- ▶ Review: $n \times n$ linear differential systems.
- ▶ The case of diagonalizable matrices.
- ► Examples: 2 × 2 linear systems.
- ▶ Classification of 2×2 diagonalizable systems.
- ▶ Phase portraits for 2×2 systems.

Review: $n \times n$ linear differential systems.

Recall:

▶ Given an $n \times n$ matrix A(t), n-vector $\mathbf{b}(t)$, find $\mathbf{x}(t)$ solution

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t).$$

▶ The system is *homogeneous* iff b = 0, that is,

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t).$$

► The system has *constant coefficients* iff matrix *A* does not depend on *t*, that is,

$$\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{b}(t).$$

▶ We study homogeneous, constant coefficient systems, that is,

$$\mathbf{x}'(t) = A\mathbf{x}(t).$$

Review: $n \times n$ linear differential systems.

Recall:

▶ Given continuous functions A, \mathbf{b} on $(t_1, t_2) \subset \mathbb{R}$, a constant $t_0 \in (t_1, t_2)$ and a vector \mathbf{x}_0 , there exists a unique function \mathbf{x} solution of the IVP

$$\mathbf{x}'(t) = A(t)\mathbf{x}(t) + \mathbf{b}(t), \qquad \mathbf{x}(t_0) = \mathbf{x}_0.$$

▶ Today we learn to find such solution in the case of homogeneous, constant coefficients, $n \times n$ linear systems,

$$\mathbf{x}'(t) = A\mathbf{x}(t).$$

Real, distinct eigenvalues (Sect. 7.5)

- ▶ Review: $n \times n$ linear differential systems.
- ► The case of diagonalizable matrices.
- ► Examples: 2 × 2 linear systems.
- ▶ Classification of 2×2 diagonalizable systems.
- ▶ Phase portraits for 2×2 systems.

The case of diagonalizable matrices.

Theorem (Diagonalizable matrix)

If $n \times n$ matrix A is diagonalizable, with a linearly independent eigenvectors set $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ and corresponding eigenvalues $\{\lambda_1, \cdots, \lambda_n\}$, then the general solution \mathbf{x} to the homogeneous, constant coefficients, linear system

$$\mathbf{x}'(t) = A\mathbf{x}(t)$$

is given by the expression below, where $c_1, \dots, c_n \in \mathbb{R}$,

$$\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \dots + c_n \mathbf{v}_n e^{\lambda_n t}.$$

Remark:

- ▶ The differential system for the variable **x** is coupled, that is, *A* is not diagonal.
- We transform the system into a system for a variable \mathbf{y} such that the system for \mathbf{y} is decoupled, that is, $\mathbf{y}'(t) = D \mathbf{y}(t)$, where D is a diagonal matrix.
- ▶ We solve for $\mathbf{y}(t)$ and we transform back to $\mathbf{x}(t)$.

The case of diagonalizable matrices.

Proof: Since A is diagonalizable, we know that $A = PDP^{-1}$, with

$$P = [\mathbf{v}_1, \cdots, \mathbf{v}_n], \qquad D = \operatorname{diag}[\lambda_1, \cdots, \lambda_n].$$

Equivalently, $P^{-1}AP = D$. Multiply $\mathbf{x}' = A\mathbf{x}$ by P^{-1} on the left

$$P^{-1}\mathbf{x}'(t) = P^{-1}A\mathbf{x}(t) \quad \Leftrightarrow \quad (P^{-1}\mathbf{x})' = (P^{-1}AP)(P^{-1}\mathbf{x}).$$

Introduce the new unknown $\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$, then

$$\mathbf{y}'(t) = D \mathbf{y}(t) \iff \begin{cases} y_1'(t) = \lambda_1 y_1(t), \\ \vdots & \Rightarrow \mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}. \end{cases}$$

The case of diagonalizable matrices.

Proof: Recall:
$$\mathbf{y}(t) = P^{-1}\mathbf{x}(t)$$
, and $\mathbf{y}(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$.

Transform back to $\mathbf{x}(t)$, that is,

$$\mathbf{x}(t) = P \mathbf{y}(t) = \begin{bmatrix} \mathbf{v}_1, \cdots, \mathbf{v}_n \end{bmatrix} \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}$$

We conclude: $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$.

Remark:

- $ightharpoonup A \mathbf{v}_i = \lambda_i \mathbf{v}_i$.
- ▶ The eigenvalues and eigenvectors of A are crucial to solve the differential linear system $\mathbf{x}'(t) = A\mathbf{x}(t)$.

The case of diagonalizable matrices.

Remark: Here is another argument useful to understand why the vector $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$ is solution of the linear system $\mathbf{x}'(t) = A \mathbf{x}(t)$. On the one hand, derivate \mathbf{x} ,

$$\mathbf{x}'(t) = c_1 \lambda_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \lambda_n \mathbf{v}_n e^{\lambda_n t}$$

On the other hand, compute Ax(t),

$$A\mathbf{x}(t) = c_1(A\mathbf{v}_1) e^{\lambda_1 t} + \dots + c_n(A\mathbf{v}_n) e^{\lambda_n t},$$

 $A\mathbf{x}(t) = c_1\lambda_1 \mathbf{v}_1 e^{\lambda_1 t} + \dots + c_n\lambda_n \mathbf{v}_n e^{\lambda_n t}.$

We conclude: $\mathbf{x}'(t) = A\mathbf{x}(t)$.

Remark: Unlike the proof of the Theorem, this second argument does not show that $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + \cdots + c_n \mathbf{v}_n e^{\lambda_n t}$ are all possible solutions to the system.

- ▶ Review: $n \times n$ linear differential systems.
- ▶ The case of diagonalizable matrices.
- **Examples:** 2×2 linear systems.
- ▶ Classification of 2×2 diagonalizable systems.
- ▶ Phase portraits for 2×2 systems.

Examples: 2×2 linear systems.

Example

Find the general solution to $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: Find eigenvalues and eigenvectors of A. We found that:

$$\lambda_1=4, \quad {f v}^{(1)}=egin{bmatrix}1\\1\end{bmatrix}, \quad {\sf and} \quad \lambda_2=-2, \quad {f v}^{(2)}=egin{bmatrix}-1\\1\end{bmatrix}.$$

Fundamental solutions are

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \ 1 \end{bmatrix} \, \mathrm{e}^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \ 1 \end{bmatrix} \, \mathrm{e}^{-2t}.$$

The general solution is $\mathbf{x}(t) = c_1 \, \mathbf{x}^{(1)}(t) + c_2 \, \mathbf{x}^{(2)}(t)$, that is,

$$\mathbf{x}(t) = c_1 egin{bmatrix} 1 \ 1 \end{bmatrix} e^{4t} + c_2 egin{bmatrix} -1 \ 1 \end{bmatrix} e^{-2t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Examples: 2×2 linear systems.

Remark:

Re-writing the solution vector $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$ in components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, then

$$x_1(t) = c_1 e^{4t} - c_2 e^{-2t}, \quad x_2(t) = c_1 e^{4t} + c_2 e^{-2t}.$$

Introducing the fundamental matrix $X(t) = [\mathbf{x}^{(1)}(t), \mathbf{x}^{(2)}(t)]$ and the vector \mathbf{c} ,

$$X(t) = egin{bmatrix} e^{4t} & -e^{-2t} \ e^{4t} & e^{-2t} \end{bmatrix}, \qquad \mathbf{c} = egin{bmatrix} c_1 \ c_2 \end{bmatrix},$$

then the general solution above can be expressed as follows

$$\mathbf{x}(t) = X(t)\mathbf{c} \quad \Leftrightarrow \quad \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} e^{4t} & -e^{-2t} \\ e^{4t} & e^{-2t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.$$

Examples: 2×2 linear systems.

Example

Solve the IVP $\mathbf{x}' = A\mathbf{x}$, where $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Solution: The general solution: $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$.

The initial condition is,

$$\mathbf{x}(0) = egin{bmatrix} 2 \\ 4 \end{bmatrix} = c_1 \ egin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \ egin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

We need to solve the linear system

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}.$$

Therefore,
$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, hence $\mathbf{x}(t) = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}$. \triangleleft

- ▶ Review: $n \times n$ linear differential systems.
- ► The case of diagonalizable matrices.
- ► Examples: 2 × 2 linear systems.
- ▶ Classification of 2×2 diagonalizable systems.
- ▶ Phase portraits for 2×2 systems.

Classification of 2×2 diagonalizable systems.

Remark:

Diagonalizable 2×2 matrices A with real coefficients are classified according to their eigenvalues.

- (a) Matrix A has two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so it has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions). (Section 7.5)
- (b) Matrix A has two different, complex eigenvalues $\lambda_1 = \overline{\lambda}_2$, so it has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 . (Section 7.6)
- (c-1) Matrix A has repeated, real eigenvalues, $\lambda_1 = \lambda_2 \in \mathbb{R}$ with two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 . (Section 7.8)

Remark:

(c-2) We will also study in Section 7.8 how to obtain solutions to a 2×2 system $\mathbf{x}' = A\mathbf{x}$ in the case that A is not diagonalizable and A has only one eigen-direction.

- ▶ Review: $n \times n$ linear differential systems.
- ▶ The case of diagonalizable matrices.
- ► Examples: 2 × 2 linear systems.
- ▶ Classification of 2×2 diagonalizable systems.
- ▶ Phase portraits for 2×2 systems.

Phase portraits for 2×2 systems.

Remark:

- ▶ There are two main types of graphs for solutions of 2×2 linear systems:
 - (i) The graphs of the vector components;
 - (ii) The phase portrait.
- Case (i): Express the solution in vector components $\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$, and graph x_1 and x_2 as functions of t. (Recall the solution in the IVP of the previous Example: $x_1(t) = 3 e^{4t} e^{-2t}$ and $x_2(t) = 3 e^{4t} + e^{-2t}$.)
- ► Case (ii): Express the solution as a vector-valued function,

$$\mathbf{x}(t) = c_1 \, \mathbf{v}_1 \, e^{\lambda_1 t} + c_2 \, \mathbf{v}_2 \, e^{\lambda_2 t},$$

and plot the vector $\mathbf{x}(t)$ for different values of t.

► Case (ii) is called a *phase portrait*.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

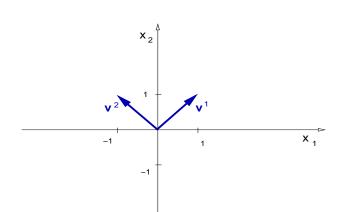
$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \\ 1 \end{bmatrix} \, e^{-2t}.$$

Solution:

We start plotting the vectors

$$\mathbf{v}^1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

$$\mathbf{v}^2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 .



Phase portraits for 2×2 systems.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

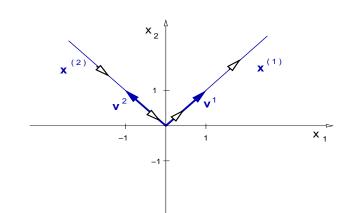
$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \\ 1 \end{bmatrix} \, e^{-2t}.$$

Solution:

We now plot the functions

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, e^{4t},$$

$$\mathbf{x}^{(2)} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$



Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

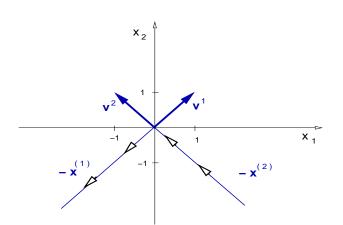
$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \\ 1 \end{bmatrix} \, e^{-2t}.$$

Solution:

We now plot the functions

$$-\mathbf{x}^{(1)} = -\begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t},$$

$$-\mathbf{x}^{(2)} = -egin{bmatrix} -1 \ 1 \end{bmatrix} e^{-2t}.$$



Phase portraits for 2×2 systems.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

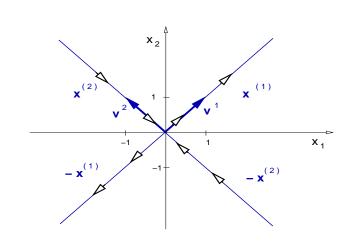
$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \ 1 \end{bmatrix} \, e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \ 1 \end{bmatrix} \, e^{-2t}.$$

Solution:

We now plot the four functions

$$\mathbf{x}^{(1)}, -\mathbf{x}^{(1)},$$

$$x^{(2)}, -x^{(2)}.$$



Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \\ 1 \end{bmatrix} \, e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \\ 1 \end{bmatrix} \, e^{-2t}.$$

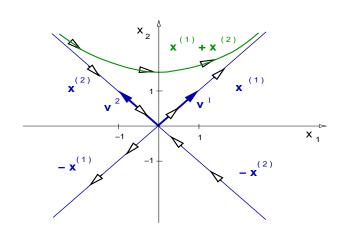
Solution:

We now plot the four functions

$$\mathbf{x}^{(1)}, -\mathbf{x}^{(1)}, \ \mathbf{x}^{(2)}, -\mathbf{x}^{(2)},$$

and $x^{(1)} + x^{(2)}$,

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{4t} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-2t}.$$



Phase portraits for 2×2 systems.

Example

Plot the phase portrait of several linear combinations of the fundamental solutions found above,

$$\mathbf{x}^{(1)} = egin{bmatrix} 1 \ 1 \end{bmatrix} \, e^{4t}, \quad \mathbf{x}^{(2)} = egin{bmatrix} -1 \ 1 \end{bmatrix} \, e^{-2t}.$$

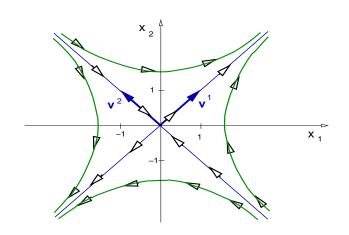
Solution:

We now plot the eight functions

$$\mathbf{x}^{(1)}, -\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, -\mathbf{x}^{(2)},$$

$$\mathbf{x}^{(1)} + \mathbf{x}^{(2)}, \quad -\mathbf{x}^{(1)} + \mathbf{x}^{(2)}$$

$$\mathbf{x}^{(1)} - \mathbf{x}^{(2)}, \quad -\mathbf{x}^{(1)} - \mathbf{x}^{(2)}.$$



Problem:

Case (a): Consider a 2×2 matrix A having two different, real eigenvalues $\lambda_1 \neq \lambda_2$, so A has two non-proportional eigenvectors \mathbf{v}_1 , \mathbf{v}_2 (eigen-directions).

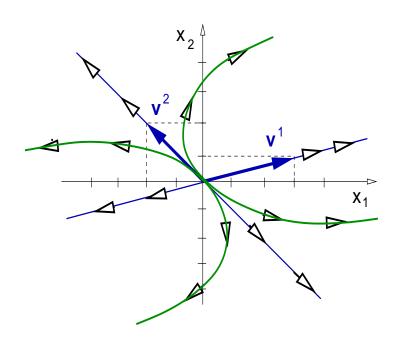
Given a solution $\mathbf{x}(t) = c_1 \mathbf{v}_1 e^{\lambda_1 t} + c_2 \mathbf{v}_2 e^{\lambda_2 t}$, to $\mathbf{x}'(t) = A \mathbf{x}(t)$, plot different solution vectors $\mathbf{x}(t)$ on the plane as function of t for different choices of the constants c_1 and c_2 .

The plots are different depending on the eigenvalues signs. We have the following three sub-cases:

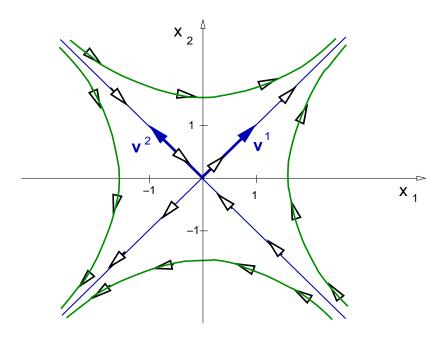
- (i) $0 < \lambda_2 < \lambda_1$, both positive;
- (ii) $\lambda_2 < 0 < \lambda_1$, one positive the other negative;
- (iii) $\lambda_2 < \lambda_1 < 0$, both negative.

Phase portraits for 2×2 systems.

Phase portrait: Case (a), two different, real eigenvalues $\lambda_1 \neq \lambda_2$, sub-case $0 < \lambda_2 < \lambda_1$, both eigenvalue positive.



Phase portrait: Case (a), two different, real eigenvalues $\lambda_1 \neq \lambda_2$, sub-case $\lambda_2 < 0 < \lambda_1$, one eigenvalue positive the other negative.



Phase portraits for 2×2 systems.

Phase portrait: Case (a), two different, real eigenvalues $\lambda_1 \neq \lambda_2$, sub-case $\lambda_2 < \lambda_1 < 0$, both eigenvalues negative.

