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Review: Linear differential equations.

Theorem (Variable coefficients)

Given continuous functions a, b : (t1, t2) → R, with t2 > t1, and
given constants t0 ∈ (t1, t2), y0 ∈ R, the IVP

y ′ = −a(t) y + b(t), y(t0) = y0,

has the unique solution y : (t1, t2) → R given by

y(t) =
1

µ(t)

[
y0 +

∫ t

t0

µ(s) b(s) ds
]
, (1)

where the integrating factor function is given by

µ(t) = eA(t), A(t) =

∫ t

t0

a(s) ds.

Proof: Based on the integration factor method.
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Review: Linear differential equations.

Remarks:

I The Theorem above assumes that the coefficients a, b, are
continuous in (t1, t2) ⊂ R.

I The Theorem above implies:

(a) There is an explicit expression for the solutions of a linear IVP,
given in Eq. (1).

(b) For every initial condition y0 ∈ R there exists a unique solution
to a linear IVP.

(c) For every initial condition y0 ∈ R the corresponding solution
y(t) of a linear IVP is defined for all t ∈ (t1, t2).

I None of these properties holds for solutions to non-linear
differential equations.
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Non-linear differential equations.

Definition
An ordinary differential equation y ′(t) = f (t, y(t)) is called
non-linear iff the function (t, u) 7→ f (t, u) is non-linear in the
second argument.

Example

(a) The differential equation y ′(t) =
t2

y3(t)
is non-linear, since the

function f (t, u) = t2/u3 is non-linear in the second argument.

(b) The differential equation y ′(t) = 2ty(t) + ln
(
y(t)

)
is

non-linear, since the function f (t, u) = 2tu + ln(u) is
non-linear in the second argument, due to the term ln(u).

(c) The differential equation
y ′(t)

y(t)
= 2t2 is linear, since the

function f (t, u) = 2t2u is linear in the second argument.
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Properties of solutions to non-linear ODE.

Theorem (Non-linear ODE)

Fix a non-empty rectangle R = (t1, t2)× (u1, u2) ⊂ R2 and fix a
function f : R → R denoted as (t, u) 7→ f (t, u). If the functions f
and ∂uf are continuous on R, and (t0, y0) ∈ R, then there exists a
smaller open rectangle R̂ ⊂ R with (t0, y0) ∈ R̂ such that the IVP

y ′(t) = f (t, y(t)), y(t0) = y0

has a unique solution y on the set R̂ ⊂ R2.

Remarks:

(i) There is no general explicit expression for the solution y(t) to
a non-linear ODE.

(ii) Non-uniqueness of solution to the IVP above may happen at
points (t, u) ∈ R2 where ∂uf is not continuous.

(iii) Changing the initial data y0 may change the domain on the
variable t where the solution y(t) is defined.
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Properties of solutions to non-linear ODE.

Example

Given non-zero constants a1, a2, a3, a4, find every solution y of

y ′ =
t2(

y4 + a4 y3 + a3 y2 + a2 y + a1

) .

Solution: The ODE is separable. So first, rewrite the equation as(
y4 + a4 y3 + a3 y2 + a2 y + a1

)
y ′ = t2,

then we integrate in t on both sides of the equation,∫ (
y4 + a4 y3 + a3 y2 + a2 y + a1

)
y ′ dt =

∫
t2 dt + c .

Introduce the substitution u = y(t), so du = y ′(t) dt,∫
(u4 + a4 u3 + a3 u2 + a2 u + a1

)
du =

∫
t2 dt + c .
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t2(
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) .

Solution:

Recall:
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(u4 + a4 u3 + a3 u2 + a2 u + a1

)
du =

∫
t2 dt + c .

Integrate, and in the result substitute back the function y :

1

5
y5(t) +

a4

4
y4(t) +

a3

3
y3(t) +

a2

2
y2(t) + a1 y(t) =

t3

3
+ c .

The solution is in implicit form. It is the root of a polynomial
degree five. There is no formula for the roots of a general
polynomial degree five or bigger.

There is no explicit expression for solutions y of the ODE. C
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Properties of solutions to non-linear ODE.
Example

Find every solution y of the initial value problem

y ′(t) = y1/3(t), y(0) = 0.

Remark: The equation above is non-linear, separable, and the
function f (t, u) = u1/3 has derivative

∂uf =
1

3

1

u2/3
,

so ∂uf is not continuous at u = 0.

The initial condition above is precisely where f is not continuous.

Solution: There are two solutions to the IVP above:
The first solution is

y1(t) = 0.
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Example

Find the solution y to the initial value problem

y ′(t) = y2(t), y(0) = y0.

Solution: This is a separable equation. So,∫
y ′ dt

y2
=

∫
dt + c ⇒ −1

y
= t + c ⇒ y(t) = − 1

t + c
.

Using the initial condition in the expression above,

y0 = y(0) = −1

c
⇒ c = − 1

y0
⇒ y(t) =

1( 1

y0
− t

) .

This solution diverges at t = 1/y0, so its domain is R− {y0}.

The solution domain depends on the values of the initial data y0.C
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Properties of solutions to non-linear ODE.

Summary:
I Linear ODE:

(a) There is an explicit expression for the solution of a linear IVP.
(b) For every initial condition y0 ∈ R there exists a unique solution

to a linear IVP.
(c) The domain of the solution of a linear IVP is defined for every

initial condition y0 ∈ R.

I Non-linear ODE:

(i) There is no general explicit expression for the solution y(t) to
a non-linear ODE.

(ii) Non-uniqueness of solution to a non-linear IVP may happen at
points (t, u) ∈ R2 where ∂uf is not continuous.

(iii) Changing the initial data y0 may change the domain on the
variable t where the solution y(t) is defined.



On linear and non-linear equations.(Sect. 2.4).

I Review: Linear differential equations.

I Non-linear differential equations.

I Properties of solutions to non-linear ODE.

I The Bernoulli equation.



The Bernoulli equation.

Remark: The Bernoulli equation is a non-linear differential
equation that can be transformed into a linear differential equation.

Definition
Given functions p, q : R → R and a real number n, the differential
equation in the unknown function y : R → R given by

y ′ + p(t) y = q(t) yn

is called the Bernoulli equation.

Theorem
The function y : R → R is a solution of the Bernoulli equation for

y ′ + p(t) y = q(t) yn, n 6= 1,

iff the function v = 1/y (n−1) is solution of the linear differential
equation

v ′ − (n − 1)p(t) v = −(n − 1)q(t).
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The Bernoulli equation.

Example

Given arbitrary constants a0 and b0, find every solution of the
differential equation

y ′ = a0y + b0y
3.

Solution: This is a Bernoulli equation. Divide the equation by y3,

y ′

y3
=

a0

y2
+ b0.

Introduce the function v = 1/y2, with derivative v ′ = −2(y ′/y3),
into the differential equation above,

−v ′

2
= a0v+b0 ⇒ v ′ = −2a0v−2b0 ⇒ v ′+2a0v = −2b0.
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The Bernoulli equation.

Example

Given arbitrary constants a0 and b0, find every solution of the
differential equation

y ′ = a0y + b0y
3.

Solution: Recall: v ′ + 2a0v = −2b0.

The last equation is a linear differential equation for v . This
equation can be solved using the integrating factor method.
Multiply the equation by µ(t) = e2a0t ,(

e2a0tv
)′

= −2b0 e2a0t ⇒ e2a0tv = −b0

a0
e2a0t + c

We obtain that v = c e−2a0t − b0

a0
. Since v = 1/y2,

1

y2
= c e−2a0t − b0

a0
⇒ y = ± 1(

c e−2a0t − b0
a0

)1/2
. C



The Bernoulli equation.

Example

Given arbitrary constants a0 and b0, find every solution of the
differential equation

y ′ = a0y + b0y
3.

Solution: Recall: v ′ + 2a0v = −2b0.

The last equation is a linear differential equation for v . This
equation can be solved using the integrating factor method.

Multiply the equation by µ(t) = e2a0t ,(
e2a0tv

)′
= −2b0 e2a0t ⇒ e2a0tv = −b0

a0
e2a0t + c

We obtain that v = c e−2a0t − b0

a0
. Since v = 1/y2,

1

y2
= c e−2a0t − b0

a0
⇒ y = ± 1(

c e−2a0t − b0
a0

)1/2
. C



The Bernoulli equation.

Example

Given arbitrary constants a0 and b0, find every solution of the
differential equation

y ′ = a0y + b0y
3.

Solution: Recall: v ′ + 2a0v = −2b0.

The last equation is a linear differential equation for v . This
equation can be solved using the integrating factor method.
Multiply the equation by µ(t) = e2a0t ,(

e2a0tv
)′

= −2b0 e2a0t

⇒ e2a0tv = −b0

a0
e2a0t + c

We obtain that v = c e−2a0t − b0

a0
. Since v = 1/y2,

1

y2
= c e−2a0t − b0

a0
⇒ y = ± 1(

c e−2a0t − b0
a0

)1/2
. C



The Bernoulli equation.

Example

Given arbitrary constants a0 and b0, find every solution of the
differential equation

y ′ = a0y + b0y
3.

Solution: Recall: v ′ + 2a0v = −2b0.

The last equation is a linear differential equation for v . This
equation can be solved using the integrating factor method.
Multiply the equation by µ(t) = e2a0t ,(

e2a0tv
)′

= −2b0 e2a0t ⇒ e2a0tv = −b0

a0
e2a0t + c

We obtain that v = c e−2a0t − b0

a0
. Since v = 1/y2,

1

y2
= c e−2a0t − b0

a0
⇒ y = ± 1(

c e−2a0t − b0
a0

)1/2
. C



The Bernoulli equation.

Example

Given arbitrary constants a0 and b0, find every solution of the
differential equation

y ′ = a0y + b0y
3.

Solution: Recall: v ′ + 2a0v = −2b0.

The last equation is a linear differential equation for v . This
equation can be solved using the integrating factor method.
Multiply the equation by µ(t) = e2a0t ,(

e2a0tv
)′

= −2b0 e2a0t ⇒ e2a0tv = −b0

a0
e2a0t + c

We obtain that v = c e−2a0t − b0

a0
.

Since v = 1/y2,

1

y2
= c e−2a0t − b0

a0
⇒ y = ± 1(

c e−2a0t − b0
a0

)1/2
. C



The Bernoulli equation.

Example

Given arbitrary constants a0 and b0, find every solution of the
differential equation

y ′ = a0y + b0y
3.

Solution: Recall: v ′ + 2a0v = −2b0.

The last equation is a linear differential equation for v . This
equation can be solved using the integrating factor method.
Multiply the equation by µ(t) = e2a0t ,(

e2a0tv
)′

= −2b0 e2a0t ⇒ e2a0tv = −b0

a0
e2a0t + c

We obtain that v = c e−2a0t − b0

a0
. Since v = 1/y2,

1

y2
= c e−2a0t − b0

a0
⇒ y = ± 1(

c e−2a0t − b0
a0

)1/2
. C



The Bernoulli equation.

Example

Given arbitrary constants a0 and b0, find every solution of the
differential equation

y ′ = a0y + b0y
3.

Solution: Recall: v ′ + 2a0v = −2b0.

The last equation is a linear differential equation for v . This
equation can be solved using the integrating factor method.
Multiply the equation by µ(t) = e2a0t ,(

e2a0tv
)′

= −2b0 e2a0t ⇒ e2a0tv = −b0

a0
e2a0t + c

We obtain that v = c e−2a0t − b0

a0
. Since v = 1/y2,

1

y2
= c e−2a0t − b0

a0

⇒ y = ± 1(
c e−2a0t − b0

a0

)1/2
. C



The Bernoulli equation.

Example

Given arbitrary constants a0 and b0, find every solution of the
differential equation

y ′ = a0y + b0y
3.

Solution: Recall: v ′ + 2a0v = −2b0.

The last equation is a linear differential equation for v . This
equation can be solved using the integrating factor method.
Multiply the equation by µ(t) = e2a0t ,(

e2a0tv
)′

= −2b0 e2a0t ⇒ e2a0tv = −b0

a0
e2a0t + c

We obtain that v = c e−2a0t − b0

a0
. Since v = 1/y2,

1

y2
= c e−2a0t − b0

a0
⇒ y = ± 1(

c e−2a0t − b0
a0

)1/2
. C


