example

Sketch a qualitative graph of solutions to y ′ = sin(y), for different
initial data conditions y(0) = y0.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

y ′(t)

sin
[
y(t)

] = 1 ⇒
∫ t

0

y ′(t)

sin
[
y(t)

] = t

Use the substitution u = y(t), du = y ′(t) dt,

∫ y(t)

y0

du

sin(u)
= t ⇒ ln

[ sin(u)

1 + cos(u)

]∣∣∣y(t)

y0

= t.



Qualitative analysis of the solutions

Remark: It is simple to study the qualitative properties of solutions
to autonomous systems.

Example

Sketch a qualitative graph of solutions to y ′ = sin(y), for different
initial data conditions y(0) = y0.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

y ′(t)

sin
[
y(t)

] = 1 ⇒
∫ t

0

y ′(t)

sin
[
y(t)

] = t

Use the substitution u = y(t), du = y ′(t) dt,∫ y(t)

y0

du

sin(u)
= t

⇒ ln
[ sin(u)

1 + cos(u)

]∣∣∣y(t)

y0

= t.



Qualitative analysis of the solutions

Remark: It is simple to study the qualitative properties of solutions
to autonomous systems.

Example

Sketch a qualitative graph of solutions to y ′ = sin(y), for different
initial data conditions y(0) = y0.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

y ′(t)

sin
[
y(t)

] = 1 ⇒
∫ t

0

y ′(t)

sin
[
y(t)

] = t

Use the substitution u = y(t), du = y ′(t) dt,∫ y(t)

y0

du

sin(u)
= t ⇒ ln

[ sin(u)

1 + cos(u)

]∣∣∣y(t)

y0

= t.



Qualitative analysis of the solutions

Example

Sketch a qualitative graph of solutions to y ′ = sin(y), for different
initial data conditions y(0) = y0.

Solution: Recall: ln
[ sin(u)

1 + cos(u)

]∣∣∣y(t)

y0

= t.

ln
[ sin(y)

1 + cos(y)

]
− ln

[ sin(y0)

1 + cos(y0)

]
= t.

ln
[ sin(y)

[1 + cos(y)]

[1 + cos(y0)]

sin(y0)

]
= t.

The implicit expression of the solution is

sin(y)

[1 + cos(y)]
=

sin(y0)

[1 + cos(y0)]
et .

Without a computer it is difficult to graph the solution.
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sin(y0)

[1 + cos(y0)]
et .

Another way:
(1) Plot the function

f (y) = sin(y).
Equilibrium solutions:  y(t) = n pi.

y’ f(y) = sin (y)

− pi 0 pi 2 pi y

(2) Find the zeros of f . Since f (y) = sin(y) = 0, then y = mπ.

The constants y = mπ, are solutions of y ′ = sin(y).
They are called equilibrium solutions.
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(3) The solution is:
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Autonomous systems (Sect. 2.5).

I Definition and examples.

I Qualitative analysis of the solutions.

I Equilibrium solutions and stability.

I Population growth equation.



Equilibrium solutions and stability

Unstable

pi

0

y
0

y
0

2 pi

y

pi

2 pi

Stable

Unstable

t

Stable

Stable

Definition
The constant y0 is an equilibrium
solution of the autonomous system
y ′ = f (y) iff hold that f (y0) = 0.

The equilibrium solution y0 is
asymptotically stable iff there exists
I = (y0 − ε, y0 + ε) such that every
solution y with y(0) ∈ I satisfies

lim
t→∞

y(t) = y0.

Definition
The equilibrium solution y0 is asymptotically unstable iff there
exists I = (y0 − ε, y0 + ε) such that for every solution y with
y(0) ∈ I holds lim

t→∞
y(t) 6= y0.
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Autonomous systems (Sect. 2.5).

I Definition and examples.

I Qualitative analysis of the solutions.

I Equilibrium solutions and stability.

I Population growth equation.



Population growth equation (Logistic equation)

Example

Sketch a qualitative graph of solutions for different initial data
conditions y(0) = y0 to the population growth equation

y ′ = r
(
1− y

K

)
y , where r and K are given positive constants.

Solution:

(1) Plot the function

f (y) = r
(
1− y

K

)
y .

(2) Find the zeros of f .

y0 = 0, y0 = K . y’ < 0

y’

0 yK

StableUnstable

f(y) = r (1 − y / K) y

K / 2

y’ > 0 y’ < 0

The constants y0 = 0 and y0 = K are the equilibrium solutions.

The solution y0 is unstable, while y0 = K is stable.
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Population growth equation (Logistic equation)

Remark: The curvature of the solution y depends on f ′(y) f (y).

Theorem
If the function y is a solution of the autonomous system y ′ = f (y),
then the graph of y has positive curvature iff f ′(y) f (y) > 0, and
negative curvature iff f ′(y) f (y) < 0.

Proof:

d2y

dt2
=

df

dy
(y)

dy

dt
,

dy

dt
= f (y) ⇒ y ′′ = f ′(y) f (y).

.

y’’ < 0

y’

0 yK
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Population growth equation (Logistic equation)

Example

Find the exact expression for the solutions to the population

growth equation y ′ = r
(
1− y

K

)
y , with y(0) = y0.

Solution: This is a separable equation,

K

r

∫
y ′ dt

(K − y)y
= t + c0.

Substitution: u = y(t), then du = y ′ dt,

K

r

∫
du

(K − u)u
= t + c0.

Partial fraction decomposition:

K

r

∫
1

K

[ 1

(K − u)
+

1

u

]
du = t + c0.
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r

∫
1

K

[ 1

(K − u)
+

1

u

]
du = t + c0.

[
− ln(|K − y |) + ln(|y |)

]
= rt + rc0.

ln
( |y |
|K − y |

)
= rt + rc0 ⇒ y

K − y
= c ert , c = erc0 .

y(t) =
cK ert

1 + c ert
, c =

y0

K − y0

We conclude that y(t) =
Ky0

y0 + (K − y0) e−rt
. C
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The solution is y(t) =
Ky0
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Exact equations (Sect. 2.6).

I Exact differential equations.

I The Poincaré Lemma.

I Implicit solutions and the potential function.

I Generalization: The integrating factor method.



Exact differential equations.

Definition
Given an open rectangle R = (t1, t2)× (u1, u2) ⊂ R2 and
continuously differentiable functions M,N : R → R, denoted as
(t, u) 7→ M(t, u) and (t, u) 7→ N(t, u), the differential equation in
the unknown function y : (t1, t2)→ R given by

N(t, y(t)) y ′(t) + M(t, y(t)) = 0

is called exact iff for every point (t, u) ∈ R holds

∂tN(t, u) = ∂uM(t, u)

Recall: we use the notation: ∂tN =
∂N

∂t
, and ∂uM =

∂M

∂u
.
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Exact differential equations.

Example

Show whether the differential equation below is exact,

2ty(t) y ′(t) + 2t + y2(t) = 0.

Solution: We first identify the functions N and M,

[
2ty(t)

]
y ′(t) +

[
2t + y2(t)

]
= 0 ⇒

{
N(t, u) = 2tu,

M(t, u) = 2t + u2.

The equation is exact iff ∂tN = ∂uM. Since

N(t, u) = 2tu ⇒ ∂tN(t, u) = 2u,

M(t, u) = 2t + u2 ⇒ ∂uM(t, u) = 2u.

We conclude: ∂tN(t, u) = ∂uM(t, u). C

Remark: The ODE above is not separable and non-linear.
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Exact differential equations.

Example

Show whether the differential equation below is exact,

sin(t)y ′(y) + t2ey(t)y ′(t)− y ′(t) = −y(t) cos(t)− 2tey(t).

Solution: We first identify the functions N and M, if we write[
sin(t) + t2ey(t) − 1

]
y ′(t) +

[
y(t) cos(t) + 2tey(t)

]
= 0,

we can see that

N(t, u) = sin(t) + t2eu − 1 ⇒ ∂tN(t, u) = cos(t) + 2teu,

M(t, u) = u cos(t) + 2teu ⇒ ∂uM(t, u) = cos(t) + 2teu.

The equation is exact, since ∂tN(t, u) = ∂uM(t, u). C
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Exact differential equations.

Example

Show whether the linear differential equation below is exact,

y ′(t) = −a(t) y(t) + b(t), a(t) 6= 0.

Solution: We first find the functions N and M,

y ′ + a(t)y − b(t) = 0 ⇒

{
N(t, u) = 1,

M(t, u) = a(t) u − b(t).

The differential equation is not exact, since

N(t, u) = 1 ⇒ ∂tN(t, u) = 0,

M(t, u) = a(t)u − b(t) ⇒ ∂uM(t, u) = a(t).

This implies that ∂tN(t, u) 6= ∂uM(t, u). C
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I Exact differential equations.

I The Poincaré Lemma.

I Implicit solutions and the potential function.

I Generalization: The integrating factor method.



The Poincaré Lemma.

Remark: The coefficients N and M of an exact equations are the
derivatives of a potential function ψ.

Lemma (Poincaré)

Given an open rectangle R = (t1, t2)× (u1, u2) ⊂ R2, the
continuously differentiable functions M,N : R → R satisfy the
equation

∂tN(t, u) = ∂uM(t, u)

iff there exists a twice continuously differentiable function
ψ : R → R, called potential function, such that for all (t, u) ∈ R
holds

∂uψ(t, u) = N(t, u), ∂tψ(t, u) = M(t, u).

Proof: (⇐) Simple:
∂tN = ∂t∂uψ,

∂uM = ∂u∂tψ,

}
⇒ ∂tN = ∂uM.

(⇒) Difficult: Poincaré, 1880.
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The Poincaré Lemma.
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The Poincaré Lemma.

Example

Show that the function ψ(t, u) = t2 + tu2 is the potential function
for the exact differential equation

2ty(t) y ′(t) + 2t + y2(t) = 0.

Solution: We already saw that the differential equation above is
exact, since the functions M and N,

N(t, u) = 2tu,

M(t, u) = 2t + u2

}
⇒ ∂tN = 2u = ∂uM.

The potential function is ψ(t, u) = t2 + tu2, since

∂tψ = 2t + u2 = M, ∂uψ = 2tu = N. C

Remark: The Poincaré Lemma only states necessary and sufficient
conditions on N and M for the existence of ψ.
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Exact equations (Sect. 2.6).

I Exact differential equations.

I The Poincaré Lemma.

I Implicit solutions and the potential function.

I Generalization: The integrating factor method.



Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let M,N : R → R be continuously differentiable functions on an
open rectangle R = (t1, t2)× (u1, u2) ⊂ R2. If the differential
equation

N(t, y(t)) y ′(t) + M(t, y(t)) = 0 (1)

is exact, then every solution y : (t1, t2)→ R must satisfy the
algebraic equation

ψ(t, y(t)) = c ,

where c ∈ R and ψ : R → R is a potential function for Eq. (1).

Proof: 0 = N(t, y) y ′ + M(t, y) = ∂yψ(t, y)
dy

dt
+ ∂tψ(t, y)).

0 =
d

dt
ψ(t, y(t)) ⇔ ψ(t, y(t)) = c .
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Implicit solutions and the potential function.

Example

Find all solutions y to the equation[
sin(t) + t2ey(t) − 1

]
y ′(t) + y(t) cos(t) + 2tey(t) = 0.

Solution: Recall: The equation is exact,

N(t, u) = sin(t) + t2eu − 1 ⇒ ∂tN(t, u) = cos(t) + 2teu,

M(t, u) = u cos(t) + 2teu ⇒ ∂uM(t, u) = cos(t) + 2teu,

hence, ∂tN = ∂uM. Poincaré Lemma says the exists ψ,

∂uψ(t, u) = N(t, u), ∂tψ(t, u) = M(t, u).

These are actually equations for ψ. From the first one,

ψ(t, u) =

∫ [
sin(t) + t2eu − 1

]
du + g(t).
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hence, ∂tN = ∂uM. Poincaré Lemma says the exists ψ,

∂uψ(t, u) = N(t, u), ∂tψ(t, u) = M(t, u).

These are actually equations for ψ. From the first one,

ψ(t, u) =

∫ [
sin(t) + t2eu − 1

]
du + g(t).



Implicit solutions and the potential function.

Example

Find all solutions y to the equation[
sin(t) + t2ey(t) − 1

]
y ′(t) + y(t) cos(t) + 2tey(t) = 0.

Solution: Recall: The equation is exact,

N(t, u) = sin(t) + t2eu − 1 ⇒ ∂tN(t, u) = cos(t) + 2teu,

M(t, u) = u cos(t) + 2teu ⇒ ∂uM(t, u) = cos(t) + 2teu,

hence, ∂tN = ∂uM. Poincaré Lemma says the exists ψ,
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hence, ∂tN = ∂uM. Poincaré Lemma says the exists ψ,

∂uψ(t, u) = N(t, u), ∂tψ(t, u) = M(t, u).

These are actually equations for ψ. From the first one,

ψ(t, u) =

∫ [
sin(t) + t2eu − 1

]
du + g(t).



Implicit solutions and the potential function.

Example

Find all solutions y to the equation[
sin(t) + t2ey(t) − 1

]
y ′(t) + y(t) cos(t) + 2tey(t) = 0.

Solution: ψ(t, u) =

∫ [
sin(t) + t2eu − 1

]
du + g(t).

Integrating,

ψ(t, u) = u sin(t) + t2eu − u + g(t).

Introduce this expression into ∂tψ(t, u) = M(t, u), that is,

∂tψ(t, u) = u cos(t) + 2teu + g ′(t) = M(t, u) = u cos(t) + 2teu,

Therefore, g ′(t) = 0, so we choose g(t) = 0. We obtain,

ψ(t, u) = u sin(t) + t2eu − u.

So the solution y satisfies y(t) sin(t) + t2ey(t) − y(t) = c . C
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Exact equations (Sect. 2.6).

I Exact differential equations.

I The Poincaré Lemma.

I Implicit solutions and the potential function.

I Generalization: The integrating factor method.

Remark:
Sometimes a non-exact equation can we transformed into an exact
equation multiplying the equation by an integrating factor. Just
like in the case of linear differential equations.



Generalization: The integrating factor method.

Theorem (Integrating factor)
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1

N(t, u)

[
∂uM(t, u)− ∂tN(t, u)

]
does not depend on the variable u, then the equation

µ(t)
[
N(t, y(t)) y ′(t) + M(t, y(t))

]
= 0

is exact, where
µ′(t)

µ(t)
=

1

N(t, u)

[
∂uM(t, u)− ∂tN(t, u)

]
.
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=
1

t(t + u)
(t + u) =

1

t
.
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We find a function µ solution of
µ′

µ
=
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∂uM − ∂tN

]
N

, that is

µ′(t)

µ(t)
=

1

t
⇒ ln(µ(t)) = ln(t) ⇒ µ(t) = t.

Therefore, the equation below is exact:[
t3 + t2 y(t)

]
y ′(t) +

[
3t2 y(t) + t y2(t)

]
= 0.
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Ñ(t, u) = t3 + t2u ⇒ ∂tÑ(t, u) = 3t2 + 2tu,

M̃(t, u) = 3t2u + tu2 ⇒ ∂uM̃(t, u) = 3t2 + 2tu,

that is, ∂tÑ = ∂uM̃. Therefore, there exists ψ such that

∂uψ(t, u) = Ñ(t, u), ∂tψ(t, u) = M̃(t, u).

From the first equation above we obtain

∂uψ = t3 + t2u ⇒ ψ(t, u) =

∫ (
t3 + t2u

)
du + g(t).
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that is, ∂tÑ = ∂uM̃. Therefore, there exists ψ such that
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that is, ∂tÑ = ∂uM̃. Therefore, there exists ψ such that
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Ñ(t, u) = t3 + t2u ⇒ ∂tÑ(t, u) = 3t2 + 2tu,
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M̃(t, u) = 3t2u + tu2 ⇒ ∂uM̃(t, u) = 3t2 + 2tu,
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Second order linear differential equations.

Definition
Given functions a1, a0, b : R→ R, the differential equation in the
unknown function y : R→ R given by

y ′′ + a1(t) y ′ + a0(t) y = b(t) (2)

is called a second order linear differential equation with variable
coefficients.

The equation in (2) is called homogeneous iff for all
t ∈ R holds

b(t) = 0.

The equation in (2) is called of constant coefficients iff a1, a0, and
b are constants.

Remark: The notion of an homogeneous equation presented here
is not the same as the notion presented in the previous chapter.
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Second order linear differential equations.

Example

(a) A second order, linear, homogeneous, constant coefficients
equation is

y ′′ + 5y ′ + 6 = 0.

(b) A second order order, linear, constant coefficients,
non-homogeneous equation is

y ′′ − 3y ′ + y = 1.

(c) A second order, linear, non-homogeneous, variable coefficients
equation is

y ′′ + 2t y ′ − ln(t) y = e3t .

(d) Newton’s second law of motion (ma = f ) for point particles of
mass m moving in one space dimension under a force
f : R→ R is given by

m y ′′(t) = f (t). C
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Superposition property.

Theorem
If the functions y1 and y2 are solutions to the homogeneous linear
equation

y ′′ + a1(t) y ′ + a0(t) y = 0, (3)

then the linear combination c1y1(t) + c2y2(t) is also a solution for
any constants c1, c2 ∈ R.

Proof: Verify that the function y = c1y1 + c2y2 satisfies Eq. (3) for
every constants c1, c2, that is,

(c1y1 + c2y2)
′′ + a1(t)(c1y1 + c2y2)

′ + a0(t)(c1y1 + c2y2)

= (c1y
′′
1 + c2y

′′
2 ) + a1(t)(c1y

′
1 + c2y

′
2) + a0(t)(c1y1 + c2y2)

= c1

[
y ′′1 + a1(t)y

′
1 + a0(t)y1

]
+ c2

[
y ′′2 + a1(t)y

′
2 + a0(t)y2

]
= 0.



Superposition property.

Theorem
If the functions y1 and y2 are solutions to the homogeneous linear
equation

y ′′ + a1(t) y ′ + a0(t) y = 0, (3)

then the linear combination c1y1(t) + c2y2(t) is also a solution for
any constants c1, c2 ∈ R.

Proof: Verify that the function y = c1y1 + c2y2 satisfies Eq. (3) for
every constants c1, c2,

that is,

(c1y1 + c2y2)
′′ + a1(t)(c1y1 + c2y2)

′ + a0(t)(c1y1 + c2y2)

= (c1y
′′
1 + c2y

′′
2 ) + a1(t)(c1y

′
1 + c2y

′
2) + a0(t)(c1y1 + c2y2)

= c1

[
y ′′1 + a1(t)y

′
1 + a0(t)y1

]
+ c2

[
y ′′2 + a1(t)y

′
2 + a0(t)y2

]
= 0.



Superposition property.

Theorem
If the functions y1 and y2 are solutions to the homogeneous linear
equation

y ′′ + a1(t) y ′ + a0(t) y = 0, (3)

then the linear combination c1y1(t) + c2y2(t) is also a solution for
any constants c1, c2 ∈ R.

Proof: Verify that the function y = c1y1 + c2y2 satisfies Eq. (3) for
every constants c1, c2, that is,

(c1y1 + c2y2)
′′ + a1(t)(c1y1 + c2y2)

′ + a0(t)(c1y1 + c2y2)

= (c1y
′′
1 + c2y

′′
2 ) + a1(t)(c1y

′
1 + c2y

′
2) + a0(t)(c1y1 + c2y2)

= c1

[
y ′′1 + a1(t)y

′
1 + a0(t)y1

]
+ c2

[
y ′′2 + a1(t)y

′
2 + a0(t)y2

]
= 0.



Superposition property.

Theorem
If the functions y1 and y2 are solutions to the homogeneous linear
equation

y ′′ + a1(t) y ′ + a0(t) y = 0, (3)

then the linear combination c1y1(t) + c2y2(t) is also a solution for
any constants c1, c2 ∈ R.

Proof: Verify that the function y = c1y1 + c2y2 satisfies Eq. (3) for
every constants c1, c2, that is,

(c1y1 + c2y2)
′′ + a1(t)(c1y1 + c2y2)

′ + a0(t)(c1y1 + c2y2)

= (c1y
′′
1 + c2y

′′
2 ) + a1(t)(c1y

′
1 + c2y

′
2) + a0(t)(c1y1 + c2y2)

= c1

[
y ′′1 + a1(t)y

′
1 + a0(t)y1

]
+ c2

[
y ′′2 + a1(t)y

′
2 + a0(t)y2

]
= 0.



Superposition property.

Theorem
If the functions y1 and y2 are solutions to the homogeneous linear
equation

y ′′ + a1(t) y ′ + a0(t) y = 0, (3)

then the linear combination c1y1(t) + c2y2(t) is also a solution for
any constants c1, c2 ∈ R.

Proof: Verify that the function y = c1y1 + c2y2 satisfies Eq. (3) for
every constants c1, c2, that is,

(c1y1 + c2y2)
′′ + a1(t)(c1y1 + c2y2)

′ + a0(t)(c1y1 + c2y2)

= (c1y
′′
1 + c2y

′′
2 ) + a1(t)(c1y

′
1 + c2y

′
2) + a0(t)(c1y1 + c2y2)

= c1

[
y ′′1 + a1(t)y

′
1 + a0(t)y1

]
+ c2

[
y ′′2 + a1(t)y

′
2 + a0(t)y2

]
= 0.



Second order linear ODE (Sect. 3.1).

I Second order linear differential equations.

I Superposition property.

I Constant coefficients equations.

I The characteristic equation.

I The main result.



Constant coefficients equations.

Remark: Just by trial and error one can find solutions to second
order, constant coefficients, homogeneous, linear differential
equations.

We present the main ideas with an example.

Example

Find solutions to the equation y ′′ + 5y ′ + 6y = 0.

Solution: We look for solutions proportional to exponentials ert , for
an appropriate constant r ∈ R, since the exponential can be
canceled out from the equation.
If y(t) = ert , then y ′(t) = rert , and y ′′(t) = r2ert . Hence

(r2 + 5r + 6)ert = 0 ⇔ r2 + 5r + 6 = 0.

That is, r must be a root of the polynomial p(r) = r2 + 5r + 6.

This polynomial is called the characteristic polynomial of the
differential equation.
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Constant coefficients equations.

Example

Find solutions to the equation y ′′ + 5y ′ + 6y = 0.

Solution: Recall: p(r) = r2 + 5r + 6.

The roots of the characteristic polynomial are

r =
1

2

(
−5±

√
25− 24

)
=

1

2
(−5± 1) ⇒

{
r1 = −2,

r2 = −3.

Therefore, we have found two solutions to the ODE,

y1(t) = e−2t , y2(t) = e−3t .

Their superposition provides infinitely many solutions,

y(t) = c1e
−2t + c2e

−3t , c1, c2 ∈ R. C
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Constant coefficients equations.

Summary: The differential equation y ′′ + 5y ′ + 6y = 0 has
infinitely many solutions,

y(t) = c1e
−2t + c2e

−3t , c1, c2 ∈ R.

Remarks:

I There are two free constants in the solution found above.

I The ODE above is second order, so two integrations must be
done to find the solution. This explain the origin of the two
free constant in the solution.

I An IVP for a second order differential equation will have a
unique solution if the IVP contains two initial conditions.



Constant coefficients equations.

Summary: The differential equation y ′′ + 5y ′ + 6y = 0 has
infinitely many solutions,

y(t) = c1e
−2t + c2e

−3t , c1, c2 ∈ R.

Remarks:

I There are two free constants in the solution found above.

I The ODE above is second order, so two integrations must be
done to find the solution. This explain the origin of the two
free constant in the solution.

I An IVP for a second order differential equation will have a
unique solution if the IVP contains two initial conditions.



Constant coefficients equations.

Summary: The differential equation y ′′ + 5y ′ + 6y = 0 has
infinitely many solutions,

y(t) = c1e
−2t + c2e

−3t , c1, c2 ∈ R.

Remarks:

I There are two free constants in the solution found above.

I The ODE above is second order, so two integrations must be
done to find the solution. This explain the origin of the two
free constant in the solution.

I An IVP for a second order differential equation will have a
unique solution if the IVP contains two initial conditions.



Constant coefficients equations.

Summary: The differential equation y ′′ + 5y ′ + 6y = 0 has
infinitely many solutions,

y(t) = c1e
−2t + c2e

−3t , c1, c2 ∈ R.

Remarks:

I There are two free constants in the solution found above.

I The ODE above is second order, so two integrations must be
done to find the solution. This explain the origin of the two
free constant in the solution.

I An IVP for a second order differential equation will have a
unique solution if the IVP contains two initial conditions.



Second order linear ODE (Sect. 3.1).

I Second order linear differential equations.
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The characteristic equation.

Definition
Given a second order linear homogeneous differential equation with
constant coefficients

y ′′ + a1y
′ + a0 = 0, (4)

the characteristic polynomial and the characteristic equation
associated with the differential equation in (4) are, respectively,

p(r) = r2 + a1r + a0, p(r) = 0.

If r1, r2 are the solutions of the characteristic equation and c1, c2

are constants, then the function

y(t) = c1e
r1t + c2e

r2t

is called the general solution of the Eq. (4).
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The characteristic equation.

Example

Find the solution y of the initial value problem

y ′′ + 5y ′ + 6 = 0, y(0) = 1, y ′(0) = −1.

Solution: A solution of the differential equation above is

y(t) = c1e
−2t + c2e

−3t .

We now find the constants c1 and c2 that satisfy the initial
conditions above:

1 = y(0) = c1 + c2, − 1 = y ′(0) = −2c1 − 3c2.

c1 = 1− c2 ⇒ 1 = 2(1− c2) + 3c2 ⇒ c2 = −1⇒ c1 = 2.

Therefore, the unique solution to the initial value problem is

y(t) = 2e−2t − e−3t . C



The characteristic equation.

Example

Find the solution y of the initial value problem

y ′′ + 5y ′ + 6 = 0, y(0) = 1, y ′(0) = −1.

Solution: A solution of the differential equation above is

y(t) = c1e
−2t + c2e

−3t .

We now find the constants c1 and c2 that satisfy the initial
conditions above:

1 = y(0) = c1 + c2, − 1 = y ′(0) = −2c1 − 3c2.

c1 = 1− c2 ⇒ 1 = 2(1− c2) + 3c2 ⇒ c2 = −1⇒ c1 = 2.

Therefore, the unique solution to the initial value problem is

y(t) = 2e−2t − e−3t . C



The characteristic equation.

Example

Find the solution y of the initial value problem

y ′′ + 5y ′ + 6 = 0, y(0) = 1, y ′(0) = −1.

Solution: A solution of the differential equation above is

y(t) = c1e
−2t + c2e

−3t .

We now find the constants c1 and c2 that satisfy the initial
conditions above:

1 = y(0) = c1 + c2, − 1 = y ′(0) = −2c1 − 3c2.

c1 = 1− c2 ⇒ 1 = 2(1− c2) + 3c2 ⇒ c2 = −1⇒ c1 = 2.

Therefore, the unique solution to the initial value problem is

y(t) = 2e−2t − e−3t . C



The characteristic equation.

Example

Find the solution y of the initial value problem

y ′′ + 5y ′ + 6 = 0, y(0) = 1, y ′(0) = −1.

Solution: A solution of the differential equation above is

y(t) = c1e
−2t + c2e

−3t .

We now find the constants c1 and c2 that satisfy the initial
conditions above:

1 = y(0) = c1 + c2,

− 1 = y ′(0) = −2c1 − 3c2.

c1 = 1− c2 ⇒ 1 = 2(1− c2) + 3c2 ⇒ c2 = −1⇒ c1 = 2.

Therefore, the unique solution to the initial value problem is

y(t) = 2e−2t − e−3t . C



The characteristic equation.

Example

Find the solution y of the initial value problem

y ′′ + 5y ′ + 6 = 0, y(0) = 1, y ′(0) = −1.

Solution: A solution of the differential equation above is

y(t) = c1e
−2t + c2e

−3t .

We now find the constants c1 and c2 that satisfy the initial
conditions above:

1 = y(0) = c1 + c2, − 1 = y ′(0) = −2c1 − 3c2.

c1 = 1− c2 ⇒ 1 = 2(1− c2) + 3c2 ⇒ c2 = −1⇒ c1 = 2.

Therefore, the unique solution to the initial value problem is

y(t) = 2e−2t − e−3t . C



The characteristic equation.

Example

Find the solution y of the initial value problem

y ′′ + 5y ′ + 6 = 0, y(0) = 1, y ′(0) = −1.

Solution: A solution of the differential equation above is

y(t) = c1e
−2t + c2e

−3t .

We now find the constants c1 and c2 that satisfy the initial
conditions above:

1 = y(0) = c1 + c2, − 1 = y ′(0) = −2c1 − 3c2.

c1 = 1− c2

⇒ 1 = 2(1− c2) + 3c2 ⇒ c2 = −1⇒ c1 = 2.

Therefore, the unique solution to the initial value problem is

y(t) = 2e−2t − e−3t . C



The characteristic equation.

Example

Find the solution y of the initial value problem

y ′′ + 5y ′ + 6 = 0, y(0) = 1, y ′(0) = −1.

Solution: A solution of the differential equation above is

y(t) = c1e
−2t + c2e

−3t .

We now find the constants c1 and c2 that satisfy the initial
conditions above:

1 = y(0) = c1 + c2, − 1 = y ′(0) = −2c1 − 3c2.

c1 = 1− c2 ⇒ 1 = 2(1− c2) + 3c2

⇒ c2 = −1⇒ c1 = 2.

Therefore, the unique solution to the initial value problem is

y(t) = 2e−2t − e−3t . C



The characteristic equation.

Example

Find the solution y of the initial value problem

y ′′ + 5y ′ + 6 = 0, y(0) = 1, y ′(0) = −1.

Solution: A solution of the differential equation above is

y(t) = c1e
−2t + c2e

−3t .

We now find the constants c1 and c2 that satisfy the initial
conditions above:

1 = y(0) = c1 + c2, − 1 = y ′(0) = −2c1 − 3c2.

c1 = 1− c2 ⇒ 1 = 2(1− c2) + 3c2 ⇒ c2 = −1

⇒ c1 = 2.

Therefore, the unique solution to the initial value problem is

y(t) = 2e−2t − e−3t . C



The characteristic equation.

Example

Find the solution y of the initial value problem

y ′′ + 5y ′ + 6 = 0, y(0) = 1, y ′(0) = −1.

Solution: A solution of the differential equation above is

y(t) = c1e
−2t + c2e

−3t .

We now find the constants c1 and c2 that satisfy the initial
conditions above:

1 = y(0) = c1 + c2, − 1 = y ′(0) = −2c1 − 3c2.

c1 = 1− c2 ⇒ 1 = 2(1− c2) + 3c2 ⇒ c2 = −1⇒ c1 = 2.

Therefore, the unique solution to the initial value problem is

y(t) = 2e−2t − e−3t . C



The characteristic equation.

Example

Find the solution y of the initial value problem

y ′′ + 5y ′ + 6 = 0, y(0) = 1, y ′(0) = −1.

Solution: A solution of the differential equation above is

y(t) = c1e
−2t + c2e

−3t .

We now find the constants c1 and c2 that satisfy the initial
conditions above:

1 = y(0) = c1 + c2, − 1 = y ′(0) = −2c1 − 3c2.

c1 = 1− c2 ⇒ 1 = 2(1− c2) + 3c2 ⇒ c2 = −1⇒ c1 = 2.

Therefore, the unique solution to the initial value problem is

y(t) = 2e−2t − e−3t . C



The characteristic equation.

Example
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Solution: We look for every solution of the form y(t) = ert , where
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2r2 − 3r + 1 = 0 ⇒ r =
1

4

(
3±

√
9− 8

)
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 r1 = 1,

r2 =
1

2
.

Therefore, the general solution of the equation above is

y(t) = c1e
t + c2e

t/2,

where c1, c2 are arbitrary constants. C
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The main result.

Theorem (Constant coefficients)

Given real constants a1, a0, consider the homogeneous, linear
differential equation on the unknown y : R→ R given by

y ′′ + a1 y ′ + a0 y = 0. (5)

Let r+, r− be the roots of the characteristic polynomial
p(r) = r2 + a1r + a0, and let c0, c1 be arbitrary constants. Then,
any solution of Eq. (5) belongs to only one of the following cases:

(a) If r+ 6= r−, the general solution is y(t) = c0e
r+t + c1e

r−t .

(b) If r+ = r− ∈ R, the general solution is y(t) = (c0 + c1t)e
r+t .

Furthermore, given real constants t0, y0 and y1, there is a unique
solution to the initial value problem given by Eq. (5) and the initial
conditions

y(t0) = y0, y ′(t0) = y1.


