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Review: Linear differential equations.

Theorem (Variable coefficients)

Given continuous functions a, b : (t1, t2) — R, with t, > t1, and
given constants ty € (t1, t2), Yo € R, the IVP

y'=—a(t)y+b(t),  y(to) =y,
has the unique solution y : (t1, t2) — R given by

W)= oot [ (o) 6096 (1)
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where the integrating factor function is given by

Proof: Based on the integration factor method.
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Remarks:

» The Theorem above assumes that the coefficients a, b, are
continuous in (t, t2) C R.

» The Theorem above implies:

(a) There is an explicit expression for the solutions of a linear IVP,
given in Eq. (1).

(b) For every initial condition yo € R there exists a unique solution
to a linear IVP.

(c) For every initial condition yy € R the corresponding solution
y(t) of a linear IVP is defined for all t € (t1, t).

» None of these properties holds for solutions to non-linear
differential equations.
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function f(t, u) = t?/u® is non-linear in the second argument.
(b) The differential equation y'(t) = 2ty(t) + In(y(t)) is
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function f(t,u) = 2t2u is linear in the second argument.

(a) The differential equation y'(t) = is non-linear, since the

(c) The differential equation is linear, since the
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Properties of solutions to non-linear ODE.

Theorem (Non-linear ODE)

Fix a non-empty rectangle R = (t1,t2) x (u1, uz) C R? and fix a

function f : R — R denoted as (t, u) — f(t,u). If the functions f
and O,f are continuous on R, and (to, yo) € R, then there exists a
smaller open rectangle R C R with (to, y0) € R such that the IVP

y'(t) =f(t,y(t)),  y(to) = yo

has a unique solution y on the set R c R2.
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2
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Solution: The ODE is separable. So first, rewrite the equation as
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The solution is in implicit form. It is the root of a polynomial
degree five. There is no formula for the roots of a general
polynomial degree five or bigger.

Y3 (1) +

There is no explicit expression for solutions y of the ODE. <
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Properties of solutions to non-linear ODE.

Example
Find every solution y of the initial value problem

Y'(t)=y"3(t),  y(0)=0.

Remark: The equation above is non-linear, separable, and the
function f(t, u) = u'/3 has derivative

so d,f is not continuous at u = 0.
The initial condition above is precisely where f is not continuous.
Solution: There are two solutions to the IVP above:

The first solution is
yl(t) =0.
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Example
Find the solution y to the initial value problem

y(t)=y4t),  y(0)= .

Solution: This is a separable equation. So,
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Using the initial condition in the expression above,
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» TR
Yo

This solution diverges at t = 1/yp, so its domain is R — {yo}.

The solution domain depends on the values of the initial data yp.<



Properties of solutions to non-linear ODE.

Summary:
» Linear ODE:

(a) There is an explicit expression for the solution of a linear IVP.

(b) For every initial condition yo € R there exists a unique solution
to a linear IVP.

(c) The domain of the solution of a linear IVP is defined for every
initial condition yp € R.

» Non-linear ODE:

(i) There is no general explicit expression for the solution y(t) to
a non-linear ODE.
(i) Non-uniqueness of solution to a non-linear IVP may happen at
points (t, u) € R? where d,f is not continuous.
(iii) Changing the initial data yp may change the domain on the
variable t where the solution y(t) is defined.
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The Bernoulli equation.

Remark: The Bernoulli equation is a non-linear differential
equation that can be transformed into a linear differential equation.

Definition
Given functions p, ¢ : R — R and a real number n, the differential
equation in the unknown function y : R — R given by

Y +p(t)y =q(t)y"
is called the Bernoulli equation.

Theorem
The function y : R — R is a solution of the Bernoulli equation for

Y +pt)y=q(t)y".  n#1,
iff the function v = 1/y("=1) js solution of the linear differential

equation v —(n—1)p(t)v = —(n—1)q(t).
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