On linear and non-linear equations. (Sect. 2.4).

- Review: Linear differential equations.
- Non-linear differential equations.
- Properties of solutions to non-linear ODE.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Bernoulli equation.

Theorem (Variable coefficients)

Given continuous functions a, $b : (t_1, t_2) \rightarrow \mathbb{R}$, with $t_2 > t_1$, and given constants $t_0 \in (t_1, t_2)$, $y_0 \in \mathbb{R}$, the IVP

 $y' = -a(t) y + b(t), \qquad y(t_0) = y_0,$

has the unique solution $y:(t_1,t_2)\to \mathbb{R}$ given by

$$y(t) = \frac{1}{\mu(t)} \Big[y_0 + \int_{t_0}^t \mu(s) \, b(s) \, ds \Big], \tag{1}$$

where the integrating factor function is given by

$$\mu(t) = e^{A(t)}, \qquad A(t) = \int_{t_0}^t a(s) \, ds.$$

Theorem (Variable coefficients)

Given continuous functions $a, b : (t_1, t_2) \rightarrow \mathbb{R}$, with $t_2 > t_1$, and given constants $t_0 \in (t_1, t_2)$, $y_0 \in \mathbb{R}$, the IVP

 $y' = -a(t) y + b(t), \qquad y(t_0) = y_0,$

has the unique solution $y:(t_1,t_2) \to \mathbb{R}$ given by

$$y(t) = \frac{1}{\mu(t)} \Big[y_0 + \int_{t_0}^t \mu(s) \, b(s) \, ds \Big], \tag{1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where the integrating factor function is given by

$$\mu(t)=e^{A(t)},\qquad A(t)=\int_{t_0}^ta(s)\,ds.$$

Proof: Based on the integration factor method.

Remarks:

The Theorem above assumes that the coefficients a, b, are continuous in (t₁, t₂) ⊂ ℝ.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remarks:

- The Theorem above assumes that the coefficients a, b, are continuous in (t₁, t₂) ⊂ ℝ.
- The Theorem above implies:
 - (a) There is an explicit expression for the solutions of a linear IVP, given in Eq. (1).

Remarks:

- The Theorem above assumes that the coefficients a, b, are continuous in (t₁, t₂) ⊂ ℝ.
- The Theorem above implies:
 - (a) There is an explicit expression for the solutions of a linear IVP, given in Eq. (1).
 - (b) For every initial condition $y_0 \in \mathbb{R}$ there exists a unique solution to a linear IVP.

Remarks:

- The Theorem above assumes that the coefficients a, b, are continuous in (t₁, t₂) ⊂ ℝ.
- The Theorem above implies:
 - (a) There is an explicit expression for the solutions of a linear IVP, given in Eq. (1).
 - (b) For every initial condition $y_0 \in \mathbb{R}$ there exists a unique solution to a linear IVP.

(c) For every initial condition $y_0 \in \mathbb{R}$ the corresponding solution y(t) of a linear IVP is defined for all $t \in (t_1, t_2)$.

Remarks:

- The Theorem above assumes that the coefficients a, b, are continuous in (t₁, t₂) ⊂ ℝ.
- The Theorem above implies:
 - (a) There is an explicit expression for the solutions of a linear IVP, given in Eq. (1).
 - (b) For every initial condition $y_0 \in \mathbb{R}$ there exists a unique solution to a linear IVP.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- (c) For every initial condition $y_0 \in \mathbb{R}$ the corresponding solution y(t) of a linear IVP is defined for all $t \in (t_1, t_2)$.
- None of these properties holds for solutions to non-linear differential equations.

On linear and non-linear equations. (Sect. 2.4).

- Review: Linear differential equations.
- Non-linear differential equations.
- Properties of solutions to non-linear ODE.

The Bernoulli equation.

Definition

An ordinary differential equation y'(t) = f(t, y(t)) is called non-linear iff the function $(t, u) \mapsto f(t, u)$ is non-linear in the second argument.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Definition

An ordinary differential equation y'(t) = f(t, y(t)) is called non-linear iff the function $(t, u) \mapsto f(t, u)$ is non-linear in the second argument.

Example

(a) The differential equation
$$y'(t) = rac{t^2}{y^3(t)}$$
 is non-linear,

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Definition

An ordinary differential equation y'(t) = f(t, y(t)) is called non-linear iff the function $(t, u) \mapsto f(t, u)$ is non-linear in the second argument.

Example

(a) The differential equation $y'(t) = \frac{t^2}{y^3(t)}$ is non-linear, since the function $f(t, u) = t^2/u^3$ is non-linear in the second argument.

Definition

An ordinary differential equation y'(t) = f(t, y(t)) is called non-linear iff the function $(t, u) \mapsto f(t, u)$ is non-linear in the second argument.

Example

non-linear.

(a) The differential equation y'(t) = t²/y³(t) is non-linear, since the function f(t, u) = t²/u³ is non-linear in the second argument.
(b) The differential equation y'(t) = 2ty(t) + ln(y(t)) is

(日) (同) (三) (三) (三) (○) (○)

Definition

An ordinary differential equation y'(t) = f(t, y(t)) is called non-linear iff the function $(t, u) \mapsto f(t, u)$ is non-linear in the second argument.

Example

(a) The differential equation y'(t) = t²/y³(t) is non-linear, since the function f(t, u) = t²/u³ is non-linear in the second argument.
 (b) The differential equation y'(t) = 2ty(t) + ln(y(t)) is

(b) The differential equation $y'(t) = 2ty(t) + \ln(y(t))$ is non-linear, since the function $f(t, u) = 2tu + \ln(u)$ is non-linear in the second argument, due to the term $\ln(u)$.

Definition

An ordinary differential equation y'(t) = f(t, y(t)) is called non-linear iff the function $(t, u) \mapsto f(t, u)$ is non-linear in the second argument.

Example

(a) The differential equation $y'(t) = \frac{t^2}{y^3(t)}$ is non-linear, since the function $f(t, u) = t^2/u^3$ is non-linear in the second argument.

- (b) The differential equation $y'(t) = 2ty(t) + \ln(y(t))$ is non-linear, since the function $f(t, u) = 2tu + \ln(u)$ is non-linear in the second argument, due to the term $\ln(u)$.
- (c) The differential equation $\frac{y'(t)}{y(t)} = 2t^2$ is linear,

Definition

An ordinary differential equation y'(t) = f(t, y(t)) is called non-linear iff the function $(t, u) \mapsto f(t, u)$ is non-linear in the second argument.

Example

- (a) The differential equation $y'(t) = \frac{t^2}{y^3(t)}$ is non-linear, since the function $f(t, u) = t^2/u^3$ is non-linear in the second argument.
- (b) The differential equation $y'(t) = 2ty(t) + \ln(y(t))$ is non-linear, since the function $f(t, u) = 2tu + \ln(u)$ is non-linear in the second argument, due to the term $\ln(u)$.
- (c) The differential equation $\frac{y'(t)}{y(t)} = 2t^2$ is linear, since the function $f(t, u) = 2t^2u$ is linear in the second argument.

On linear and non-linear equations. (Sect. 2.4).

- Review: Linear differential equations.
- Non-linear differential equations.
- Properties of solutions to non-linear ODE.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Bernoulli equation.

Theorem (Non-linear ODE)

Fix a non-empty rectangle $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$ and fix a function $f : R \to \mathbb{R}$ denoted as $(t, u) \mapsto f(t, u)$. If the functions f and $\partial_u f$ are continuous on R, and $(t_0, y_0) \in R$, then there exists a smaller open rectangle $\hat{R} \subset R$ with $(t_0, y_0) \in \hat{R}$ such that the IVP

 $y'(t) = f(t, y(t)), \qquad y(t_0) = y_0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

has a unique solution y on the set $\hat{R} \subset \mathbb{R}^2$.

Theorem (Non-linear ODE)

Fix a non-empty rectangle $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$ and fix a function $f : R \to \mathbb{R}$ denoted as $(t, u) \mapsto f(t, u)$. If the functions f and $\partial_u f$ are continuous on R, and $(t_0, y_0) \in R$, then there exists a smaller open rectangle $\hat{R} \subset R$ with $(t_0, y_0) \in \hat{R}$ such that the IVP

 $y'(t) = f(t, y(t)), \qquad y(t_0) = y_0$

has a unique solution y on the set $\hat{R} \subset \mathbb{R}^2$.

Remarks:

(i) There is no general explicit expression for the solution y(t) to a non-linear ODE.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Non-linear ODE)

Fix a non-empty rectangle $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$ and fix a function $f : R \to \mathbb{R}$ denoted as $(t, u) \mapsto f(t, u)$. If the functions f and $\partial_u f$ are continuous on R, and $(t_0, y_0) \in R$, then there exists a smaller open rectangle $\hat{R} \subset R$ with $(t_0, y_0) \in \hat{R}$ such that the IVP

 $y'(t) = f(t, y(t)), \qquad y(t_0) = y_0$

has a unique solution y on the set $\hat{R} \subset \mathbb{R}^2$.

Remarks:

- (i) There is no general explicit expression for the solution y(t) to a non-linear ODE.
- (ii) Non-uniqueness of solution to the IVP above may happen at points $(t, u) \in \mathbb{R}^2$ where $\partial_u f$ is not continuous.

Theorem (Non-linear ODE)

Fix a non-empty rectangle $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$ and fix a function $f : R \to \mathbb{R}$ denoted as $(t, u) \mapsto f(t, u)$. If the functions f and $\partial_u f$ are continuous on R, and $(t_0, y_0) \in R$, then there exists a smaller open rectangle $\hat{R} \subset R$ with $(t_0, y_0) \in \hat{R}$ such that the IVP

 $y'(t) = f(t, y(t)), \qquad y(t_0) = y_0$

has a unique solution y on the set $\hat{R} \subset \mathbb{R}^2$.

Remarks:

- (i) There is no general explicit expression for the solution y(t) to a non-linear ODE.
- (ii) Non-uniqueness of solution to the IVP above may happen at points $(t, u) \in \mathbb{R}^2$ where $\partial_u f$ is not continuous.
- (iii) Changing the initial data y_0 may change the domain on the variable t where the solution y(t) is defined.

Example

Given non-zero constants a_1 , a_2 , a_3 , a_4 , find every solution y of

$$y' = rac{t^2}{\left(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1
ight)}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Given non-zero constants a_1 , a_2 , a_3 , a_4 , find every solution y of

$$y' = \frac{t^2}{\left(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1\right)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: The ODE is separable.

Example

Given non-zero constants a_1 , a_2 , a_3 , a_4 , find every solution y of

$$y' = rac{t^2}{\left(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1
ight)}.$$

Solution: The ODE is separable. So first, rewrite the equation as

$$(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1) y' = t^2,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

Example

Given non-zero constants a_1 , a_2 , a_3 , a_4 , find every solution y of

$$y' = \frac{t^2}{\left(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1\right)}.$$

Solution: The ODE is separable. So first, rewrite the equation as

$$(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1) y' = t^2,$$

then we integrate in t on both sides of the equation,

$$\int (y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1) y' dt = \int t^2 dt + c.$$

Example

Given non-zero constants a_1 , a_2 , a_3 , a_4 , find every solution y of

$$y' = \frac{t^2}{\left(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1\right)}.$$

Solution: The ODE is separable. So first, rewrite the equation as

$$(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1) y' = t^2,$$

then we integrate in t on both sides of the equation,

$$\int (y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1) y' dt = \int t^2 dt + c.$$

Introduce the substitution u = y(t), so du = y'(t) dt,

$$\int (u^4 + a_4 u^3 + a_3 u^2 + a_2 u + a_1) du = \int t^2 dt + c.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Given non-zero constants a_1 , a_2 , a_3 , a_4 , find every solution y of

$$y' = \frac{t^2}{\left(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1\right)}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution:
Recall:
$$\int (u^4 + a_4 u^3 + a_3 u^2 + a_2 u + a_1) du = \int t^2 dt + c.$$

Example

Given non-zero constants a_1 , a_2 , a_3 , a_4 , find every solution y of

$$y' = \frac{t^2}{\left(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1\right)}.$$

Solution:

Recall: $\int (u^4 + a_4 u^3 + a_3 u^2 + a_2 u + a_1) du = \int t^2 dt + c.$ Integrate, and in the result substitute back the function y: $1 \quad 5 \leftarrow x \quad a_4 \quad 4 \leftarrow x \quad a_3 \quad 3 \leftarrow x \quad a_2 \quad 2 \leftarrow x \quad c \leftarrow x \quad t^3$

$$\frac{1}{5}y^{5}(t) + \frac{a_{4}}{4}y^{4}(t) + \frac{a_{3}}{3}y^{3}(t) + \frac{a_{2}}{2}y^{2}(t) + a_{1}y(t) = \frac{t^{2}}{3} + c.$$

Example

Given non-zero constants a_1 , a_2 , a_3 , a_4 , find every solution y of

$$y' = \frac{t^2}{\left(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1\right)}.$$

Solution:

Recall: $\int (u^4 + a_4 u^3 + a_3 u^2 + a_2 u + a_1) du = \int t^2 dt + c.$ Integrate, and in the result substitute back the function y: $\frac{1}{5}y^5(t) + \frac{a_4}{4}y^4(t) + \frac{a_3}{3}y^3(t) + \frac{a_2}{2}y^2(t) + a_1y(t) = \frac{t^3}{3} + c.$

The solution is in implicit form.

Example

Given non-zero constants a_1 , a_2 , a_3 , a_4 , find every solution y of

$$y' = \frac{t^2}{\left(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1\right)}.$$

Solution:

Recall: $\int (u^4 + a_4 u^3 + a_3 u^2 + a_2 u + a_1) du = \int t^2 dt + c.$ Integrate, and in the result substitute back the function y: $\frac{1}{2} \int (u^4 + a_4 u^3 + a_3 u^2 + a_2 u + a_1) du = \int t^2 dt + c.$

$$\frac{1}{5}y^{5}(t) + \frac{a_{4}}{4}y^{4}(t) + \frac{a_{3}}{3}y^{3}(t) + \frac{a_{2}}{2}y^{2}(t) + a_{1}y(t) = \frac{t^{2}}{3} + c.$$

The solution is in implicit form. It is the root of a polynomial degree five.

Example

Given non-zero constants a_1 , a_2 , a_3 , a_4 , find every solution y of

$$y' = \frac{t^2}{\left(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1\right)}.$$

Solution:

Recall: $\int (u^4 + a_4 u^3 + a_3 u^2 + a_2 u + a_1) du = \int t^2 dt + c.$ Integrate, and in the result substitute back the function y:

$$\frac{1}{5}y^5(t) + \frac{a_4}{4}y^4(t) + \frac{a_3}{3}y^3(t) + \frac{a_2}{2}y^2(t) + a_1y(t) = \frac{t^3}{3} + c.$$

The solution is in implicit form. It is the root of a polynomial degree five. There is no formula for the roots of a general polynomial degree five or bigger.

Example

Given non-zero constants a_1 , a_2 , a_3 , a_4 , find every solution y of

$$y' = \frac{t^2}{\left(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1\right)}.$$

Solution:

Recall: $\int (u^4 + a_4 u^3 + a_3 u^2 + a_2 u + a_1) du = \int t^2 dt + c.$ Integrate, and in the result substitute back the function y:

$$\frac{1}{5}y^5(t) + \frac{a_4}{4}y^4(t) + \frac{a_3}{3}y^3(t) + \frac{a_2}{2}y^2(t) + a_1y(t) = \frac{t^3}{3} + c.$$

The solution is in implicit form. It is the root of a polynomial degree five. There is no formula for the roots of a general polynomial degree five or bigger.

There is no explicit expression for solutions y of the ODE. \lhd

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Remark: The equation above is non-linear, separable,

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

Remark: The equation above is non-linear, separable, and the function $f(t, u) = u^{1/3}$ has derivative

$$\partial_u f = \frac{1}{3} \frac{1}{u^{2/3}},$$

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

Remark: The equation above is non-linear, separable, and the function $f(t, u) = u^{1/3}$ has derivative

$$\partial_u f = \frac{1}{3} \frac{1}{u^{2/3}},$$

so $\partial_u f$ is not continuous at u = 0.
Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

Remark: The equation above is non-linear, separable, and the function $f(t, u) = u^{1/3}$ has derivative

$$\partial_u f = \frac{1}{3} \frac{1}{u^{2/3}},$$

so $\partial_u f$ is not continuous at u = 0.

The initial condition above is precisely where f is not continuous.

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

Remark: The equation above is non-linear, separable, and the function $f(t, u) = u^{1/3}$ has derivative

$$\partial_u f = \frac{1}{3} \frac{1}{u^{2/3}},$$

so $\partial_u f$ is not continuous at u = 0.

The initial condition above is precisely where f is not continuous.

Solution: There are two solutions to the IVP above:

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

Remark: The equation above is non-linear, separable, and the function $f(t, u) = u^{1/3}$ has derivative

$$\partial_u f = \frac{1}{3} \frac{1}{u^{2/3}},$$

so $\partial_u f$ is not continuous at u = 0.

The initial condition above is precisely where f is not continuous.

Solution: There are two solutions to the IVP above: The first solution is

$$y_1(t)=0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

・ロト・日本・モート モー うへぐ

Solution: The second solution is obtained as follows:

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

Solution: The second solution is obtained as follows:

$$\int \left[y(t)\right]^{-1/3} y'(t) \, dt = \int dt + c.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

Solution: The second solution is obtained as follows:

$$\int \left[y(t)\right]^{-1/3} y'(t) \, dt = \int dt + c.$$

Then, the substitution u = y(t), with du = y'(t) dt, implies that

$$\int u^{-1/3} \, du = \int \, dt + c$$

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

Solution: The second solution is obtained as follows:

$$\int \left[y(t)\right]^{-1/3} y'(t) \, dt = \int dt + c.$$

Then, the substitution u = y(t), with du = y'(t) dt, implies that

$$\int u^{-1/3} du = \int dt + c \quad \Rightarrow \quad \frac{3}{2} \big[y(t) \big]^{2/3} = t + c,$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

Solution: The second solution is obtained as follows:

$$\int \left[y(t)\right]^{-1/3} y'(t) \, dt = \int dt + c.$$

Then, the substitution u = y(t), with du = y'(t) dt, implies that

$$\int u^{-1/3} du = \int dt + c \quad \Rightarrow \quad \frac{3}{2} [y(t)]^{2/3} = t + c,$$
$$y(t) = \left[\frac{2}{3}(t+c)\right]^{3/2}$$

- ロ ト - 4 回 ト - 4 □ - 4

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

Solution: The second solution is obtained as follows:

$$\int \left[y(t)\right]^{-1/3} y'(t) \, dt = \int dt + c.$$

Then, the substitution u = y(t), with du = y'(t) dt, implies that

$$\int u^{-1/3} du = \int dt + c \quad \Rightarrow \quad \frac{3}{2} \big[y(t) \big]^{2/3} = t + c,$$

$$y(t) = \left[\frac{2}{3}(t+c)\right]^{3/2} \Rightarrow 0 = y(0) = \left(\frac{2}{3}c\right)^{3/2}$$

・ロト ・団ト ・ヨト ・ヨー うへぐ

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

Solution: The second solution is obtained as follows:

$$\int \left[y(t)\right]^{-1/3} y'(t) \, dt = \int dt + c.$$

Then, the substitution u = y(t), with du = y'(t) dt, implies that

$$\int u^{-1/3} du = \int dt + c \quad \Rightarrow \quad \frac{3}{2} \big[y(t) \big]^{2/3} = t + c,$$

$$y(t) = \left[rac{2}{3}(t+c)
ight]^{3/2} \Rightarrow 0 = y(0) = \left(rac{2}{3}c
ight)^{3/2} \Rightarrow c = 0.$$

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

Solution: The second solution is obtained as follows:

$$\int \left[y(t)\right]^{-1/3} y'(t) \, dt = \int dt + c.$$

Then, the substitution u = y(t), with du = y'(t) dt, implies that

$$\int u^{-1/3} du = \int dt + c \quad \Rightarrow \quad \frac{3}{2} \big[y(t) \big]^{2/3} = t + c,$$

$$y(t) = \left[rac{2}{3}(t+c)
ight]^{3/2} \Rightarrow 0 = y(0) = \left(rac{2}{3}c
ight)^{3/2} \Rightarrow c = 0.$$

So, the second solution is: $y_2(t) = \left(\frac{2}{3}t\right)^{3/2}$.

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t), \qquad y(0) = 0.$$

Solution: The second solution is obtained as follows:

$$\int \left[y(t)\right]^{-1/3} y'(t) \, dt = \int dt + c.$$

Then, the substitution u = y(t), with du = y'(t) dt, implies that

$$\int u^{-1/3} du = \int dt + c \quad \Rightarrow \quad \frac{3}{2} \big[y(t) \big]^{2/3} = t + c,$$

$$y(t) = \left[\frac{2}{3}(t+c)\right]^{3/2} \Rightarrow 0 = y(0) = \left(\frac{2}{3}c\right)^{3/2} \Rightarrow c = 0.$$

So, the second solution is: $y_2(t) = \left(\frac{2}{3}t\right)^{3/2}$. Recall $y_1(t) = 0$.

Example

Find the solution y to the initial value problem

$$y'(t) = y^2(t), \qquad y(0) = y_0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the solution y to the initial value problem

$$y'(t) = y^2(t), \qquad y(0) = y_0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: This is a separable equation.

Example

Find the solution y to the initial value problem

$$y'(t) = y^2(t), \qquad y(0) = y_0.$$

(ロ)、(型)、(E)、(E)、 E、 のQの

Solution: This is a separable equation. So,

$$\int \frac{y'\,dt}{y^2} = \int dt + c$$

Example

Find the solution y to the initial value problem

$$y'(t) = y^2(t), \qquad y(0) = y_0.$$

(ロ)、(型)、(E)、(E)、 E、 のQの

Solution: This is a separable equation. So,

$$\int \frac{y'\,dt}{y^2} = \int dt + c \quad \Rightarrow \quad -\frac{1}{y} = t + c$$

Example

Find the solution y to the initial value problem

$$y'(t) = y^2(t), \qquad y(0) = y_0.$$

Solution: This is a separable equation. So,

$$\int rac{y'\,dt}{y^2} = \int dt + c \quad \Rightarrow \quad -rac{1}{y} = t + c \quad \Rightarrow \quad y(t) = -rac{1}{t+c}.$$

(ロ)、(型)、(E)、(E)、 E、 のQの

Example

Find the solution y to the initial value problem

$$y'(t) = y^2(t), \qquad y(0) = y_0.$$

Solution: This is a separable equation. So,

$$\int rac{y'\,dt}{y^2} = \int dt + c \quad \Rightarrow \quad -rac{1}{y} = t + c \quad \Rightarrow \quad y(t) = -rac{1}{t+c}$$

Using the initial condition in the expression above,

$$y_0=y(0)$$

Example

Find the solution y to the initial value problem

$$y'(t) = y^2(t), \qquad y(0) = y_0.$$

Solution: This is a separable equation. So,

$$\int \frac{y'\,dt}{y^2} = \int dt + c \quad \Rightarrow \quad -\frac{1}{y} = t + c \quad \Rightarrow \quad y(t) = -\frac{1}{t+c}.$$

Using the initial condition in the expression above,

$$y_0=y(0)=-\frac{1}{c}$$

Example

Find the solution y to the initial value problem

$$y'(t) = y^2(t), \qquad y(0) = y_0.$$

Solution: This is a separable equation. So,

$$\int \frac{y'\,dt}{y^2} = \int dt + c \quad \Rightarrow \quad -\frac{1}{y} = t + c \quad \Rightarrow \quad y(t) = -\frac{1}{t+c}.$$

Using the initial condition in the expression above,

$$y_0 = y(0) = -\frac{1}{c} \quad \Rightarrow \quad c = -\frac{1}{y_0}$$

Example

Find the solution y to the initial value problem

$$y'(t) = y^2(t), \qquad y(0) = y_0.$$

Solution: This is a separable equation. So,

$$\int \frac{y'\,dt}{y^2} = \int dt + c \quad \Rightarrow \quad -\frac{1}{y} = t + c \quad \Rightarrow \quad y(t) = -\frac{1}{t+c}.$$

Using the initial condition in the expression above,

$$y_0 = y(0) = -\frac{1}{c} \quad \Rightarrow \quad c = -\frac{1}{y_0} \quad \Rightarrow \quad y(t) = \frac{1}{\left(\frac{1}{y_0} - t\right)}.$$

Example

Find the solution y to the initial value problem

$$y'(t) = y^2(t), \qquad y(0) = y_0.$$

Solution: This is a separable equation. So,

$$\int \frac{y'\,dt}{y^2} = \int dt + c \quad \Rightarrow \quad -\frac{1}{y} = t + c \quad \Rightarrow \quad y(t) = -\frac{1}{t+c}.$$

Using the initial condition in the expression above,

$$y_0 = y(0) = -\frac{1}{c} \quad \Rightarrow \quad c = -\frac{1}{y_0} \quad \Rightarrow \quad y(t) = \frac{1}{\left(\frac{1}{y_0} - t\right)}.$$

This solution diverges at $t = 1/y_0$, so its domain is $\mathbb{R} - \{y_0\}$.

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへで

Example

Find the solution y to the initial value problem

$$y'(t) = y^2(t), \qquad y(0) = y_0.$$

Solution: This is a separable equation. So,

$$\int \frac{y'\,dt}{y^2} = \int dt + c \quad \Rightarrow \quad -\frac{1}{y} = t + c \quad \Rightarrow \quad y(t) = -\frac{1}{t+c}.$$

Using the initial condition in the expression above,

$$y_0 = y(0) = -\frac{1}{c} \quad \Rightarrow \quad c = -\frac{1}{y_0} \quad \Rightarrow \quad y(t) = \frac{1}{\left(\frac{1}{y_0} - t\right)}.$$

This solution diverges at $t = 1/y_0$, so its domain is $\mathbb{R} - \{y_0\}$. The solution domain depends on the values of the initial data $y_0 \triangleleft$

Summary:

- ► Linear ODE:
 - (a) There is an explicit expression for the solution of a linear IVP.
 - (b) For every initial condition $y_0 \in \mathbb{R}$ there exists a unique solution to a linear IVP.
 - (c) The domain of the solution of a linear IVP is defined for every initial condition $y_0 \in \mathbb{R}$.
- Non-linear ODE:
 - (i) There is no general explicit expression for the solution y(t) to a non-linear ODE.
 - (ii) Non-uniqueness of solution to a non-linear IVP may happen at points $(t, u) \in \mathbb{R}^2$ where $\partial_u f$ is not continuous.

(iii) Changing the initial data y_0 may change the domain on the variable t where the solution y(t) is defined.

On linear and non-linear equations. (Sect. 2.4).

- Review: Linear differential equations.
- Non-linear differential equations.
- Properties of solutions to non-linear ODE.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► The Bernoulli equation.

Remark: The Bernoulli equation is a non-linear differential equation that can be transformed into a linear differential equation.

Remark: The Bernoulli equation is a non-linear differential equation that can be transformed into a linear differential equation.

Definition

Given functions $p, q : \mathbb{R} \to \mathbb{R}$ and a real number n, the differential equation in the unknown function $y : \mathbb{R} \to \mathbb{R}$ given by

 $y' + p(t) y = q(t) y^n$

is called the Bernoulli equation.

Remark: The Bernoulli equation is a non-linear differential equation that can be transformed into a linear differential equation.

Definition

Given functions $p, q : \mathbb{R} \to \mathbb{R}$ and a real number n, the differential equation in the unknown function $y : \mathbb{R} \to \mathbb{R}$ given by

 $y' + p(t) y = q(t) y^n$

is called the Bernoulli equation.

Theorem

The function $y : \mathbb{R} \to \mathbb{R}$ is a solution of the Bernoulli equation for

$$y'+p(t)y=q(t)y^n, \qquad n\neq 1,$$

iff the function $v = 1/y^{(n-1)}$ is solution of the linear differential equation

$$v' - (n-1)p(t) v = -(n-1)q(t).$$

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation

$$y'=a_0y+b_0y^3.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation

$$y'=a_0y+b_0y^3.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Solution: This is a Bernoulli equation.

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation

$$y'=a_0y+b_0y^3.$$

Solution: This is a Bernoulli equation. Divide the equation by y^3 ,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation

$$y'=a_0y+b_0y^3.$$

Solution: This is a Bernoulli equation. Divide the equation by y^3 ,

$$\frac{y'}{y^3} = \frac{a_0}{y^2} + b_0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation

$$y'=a_0y+b_0y^3.$$

Solution: This is a Bernoulli equation. Divide the equation by y^3 ,

$$\frac{y'}{y^3} = \frac{a_0}{y^2} + b_0.$$

Introduce the function $v = 1/y^2$, with derivative $v' = -2(y'/y^3)$, into the differential equation above,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation

$$y'=a_0y+b_0y^3.$$

Solution: This is a Bernoulli equation. Divide the equation by y^3 ,

$$\frac{y'}{y^3} = \frac{a_0}{y^2} + b_0.$$

Introduce the function $v = 1/y^2$, with derivative $v' = -2(y'/y^3)$, into the differential equation above,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$-\frac{v'}{2}=a_0v+b_0$$

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation

$$y'=a_0y+b_0y^3.$$

Solution: This is a Bernoulli equation. Divide the equation by y^3 ,

$$\frac{y'}{y^3} = \frac{a_0}{y^2} + b_0.$$

Introduce the function $v = 1/y^2$, with derivative $v' = -2(y'/y^3)$, into the differential equation above,

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$-\frac{v'}{2} = a_0 v + b_0 \quad \Rightarrow \quad v' = -2a_0 v - 2b_0$$

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation

$$y'=a_0y+b_0y^3.$$

Solution: This is a Bernoulli equation. Divide the equation by y^3 ,

$$\frac{y'}{y^3} = \frac{a_0}{y^2} + b_0$$

Introduce the function $v = 1/y^2$, with derivative $v' = -2(y'/y^3)$, into the differential equation above,

$$-\frac{v'}{2}=a_0v+b_0 \quad \Rightarrow \quad v'=-2a_0v-2b_0 \quad \Rightarrow \quad v'+2a_0v=-2b_0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation b_0 , b_0 , a_0, b_0 , b_0 , a_0, b_0 , a_0, b_0 , b_0 , b_0 , a_0

$$y'=a_0y+b_0y^3.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Solution: Recall: $v' + 2a_0v = -2b_0$.

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation b_0 , b_0 , a_0, b_0 , b_0 , b_0 , b_0 , b_0 , a

$$y'=a_0y+b_0y^3.$$

- ロ ト - 4 回 ト - 4 □ - 4

Solution: Recall: $v' + 2a_0v = -2b_0$.

The last equation is a linear differential equation for v. This equation can be solved using the integrating factor method.

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation $a_0 = a_0 + a_0$

$$y'=a_0y+b_0y^3.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution: Recall: $v' + 2a_0v = -2b_0$.

The last equation is a linear differential equation for v. This equation can be solved using the integrating factor method. Multiply the equation by $\mu(t) = e^{2a_0t}$,

$$(e^{2a_0t}v)' = -2b_0 e^{2a_0t}$$

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation $a_0 = a_0 + a_0$

$$y'=a_0y+b_0y^3.$$

Solution: Recall: $v' + 2a_0v = -2b_0$.

The last equation is a linear differential equation for v. This equation can be solved using the integrating factor method. Multiply the equation by $\mu(t) = e^{2a_0t}$,

$$(e^{2a_0t}v)' = -2b_0 e^{2a_0t} \quad \Rightarrow \quad e^{2a_0t}v = -\frac{b_0}{a_0} e^{2a_0t} + c$$

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation $a_0 = a_0 + a_0$

$$y'=a_0y+b_0y^3.$$

Solution: Recall: $v' + 2a_0v = -2b_0$.

The last equation is a linear differential equation for v. This equation can be solved using the integrating factor method. Multiply the equation by $\mu(t) = e^{2a_0t}$,

$$(e^{2a_0t}v)' = -2b_0 e^{2a_0t} \quad \Rightarrow \quad e^{2a_0t}v = -\frac{b_0}{a_0} e^{2a_0t} + c$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We obtain that $v = c e^{-2a_0t} - \frac{b_0}{a_0}$.

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation $a_0 = a_0 + a_0$

$$y'=a_0y+b_0y^3.$$

Solution: Recall: $v' + 2a_0v = -2b_0$.

The last equation is a linear differential equation for v. This equation can be solved using the integrating factor method. Multiply the equation by $\mu(t) = e^{2a_0t}$,

$$(e^{2a_0t}v)' = -2b_0 e^{2a_0t} \quad \Rightarrow \quad e^{2a_0t}v = -\frac{b_0}{a_0} e^{2a_0t} + c$$

(日) (同) (三) (三) (三) (○) (○)

We obtain that $v = c e^{-2a_0t} - \frac{b_0}{a_0}$. Since $v = 1/y^2$,

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation $a_0 = a_0 + a_0$

$$y'=a_0y+b_0y^3.$$

Solution: Recall: $v' + 2a_0v = -2b_0$.

The last equation is a linear differential equation for v. This equation can be solved using the integrating factor method. Multiply the equation by $\mu(t) = e^{2a_0t}$,

$$(e^{2a_0t}v)' = -2b_0 e^{2a_0t} \quad \Rightarrow \quad e^{2a_0t}v = -\frac{b_0}{a_0} e^{2a_0t} + c$$

(日) (同) (三) (三) (三) (○) (○)

We obtain that $v = c e^{-2a_0t} - \frac{b_0}{a_0}$. Since $v = 1/y^2$,

$$\frac{1}{y^2} = c \, e^{-2a_0 t} - \frac{b_0}{a_0}$$

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation $a_0 = a_0 + a_0$

$$y'=a_0y+b_0y^3.$$

Solution: Recall: $v' + 2a_0v = -2b_0$.

The last equation is a linear differential equation for v. This equation can be solved using the integrating factor method. Multiply the equation by $\mu(t) = e^{2a_0t}$,

$$(e^{2a_0t}v)' = -2b_0 e^{2a_0t} \quad \Rightarrow \quad e^{2a_0t}v = -\frac{b_0}{a_0} e^{2a_0t} + c$$

We obtain that $v = c e^{-2a_0t} - \frac{b_0}{a_0}$. Since $v = 1/y^2$,

$$\frac{1}{y^2} = c \, e^{-2a_0 t} - \frac{b_0}{a_0} \quad \Rightarrow \quad y = \pm \frac{1}{\left(c \, e^{-2a_0 t} - \frac{b_0}{a_0}\right)^{1/2}}. \quad \lhd$$

(日) (同) (三) (三) (三) (○) (○)