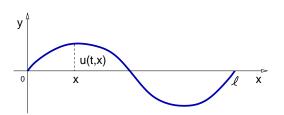


Summary:

Daniel Bernoulli (\sim 1750) found solutions to the equation that describes waves propagating on a vibrating string.



The function u, measuring the vertical displacement of the string, is the solution to the wave equation,

 $\partial_t^2 u(t,x) = v^2 \partial_x^2 u(t,x), \quad v \in \mathbb{R}, \quad x \in [0,L], \quad t \in [0,\infty),$

with initial conditions,

 $u(0,x)=f(x), \qquad \partial_t u(0,x)=0,$

and boundary conditions,

u(t,0) = 0, u(t,L) = 0.

Origins of the Fourier Series.

Summary:

Bernoulli found particular solutions to the wave equation.

If the initial condition is $f_n(x) = \sin\left(\frac{n\pi x}{L}\right)$,

then the solution is $u_n(t,x) = \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{vn\pi t}{L}\right)$.

Bernoulli also realized that

$$U_N(t,x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right) \cos\left(\frac{vn\pi t}{L}\right), \qquad a_n \in \mathbb{R}$$

is also solution of the wave equation with initial condition

$$F_N(x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right).$$

Remark: The wave equation and its solutions provide a mathematical description of music.

Origins of the Fourier Series.

Remarks:

- Bernoulli claimed he had obtained all solutions to the problem above for the wave equation.
- However, he did not prove that claim.
- A proof is: Given a function F with F(0) = F(L) = 0, but otherwise arbitrary, find N and the coefficients a_n such that F is approximated by an expansion F_N given in the previous slide.
- Joseph Fourier (~ 1800) provided such formula for the coefficients a_n, while studying a different problem: The heat transport in a solid material.
- Find the temperature function u solution of the heat equation

$$\partial_t u(t,x) = k \, \partial_x^2 u(t,x), \quad k > 0, \quad x \in [0, L], \quad t \in [0, \infty),$$

I.C. $u(0,x) = f(x),$
B.C. $u(t,0) = 0, \quad u(t,L) = 0.$

Origins of the Fourier Series.

Remarks:

Fourier found particular solutions to the heat equation.

If the initial condition is $f_n(x) = \sin\left(\frac{n\pi x}{L}\right)$, then the solution is $u_n(t,x) = \sin\left(\frac{n\pi x}{L}\right) e^{-k(\frac{n\pi}{L})^2 t}$.

Fourier also realized that

$$U_N(t,x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right) e^{-k(\frac{n\pi}{L})^2 t}, \qquad a_n \in \mathbb{R}$$

is also solution of the heat equation with initial condition

$$F_N(x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right).$$

Remark: The heat equation and its solutions provide a mathematical description of heat transport in a solid material.

Origins of the Fourier Series.

Remarks:

- However, Fourier went farther than Bernoulli. Fourier found a formula for the coefficients a_n in terms of the function F.
- Given an initial data function F, satisfying F(0) = F(L) = 0, but otherwise arbitrary, Fourier proved that one can construct an expansion F_N as follows,

$$F_N(x) = \sum_{n=1}^N a_n \sin\left(\frac{n\pi x}{L}\right),$$

for N any positive integer, where the a_n are given by

$$a_n = \frac{2}{L} \int_0^L F(x) \sin\left(\frac{n\pi x}{L}\right) dx.$$

► To find all solutions to the heat equation problem above one must prove one more thing: That F_N approximates F for large enough N. That is, lim_{N→∞} F_N = F. Fourier didn't show this.

Origins of the Fourier Series.

Remarks:

Based on Bernoulli and Fourier works, people have been able to prove that. Every continuous, \(\tau\)-periodic function can be expressed as an infinite linear combination of sine and cosine functions.

More precisely: Every continuous, *τ*-periodic function *F*, there exist constants *a*₀, *a_n*, *b_n*, for *n* = 1, 2, · · · such that

$$F_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right]$$

satisfies $\lim_{N\to\infty} F_N(x) = F(x)$ for every $x \in \mathbb{R}$.

Notation:
$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right]$$

Origins of the Fourier Series.

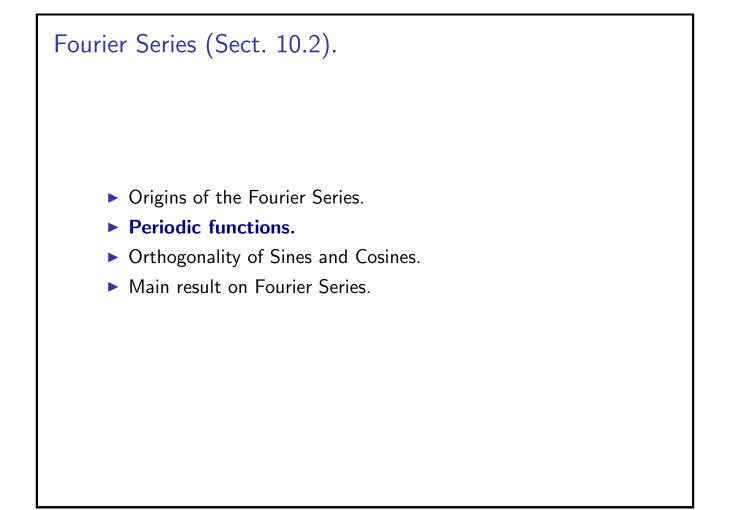
The main problem in our class:

Given a continuous, τ -periodic function f, find the formulas for a_n and b_n such that

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right].$$

Remarks: We need to review two main concepts:

- The notion of periodic functions.
- The notion of orthogonal functions, in particular the orthogonality of Sines and Cosines.



Periodic functions.

Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is called *periodic* iff there exists $\tau > 0$ such that for all $x \in \mathbb{R}$ holds

 $f(x+\tau)=f(x).$

Remark: f is invariant under translations by τ .

Definition

A *period* T of a periodic function f is the smallest value of τ such that $f(x + \tau) = f(x)$ holds.

Notation: A periodic function with period T is also called T-periodic.

Periodic functions.

Example

The following functions are periodic, with period T,

$$f(x) = \sin(x), \qquad T = 2\pi.$$

$$f(x) = \cos(x), \qquad T = 2\pi.$$

$$f(x) = \tan(x), \qquad T = \pi.$$

$$f(x) = \sin(ax), \qquad T = \frac{2\pi}{a}.$$

The proof of the latter statement is the following:

$$f\left(x+\frac{2\pi}{a}\right) = \sin\left(ax+a\frac{2\pi}{a}\right) = \sin(ax+2\pi) = \sin(ax) = f(x).$$

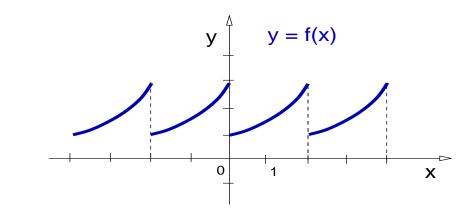
Periodic functions.

Example

Show that the function below is periodic, and find its period,

$$f(x) = e^x, \qquad x \in [0,2), \qquad f(x-2) = f(x).$$

Solution: We just graph the function,



So the function is periodic with period T = 2.

Periodic functions.

Theorem

A linear combination of T-periodic functions is also T-periodic. Proof: If f(x + T) = f(x) and g(x + T) = g(x), then

af(x + T) + bg(x + T) = af(x) + bg(x),

so (af + bg) is also *T*-periodic.

Example

 $f(x) = 2\sin(3x) + 7\cos(3x)$ is periodic with period $T = 2\pi/3$.

Remark: The functions below are periodic with period $T = \frac{\tau}{r}$,

$$f(x) = \cos\left(\frac{2\pi nx}{\tau}\right), \quad g(x) = \sin\left(\frac{2\pi nx}{\tau}\right),$$

Since f and g are invariant under translations by τ/n , they are also invariant under translations by τ .

Periodic functions.

Corollary Any function f given by

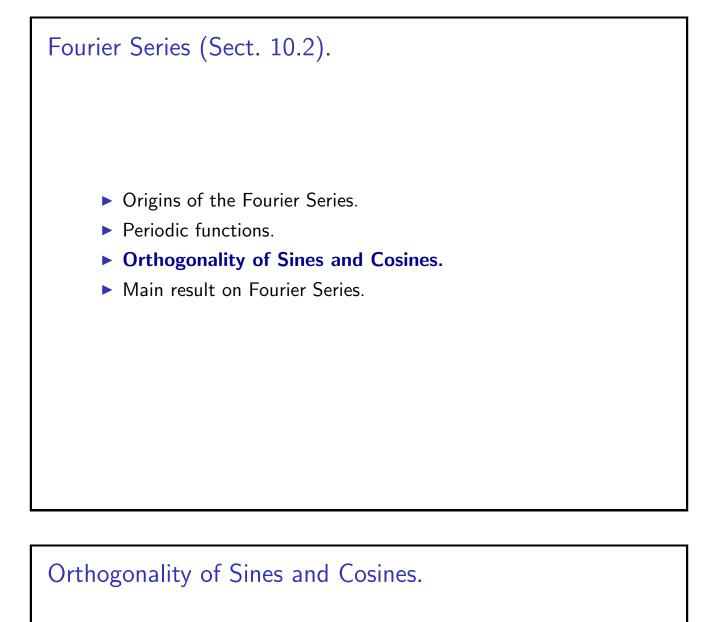
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right]$$

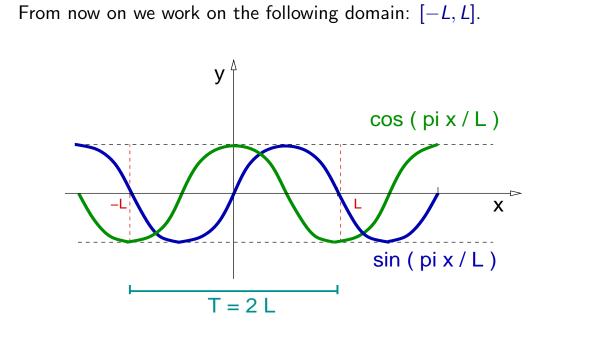
is periodic with period τ .

Remark: We will show that the converse statement is true.

Theorem A function f is τ -periodic iff holds

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{2n\pi x}{\tau}\right) + b_n \sin\left(\frac{2n\pi x}{\tau}\right) \right].$$





Orthogonality of Sines and Cosines. Theorem (Orthogonality) The following relations hold for all $n, m \in \mathbb{N}$, $\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0 & n \neq m, \\ L & n = m \neq 0, \\ 2L & n = m = 0, \end{cases}$ $\int_{-L}^{L} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = \begin{cases} 0 & n \neq m, \\ L & n = m, \end{cases}$ $\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = 0.$ Remark: • The operation $f \cdot g = \int_{-L}^{L} f(x) g(x) dx$ is an inner product in

- the vector space of functions. Like the dot product is in \mathbb{R}^2 .
- ▶ Two functions f, g, are orthogonal iff $f \cdot g = 0$.

Orthogonality of Sines and Cosines. Recall: $\cos(\theta) \cos(\phi) = \frac{1}{2} [\cos(\theta + \phi) + \cos(\theta - \phi)];$ $\sin(\theta) \sin(\phi) = \frac{1}{2} [\cos(\theta - \phi) - \cos(\theta + \phi)];$ $\sin(\theta) \cos(\phi) = \frac{1}{2} [\sin(\theta + \phi) + \sin(\theta - \phi)].$

Proof: First formula: If n = m = 0, it is simple to see that

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \, \cos\left(\frac{m\pi x}{L}\right) \, dx = \int_{-L}^{L} dx = 2L.$$

In the case where one of n or m is non-zero, use the relation

$$\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \, \cos\left(\frac{m\pi x}{L}\right) \, dx = \frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n+m)\pi x}{L}\right] \, dx$$
$$+ \frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n-m)\pi x}{L}\right] \, dx.$$

Orthogonality of Sines and Cosines.

Proof: Since one of *n* or *m* is non-zero, holds

$$\frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n+m)\pi x}{L}\right] dx = \frac{L}{2(n+m)\pi} \sin\left[\frac{(n+m)\pi x}{L}\right]\Big|_{-L}^{L} = 0.$$

We obtain that

 $\int_{-L}^{L} \cos\left(\frac{n\pi x}{L}\right) \, \cos\left(\frac{m\pi x}{L}\right) \, dx = \frac{1}{2} \int_{-L}^{L} \cos\left[\frac{(n-m)\pi x}{L}\right] \, dx.$

If we further restrict $n \neq m$, then

$$\frac{1}{2}\int_{-L}^{L}\cos\left[\frac{(n-m)\pi x}{L}\right]dx = \frac{L}{2(n-m)\pi}\sin\left[\frac{(n-m)\pi x}{L}\right]\Big|_{-L}^{L} = 0.$$

If $n = m \neq 0$, we have that

$$\frac{1}{2} \int_{-L}^{L} \cos \left[\frac{(n-m)\pi x}{L} \right] dx = \frac{1}{2} \int_{-L}^{L} dx = L.$$

This establishes the first equation in the Theorem. The remaining equations are proven in a similar way. $\hfill \Box$

Overview of Fourier Series (Sect. 10.2).
Origins of the Fourier Series.
Periodic functions.
Orthogonality of Sines and Cosines.
Main result on Fourier Series.

Main result on Fourier Series.

Theorem (Fourier Series)

If the function $f:[-L,L]\subset\mathbb{R}\to\mathbb{R}$ is continuous, then f can be expressed as an infinite series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$$
(1)

with the constants a_n and b_n given by

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx, \qquad n \ge 0,$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx, \qquad n \ge 1.$$

Furthermore, the Fourier series in Eq. (1) provides a 2L-periodic extension of f from the domain $[-L, L] \subset \mathbb{R}$ to \mathbb{R} .