Review of Chapter 7.

- ▶ Review of Sections 7.5, 7.6, 7.8.
- ► Const. Coeff., homogeneours linear differential systems:
 - ▶ Real, different eigenvalues (7.5).
 - ► Complex, different eigenvalues (7.6).
 - Repeated eigenvalues (7.8).

Exam: November 12, 2008. Problem 4.

Example

Find the general solution of $\mathbf{x}' = A\mathbf{x}$, where $A = \begin{bmatrix} -3 & \sqrt{2} \\ \sqrt{2} & -2 \end{bmatrix}$. Solution: Eigenvalues of A:

$$p(\lambda) = \begin{vmatrix} (-3-\lambda) & \sqrt{2} \\ \sqrt{2} & (-2-\lambda) \end{vmatrix} = (\lambda+2)(\lambda+3)-2=0$$

$$\lambda^2 + 5\lambda + 4 = 0 \quad \Rightarrow \quad \lambda_{\pm} = \frac{1}{2} \left[-5 \pm \sqrt{25 - 16} \right] = \frac{1}{2} \left[-5 \pm 3 \right]$$

Hence $\lambda_+ = -1$, $\lambda_- = -4$. Eigenvector for λ_+ .

$$(A+I) = \begin{bmatrix} -2 & \sqrt{2} \\ \sqrt{2} & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -\sqrt{2} \\ 2 & -\sqrt{2} \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -\sqrt{2} \\ 0 & 0 \end{bmatrix}.$$

$$2v_1 = \sqrt{2} v_2$$
. Choosing $v_1 = \sqrt{2}$ and $v_2 = 2$, we get $\mathbf{v}^{(+)} = \begin{bmatrix} \sqrt{2} \\ 2 \end{bmatrix}$.

Exam: November 12, 2008. Problem 4.

Example

Find the general solution of $\mathbf{x}' = A\mathbf{x}$, where $A = \begin{bmatrix} -3 & \sqrt{2} \\ \sqrt{2} & -2 \end{bmatrix}$.

Solution: Recall: $\lambda_+ = -1$, $\lambda_- = -4$, and $\mathbf{v}^{(+)} = \begin{bmatrix} \sqrt{2} \\ 2 \end{bmatrix}$. Eigenvector for λ_- .

$$(A+4I) = \begin{bmatrix} 1 & \sqrt{2} \\ \sqrt{2} & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \sqrt{2} \\ 1 & \sqrt{2} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \sqrt{2} \\ 0 & 0 \end{bmatrix}.$$

$$v_1 = -\sqrt{2} v_2$$
. Choosing $v_1 = -\sqrt{2}$ and $v_2 = 1$, so, $\mathbf{v}^{(-)} = \begin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix}$.

Fundamental solutions:
$$\mathbf{x}^{(+)} = \begin{bmatrix} \sqrt{2} \\ 2 \end{bmatrix} e^{-t}$$
, $\mathbf{x}^{(-)} = \begin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix} e^{-4t}$.

General solution:
$$\mathbf{x} = c_1 \begin{bmatrix} \sqrt{2} \\ 2 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix} e^{-4t}$$
.

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(+)} = egin{bmatrix} \sqrt{2} \\ 2 \end{bmatrix} e^{-t}, \quad \mathbf{x}^{(-)} = egin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix} e^{-4t}.$$

Solution:

We start plotting the vectors

$$\mathbf{v}^{(+)} = \begin{bmatrix} \sqrt{2} \\ 2 \end{bmatrix},$$

$$\mathbf{v}^{(-)} = egin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix}.$$

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(+)} = egin{bmatrix} \sqrt{2} \\ 2 \end{bmatrix} e^{-t}, \quad \mathbf{x}^{(-)} = egin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix} e^{-4t}.$$

Solution:

We plot the solutions

$$\mathbf{x}^{(+)}, \quad -\mathbf{x}^{(+)},$$

$$x^{(-)}, -x^{(-)}.$$

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(+)} = egin{bmatrix} \sqrt{2} \\ 2 \end{bmatrix} e^{-t}, \quad \mathbf{x}^{(-)} = egin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix} e^{-4t}.$$

Solution:

Recall: $\lambda_- < \lambda_+ < 0$. We plot the solutions

$$x = x^{(+)} + x^{(-)}$$

that is,

$$\mathbf{x} = \mathbf{v}^{(+)} e^{-t} + \mathbf{v}^{(-)} e^{-4t}$$
.

Exam: November 12, 2008. Problem 4.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(+)} = egin{bmatrix} \sqrt{2} \\ 2 \end{bmatrix} e^{-t}, \quad \mathbf{x}^{(-)} = egin{bmatrix} -\sqrt{2} \\ 1 \end{bmatrix} e^{-4t}.$$

Solution:

We plot the solutions

$$\mathbf{x} = c_1 \, \mathbf{x}^{(+)} + c_2 \, \mathbf{x}^{(-)},$$

for $c_1 = \pm 1$ and $c_2 = \pm 1$.

Exam: November 12, 2008. Variation of Problem 4.

Example

Let
$$\lambda_+=4$$
, $\lambda_-=1$, $\mathbf{v}^{(+)}=\begin{bmatrix}\sqrt{2}\\2\end{bmatrix}$, and $\mathbf{v}^{(-)}=\begin{bmatrix}-\sqrt{2}\\1\end{bmatrix}$.

Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)} = v^{(+)} e^{\lambda_+ t}$, $\mathbf{x}^{(-)} = v^{(-)} e^{\lambda_- t}$,

Solution:

Here $\lambda_+ > \lambda_- > 0$. We plot the solutions

$$\mathbf{x}^{(+)}, \quad -\mathbf{x}^{(+)},$$

$$x^{(-)}, -x^{(-)}.$$

Exam: November 12, 2008. Variation of Problem 4.

Example

Let
$$\lambda_+=4$$
, $\lambda_-=1$, $\mathbf{v}^{(+)}=\begin{bmatrix}\sqrt{2}\\2\end{bmatrix}$, and $\mathbf{v}^{(-)}=\begin{bmatrix}-\sqrt{2}\\1\end{bmatrix}$.

Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)} = v^{(+)} e^{\lambda_+ t}$, $\mathbf{x}^{(-)} = v^{(-)} e^{\lambda_- t}$,

Solution:

Recall: $\lambda_+ > \lambda_- > 0$. We plot the solutions

$$\mathbf{x} = \mathbf{x}^{(+)} + \mathbf{x}^{(-)},$$

that is,

$$\mathbf{x} = \mathbf{v}^{(+)} e^{4t} + \mathbf{v}^{(-)} e^{t}.$$

Exam: November 12, 2008. Variation of Problem 4.

Example

Let
$$\lambda_+=4$$
, $\lambda_-=1$, $\mathbf{v}^{(+)}=\begin{bmatrix}\sqrt{2}\\2\end{bmatrix}$, and $\mathbf{v}^{(-)}=\begin{bmatrix}-\sqrt{2}\\1\end{bmatrix}$.

Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)} = v^{(+)} e^{\lambda_+ t}$, $\mathbf{x}^{(-)} = v^{(-)} e^{\lambda_- t}$,

Solution:

Recall: $\lambda_+ > \lambda_- > 0$. We plot the solutions

$$\mathbf{x} = c_1 \, \mathbf{x}^{(+)} + c_2 \, \mathbf{x}^{(-)},$$

for $c_1 = \pm 1$ and $c_2 = \pm 1$.

Exam: November 12, 2008. Variation of Problem 4.

Example

Let
$$\lambda_+=4$$
, $\lambda_-=-1$, $\mathbf{v}^{(+)}=\begin{bmatrix}\sqrt{2}\\2\end{bmatrix}$, and $\mathbf{v}^{(-)}=\begin{bmatrix}-\sqrt{2}\\1\end{bmatrix}$.

Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)} = v^{(+)} e^{\lambda_+ t}$, $\mathbf{x}^{(-)} = v^{(-)} e^{\lambda_- t}$,

Solution:

Here $\lambda_+>0>\lambda_-.$ We plot the solutions

$$x^{(+)}, -x^{(+)},$$

$$x^{(-)}, -x^{(-)}.$$

Exam: November 12, 2008. Variation of Problem 4.

Example

Let
$$\lambda_+=4$$
, $\lambda_-=-1$, $\mathbf{v}^{(+)}=\begin{bmatrix}\sqrt{2}\\2\end{bmatrix}$, and $\mathbf{v}^{(-)}=\begin{bmatrix}-\sqrt{2}\\1\end{bmatrix}$.

Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)} = v^{(+)} \, e^{\lambda_+ t}$, $\mathbf{x}^{(-)} = v^{(-)} \, e^{\lambda_- t}$,

Solution:

Recall: $\lambda_+ > 0 > \lambda_-$. We plot the solutions

$$x = x^{(+)} + x^{(-)}$$

that is,

$$\mathbf{x} = \mathbf{v}^{(+)} e^{4t} + \mathbf{v}^{(-)} e^{-t}.$$

Exam: November 12, 2008. Variation of Problem 4.

Example

Let
$$\lambda_+=4$$
, $\lambda_-=-1$, $\mathbf{v}^{(+)}=\begin{bmatrix}\sqrt{2}\\2\end{bmatrix}$, and $\mathbf{v}^{(-)}=\begin{bmatrix}-\sqrt{2}\\1\end{bmatrix}$.

Plot the phase portrait of several linear combinations of the fundamental solutions $\mathbf{x}^{(+)} = v^{(+)} e^{\lambda_+ t}$, $\mathbf{x}^{(-)} = v^{(-)} e^{\lambda_- t}$,

Solution:

Recall: $\lambda_+ > 0 > \lambda_-$. We plot the solutions

$$\mathbf{x} = c_1 \, \mathbf{x}^{(+)} + c_2 \, \mathbf{x}^{(-)},$$

for $c_1 = \pm 1$ and $c_2 = \pm 1$.

Extra problem.

Example

Find x solution of the IVP

$$\mathbf{x}' = A\mathbf{x}, \qquad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \qquad A = \begin{bmatrix} -3 & 4 \\ -1 & 1 \end{bmatrix}.$$

Solution: Eigenvalues of A:

$$p(\lambda) = \begin{vmatrix} (-3-\lambda) & 4 \\ -1 & (1-\lambda) \end{vmatrix} = (\lambda-1)(\lambda+3)+4=0$$
 $\lambda^2 + 2\lambda + 1 = 0 \Rightarrow \lambda_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4-4} \right] = -1.$

Hence $\lambda_+ = \lambda_- = -1$. Eigenvector for λ_{\pm} .

$$(A+I)=egin{bmatrix} -2 & 4 \ -1 & 2 \end{bmatrix}
ightarrow egin{bmatrix} 1 & -2 \ 1 & -2 \end{bmatrix}
ightarrow egin{bmatrix} 1 & -2 \ 0 & 0 \end{bmatrix}.$$

$$v_1=2$$
 v_2 . Choosing $v_1=2$ and $v_2=1$, we get $\mathbf{v}^{(+)}=\begin{bmatrix}2\\1\end{bmatrix}$.

Example

Find x solution of the IVP

$$\mathbf{x}' = A \mathbf{x}, \qquad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \qquad A = \begin{bmatrix} -3 & 4 \\ -1 & 1 \end{bmatrix}.$$

Solution: Recall: $\lambda_{\pm} = -1$, and $\mathbf{v}^{(+)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Find **w** solution of (A + I)**w** = **v**.

$$\begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} -2 & 4 & | & 2 \\ -1 & 2 & | & 1 \end{bmatrix} \quad \to \begin{bmatrix} 1 & -2 & | & -1 \\ 0 & 0 & | & 0 \end{bmatrix}$$

Hence
$$w_1 = 2w_2 - 1$$
, that is, $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} w_2 + \begin{bmatrix} -1 \\ 0 \end{bmatrix}$.

Choose
$$w_2 = 0$$
, so $\mathbf{w} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$.

Extra problem.

Example

Find x solution of the IVP

$$\mathbf{x}' = A\mathbf{x}, \qquad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \qquad A = \begin{bmatrix} -3 & 4 \\ -1 & 1 \end{bmatrix}.$$

Solution: Recall:
$$\lambda_{\pm}=-1$$
, $\mathbf{v}^{(+)}=\begin{bmatrix}2\\1\end{bmatrix}$ and $\mathbf{w}=\begin{bmatrix}-1\\0\end{bmatrix}$.

Fundamental sol:
$$\mathbf{x}^{(1)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-t}, \ \mathbf{x}^{(2)} = \left(\begin{bmatrix} 2 \\ 1 \end{bmatrix} t + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) e^{-t}.$$

General sol:
$$\mathbf{x} = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-t} + c_2 \left(\begin{bmatrix} 2 \\ 1 \end{bmatrix} t + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) e^{-t}.$$

Example

Find x solution of the IVP

$$\mathbf{x}' = A \mathbf{x}, \qquad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \qquad A = \begin{bmatrix} -3 & 4 \\ -1 & 1 \end{bmatrix}.$$

Solution: Recall:
$$\mathbf{x} = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-t} + c_2 \left(\begin{bmatrix} 2 \\ 1 \end{bmatrix} t + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) e^{-t}.$$

Initial condition:
$$\begin{bmatrix} 1 \\ 3 \end{bmatrix} = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
,

that is,
$$\begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
, also, $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$.

The solution is
$$\mathbf{x} = 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-t} + 5 \left(\begin{bmatrix} 2 \\ 1 \end{bmatrix} t + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) e^{-t}$$
.

Extra problem.

Example

Let
$$\lambda = -1$$
 with $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$.

Plot
$$\pm \mathbf{x}^{(1)} = \pm \mathbf{v} e^{-t}$$
 and $\pm \mathbf{x}^{(2)} = \pm (\mathbf{v} t + \mathbf{w}) e^{-t}$.

Solution:

Example

Let
$$\lambda=1$$
 with $\mathbf{v}=\begin{bmatrix}2\\1\end{bmatrix}$ and $\mathbf{w}=\begin{bmatrix}-1\\0\end{bmatrix}$.
Plot $\pm\mathbf{x}^{(1)}=\pm\mathbf{v}\,e^t$ and $\pm\mathbf{x}^{(2)}=\pm\left(\mathbf{v}\,t+\mathbf{w}\right)e^t$.

Solution:

Extra problem.

Example

Given any vectors \mathbf{a} and \mathbf{b} , sketch qualitative phase portraits of $\mathbf{x}^{(1)} = \left[\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t)\right] e^{\alpha t}$, $\mathbf{x}^{(2)} = \left[\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t)\right] e^{\alpha t}$. for the cases $\alpha = 0$, and $\alpha > 0$, where $\beta > 0$.

Solution:

Example

Given any vectors \mathbf{a} and \mathbf{b} , sketch qualitative phase portraits of $\mathbf{x}^{(1)} = \left[\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t)\right] e^{\alpha t}, \ \mathbf{x}^{(2)} = \left[\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t)\right] e^{\alpha t}.$ for the cases $\alpha = 0$, and $\alpha < 0$, where $\beta > 0$.

Solution:

