Autonomous systems (Sect. 2.5).

- ▶ Definition and examples.
- Qualitative analysis of the solutions.
- Equilibrium solutions and stability.
- Population growth equation.

Definition

A first order ODE on the unknown function $y: \mathbb{R} \to \mathbb{R}$ is called *autonomous* iff the ODE has the form

$$\frac{dy}{dt}=f(y).$$

Definition

A first order ODE on the unknown function $y: \mathbb{R} \to \mathbb{R}$ is called *autonomous* iff the ODE has the form

$$\frac{dy}{dt} = f(y).$$

Remark:

► The independent variable, t, does not appear explicitly in an autonomous ODE.

Definition

A first order ODE on the unknown function $y: \mathbb{R} \to \mathbb{R}$ is called *autonomous* iff the ODE has the form

$$\frac{dy}{dt} = f(y).$$

Remark:

- ► The independent variable, t, does not appear explicitly in an autonomous ODE.
- Autonomous systems are a particular case of separable equations,

$$h(y)\,y'=g(t),$$

Definition

A first order ODE on the unknown function $y: \mathbb{R} \to \mathbb{R}$ is called *autonomous* iff the ODE has the form

$$\frac{dy}{dt}=f(y).$$

Remark:

- ► The independent variable, t, does not appear explicitly in an autonomous ODE.
- Autonomous systems are a particular case of separable equations,

$$h(y) y' = g(t),$$
 $g(t) = 1,$ $f(y) = \frac{1}{h(y)}.$

Definition

A first order ODE on the unknown function $y: \mathbb{R} \to \mathbb{R}$ is called *autonomous* iff the ODE has the form

$$\frac{dy}{dt}=f(y).$$

Remark:

- ► The independent variable, t, does not appear explicitly in an autonomous ODE.
- Autonomous systems are a particular case of separable equations,

$$h(y) y' = g(t),$$
 $g(t) = 1,$ $f(y) = \frac{1}{h(y)}.$

▶ It is simple to study the qualitative properties of solutions to autonomous systems.

Autonomous systems (Sect. 2.5).

- Definition and examples.
- ► Qualitative analysis of the solutions.
- Equilibrium solutions and stability.
- Population growth equation.

Remark: It is simple to study the qualitative properties of solutions to autonomous systems.

Remark: It is simple to study the qualitative properties of solutions to autonomous systems.

Example

Remark: It is simple to study the qualitative properties of solutions to autonomous systems.

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: One way: Find the exact solutions and then graph them.

Remark: It is simple to study the qualitative properties of solutions to autonomous systems.

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

Remark: It is simple to study the qualitative properties of solutions to autonomous systems.

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

$$\frac{y'(t)}{\sin[y(t)]} = 1$$

Remark: It is simple to study the qualitative properties of solutions to autonomous systems.

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

$$\frac{y'(t)}{\sin[y(t)]} = 1 \quad \Rightarrow \quad \int_0^t \frac{y'(t)}{\sin[y(t)]} = t$$

Remark: It is simple to study the qualitative properties of solutions to autonomous systems.

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

$$\frac{y'(t)}{\sin[y(t)]} = 1 \quad \Rightarrow \quad \int_0^t \frac{y'(t)}{\sin[y(t)]} = t$$

Use the substitution u = y(t),

Remark: It is simple to study the qualitative properties of solutions to autonomous systems.

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

$$\frac{y'(t)}{\sin[y(t)]} = 1 \quad \Rightarrow \quad \int_0^t \frac{y'(t)}{\sin[y(t)]} = t$$

Use the substitution u = y(t), du = y'(t) dt,

Remark: It is simple to study the qualitative properties of solutions to autonomous systems.

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

$$\frac{y'(t)}{\sin[y(t)]} = 1 \quad \Rightarrow \quad \int_0^t \frac{y'(t)}{\sin[y(t)]} = t$$

Use the substitution u = y(t), du = y'(t) dt,

$$\int_{y_0}^{y(t)} \frac{du}{\sin(u)} = t$$

Remark: It is simple to study the qualitative properties of solutions to autonomous systems.

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: One way: Find the exact solutions and then graph them.

The equation is separable, then

$$\frac{y'(t)}{\sin[y(t)]} = 1 \quad \Rightarrow \quad \int_0^t \frac{y'(t)}{\sin[y(t)]} = t$$

Use the substitution u = y(t), du = y'(t) dt,

$$\int_{y_0}^{y(t)} \frac{du}{\sin(u)} = t \quad \Rightarrow \quad \ln\left[\frac{\sin(u)}{1 + \cos(u)}\right]\Big|_{y_0}^{y(t)} = t.$$

Example

Solution: Recall:
$$\ln \left[\frac{\sin(u)}{1 + \cos(u)} \right] \Big|_{y_0}^{y(t)} = t$$
.

Example

Solution: Recall:
$$\ln \left[\frac{\sin(u)}{1 + \cos(u)} \right] \Big|_{y_0}^{y(t)} = t$$
.

$$\ln\left[\frac{\sin(y)}{1+\cos(y)}\right] - \ln\left[\frac{\sin(y_0)}{1+\cos(y_0)}\right] = t.$$

Example

Solution: Recall:
$$\ln\left[\frac{\sin(u)}{1+\cos(u)}\right]\Big|_{y_0}^{y(t)}=t.$$

$$\ln\left[\frac{\sin(y)}{1+\cos(y)}\right]-\ln\left[\frac{\sin(y_0)}{1+\cos(y_0)}\right]=t.$$

$$\ln\left[\frac{\sin(y)}{[1+\cos(y)]}\frac{[1+\cos(y_0)]}{\sin(y_0)}\right]=t.$$

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: Recall:
$$\ln\left[\frac{\sin(u)}{1+\cos(u)}\right]\Big|_{y_0}^{y(t)}=t.$$

$$\ln\left[\frac{\sin(y)}{1+\cos(y)}\right]-\ln\left[\frac{\sin(y_0)}{1+\cos(y_0)}\right]=t.$$

$$\ln\left[\frac{\sin(y)}{[1+\cos(y)]}\frac{[1+\cos(y_0)]}{\sin(y_0)}\right]=t.$$

The implicit expression of the solution is

$$\frac{\sin(y)}{[1+\cos(y)]} = \frac{\sin(y_0)}{[1+\cos(y_0)]} e^t.$$

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: Recall:
$$\ln\left[\frac{\sin(u)}{1+\cos(u)}\right]_{y_0}^{y(t)} = t.$$

$$\ln\left[\frac{\sin(y)}{1+\cos(y)}\right] - \ln\left[\frac{\sin(y_0)}{1+\cos(y_0)}\right] = t.$$

$$\ln\left[\frac{\sin(y)}{[1+\cos(y)]} \frac{[1+\cos(y_0)]}{\sin(y_0)}\right] = t.$$

The implicit expression of the solution is

$$\frac{\sin(y)}{[1+\cos(y)]} = \frac{\sin(y_0)}{[1+\cos(y_0)]} e^t.$$

Without a computer it is difficult to graph the solution.

Example

Solution: Recall:
$$\frac{\sin(y)}{[1+\cos(y)]} = \frac{\sin(y_0)}{[1+\cos(y_0)]} e^t.$$

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: Recall:
$$\frac{\sin(y)}{[1+\cos(y)]} = \frac{\sin(y_0)}{[1+\cos(y_0)]} e^t.$$

Another way:

(1) Plot the function

$$f(y) = \sin(y).$$

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: Recall:
$$\frac{\sin(y)}{[1+\cos(y)]} = \frac{\sin(y_0)}{[1+\cos(y_0)]} e^t.$$

Another way:

(1) Plot the function

$$f(y)=\sin(y).$$

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: Recall:
$$\frac{\sin(y)}{[1+\cos(y)]} = \frac{\sin(y_0)}{[1+\cos(y_0)]} e^t.$$

Another way:

(1) Plot the function

$$f(y)=\sin(y).$$

(2) Find the zeros of f.

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: Recall:
$$\frac{\sin(y)}{[1+\cos(y)]} = \frac{\sin(y_0)}{[1+\cos(y_0)]} e^t.$$

Another way:

(1) Plot the function

$$f(y)=\sin(y).$$

(2) Find the zeros of f. Since $f(y) = \sin(y)$

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: Recall:
$$\frac{\sin(y)}{[1+\cos(y)]} = \frac{\sin(y_0)}{[1+\cos(y_0)]} e^t.$$

Another way:

(1) Plot the function

$$f(y)=\sin(y).$$

(2) Find the zeros of f. Since $f(y) = \sin(y) = 0$,

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: Recall:
$$\frac{\sin(y)}{[1+\cos(y)]} = \frac{\sin(y_0)}{[1+\cos(y_0)]} e^t.$$

Another way:

(1) Plot the function

$$f(y)=\sin(y).$$

(2) Find the zeros of f. Since $f(y) = \sin(y) = 0$, then $y = m\pi$.

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: Recall:
$$\frac{\sin(y)}{[1+\cos(y)]} = \frac{\sin(y_0)}{[1+\cos(y_0)]} e^t.$$

Another way:

(1) Plot the function

$$f(y)=\sin(y).$$

(2) Find the zeros of f. Since $f(y) = \sin(y) = 0$, then $y = m\pi$.

The constants $y = m\pi$, are solutions of $y' = \sin(y)$.

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: Recall:
$$\frac{\sin(y)}{[1+\cos(y)]} = \frac{\sin(y_0)}{[1+\cos(y_0)]} e^t.$$

Another way:

(1) Plot the function

$$f(y)=\sin(y).$$

(2) Find the zeros of f. Since $f(y) = \sin(y) = 0$, then $y = m\pi$.

The constants $y = m\pi$, are solutions of $y' = \sin(y)$.

They are called equilibrium solutions.

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution:

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution:

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution:

(3) The solution is: Increasing for $y' = \sin(y) > 0$,

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution:

(3) The solution is: Increasing for $y' = \sin(y) > 0$, Decreasing for $y' = \sin(y) < 0$.

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution:

(3) The solution is: Increasing for $y' = \sin(y) > 0$, Decreasing for $y' = \sin(y) < 0$.

Autonomous systems (Sect. 2.5).

- Definition and examples.
- Qualitative analysis of the solutions.
- ► Equilibrium solutions and stability.
- Population growth equation.

Definition

The constant y_0 is an equilibrium solution of the autonomous system y' = f(y) iff hold that $f(y_0) = 0$.

Definition

The constant y_0 is an equilibrium solution of the autonomous system y' = f(y) iff hold that $f(y_0) = 0$.

The equilibrium solution y_0 is asymptotically stable iff there exists $I = (y_0 - \epsilon, y_0 + \epsilon)$ such that every solution y with $y(0) \in I$ satisfies

$$\lim_{t\to\infty}y(t)=y_0.$$

Definition

The constant y_0 is an equilibrium solution of the autonomous system y' = f(y) iff hold that $f(y_0) = 0$.

The equilibrium solution y_0 is asymptotically stable iff there exists $I = (y_0 - \epsilon, y_0 + \epsilon)$ such that every solution y with $y(0) \in I$ satisfies

$$\lim_{t\to\infty}y(t)=y_0.$$

Definition

The equilibrium solution y_0 is asymptotically unstable iff there exists $I = (y_0 - \epsilon, y_0 + \epsilon)$ such that for every solution y with $y(0) \in I$ holds $\lim_{t \to \infty} y(t) \neq y_0$.

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: Summary:

Example

Sketch a qualitative graph of solutions to $y' = \sin(y)$, for different initial data conditions $y(0) = y_0$.

Solution: Summary:

Autonomous systems (Sect. 2.5).

- Definition and examples.
- Qualitative analysis of the solutions.
- Equilibrium solutions and stability.
- ► Population growth equation.

Example

Sketch a qualitative graph of solutions for different initial data conditions $y(0) = y_0$ to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, where r and K are given positive constants.

Example

Sketch a qualitative graph of solutions for different initial data conditions $y(0) = y_0$ to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, where r and K are given positive constants.

Solution:

(1) Plot the function

Example

Sketch a qualitative graph of solutions for different initial data conditions $y(0) = y_0$ to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, where r and K are given positive constants.

Solution:

(1) Plot the function

$$f(y) = r\left(1 - \frac{y}{K}\right)y.$$

Example

Sketch a qualitative graph of solutions for different initial data conditions $y(0) = y_0$ to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, where r and K are given positive constants.

Solution:

(1) Plot the function

$$f(y) = r\left(1 - \frac{y}{K}\right)y.$$

(2) Find the zeros of f.

Example

Sketch a qualitative graph of solutions for different initial data conditions $y(0) = y_0$ to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, where r and K are given positive constants.

Solution:

(1) Plot the function

$$f(y) = r\left(1 - \frac{y}{K}\right)y.$$

(2) Find the zeros of f.

$$y_0 = 0, \quad y_0 = K.$$

Example

Sketch a qualitative graph of solutions for different initial data conditions $y(0) = y_0$ to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, where r and K are given positive constants.

Solution:

(1) Plot the function

$$f(y) = r\left(1 - \frac{y}{K}\right)y.$$

(2) Find the zeros of f.

$$y_0 = 0, \quad y_0 = K.$$

Example

Sketch a qualitative graph of solutions for different initial data conditions $y(0) = y_0$ to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, where r and K are given positive constants.

Solution:

(1) Plot the function

$$f(y) = r\left(1 - \frac{y}{K}\right)y.$$

(2) Find the zeros of f.

$$y_0 = 0, \quad y_0 = K.$$

The constants $y_0 = 0$ and $y_0 = K$ are the equilibrium solutions.

Example

Sketch a qualitative graph of solutions for different initial data conditions $y(0) = y_0$ to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, where r and K are given positive constants.

Solution:

(1) Plot the function

$$f(y) = r\left(1 - \frac{y}{K}\right)y.$$

(2) Find the zeros of f.

$$y_0 = 0, \quad y_0 = K.$$

The constants $y_0 = 0$ and $y_0 = K$ are the equilibrium solutions.

The solution y_0 is unstable,

Example

Sketch a qualitative graph of solutions for different initial data conditions $y(0) = y_0$ to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, where r and K are given positive constants.

Solution:

(1) Plot the function

$$f(y) = r\left(1 - \frac{y}{K}\right)y.$$

(2) Find the zeros of f.

$$y_0 = 0, \quad y_0 = K.$$

The constants $y_0 = 0$ and $y_0 = K$ are the equilibrium solutions.

The solution y_0 is unstable, while $y_0 = K$ is stable.

Example

Sketch a qualitative graph of solutions for different initial data conditions $y(0) = y_0$ to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, where r and K are given positive constants.

Solution:

Example

Sketch a qualitative graph of solutions for different initial data conditions $y(0) = y_0$ to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, where r and K are given positive constants.

Solution:

Example

Sketch a qualitative graph of solutions for different initial data conditions $y(0) = y_0$ to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, where r and K are given positive constants.

Solution:

(3) For $y_0 \in (0, K)$ the solution is Increasing.

Example

Sketch a qualitative graph of solutions for different initial data conditions $y(0) = y_0$ to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, where r and K are given positive constants.

Solution:

(3) For $y_0 \in (0, K)$ the solution is Increasing. For $y_0 \in (K, \infty)$ the solution is Decreasing.

Remark: The curvature of the solution y depends on f'(y) f(y).

Remark: The curvature of the solution y depends on f'(y) f(y).

Theorem

If the function y is a solution of the autonomous system y' = f(y), then the graph of y has positive curvature iff f'(y) f(y) > 0, and negative curvature iff f'(y) f(y) < 0.

Remark: The curvature of the solution y depends on f'(y) f(y).

Theorem

If the function y is a solution of the autonomous system y' = f(y), then the graph of y has positive curvature iff f'(y) f(y) > 0, and negative curvature iff f'(y) f(y) < 0.

$$\frac{d^2y}{dt^2}$$

Remark: The curvature of the solution y depends on f'(y) f(y).

Theorem

If the function y is a solution of the autonomous system y' = f(y), then the graph of y has positive curvature iff f'(y) f(y) > 0, and negative curvature iff f'(y) f(y) < 0.

$$\frac{d^2y}{dt^2} = \frac{df}{dy}(y)\,\frac{dy}{dt},$$

Remark: The curvature of the solution y depends on f'(y) f(y).

Theorem

If the function y is a solution of the autonomous system y' = f(y), then the graph of y has positive curvature iff f'(y) f(y) > 0, and negative curvature iff f'(y) f(y) < 0.

$$\frac{d^2y}{dt^2} = \frac{df}{dy}(y)\frac{dy}{dt}, \qquad \frac{dy}{dt} = f(y)$$

Remark: The curvature of the solution y depends on f'(y) f(y).

Theorem

If the function y is a solution of the autonomous system y' = f(y), then the graph of y has positive curvature iff f'(y) f(y) > 0, and negative curvature iff f'(y) f(y) < 0.

$$\frac{d^2y}{dt^2} = \frac{df}{dy}(y)\frac{dy}{dt}, \qquad \frac{dy}{dt} = f(y) \quad \Rightarrow \quad y'' = f'(y)f(y).$$

Remark: The curvature of the solution y depends on f'(y) f(y).

Theorem

If the function y is a solution of the autonomous system y' = f(y), then the graph of y has positive curvature iff f'(y) f(y) > 0, and negative curvature iff f'(y) f(y) < 0.

$$\frac{d^2y}{dt^2} = \frac{df}{dy}(y)\frac{dy}{dt}, \qquad \frac{dy}{dt} = f(y) \quad \Rightarrow \quad y'' = f'(y)f(y).$$

$$y' = f'(y) = r(1 - y/K) y$$

$$y'' > 0$$

$$y'' < 0$$

Remark: The curvature of the solution y depends on f'(y) f(y).

Theorem

If the function y is a solution of the autonomous system y' = f(y), then the graph of y has positive curvature iff f'(y) f(y) > 0, and negative curvature iff f'(y) f(y) < 0.

Proof:

$$\frac{d^2y}{dt^2} = \frac{df}{dy}(y)\frac{dy}{dt}, \qquad \frac{dy}{dt} = f(y) \implies y'' = f'(y)f(y).$$

$$y' + 0$$
Unstable
$$y'' > 0$$

$$y'' < 0$$

$$y'' < 0$$
Stable
$$y'' > 0$$

$$y'' < 0$$

Unstable equilibrium

Example

Find the exact expression for the solutions to the population growth equation $y'=r\left(1-\frac{y}{K}\right)y$, with $y(0)=y_0$.

Example

Find the exact expression for the solutions to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, with $y(0) = y_0$.

Solution: This is a separable equation,

Example

Find the exact expression for the solutions to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, with $y(0) = y_0$.

Solution: This is a separable equation,

$$\frac{K}{r}\int \frac{y'\,dt}{(K-y)y}=t+c_0.$$

Example

Find the exact expression for the solutions to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, with $y(0) = y_0$.

Solution: This is a separable equation,

$$\frac{K}{r}\int \frac{y'\,dt}{(K-y)y}=t+c_0.$$

Substitution: u = y(t), then du = y' dt,

Example

Find the exact expression for the solutions to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, with $y(0) = y_0$.

Solution: This is a separable equation,

$$\frac{K}{r}\int \frac{y'\,dt}{(K-y)y}=t+c_0.$$

Substitution: u = y(t), then du = y' dt,

$$\frac{K}{r}\int \frac{du}{(K-u)u}=t+c_0.$$

Example

Find the exact expression for the solutions to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, with $y(0) = y_0$.

Solution: This is a separable equation,

$$\frac{K}{r}\int \frac{y'\,dt}{(K-y)y}=t+c_0.$$

Substitution: u = y(t), then du = y' dt,

$$\frac{K}{r}\int \frac{du}{(K-u)u}=t+c_0.$$

Partial fraction decomposition:

$$\frac{K}{r}\int \frac{1}{K} \left[\frac{1}{(K-u)} + \frac{1}{u} \right] du = t + c_0.$$

Example

Find the exact expression for the solutions to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, with $y(0) = y_0$.

Solution:
$$\frac{K}{r} \int \frac{1}{K} \left[\frac{1}{(K-u)} + \frac{1}{u} \right] du = t + c_0.$$

Example

Solution:
$$\frac{K}{r} \int \frac{1}{K} \left[\frac{1}{(K-u)} + \frac{1}{u} \right] du = t + c_0.$$
$$\left[-\ln(|K-y|) + \ln(|y|) \right] = rt + rc_0.$$

Example

Solution:
$$\frac{K}{r} \int \frac{1}{K} \left[\frac{1}{(K-u)} + \frac{1}{u} \right] du = t + c_0.$$
$$\left[-\ln(|K-y|) + \ln(|y|) \right] = rt + rc_0.$$
$$\ln\left(\frac{|y|}{|K-y|}\right) = rt + rc_0$$

Example

Solution:
$$\frac{K}{r} \int \frac{1}{K} \left[\frac{1}{(K-u)} + \frac{1}{u} \right] du = t + c_0.$$
$$\left[-\ln(|K-y|) + \ln(|y|) \right] = rt + rc_0.$$
$$\ln\left(\frac{|y|}{|K-y|}\right) = rt + rc_0 \quad \Rightarrow \quad \frac{y}{K-y} = c e^{rt}, \quad c = e^{rc_0}.$$

Example

Solution:
$$\frac{K}{r} \int \frac{1}{K} \left[\frac{1}{(K-u)} + \frac{1}{u} \right] du = t + c_0.$$

$$\left[-\ln(|K-y|) + \ln(|y|) \right] = rt + rc_0.$$

$$\ln\left(\frac{|y|}{|K-y|}\right) = rt + rc_0 \quad \Rightarrow \quad \frac{y}{K-y} = c e^{rt}, \quad c = e^{rc_0}.$$

$$y(t) = \frac{cK e^{rt}}{1 + c e^{rt}}, \quad c = \frac{y_0}{K-y_0}$$

Example

Find the exact expression for the solutions to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, with $y(0) = y_0$.

Solution:
$$\frac{K}{r} \int \frac{1}{K} \left[\frac{1}{(K-u)} + \frac{1}{u} \right] du = t + c_0.$$

$$\left[-\ln(|K-y|)+\ln(|y|)\right]=rt+rc_0.$$

$$\ln\left(\frac{|y|}{|K-y|}\right) = rt + rc_0 \quad \Rightarrow \quad \frac{y}{K-y} = c e^{rt}, \quad c = e^{rc_0}.$$

$$y(t) = \frac{cK e^{rt}}{1 + c e^{rt}}, \quad c = \frac{y_0}{K - y_0}$$

We conclude that
$$y(t) = \frac{Ky_0}{y_0 + (K - y_0) e^{-rt}}$$
.

 $\langle 1 \rangle$

Example

Sketch a qualitative graph of solutions for different initial data conditions $y(0) = y_0$ to the population growth equation $y' = r\left(1 - \frac{y}{K}\right)y$, where r and K are given positive constants.

Exact equations (Sect. 2.6).

- Exact differential equations.
- The Poincaré Lemma.
- ▶ Implicit solutions and the potential function.
- Generalization: The integrating factor method.

Definition

Given an open rectangle $R=(t_1,t_2)\times (u_1,u_2)\subset \mathbb{R}^2$ and continuously differentiable functions $M,N:R\to \mathbb{R}$, denoted as $(t,u)\mapsto M(t,u)$ and $(t,u)\mapsto N(t,u)$, the differential equation in the unknown function $y:(t_1,t_2)\to \mathbb{R}$ given by

$$N(t,y(t))y'(t)+M(t,y(t))=0$$

is called *exact* iff for every point $(t, u) \in R$ holds

$$\partial_t N(t,u) = \partial_u M(t,u)$$

Definition

Given an open rectangle $R=(t_1,t_2)\times (u_1,u_2)\subset \mathbb{R}^2$ and continuously differentiable functions $M,N:R\to \mathbb{R}$, denoted as $(t,u)\mapsto M(t,u)$ and $(t,u)\mapsto N(t,u)$, the differential equation in the unknown function $y:(t_1,t_2)\to \mathbb{R}$ given by

$$N(t, y(t)) y'(t) + M(t, y(t)) = 0$$

is called *exact* iff for every point $(t, u) \in R$ holds

$$\partial_t N(t, u) = \partial_u M(t, u)$$

Recall: we use the notation: $\partial_t N = \frac{\partial N}{\partial t}$, and $\partial_u M = \frac{\partial M}{\partial u}$.

Example

Show whether the differential equation below is exact,

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Example

Show whether the differential equation below is exact,

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Example

Show whether the differential equation below is exact,

$$2ty(t)y'(t) + 2t + y^2(t) = 0.$$

$$[2ty(t)]y'(t) + [2t + y^{2}(t)] = 0$$

Example

Show whether the differential equation below is exact,

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

$$[2ty(t)]y'(t) + [2t + y^2(t)] = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 2tu, \\ M(t, u) = 2t + u^2. \end{cases}$$

Example

Show whether the differential equation below is exact,

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Solution: We first identify the functions N and M,

$$[2ty(t)]y'(t) + [2t + y^2(t)] = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 2tu, \\ M(t, u) = 2t + u^2. \end{cases}$$

Example

Show whether the differential equation below is exact,

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Solution: We first identify the functions N and M,

$$[2ty(t)]y'(t) + [2t + y^2(t)] = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 2tu, \\ M(t, u) = 2t + u^2. \end{cases}$$

$$N(t, u) = 2tu$$

Example

Show whether the differential equation below is exact,

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Solution: We first identify the functions N and M,

$$[2ty(t)]y'(t) + [2t + y^2(t)] = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 2tu, \\ M(t, u) = 2t + u^2. \end{cases}$$

$$N(t,u) = 2tu \quad \Rightarrow \quad \partial_t N(t,u) = 2u,$$

Example

Show whether the differential equation below is exact,

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Solution: We first identify the functions N and M,

$$[2ty(t)]y'(t) + [2t + y^2(t)] = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 2tu, \\ M(t, u) = 2t + u^2. \end{cases}$$

$$N(t,u) = 2tu \quad \Rightarrow \quad \partial_t N(t,u) = 2u,$$

$$M(t,u)=2t+u^2$$

Example

Show whether the differential equation below is exact,

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Solution: We first identify the functions N and M,

$$[2ty(t)]y'(t) + [2t + y^2(t)] = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 2tu, \\ M(t, u) = 2t + u^2. \end{cases}$$

$$N(t, u) = 2tu \quad \Rightarrow \quad \partial_t N(t, u) = 2u,$$

$$M(t,u) = 2t + u^2 \quad \Rightarrow \quad \partial_u M(t,u) = 2u.$$

Example

Show whether the differential equation below is exact,

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Solution: We first identify the functions N and M,

$$[2ty(t)]y'(t) + [2t + y^2(t)] = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 2tu, \\ M(t, u) = 2t + u^2. \end{cases}$$

The equation is exact iff $\partial_t N = \partial_u M$. Since

$$N(t, u) = 2tu \quad \Rightarrow \quad \partial_t N(t, u) = 2u,$$

$$M(t,u) = 2t + u^2 \quad \Rightarrow \quad \partial_u M(t,u) = 2u.$$

We conclude: $\partial_t N(t, u) = \partial_u M(t, u)$.

 $\langle 1 \rangle$

Example

Show whether the differential equation below is exact,

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Solution: We first identify the functions N and M,

$$[2ty(t)]y'(t) + [2t + y^2(t)] = 0 \quad \Rightarrow \quad \begin{cases} N(t, u) = 2tu, \\ M(t, u) = 2t + u^2. \end{cases}$$

The equation is exact iff $\partial_t N = \partial_u M$. Since

$$N(t, u) = 2tu \quad \Rightarrow \quad \partial_t N(t, u) = 2u,$$

$$M(t,u) = 2t + u^2 \quad \Rightarrow \quad \partial_u M(t,u) = 2u.$$

We conclude: $\partial_t N(t, u) = \partial_u M(t, u)$.

Remark: The ODE above is not separable and non-linear.

 $\langle 1 \rangle$

Example

Show whether the differential equation below is exact,

$$\sin(t)y'(y) + t^2e^{y(t)}y'(t) - y'(t) = -y(t)\cos(t) - 2te^{y(t)}.$$

Example

Show whether the differential equation below is exact,

$$\sin(t)y'(y) + t^2e^{y(t)}y'(t) - y'(t) = -y(t)\cos(t) - 2te^{y(t)}.$$

Example

Show whether the differential equation below is exact,

$$\sin(t)y'(y) + t^2e^{y(t)}y'(t) - y'(t) = -y(t)\cos(t) - 2te^{y(t)}.$$

Solution: We first identify the functions N and M, if we write

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + [y(t)\cos(t) + 2te^{y(t)}] = 0,$$

Example

Show whether the differential equation below is exact,

$$\sin(t)y'(y) + t^2e^{y(t)}y'(t) - y'(t) = -y(t)\cos(t) - 2te^{y(t)}.$$

Solution: We first identify the functions N and M, if we write

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + [y(t)\cos(t) + 2te^{y(t)}] = 0,$$

$$N(t,u) = \sin(t) + t^2 e^u - 1$$

Example

Show whether the differential equation below is exact,

$$\sin(t)y'(y) + t^2e^{y(t)}y'(t) - y'(t) = -y(t)\cos(t) - 2te^{y(t)}.$$

Solution: We first identify the functions N and M, if we write

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + [y(t)\cos(t) + 2te^{y(t)}] = 0,$$

$$N(t,u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t,u) = \cos(t) + 2te^u,$$

Example

Show whether the differential equation below is exact,

$$\sin(t)y'(y) + t^2e^{y(t)}y'(t) - y'(t) = -y(t)\cos(t) - 2te^{y(t)}.$$

Solution: We first identify the functions N and M, if we write

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + [y(t)\cos(t) + 2te^{y(t)}] = 0,$$

$$N(t,u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t,u) = \cos(t) + 2t e^u,$$
 $M(t,u) = u \cos(t) + 2t e^u$

Example

Show whether the differential equation below is exact,

$$\sin(t)y'(y) + t^2e^{y(t)}y'(t) - y'(t) = -y(t)\cos(t) - 2te^{y(t)}.$$

Solution: We first identify the functions N and M, if we write

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + [y(t)\cos(t) + 2te^{y(t)}] = 0,$$

$$N(t,u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t,u) = \cos(t) + 2t e^u,$$
 $M(t,u) = u \cos(t) + 2t e^u \quad \Rightarrow \quad \partial_u M(t,u) = \cos(t) + 2t e^u.$

Example

Show whether the differential equation below is exact,

$$\sin(t)y'(y) + t^2e^{y(t)}y'(t) - y'(t) = -y(t)\cos(t) - 2te^{y(t)}.$$

Solution: We first identify the functions N and M, if we write

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + [y(t)\cos(t) + 2te^{y(t)}] = 0,$$

we can see that

$$N(t, u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t, u) = \cos(t) + 2te^u,$$

$$M(t, u) = u \cos(t) + 2te^{u} \quad \Rightarrow \quad \partial_{u}M(t, u) = \cos(t) + 2te^{u}.$$

The equation is exact, since $\partial_t N(t, u) = \partial_u M(t, u)$.

Example

Show whether the linear differential equation below is exact,

$$y'(t) = -a(t)y(t) + b(t), \qquad a(t) \neq 0.$$

Example

Show whether the linear differential equation below is exact,

$$y'(t) = -a(t)y(t) + b(t), a(t) \neq 0.$$

Example

Show whether the linear differential equation below is exact,

$$y'(t) = -a(t)y(t) + b(t), a(t) \neq 0.$$

$$y' + a(t)y - b(t) = 0$$

Example

Show whether the linear differential equation below is exact,

$$y'(t) = -a(t)y(t) + b(t), \qquad a(t) \neq 0.$$

$$y' + a(t)y - b(t) = 0$$
 \Rightarrow
$$\begin{cases} N(t, u) = 1, \\ M(t, u) = a(t)u - b(t). \end{cases}$$

Example

Show whether the linear differential equation below is exact,

$$y'(t) = -a(t)y(t) + b(t), a(t) \neq 0.$$

Solution: We first find the functions N and M,

$$y' + a(t)y - b(t) = 0$$
 \Rightarrow
$$\begin{cases} N(t, u) = 1, \\ M(t, u) = a(t)u - b(t). \end{cases}$$

The differential equation is not exact,

Example

Show whether the linear differential equation below is exact,

$$y'(t) = -a(t)y(t) + b(t), \qquad a(t) \neq 0.$$

Solution: We first find the functions N and M,

$$y' + a(t)y - b(t) = 0$$
 \Rightarrow
$$\begin{cases} N(t, u) = 1, \\ M(t, u) = a(t)u - b(t). \end{cases}$$

The differential equation is not exact, since

$$N(t, u) = 1$$

Example

Show whether the linear differential equation below is exact,

$$y'(t) = -a(t)y(t) + b(t), \qquad a(t) \neq 0.$$

Solution: We first find the functions N and M,

$$y' + a(t)y - b(t) = 0$$
 \Rightarrow
$$\begin{cases} N(t, u) = 1, \\ M(t, u) = a(t)u - b(t). \end{cases}$$

The differential equation is not exact, since

$$N(t, u) = 1 \quad \Rightarrow \quad \partial_t N(t, u) = 0,$$

Example

Show whether the linear differential equation below is exact,

$$y'(t) = -a(t) y(t) + b(t), a(t) \neq 0.$$

Solution: We first find the functions N and M,

$$y' + a(t)y - b(t) = 0$$
 \Rightarrow
$$\begin{cases} N(t, u) = 1, \\ M(t, u) = a(t)u - b(t). \end{cases}$$

The differential equation is not exact, since

$$N(t,u) = 1 \quad \Rightarrow \quad \partial_t N(t,u) = 0,$$
 $M(t,u) = a(t)u - b(t)$

Exact differential equations.

Example

Show whether the linear differential equation below is exact,

$$y'(t) = -a(t)y(t) + b(t), a(t) \neq 0.$$

Solution: We first find the functions N and M,

$$y' + a(t)y - b(t) = 0$$
 \Rightarrow
$$\begin{cases} N(t, u) = 1, \\ M(t, u) = a(t)u - b(t). \end{cases}$$

The differential equation is not exact, since

$$N(t,u) = 1 \quad \Rightarrow \quad \partial_t N(t,u) = 0,$$
 $M(t,u) = a(t)u - b(t) \quad \Rightarrow \quad \partial_u M(t,u) = a(t).$

Exact differential equations.

Example

Show whether the linear differential equation below is exact,

$$y'(t) = -a(t)y(t) + b(t), a(t) \neq 0.$$

Solution: We first find the functions N and M,

$$y' + a(t)y - b(t) = 0$$
 \Rightarrow
$$\begin{cases} N(t, u) = 1, \\ M(t, u) = a(t)u - b(t). \end{cases}$$

The differential equation is not exact, since

$$N(t, u) = 1 \quad \Rightarrow \quad \partial_t N(t, u) = 0,$$

$$M(t, u) = a(t)u - b(t) \quad \Rightarrow \quad \partial_u M(t, u) = a(t).$$

This implies that $\partial_t N(t, u) \neq \partial_u M(t, u)$.

Exact equations (Sect. 2.6).

- Exact differential equations.
- ► The Poincaré Lemma.
- ▶ Implicit solutions and the potential function.
- Generalization: The integrating factor method.

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ .

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ .

Lemma (Poincaré)

Given an open rectangle $R=(t_1,t_2)\times (u_1,u_2)\subset \mathbb{R}^2$, the continuously differentiable functions $M,N:R\to \mathbb{R}$ satisfy the equation $\partial_t N(t,u)=\partial_t M(t,u)$

 $\partial_t N(t,u) = \partial_u M(t,u)$

iff there exists a twice continuously differentiable function $\psi:R\to\mathbb{R}$, called potential function, such that for all $(t,u)\in R$ holds

 $\partial_u \psi(t, u) = N(t, u), \qquad \partial_t \psi(t, u) = M(t, u).$

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ .

Lemma (Poincaré)

Given an open rectangle $R=(t_1,t_2)\times (u_1,u_2)\subset \mathbb{R}^2$, the continuously differentiable functions $M,N:R\to \mathbb{R}$ satisfy the equation $\partial_t N(t,u)=\partial_u M(t,u)$

iff there exists a twice continuously differentiable function $\psi:R\to\mathbb{R}$, called potential function, such that for all $(t,u)\in R$ holds

 $\partial_u \psi(t, u) = N(t, u), \qquad \partial_t \psi(t, u) = M(t, u).$

Proof: (⇐) Simple:

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ .

Lemma (Poincaré)

Given an open rectangle $R=(t_1,t_2)\times (u_1,u_2)\subset \mathbb{R}^2$, the continuously differentiable functions $M,N:R\to \mathbb{R}$ satisfy the equation $\partial_t N(t,u)=\partial_u M(t,u)$

iff there exists a twice continuously differentiable function $\psi:R\to\mathbb{R}$, called potential function, such that for all $(t,u)\in R$ holds

 $\partial_u \psi(t,u) = N(t,u), \qquad \partial_t \psi(t,u) = M(t,u).$

Proof: (
$$\Leftarrow$$
) Simple: $\begin{cases} \partial_t N = \partial_t \partial_u \psi, \\ \partial_u M = \partial_u \partial_t \psi, \end{cases} \Rightarrow \partial_t N = \partial_u M.$

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ .

Lemma (Poincaré)

Given an open rectangle $R=(t_1,t_2)\times (u_1,u_2)\subset \mathbb{R}^2$, the continuously differentiable functions $M,N:R\to \mathbb{R}$ satisfy the equation $\partial_t N(t,u)=\partial_u M(t,u)$

iff there exists a twice continuously differentiable function $\psi:R\to\mathbb{R}$, called potential function, such that for all $(t,u)\in R$ holds

 $\partial_u \psi(t,u) = N(t,u), \qquad \partial_t \psi(t,u) = M(t,u).$

Proof: (
$$\Leftarrow$$
) Simple: $\begin{cases} \partial_t N = \partial_t \partial_u \psi, \\ \partial_u M = \partial_u \partial_t \psi, \end{cases} \Rightarrow \partial_t N = \partial_u M.$
(\Rightarrow) Difficult: Poincaré, 1880.

Example

Show that the function $\psi(t,u)=t^2+tu^2$ is the potential function for the exact differential equation

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Example

Show that the function $\psi(t,u)=t^2+tu^2$ is the potential function for the exact differential equation

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Solution: We already saw that the differential equation above is exact,

Example

Show that the function $\psi(t,u)=t^2+tu^2$ is the potential function for the exact differential equation

$$2ty(t)y'(t) + 2t + y^2(t) = 0.$$

Solution: We already saw that the differential equation above is exact, since the functions M and N,

$$N(t, u) = 2tu,$$

$$M(t, u) = 2t + u^2$$

Example

Show that the function $\psi(t,u)=t^2+tu^2$ is the potential function for the exact differential equation

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Solution: We already saw that the differential equation above is exact, since the functions M and N,

$$N(t,u) = 2tu,$$

 $M(t,u) = 2t + u^2$ $\Rightarrow \partial_t N = 2u = \partial_u M.$

Example

Show that the function $\psi(t,u)=t^2+tu^2$ is the potential function for the exact differential equation

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Solution: We already saw that the differential equation above is exact, since the functions M and N,

$$N(t,u) = 2tu,$$

 $M(t,u) = 2t + u^2$ $\Rightarrow \partial_t N = 2u = \partial_u M.$

The potential function is $\psi(t, u) = t^2 + tu^2$,

Example

Show that the function $\psi(t,u)=t^2+tu^2$ is the potential function for the exact differential equation

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Solution: We already saw that the differential equation above is exact, since the functions M and N,

$$N(t,u) = 2tu,$$

 $M(t,u) = 2t + u^2$ $\Rightarrow \partial_t N = 2u = \partial_u M.$

The potential function is $\psi(t, u) = t^2 + tu^2$, since

$$\partial_t \psi = 2t + u^2 = M,$$

Example

Show that the function $\psi(t,u)=t^2+tu^2$ is the potential function for the exact differential equation

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Solution: We already saw that the differential equation above is exact, since the functions M and N,

$$N(t,u) = 2tu,$$

 $M(t,u) = 2t + u^2$ $\Rightarrow \partial_t N = 2u = \partial_u M.$

The potential function is $\psi(t, u) = t^2 + tu^2$, since

$$\partial_t \psi = 2t + u^2 = M, \qquad \partial_u \psi = 2tu = N.$$

Example

Show that the function $\psi(t,u)=t^2+tu^2$ is the potential function for the exact differential equation

$$2ty(t)y'(t) + 2t + y^{2}(t) = 0.$$

Solution: We already saw that the differential equation above is exact, since the functions M and N,

$$N(t,u) = 2tu,$$

 $M(t,u) = 2t + u^2$ $\Rightarrow \partial_t N = 2u = \partial_u M.$

The potential function is $\psi(t, u) = t^2 + tu^2$, since

$$\partial_t \psi = 2t + u^2 = M, \qquad \partial_u \psi = 2tu = N.$$

Remark: The Poincaré Lemma only states necessary and sufficient conditions on N and M for the existence of ψ .

Exact equations (Sect. 2.6).

- Exact differential equations.
- The Poincaré Lemma.
- ▶ Implicit solutions and the potential function.
- Generalization: The integrating factor method.

Theorem (Exact differential equations)

Let $M,N:R\to\mathbb{R}$ be continuously differentiable functions on an open rectangle $R=(t_1,t_2)\times (u_1,u_2)\subset\mathbb{R}^2$. If the differential equation

$$N(t, y(t)) y'(t) + M(t, y(t)) = 0$$
 (1)

is exact, then every solution $y:(t_1,t_2) \to \mathbb{R}$ must satisfy the algebraic equation

$$\psi(t,y(t))=c,$$

Theorem (Exact differential equations)

Let $M,N:R\to\mathbb{R}$ be continuously differentiable functions on an open rectangle $R=(t_1,t_2)\times(u_1,u_2)\subset\mathbb{R}^2$. If the differential equation

$$N(t, y(t)) y'(t) + M(t, y(t)) = 0$$
 (1)

is exact, then every solution $y:(t_1,t_2) o \mathbb{R}$ must satisfy the algebraic equation

$$\psi(t,y(t))=c,$$

Proof:
$$0 = N(t, y) y' + M(t, y)$$

Theorem (Exact differential equations)

Let $M,N:R\to\mathbb{R}$ be continuously differentiable functions on an open rectangle $R=(t_1,t_2)\times(u_1,u_2)\subset\mathbb{R}^2$. If the differential equation

$$N(t, y(t)) y'(t) + M(t, y(t)) = 0$$
 (1)

is exact, then every solution $y:(t_1,t_2) o \mathbb{R}$ must satisfy the algebraic equation

$$\psi(t,y(t))=c,$$

Proof:
$$0 = N(t, y) y' + M(t, y) = \partial_y \psi(t, y) \frac{dy}{dt} + \partial_t \psi(t, y)$$
.

Theorem (Exact differential equations)

Let $M,N:R\to\mathbb{R}$ be continuously differentiable functions on an open rectangle $R=(t_1,t_2)\times(u_1,u_2)\subset\mathbb{R}^2$. If the differential equation

$$N(t, y(t)) y'(t) + M(t, y(t)) = 0$$
 (1)

is exact, then every solution $y:(t_1,t_2) o \mathbb{R}$ must satisfy the algebraic equation

$$\psi(t,y(t))=c,$$

Proof:
$$0 = N(t, y) y' + M(t, y) = \partial_y \psi(t, y) \frac{dy}{dt} + \partial_t \psi(t, y)$$
.

$$0 = \frac{d}{dt} \psi(t, y(t))$$

Theorem (Exact differential equations)

Let $M,N:R\to\mathbb{R}$ be continuously differentiable functions on an open rectangle $R=(t_1,t_2)\times(u_1,u_2)\subset\mathbb{R}^2$. If the differential equation

$$N(t, y(t)) y'(t) + M(t, y(t)) = 0$$
 (1)

is exact, then every solution $y:(t_1,t_2) o \mathbb{R}$ must satisfy the algebraic equation

$$\psi(t,y(t))=c,$$

Proof:
$$0 = N(t, y) y' + M(t, y) = \partial_y \psi(t, y) \frac{dy}{dt} + \partial_t \psi(t, y)$$
.
$$0 = \frac{d}{dt} \psi(t, y(t)) \quad \Leftrightarrow \quad \psi(t, y(t)) = c.$$

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

$$N(t,u) = \sin(t) + t^2 e^u - 1$$

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

$$N(t,u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t,u) = \cos(t) + 2te^u,$$

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

$$N(t,u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t,u) = \cos(t) + 2te^u,$$

$$M(t,u) = u\cos(t) + 2te^u$$

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

$$N(t,u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t,u) = \cos(t) + 2te^u,$$

$$M(t,u) = u\cos(t) + 2te^u \quad \Rightarrow \quad \partial_u M(t,u) = \cos(t) + 2te^u,$$

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

Solution: Recall: The equation is exact,

$$N(t,u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t,u) = \cos(t) + 2t e^u,$$

$$M(t, u) = u \cos(t) + 2te^{u} \quad \Rightarrow \quad \partial_{u}M(t, u) = \cos(t) + 2te^{u},$$

hence, $\partial_t N = \partial_u M$.

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

Solution: Recall: The equation is exact,

$$N(t,u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t,u) = \cos(t) + 2t e^u,$$

$$M(t, u) = u \cos(t) + 2te^{u} \quad \Rightarrow \quad \partial_{u}M(t, u) = \cos(t) + 2te^{u},$$

hence, $\partial_t N = \partial_u M$. Poincaré Lemma says the exists ψ ,

$$\partial_u \psi(t,u) = N(t,u), \quad \partial_t \psi(t,u) = M(t,u).$$

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

Solution: Recall: The equation is exact,

$$N(t,u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t,u) = \cos(t) + 2te^u,$$

$$M(t, u) = u \cos(t) + 2te^{u} \quad \Rightarrow \quad \partial_{u}M(t, u) = \cos(t) + 2te^{u},$$

hence, $\partial_t N = \partial_u M$. Poincaré Lemma says the exists ψ ,

$$\partial_u \psi(t,u) = N(t,u), \quad \partial_t \psi(t,u) = M(t,u).$$

These are actually equations for ψ .

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

Solution: Recall: The equation is exact,

$$N(t, u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t, u) = \cos(t) + 2te^u,$$

$$M(t, u) = u \cos(t) + 2te^{u} \quad \Rightarrow \quad \partial_{u}M(t, u) = \cos(t) + 2te^{u},$$

hence, $\partial_t N = \partial_u M$. Poincaré Lemma says the exists ψ ,

$$\partial_u \psi(t,u) = N(t,u), \quad \partial_t \psi(t,u) = M(t,u).$$

These are actually equations for ψ . From the first one,

$$\psi(t,u) = \int \left[\sin(t) + t^2 e^u - 1\right] du + g(t).$$

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

Solution:
$$\psi(t, u) = \int [\sin(t) + t^2 e^u - 1] du + g(t)$$
.

Example

Find all solutions y to the equation

$$\left[\sin(t) + t^2 e^{y(t)} - 1\right] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$
 Solution:
$$\psi(t, u) = \int \left[\sin(t) + t^2 e^u - 1\right] du + g(t).$$
 Integrating,
$$\psi(t, u) = u \sin(t) + t^2 e^u - u + g(t).$$

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

Solution:
$$\psi(t,u)=\int \left[\sin(t)+t^2e^u-1\right]du+g(t)$$
. Integrating, $\psi(t,u)=u\sin(t)+t^2e^u-u+g(t)$.

Introduce this expression into $\partial_t \psi(t, u) = M(t, u)$,

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

Solution:
$$\psi(t,u)=\int \left[\sin(t)+t^2e^u-1\right]du+g(t)$$
. Integrating,
$$\psi(t,u)=u\sin(t)+t^2e^u-u+g(t).$$

Introduce this expression into $\partial_t \psi(t,u) = M(t,u)$, that is,

$$\partial_t \psi(t,u) = u \cos(t) + 2te^u + g'(t)$$

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

Solution:
$$\psi(t,u)=\int \left[\sin(t)+t^2e^u-1\right]du+g(t)$$
. Integrating,
$$\psi(t,u)=u\sin(t)+t^2e^u-u+g(t).$$

Introduce this expression into $\partial_t \psi(t,u) = M(t,u)$, that is,

$$\partial_t \psi(t, u) = u \cos(t) + 2te^u + g'(t) = M(t, u)$$

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

Solution:
$$\psi(t,u)=\int \left[\sin(t)+t^2e^u-1\right]du+g(t)$$
. Integrating,
$$\psi(t,u)=u\sin(t)+t^2e^u-u+g(t).$$

Introduce this expression into $\partial_t \psi(t,u) = M(t,u)$, that is,

$$\partial_t \psi(t,u) = u \cos(t) + 2te^u + g'(t) = M(t,u) = u \cos(t) + 2te^u,$$

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

Solution:
$$\psi(t,u)=\int \left[\sin(t)+t^2e^u-1\right]du+g(t)$$
. Integrating, $\psi(t,u)=u\sin(t)+t^2e^u-u+g(t)$.

Introduce this expression into $\partial_t \psi(t,u) = M(t,u)$, that is,

$$\partial_t \psi(t,u) = u \cos(t) + 2te^u + g'(t) = M(t,u) = u \cos(t) + 2te^u,$$

Therefore, g'(t) = 0, so we choose g(t) = 0.

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

Solution:
$$\psi(t,u)=\int \left[\sin(t)+t^2e^u-1\right]du+g(t)$$
. Integrating, $\psi(t,u)=u\sin(t)+t^2e^u-u+g(t)$.

Introduce this expression into $\partial_t \psi(t,u) = M(t,u)$, that is,

$$\partial_t \psi(t,u) = u \cos(t) + 2te^u + g'(t) = M(t,u) = u \cos(t) + 2te^u,$$

Therefore,
$$g'(t)=0$$
, so we choose $g(t)=0$. We obtain,
$$\psi(t,u)=u\sin(t)+t^2e^u-u.$$

Example

Find all solutions y to the equation

$$[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2t e^{y(t)} = 0.$$

Solution:
$$\psi(t,u)=\int \left[\sin(t)+t^2e^u-1\right]du+g(t)$$
. Integrating,
$$\psi(t,u)=u\sin(t)+t^2e^u-u+g(t).$$

Introduce this expression into $\partial_t \psi(t,u) = M(t,u)$, that is,

$$\partial_t \psi(t,u) = u \cos(t) + 2te^u + g'(t) = M(t,u) = u \cos(t) + 2te^u,$$

Therefore, g'(t) = 0, so we choose g(t) = 0. We obtain,

$$\psi(t,u)=u\sin(t)+t^2e^u-u.$$

So the solution y satisfies $y(t)\sin(t) + t^2e^{y(t)} - y(t) = c$.

Exact equations (Sect. 2.6).

- Exact differential equations.
- The Poincaré Lemma.
- Implicit solutions and the potential function.
- ► Generalization: The integrating factor method.

Remark:

Sometimes a non-exact equation can we transformed into an exact equation multiplying the equation by an integrating factor. Just like in the case of linear differential equations.

Theorem (Integrating factor)

Let $M,N:R\to\mathbb{R}$ be continuously differentiable functions on $R=(t_1,t_2)\times (u_1,u_2)\subset\mathbb{R}^2$, with $N\neq 0$. If the equation

$$N(t, y(t)) y'(t) + M(t, y(t)) = 0$$

is not exact, that is, $\partial_t N(t,u) \neq \partial_u M(t,u)$, and if the function

$$\frac{1}{N(t,u)} \big[\partial_u M(t,u) - \partial_t N(t,u) \big]$$

does not depend on the variable u, then the equation

$$\mu(t) \lceil N(t, y(t)) y'(t) + M(t, y(t)) \rceil = 0$$

is exact, where
$$\frac{\mu'(t)}{\mu(t)} = \frac{1}{N(t,u)} [\partial_u M(t,u) - \partial_t N(t,u)].$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

$$N(t,u)=t^2+tu$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

$$N(t,u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t,u) = 2t + u,$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

$$N(t, u) = t^2 + tu$$
 \Rightarrow $\partial_t N(t, u) = 2t + u,$ $M(t, u) = 3tu + u^2$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

$$N(t,u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t,u) = 2t + u,$$

$$M(t,u) = 3tu + u^2 \quad \Rightarrow \quad \partial_u M(t,u) = 3t + 2u,$$

Example

Find all solutions *y* to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution: The equation is not exact:

$$N(t,u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t,u) = 2t + u,$$

$$M(t,u) = 3tu + u^2 \quad \Rightarrow \quad \partial_u M(t,u) = 3t + 2u,$$

hence $\partial_t N \neq \partial_u M$.

Example

Find all solutions *y* to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution: The equation is not exact:

$$N(t, u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t, u) = 2t + u,$$
 $M(t, u) = 3tu + u^2 \quad \Rightarrow \quad \partial_u M(t, u) = 3t + 2u,$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution: The equation is not exact:

$$N(t, u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t, u) = 2t + u,$$
 $M(t, u) = 3tu + u^2 \quad \Rightarrow \quad \partial_u M(t, u) = 3t + 2u,$

$$\frac{\left[\partial_u M(t,u) - \partial_t N(t,u)\right]}{N(t,u)}$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution: The equation is not exact:

$$N(t, u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t, u) = 2t + u,$$
 $M(t, u) = 3tu + u^2 \quad \Rightarrow \quad \partial_u M(t, u) = 3t + 2u,$

$$\frac{\left[\partial_u M(t,u) - \partial_t N(t,u)\right]}{N(t,u)} = \frac{1}{(t^2 + tu)} \left[(3t + 2u) - (2t + u) \right]$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution: The equation is not exact:

$$N(t, u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t, u) = 2t + u,$$
 $M(t, u) = 3tu + u^2 \quad \Rightarrow \quad \partial_u M(t, u) = 3t + 2u,$

$$\frac{\left[\partial_{u}M(t,u) - \partial_{t}N(t,u)\right]}{N(t,u)} = \frac{1}{(t^{2} + tu)}\left[(3t + 2u) - (2t + u)\right]$$
$$\frac{\left[\partial_{u}M(t,u) - \partial_{t}N(t,u)\right]}{N(t,u)} = \frac{1}{t(t+u)}(t+u)$$

Example

Find all solutions *y* to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution: The equation is not exact:

$$N(t, u) = t^2 + tu \quad \Rightarrow \quad \partial_t N(t, u) = 2t + u,$$
 $M(t, u) = 3tu + u^2 \quad \Rightarrow \quad \partial_u M(t, u) = 3t + 2u,$

$$\frac{\left[\partial_{u}M(t,u)-\partial_{t}N(t,u)\right]}{N(t,u)}=\frac{1}{(t^{2}+tu)}\left[\left(3t+2u\right)-\left(2t+u\right)\right]$$
$$\frac{\left[\partial_{u}M(t,u)-\partial_{t}N(t,u)\right]}{N(t,u)}=\frac{1}{t(t+u)}\left(t+u\right)=\frac{1}{t}.$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$\frac{\left[\partial_u M(t,u) - \partial_t N(t,u)\right]}{N(t,u)} = \frac{1}{t}.$$

Example

Find all solutions *y* to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$\frac{\left[\partial_u M(t,u) - \partial_t N(t,u)\right]}{N(t,u)} = \frac{1}{t}.$$

We find a function μ solution of $\frac{\mu'}{\mu} = \frac{\lfloor \partial_u M - \partial_t N \rfloor}{N}$,

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$\frac{\left[\partial_u M(t,u) - \partial_t N(t,u)\right]}{N(t,u)} = \frac{1}{t}.$$

We find a function μ solution of $\frac{\mu'}{\mu} = \frac{\left[\partial_u M - \partial_t N\right]}{N}$, that is

$$\frac{\mu'(t)}{\mu(t)} = \frac{1}{t}$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$\frac{\left[\partial_u M(t,u) - \partial_t N(t,u)\right]}{N(t,u)} = \frac{1}{t}.$$

We find a function μ solution of $\frac{\mu'}{\mu} = \frac{\left[\partial_u M - \partial_t N\right]}{N}$, that is

$$rac{\mu'(t)}{\mu(t)} = rac{1}{t} \quad \Rightarrow \quad \ln(\mu(t)) = \ln(t)$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$\frac{\left[\partial_u M(t,u) - \partial_t N(t,u)\right]}{N(t,u)} = \frac{1}{t}.$$

We find a function μ solution of $\frac{\mu'}{\mu} = \frac{\left[\partial_u M - \partial_t N\right]}{N}$, that is

$$\frac{\mu'(t)}{\mu(t)} = \frac{1}{t} \quad \Rightarrow \quad \ln(\mu(t)) = \ln(t) \quad \Rightarrow \quad \mu(t) = t.$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$\frac{\left[\partial_u M(t,u) - \partial_t N(t,u)\right]}{N(t,u)} = \frac{1}{t}.$$

We find a function μ solution of $\frac{\mu'}{\mu} = \frac{\left[\partial_u M - \partial_t N\right]}{N}$, that is

$$\frac{\mu'(t)}{\mu(t)} = \frac{1}{t} \quad \Rightarrow \quad \ln(\mu(t)) = \ln(t) \quad \Rightarrow \quad \mu(t) = t.$$

Therefore, the equation below is exact:

$$[t^3 + t^2 y(t)] y'(t) + [3t^2 y(t) + t y^2(t)] = 0.$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$[t^3 + t^2 y(t)] y'(t) + [3t^2 y(t) + t y^2(t)] = 0.$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$[t^3 + t^2 y(t)] y'(t) + [3t^2 y(t) + t y^2(t)] = 0.$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$[t^3 + t^2 y(t)] y'(t) + [3t^2 y(t) + t y^2(t)] = 0.$$

$$\tilde{N}(t,u)=t^3+t^2u$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$[t^3 + t^2 y(t)] y'(t) + [3t^2 y(t) + t y^2(t)] = 0.$$

$$\tilde{N}(t,u) = t^3 + t^2 u \quad \Rightarrow \quad \partial_t \tilde{N}(t,u) = 3t^2 + 2tu,$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$[t^3 + t^2 y(t)] y'(t) + [3t^2 y(t) + t y^2(t)] = 0.$$

$$\tilde{N}(t,u) = t^3 + t^2 u \quad \Rightarrow \quad \partial_t \tilde{N}(t,u) = 3t^2 + 2tu,$$
 $\tilde{M}(t,u) = 3t^2 u + tu^2$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$[t^3 + t^2 y(t)] y'(t) + [3t^2 y(t) + t y^2(t)] = 0.$$

$$\tilde{N}(t,u) = t^3 + t^2 u \quad \Rightarrow \quad \partial_t \tilde{N}(t,u) = 3t^2 + 2tu,$$

$$\tilde{M}(t,u) = 3t^2 u + tu^2 \quad \Rightarrow \quad \partial_u \tilde{M}(t,u) = 3t^2 + 2tu,$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$[t^3 + t^2 y(t)] y'(t) + [3t^2 y(t) + t y^2(t)] = 0.$$

$$\tilde{N}(t,u)=t^3+t^2u \quad \Rightarrow \quad \partial_t \tilde{N}(t,u)=3t^2+2tu,$$
 $\tilde{M}(t,u)=3t^2u+tu^2 \quad \Rightarrow \quad \partial_u \tilde{M}(t,u)=3t^2+2tu,$ that is, $\partial_t \tilde{N}=\partial_u \tilde{M}$.

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$[t^3 + t^2 y(t)] y'(t) + [3t^2 y(t) + t y^2(t)] = 0.$$

This equation is exact:

$$\tilde{N}(t,u) = t^3 + t^2 u \quad \Rightarrow \quad \partial_t \tilde{N}(t,u) = 3t^2 + 2tu,$$

$$\tilde{M}(t,u) = 3t^2 u + tu^2 \quad \Rightarrow \quad \partial_u \tilde{M}(t,u) = 3t^2 + 2tu,$$

that is, $\partial_t \tilde{N} = \partial_u \tilde{M}$. Therefore, there exists ψ such that

$$\partial_u \psi(t,u) = \tilde{N}(t,u), \qquad \partial_t \psi(t,u) = \tilde{M}(t,u).$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$[t^3 + t^2 y(t)] y'(t) + [3t^2 y(t) + t y^2(t)] = 0.$$

This equation is exact:

$$\tilde{N}(t,u) = t^3 + t^2 u \quad \Rightarrow \quad \partial_t \tilde{N}(t,u) = 3t^2 + 2tu,$$

$$\tilde{M}(t,u) = 3t^2 u + tu^2 \quad \Rightarrow \quad \partial_u \tilde{M}(t,u) = 3t^2 + 2tu,$$

that is, $\partial_t \tilde{N} = \partial_u \tilde{M}$. Therefore, there exists ψ such that

$$\partial_u \psi(t, u) = \tilde{N}(t, u), \qquad \partial_t \psi(t, u) = \tilde{M}(t, u).$$

From the first equation above we obtain

$$\partial_{\mu}\psi = t^3 + t^2\mu$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$[t^3 + t^2 y(t)] y'(t) + [3t^2 y(t) + t y^2(t)] = 0.$$

This equation is exact:

$$\tilde{N}(t,u) = t^3 + t^2 u \quad \Rightarrow \quad \partial_t \tilde{N}(t,u) = 3t^2 + 2tu,$$

$$\tilde{M}(t,u) = 3t^2 u + tu^2 \quad \Rightarrow \quad \partial_u \tilde{M}(t,u) = 3t^2 + 2tu,$$

that is, $\partial_t \tilde{N} = \partial_u \tilde{M}$. Therefore, there exists ψ such that

$$\partial_u \psi(t, u) = \tilde{N}(t, u), \qquad \partial_t \psi(t, u) = \tilde{M}(t, u).$$

From the first equation above we obtain

$$\partial_u \psi = t^3 + t^2 u \quad \Rightarrow \quad \psi(t, u) = \int (t^3 + t^2 u) \, du + g(t).$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$\psi(t, u) = \int (t^3 + t^2 u) du + g(t)$$
.

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$\psi(t, u) = \int (t^3 + t^2 u) du + g(t)$$
.

Integrating,
$$\psi(t, u) = t^3 u + \frac{1}{2} t^2 u^2 + g(t)$$
.

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$\psi(t, u) = \int (t^3 + t^2 u) du + g(t)$$
.

Integrating,
$$\psi(t, u) = t^3 u + \frac{1}{2} t^2 u^2 + g(t)$$
.

Introduce ψ in $\partial_t \psi = \tilde{M}$, where $\tilde{M} = 3t^2u + tu^2$.

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$\psi(t, u) = \int (t^3 + t^2 u) du + g(t)$$
.

Integrating,
$$\psi(t, u) = t^3 u + \frac{1}{2} t^2 u^2 + g(t)$$
.

Introduce ψ in $\partial_t \psi = \tilde{M}$, where $\tilde{M} = 3t^2u + tu^2$. So,

$$\partial_t \psi(t, u) = 3t^2u + tu^2 + g'(t)$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$\psi(t, u) = \int (t^3 + t^2 u) du + g(t)$$
.

Integrating,
$$\psi(t, u) = t^3 u + \frac{1}{2} t^2 u^2 + g(t)$$
.

Introduce ψ in $\partial_t \psi = \tilde{M}$, where $\tilde{M} = 3t^2u + tu^2$. So,

$$\partial_t \psi(t, u) = 3t^2 u + tu^2 + g'(t) = \tilde{M}(t, u)$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$\psi(t, u) = \int (t^3 + t^2 u) du + g(t)$$
.

Integrating,
$$\psi(t, u) = t^3 u + \frac{1}{2} t^2 u^2 + g(t)$$
.

Introduce ψ in $\partial_t \psi = \tilde{M}$, where $\tilde{M} = 3t^2u + tu^2$. So,

$$\partial_t \psi(t, u) = 3t^2 u + tu^2 + g'(t) = \tilde{M}(t, u) = 3t^2 u + tu^2,$$

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$\psi(t, u) = \int (t^3 + t^2 u) du + g(t)$$
.

Integrating,
$$\psi(t, u) = t^3 u + \frac{1}{2} t^2 u^2 + g(t)$$
.

Introduce ψ in $\partial_t \psi = \tilde{M}$, where $\tilde{M} = 3t^2u + tu^2$. So,

$$\partial_t \psi(t, u) = 3t^2 u + tu^2 + g'(t) = \tilde{M}(t, u) = 3t^2 u + tu^2,$$

So g'(t) = 0 and we choose g(t) = 0.

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$\psi(t, u) = \int (t^3 + t^2 u) du + g(t)$$
.

Integrating,
$$\psi(t, u) = t^3 u + \frac{1}{2} t^2 u^2 + g(t)$$
.

Introduce ψ in $\partial_t \psi = \tilde{M}$, where $\tilde{M} = 3t^2u + tu^2$. So,

$$\partial_t \psi(t, u) = 3t^2 u + tu^2 + g'(t) = \tilde{M}(t, u) = 3t^2 u + tu^2,$$

So g'(t)=0 and we choose g(t)=0. We conclude that a potential function is $\psi(t,u)=t^3u+\frac{1}{2}\,t^2u^2$.

Example

Find all solutions y to the differential equation

$$[t^2 + t y(t)] y'(t) + [3t y(t) + y^2(t)] = 0.$$

Solution:
$$\psi(t, u) = \int (t^3 + t^2 u) du + g(t)$$
.

Integrating,
$$\psi(t, u) = t^3 u + \frac{1}{2} t^2 u^2 + g(t)$$
.

Introduce ψ in $\partial_t \psi = \tilde{M}$, where $\tilde{M} = 3t^2u + tu^2$. So,

$$\partial_t \psi(t, u) = 3t^2 u + tu^2 + g'(t) = \tilde{M}(t, u) = 3t^2 u + tu^2,$$

So g'(t)=0 and we choose g(t)=0. We conclude that a potential function is $\psi(t,u)=t^3u+\frac{1}{2}\,t^2u^2$.

And every solution y satisfies $t^3 y(t) + \frac{1}{2} t^2 [y(t)]^2 = c$.

Second order linear ODE (Sect. 3.1).

- Second order linear differential equations.
- Superposition property.
- Constant coefficients equations.
- The characteristic equation.
- ► The main result.

Definition

Given functions a_1 , a_0 , $b: \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1(t) y' + a_0(t) y = b(t)$$
 (2)

is called a *second order linear* differential equation with *variable coefficients*.

Definition

Given functions a_1 , a_0 , $b: \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1(t) y' + a_0(t) y = b(t)$$
 (2)

is called a second order linear differential equation with variable coefficients. The equation in (2) is called homogeneous iff for all $t \in \mathbb{R}$ holds

$$b(t) = 0.$$

Definition

Given functions a_1 , a_0 , $b: \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1(t) y' + a_0(t) y = b(t)$$
 (2)

is called a *second order linear* differential equation with *variable coefficients*. The equation in (2) is called *homogeneous* iff for all $t \in \mathbb{R}$ holds

$$b(t)=0.$$

The equation in (2) is called of *constant coefficients* iff a_1 , a_0 , and b are constants.

Definition

Given functions a_1 , a_0 , $b: \mathbb{R} \to \mathbb{R}$, the differential equation in the unknown function $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1(t) y' + a_0(t) y = b(t)$$
 (2)

is called a *second order linear* differential equation with *variable coefficients*. The equation in (2) is called *homogeneous* iff for all $t \in \mathbb{R}$ holds

$$b(t)=0.$$

The equation in (2) is called of *constant coefficients* iff a_1 , a_0 , and b are constants.

Remark: The notion of an homogeneous equation presented here is not the same as the notion presented in the previous chapter.

Example

(a) A second order, linear, homogeneous, constant coefficients equation is y'' + 5y' + 6 = 0.

Example

(a) A second order, linear, homogeneous, constant coefficients equation is v'' + 5v' + 6 = 0.

(b) A second order order, linear, constant coefficients, non-homogeneous equation is

$$y'' - 3y' + y = 1.$$

Example

- (a) A second order, linear, homogeneous, constant coefficients equation is y'' + 5y' + 6 = 0.
- (b) A second order order, linear, constant coefficients, non-homogeneous equation is

$$y'' - 3y' + y = 1.$$

(c) A second order, linear, non-homogeneous, variable coefficients equation is $y'' + 2t y' - \ln(t) y = e^{3t}.$

Example

(a) A second order, linear, homogeneous, constant coefficients equation is y'' + 5y' + 6 = 0.

(b) A second order order, linear, constant coefficients, non-homogeneous equation is

$$y'' - 3y' + y = 1.$$

- (c) A second order, linear, non-homogeneous, variable coefficients equation is $y'' + 2t y' \ln(t) y = e^{3t}.$
- (d) Newton's second law of motion (ma = f) for point particles of mass m moving in one space dimension under a force $f: \mathbb{R} \to \mathbb{R}$ is given by

$$m y''(t) = f(t).$$

Second order linear ODE (Sect. 3.1).

- Second order linear differential equations.
- **▶** Superposition property.
- Constant coefficients equations.
- ▶ The characteristic equation.
- ▶ The main result.

Theorem

If the functions y_1 and y_2 are solutions to the homogeneous linear equation

$$y'' + a_1(t) y' + a_0(t) y = 0, (3)$$

then the linear combination $c_1y_1(t) + c_2y_2(t)$ is also a solution for any constants c_1 , $c_2 \in \mathbb{R}$.

Theorem

If the functions y_1 and y_2 are solutions to the homogeneous linear equation

$$y'' + a_1(t) y' + a_0(t) y = 0, (3)$$

then the linear combination $c_1y_1(t) + c_2y_2(t)$ is also a solution for any constants $c_1, c_2 \in \mathbb{R}$.

Proof: Verify that the function $y = c_1y_1 + c_2y_2$ satisfies Eq. (3) for every constants c_1 , c_2 ,

Theorem

If the functions y_1 and y_2 are solutions to the homogeneous linear equation

$$y'' + a_1(t) y' + a_0(t) y = 0, (3)$$

then the linear combination $c_1y_1(t) + c_2y_2(t)$ is also a solution for any constants $c_1, c_2 \in \mathbb{R}$.

Proof: Verify that the function $y = c_1y_1 + c_2y_2$ satisfies Eq. (3) for every constants c_1 , c_2 , that is,

$$(c_1y_1+c_2y_2)''+a_1(t)(c_1y_1+c_2y_2)'+a_0(t)(c_1y_1+c_2y_2)$$

Theorem

If the functions y_1 and y_2 are solutions to the homogeneous linear equation

$$y'' + a_1(t) y' + a_0(t) y = 0, (3)$$

then the linear combination $c_1y_1(t) + c_2y_2(t)$ is also a solution for any constants $c_1, c_2 \in \mathbb{R}$.

Proof: Verify that the function $y = c_1y_1 + c_2y_2$ satisfies Eq. (3) for every constants c_1 , c_2 , that is,

$$(c_1y_1 + c_2y_2)'' + a_1(t)(c_1y_1 + c_2y_2)' + a_0(t)(c_1y_1 + c_2y_2)$$

= $(c_1y_1'' + c_2y_2'') + a_1(t)(c_1y_1' + c_2y_2') + a_0(t)(c_1y_1 + c_2y_2)$

Theorem

If the functions y_1 and y_2 are solutions to the homogeneous linear equation

$$y'' + a_1(t) y' + a_0(t) y = 0, (3)$$

then the linear combination $c_1y_1(t) + c_2y_2(t)$ is also a solution for any constants $c_1, c_2 \in \mathbb{R}$.

Proof: Verify that the function $y = c_1y_1 + c_2y_2$ satisfies Eq. (3) for every constants c_1 , c_2 , that is,

$$(c_1y_1 + c_2y_2)'' + a_1(t)(c_1y_1 + c_2y_2)' + a_0(t)(c_1y_1 + c_2y_2)$$

$$= (c_1y_1'' + c_2y_2'') + a_1(t)(c_1y_1' + c_2y_2') + a_0(t)(c_1y_1 + c_2y_2)$$

$$= c_1[y_1'' + a_1(t)y_1' + a_0(t)y_1] + c_2[y_2'' + a_1(t)y_2' + a_0(t)y_2] = 0.$$

Second order linear ODE (Sect. 3.1).

- Second order linear differential equations.
- Superposition property.
- Constant coefficients equations.
- ▶ The characteristic equation.
- ► The main result.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} ,

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in R$,

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

If
$$y(t) = e^{rt}$$
, then $y'(t) =$

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

If
$$y(t) = e^{rt}$$
, then $y'(t) = re^{rt}$, and $y''(t) =$

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

If
$$y(t) = e^{rt}$$
, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

If
$$y(t)=e^{rt}$$
, then $y'(t)=re^{rt}$, and $y''(t)=r^2e^{rt}$. Hence
$$(r^2+5r+6)e^{rt}=0$$

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

If
$$y(t) = e^{rt}$$
, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$. Hence $(r^2 + 5r + 6)e^{rt} = 0 \Leftrightarrow r^2 + 5r + 6 = 0$.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in R$, since the exponential can be canceled out from the equation.

If
$$y(t) = e^{rt}$$
, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$. Hence $(r^2 + 5r + 6)e^{rt} = 0 \Leftrightarrow r^2 + 5r + 6 = 0$.

That is, r must be a root of the polynomial $p(r) = r^2 + 5r + 6$.

Remark: Just by trial and error one can find solutions to second order, constant coefficients, homogeneous, linear differential equations. We present the main ideas with an example.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: We look for solutions proportional to exponentials e^{rt} , for an appropriate constant $r \in R$, since the exponential can be canceled out from the equation.

If
$$y(t) = e^{rt}$$
, then $y'(t) = re^{rt}$, and $y''(t) = r^2 e^{rt}$. Hence $(r^2 + 5r + 6)e^{rt} = 0 \Leftrightarrow r^2 + 5r + 6 = 0$.

That is, r must be a root of the polynomial $p(r) = r^2 + 5r + 6$.

This polynomial is called the characteristic polynomial of the differential equation.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right)$$

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right)$$

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right) \quad \Rightarrow \quad \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right) \quad \Rightarrow \quad \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$

Therefore, we have found two solutions to the ODE,

$$y_1(t) = e^{-2t}, \qquad y_2(t) = e^{-3t}.$$

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right) \quad \Rightarrow \quad \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$

Therefore, we have found two solutions to the ODE,

$$y_1(t) = e^{-2t}, y_2(t) = e^{-3t}.$$

Their superposition provides infinitely many solutions,

Example

Find solutions to the equation y'' + 5y' + 6y = 0.

Solution: Recall: $p(r) = r^2 + 5r + 6$.

The roots of the characteristic polynomial are

$$r = \frac{1}{2} \left(-5 \pm \sqrt{25 - 24} \right) = \frac{1}{2} \left(-5 \pm 1 \right) \quad \Rightarrow \quad \begin{cases} r_1 = -2, \\ r_2 = -3. \end{cases}$$

Therefore, we have found two solutions to the ODE,

$$y_1(t) = e^{-2t}, y_2(t) = e^{-3t}.$$

Their superposition provides infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Summary: The differential equation y'' + 5y' + 6y = 0 has infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Summary: The differential equation y'' + 5y' + 6y = 0 has infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Remarks:

▶ There are two free constants in the solution found above.

Summary: The differential equation y'' + 5y' + 6y = 0 has infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Remarks:

- ▶ There are two free constants in the solution found above.
- ► The ODE above is second order, so two integrations must be done to find the solution. This explain the origin of the two free constant in the solution.

Summary: The differential equation y'' + 5y' + 6y = 0 has infinitely many solutions,

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Remarks:

- ▶ There are two free constants in the solution found above.
- ► The ODE above is second order, so two integrations must be done to find the solution. This explain the origin of the two free constant in the solution.
- ► An IVP for a second order differential equation will have a unique solution if the IVP contains two initial conditions.

Second order linear ODE (Sect. 3.1).

- Second order linear differential equations.
- Superposition property.
- Constant coefficients equations.
- ► The characteristic equation.
- ▶ The main result.

Definition

Given a second order linear homogeneous differential equation with constant coefficients

$$y'' + a_1 y' + a_0 = 0, (4)$$

the characteristic polynomial and the characteristic equation associated with the differential equation in (4) are, respectively,

$$p(r) = r^2 + a_1 r + a_0, \qquad p(r) = 0.$$

Definition

Given a second order linear homogeneous differential equation with constant coefficients

$$y'' + a_1 y' + a_0 = 0, (4)$$

the characteristic polynomial and the characteristic equation associated with the differential equation in (4) are, respectively,

$$p(r) = r^2 + a_1 r + a_0, \qquad p(r) = 0.$$

If r_1 , r_2 are the solutions of the characteristic equation and c_1 , c_2 are constants, then the function

$$y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

is called the general solution of the Eq. (4).

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

$$1 = y(0) = c_1 + c_2,$$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

$$1 = y(0) = c_1 + c_2,$$
 $-1 = y'(0) = -2c_1 - 3c_2.$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

$$1 = y(0) = c_1 + c_2,$$
 $-1 = y'(0) = -2c_1 - 3c_2.$
 $c_1 = 1 - c_2$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

$$1 = y(0) = c_1 + c_2, -1 = y'(0) = -2c_1 - 3c_2.$$

$$c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2$$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

$$1 = y(0) = c_1 + c_2, \qquad -1 = y'(0) = -2c_1 - 3c_2.$$

$$c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2 \Rightarrow c_2 = -1$$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

$$1 = y(0) = c_1 + c_2, \qquad -1 = y'(0) = -2c_1 - 3c_2.$$

$$c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2 \Rightarrow c_2 = -1 \Rightarrow c_1 = 2.$$

Example

Find the solution y of the initial value problem

$$y'' + 5y' + 6 = 0,$$
 $y(0) = 1,$ $y'(0) = -1.$

Solution: A solution of the differential equation above is

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

We now find the constants c_1 and c_2 that satisfy the initial conditions above:

$$1 = y(0) = c_1 + c_2, \qquad -1 = y'(0) = -2c_1 - 3c_2.$$

$$c_1 = 1 - c_2 \Rightarrow 1 = 2(1 - c_2) + 3c_2 \Rightarrow c_2 = -1 \Rightarrow c_1 = 2.$$

Therefore, the unique solution to the initial value problem is

$$y(t) = 2e^{-2t} - e^{-3t}$$
.

Example

Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Example

Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$,

Example

Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0$$

Example

Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0 \implies r = \frac{1}{4}(3 \pm \sqrt{9 - 8})$$

Example

Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0 \implies r = \frac{1}{4}(3 \pm \sqrt{9 - 8}) \implies \begin{cases} r_1 = 1, \\ r_2 = \frac{1}{2}. \end{cases}$$

Example

Find the general solution y of the differential equation

$$2y'' - 3y' + y = 0.$$

Solution: We look for every solution of the form $y(t) = e^{rt}$, where r is a solution of the characteristic equation

$$2r^2 - 3r + 1 = 0 \implies r = \frac{1}{4}(3 \pm \sqrt{9 - 8}) \implies \begin{cases} r_1 = 1, \\ r_2 = \frac{1}{2}. \end{cases}$$

Therefore, the general solution of the equation above is

$$y(t) = c_1 e^t + c_2 e^{t/2},$$

where c_1 , c_2 are arbitrary constants.

Second order linear ODE (Sect. 3.1).

- Second order linear differential equations.
- Superposition property.
- Constant coefficients equations.
- ▶ The characteristic equation.
- ► The main result.

The main result.

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y: \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0. (5)$$

Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0 , c_1 be arbitrary constants. Then, any solution of Eq. (5) belongs to only one of the following cases:

- (a) If $r_+ \neq r_-$, the general solution is $y(t) = c_0 e^{r_+ t} + c_1 e^{r_- t}$.
- (b) If $r_+=r_-\in\mathbb{R}$, the general solution is $y(t)=(c_0+c_1t)e^{r_+t}$.

Furthermore, given real constants t_0 , y_0 and y_1 , there is a unique solution to the initial value problem given by Eq. (5) and the initial conditions

$$y(t_0) = y_0, y'(t_0) = y_1.$$