- ▶ Review: Classification of 2×2 diagonalizable systems.
- ▶ Review: The case of diagonalizable matrices.
- ▶ Real matrix with a pair of complex eigenvalues.
- ▶ Phase portraits for 2×2 systems.

Review: Classification of 2×2 diagonalizable systems.

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) $\lambda_1 \neq \lambda_2$, real-valued. Hence, A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions), (Section 7.5).
- (b) $\lambda_1 = \overline{\lambda}_2$, complex-valued. Hence, A has two non-proportional eigenvectors $\mathbf{v}_1 = \overline{\mathbf{v}}_2$, (Section 7.6).
- (c-1) $\lambda_1 = \lambda_2$ real-valued with two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 , (Section 7.8).

Remark:

(c-2) $\lambda_1 = \lambda_2$ real-valued with only one eigen-direction. Hence, A is not diagonalizable, (Section 7.8).

- ▶ Review: Classification of 2×2 diagonalizable systems.
- ► Review: The case of diagonalizable matrices.
- ▶ Real matrix with a pair of complex eigenvalues.
- ▶ Phase portraits for 2×2 systems.

Review: The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$\mathbf{x}'(t) = A\mathbf{x}(t)$$

is given by the expression below, where $c_1, \cdots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

- ▶ Review: Classification of 2×2 diagonalizable systems.
- ▶ Review: The case of diagonalizable matrices.
- ► Real matrix with a pair of complex eigenvalues.
- ▶ Phase portraits for 2×2 systems.

Real matrix with a pair of complex eigenvalues.

Theorem

If $\{\lambda, \mathbf{v}\}$ is an eigen-pair of an $n \times n$ real-valued matrix A, then $\{\overline{\lambda}, \overline{\mathbf{v}}\}$ also is an eigen-pair of matrix A.

Proof: By hypothesis $A \mathbf{v} = \lambda \mathbf{v}$ and $\overline{A} = A$. Then

$$\overline{A}\overline{\mathbf{v}} = \overline{\lambda}\overline{\mathbf{v}} \quad \Leftrightarrow \quad \overline{A}\overline{\mathbf{v}} = \overline{\lambda}\overline{\mathbf{v}} \quad \Leftrightarrow \quad A\overline{\mathbf{v}} = \overline{\lambda}\overline{\mathbf{v}}.$$

Therefore $\{\overline{\lambda}, \overline{\mathbf{v}}\}$ is an eigen-pair of matrix A.

Remark: The Theorem above is equivalent to the following: If an $n \times n$ real-valued matrix A has eigen pairs

$$\lambda_1 = \alpha + i\beta, \quad \mathbf{v}_1 = \mathbf{a} + i\mathbf{b},$$

with $\alpha, \beta \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, then so is

$$\lambda_2 = \alpha - i\beta, \quad \mathbf{v}_2 = \mathbf{a} - i\mathbf{b}.$$

Real matrix with a pair of complex eigenvalues.

Theorem (Complex pairs)

If an $n \times n$ real-valued matrix A has eigen pairs

$$\lambda_{\pm} = \alpha \pm i\beta, \quad \mathbf{v}^{(\pm)} = \mathbf{a} \pm i\mathbf{b},$$

with $\alpha, \beta \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$, then the differential equation

$$\mathbf{x}'(t) = A\mathbf{x}(t)$$

has a linearly independent set of two complex-valued solutions

$$\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_+ t}, \qquad \mathbf{x}^{(-)} = \mathbf{v}^{(-)} e^{\lambda_- t},$$

and it also has a linearly independent set of two real-valued solutions

$$\mathbf{x}^{(1)} = [\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t)] e^{\alpha t},$$

$$\mathbf{x}^{(2)} = [\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t)] e^{\alpha t}.$$

Real matrix with a pair of complex eigenvalues.

Proof: We know that one solution to the differential equation is

$$\mathbf{x}^{(+)} = \mathbf{v}^{(+)} e^{\lambda_+ t} = (\mathbf{a} + i\mathbf{b}) e^{(\alpha + i\beta)t} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} e^{i\beta t}.$$

Euler equation implies

$$\mathbf{x}^{(+)} = (\mathbf{a} + i\mathbf{b}) e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)],$$

$$\mathbf{x}^{(+)} = \left[\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t)\right] e^{\alpha t} + i \left[\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t)\right] e^{\alpha t}$$

A similar calculation done on $\mathbf{x}^{(-)}$ implies

$$\mathbf{x}^{(-)} = \left[\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t)\right] e^{\alpha t} - i \left[\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t)\right] e^{\alpha t}.$$

Introduce
$$\mathbf{x}^{(1)} = (\mathbf{x}^{(+)} + \mathbf{x}^{(-)})/2$$
, $\mathbf{x}^{(2)} = (\mathbf{x}^{(+)} - \mathbf{x}^{(-)})/(2i)$, then

$$\mathbf{x}^{(1)} = [\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t)] e^{\alpha t},$$

$$\mathbf{x}^{(2)} = [\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t)] e^{\alpha t}.$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: (1) Find the eigenvalues of matrix A above,

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} (2 - \lambda) & 3 \\ -3 & (2 - \lambda) \end{vmatrix} = (\lambda - 2)^2 + 9.$$

The roots of the characteristic polynomial are

$$(\lambda - 2)^2 + 9 = 0 \quad \Rightarrow \quad \lambda_{\pm} - 2 = \pm 3i \quad \Rightarrow \quad \lambda_{\pm} = 2 \pm 3i.$$

(2) Find the eigenvectors of matrix A above. For λ_+ ,

$$A - \lambda_+ I = A - (2+3i)I = \begin{bmatrix} 2-(2+3i) & 3 \\ -3 & 2-(2+3i) \end{bmatrix}.$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution:
$$\lambda_{\pm} = 2 \pm 3i$$
, $(A - \lambda_{+} I) = \begin{bmatrix} 2 - (2 + 3i) & 3 \\ -3 & 2 - (2 + 3i) \end{bmatrix}$.

We need to solve $(A - \lambda_+ I) \mathbf{v}^{(+)} = \mathbf{0}$ for $\mathbf{v}^{(+)}$. Gauss operations

$$\begin{bmatrix} -3i & 3 \\ -3 & -3i \end{bmatrix} \rightarrow \begin{bmatrix} -i & 1 \\ -1 & -i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i \\ -1 & -i \end{bmatrix} \rightarrow \begin{bmatrix} 1 & i \\ 0 & 0 \end{bmatrix}.$$

So, the eigenvector $\mathbf{v}^{(+)} = egin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is given by $v_1 = -iv_2$. Choose

$$\mathbf{v}_2 = 1, \quad \mathbf{v}_1 = -i, \quad \Rightarrow \quad \mathbf{v}^{(+)} = \begin{bmatrix} -i \\ 1 \end{bmatrix}, \quad \lambda_+ = 2 + 3i.$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: eigenvalues $\lambda_{\pm} = 2 \pm 3i$, and $\mathbf{v}^{(+)} = \begin{bmatrix} -i \\ 1 \end{bmatrix}$.

The second eigenvector is $\mathbf{v}^{(-)} = \overline{\mathbf{v}}^{(+)}$, that is, $\mathbf{v}^{(-)} = \begin{bmatrix} i \\ 1 \end{bmatrix}$.

Notice that $\mathbf{v}^{(\pm)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \pm \begin{bmatrix} -1 \\ 0 \end{bmatrix} i$.

The notation $\lambda_{\pm} = \alpha \pm \beta i$ and $\mathbf{v}^{(\pm)} = \mathbf{a} \pm \mathbf{b}i$ implies

$$\alpha=2, \qquad \beta=3, \qquad \mathbf{a}=\begin{bmatrix}0\\1\end{bmatrix}, \qquad \mathbf{b}=\begin{bmatrix}-1\\0\end{bmatrix}.$$

Real matrix with a pair of complex eigenvalues.

Example

Find a real-valued set of fundamental solutions to the equation

$$\mathbf{x}' = A\mathbf{x}, \qquad A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}.$$

Solution: Recall: $\alpha = 2$, $\beta = 3$, $\mathbf{a} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$.

Real-valued solutions are $\mathbf{x}^{(1)} = [\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t)] e^{\alpha t}$, and $\mathbf{x}^{(2)} = [\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t)] e^{\alpha t}$. That is

$$\mathbf{x}^{(1)} = \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \cos(3t) - \begin{bmatrix} -1 \\ 0 \end{bmatrix} \sin(3t) \right) e^{2t} \implies \mathbf{x}^{(1)} = \begin{bmatrix} \sin(3t) \\ \cos(3t) \end{bmatrix} e^{2t}.$$

$$\mathbf{x}^{(2)} = \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \sin(3t) + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \cos(3t) \right) e^{2t} \Rightarrow \mathbf{x}^{(2)} = \begin{bmatrix} -\cos(3t) \\ \sin(3t) \end{bmatrix} e^{2t}.$$

- ▶ Review: Classification of 2×2 diagonalizable systems.
- ▶ Review: The case of diagonalizable matrices.
- ▶ Real matrix with a pair of complex eigenvalues.
- ▶ Phase portraits for 2×2 systems.

Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}' = A\mathbf{x}$, $A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$.

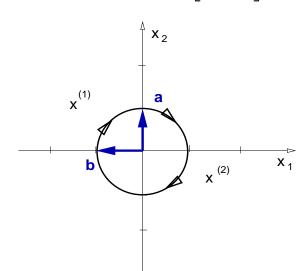
Solution:

The phase portrait of the vectors

$$\tilde{\mathbf{x}}^{(1)} = \begin{bmatrix} \sin(3t) \\ \cos(3t) \end{bmatrix},$$

$$\tilde{\mathbf{x}}^{(2)} = \begin{bmatrix} -\cos(3t) \\ \sin(3t) \end{bmatrix},$$

is a radius one circle.



Phase portraits for 2×2 systems.

Example

Sketch a phase portrait for solutions of $\mathbf{x}' = A\mathbf{x}$, $A = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$.

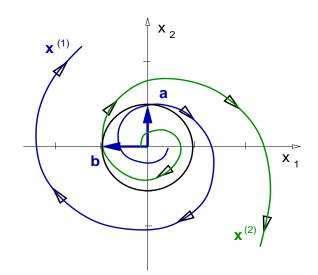
Solution:

The phase portrait of the solutions

$$\tilde{\mathbf{x}}^{(1)} = \begin{bmatrix} \sin(3t) \\ \cos(3t) \end{bmatrix} e^{2t},$$

$$\tilde{\mathbf{x}}^{(2)} = \begin{bmatrix} -\cos(3t) \\ \sin(3t) \end{bmatrix} e^{2t},$$

are outgoing spirals.



 \triangleleft

Phase portraits for 2×2 systems.

Example

Given any vectors \mathbf{a} and \mathbf{b} , sketch qualitative phase portraits of

$$\mathbf{x}^{(1)} = \left[\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t)\right] e^{\alpha t}, \ \mathbf{x}^{(2)} = \left[\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t)\right] e^{\alpha t}.$$

for the cases $\alpha = 0$, $\alpha > 0$, and $\alpha < 0$, where $\beta > 0$.

Solution:

