
Review of Linear Algebra (Sect. 7.3)

I Review: n × n algebraic linear systems.

I Gauss elimination operations.

I Computing the inverse of an n × n matrix.

I An application of the determinant.

I Linear dependence of vector sets.

Review: n × n algebraic linear systems.

Recall: An n × n algebraic linear system:

Given A =

a11 · · · a1n
...

...
an1 · · · ann

, b =

b1

...
bn

, find x =

x1

...
xn

 solution of

Ax = b.

Remark: All the information of the linear system is summarized in
the augmented matrix,

a11 · · · a1n

∣∣ b1

...
...

∣∣∣∣∣ ...

an1 · · · ann

∣∣ bn

 ⇔ [A|b].



n × n systems of linear algebraic equations.

Example

Find the augmented matrix of the system
2x1 − x2 = 0,

−x1 + 2x2 = 3.

Solution: The coefficient matrix and the source vector are

A =

[
2 −1
−1 2

]
, b =

[
0
3

]
.

therefore, the augmented matrix is

[A|b] =

[
2 −1

∣∣ 0
−1 2

∣∣ 3

]
C
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Gauss elimination operations.

Remark: Gauss operations are applied to the augmented matrix of
a linear system. They do change the augmented matrix but they
do not change the solutions of the linear system.

(i) Add to one row a multiple of the another;

(ii) Interchange two rows;

(iii) Multiply a row by a non-zero number.

These operations are respectively represented in the picture:

a
a = 0

Remark: Use the Gauss operations to find a simple augmented
matrix so that the solutions of the linear system are simple to get.

Gauss elimination operations.

Example

Use Gauss operations to find the solution of
2x1 − x2 = 0,

−x1 + 2x2 = 3.

Solution: Write down the augmented matrix of the system:[
2 −1

∣∣ 0
−1 2

∣∣ 3

]
→

[
2 −1

∣∣ 0
−2 4

∣∣ 6

]
→

[
2 −1

∣∣ 0
0 3

∣∣ 6

]
→

[
2 −1

∣∣ 0
0 1

∣∣ 2

]
→

[
2 0

∣∣ 2
0 1

∣∣ 2

]
→

[
1 0

∣∣ 1
0 1

∣∣ 2

]

The linear system above has the same solution as
x1 − 0 = 1,

0 + x2 = 2.
We conclude: x1 = 1 and x2 = 2. C



Gauss elimination operations.

Example

Use Gauss operations to find the solution of
2x1 − x2 = 0,

−1

2
x1 +

1

4
x2 = −1

4
.

Solution:[
2 −1

∣∣ 0
−1

2
1
4

∣∣ −1
4

]
→

[
2 −1

∣∣ 0
−2 1

∣∣ −1

]
→

[
2 −1

∣∣ 0
0 0

∣∣ 1

]

The linear system above has the same solution as
2x1 − x2 = 0,

0 = 1.
We conclude that the system has no solutions. C

Remark: If [A|b] → [Ã|b̃] having a row [0, · · · , 0|1], then Ax = b
has no soutions.

Gauss elimination operations.

Example

Find all vectors b such that the system Ax = b has solutions, where

A =

 1 −2 3
−1 1 −2
2 −1 3

 , b =

b1

b2

b3

 .

Solution:

[A|b] =

 1 −2 3
∣∣ b1

−1 1 −2
∣∣ b2

2 −1 3
∣∣ b3

 →

1 −2 3
∣∣ b1

0 −1 1
∣∣ b1 + b2

2 −1 3
∣∣ b3

 →

1 −2 3
∣∣ b1

0 1 −1
∣∣ −b1 − b2

2 −1 3
∣∣ b3

 →

1 −2 3
∣∣ b1

0 1 −1
∣∣ −b1 − b2

0 3 −3
∣∣ b3 − 2b1





Gauss elimination operations.

Solution:1 −2 3
∣∣ b1

0 1 −1
∣∣ −b1 − b2

0 3 −3
∣∣ b3 − 2b1

 →

1 −2 3
∣∣ b1

0 1 −1
∣∣ −b1 − b2

0 0 0
∣∣ b3 + b1 + 3b2



Therefore: Ax = b has solutions ⇔ holds b1 + 3b2 + b3 = 0. C

Remark: All source vectors b lie

on the plane normal to n =

1
3
1

.

2

n

b

1b

b

3b

Gauss elimination operations.

Example

Find x1, x2, x3, solution of

x1 + 2x2 + x3 = 1,

−3x1 + x2 + 3x3 = 24,

x2 − 4x3 = −1.

Solution:

[A|b] =

 1 2 1
∣∣ 1

−3 1 3
∣∣ 24

0 1 −4
∣∣ −1

 →

1 2 1
∣∣ 1

0 7 6
∣∣ 27

0 1 −4
∣∣ −1

 →

1 2 1
∣∣ 1

0 1 −4
∣∣ −1

0 7 6
∣∣ 27

 →

1 0 9
∣∣ 3

0 1 −4
∣∣ −1

0 0 34
∣∣ 34





Gauss elimination operations.

Example

Find x1, x2, x3, solution of

x1 + 2x2 + x3 = 1,

−3x1 + x2 + 3x3 = 24,

x2 − 4x3 = −1.

Solution:1 0 9
∣∣ 3

0 1 −4
∣∣ −1

0 0 34
∣∣ 34

 →

1 0 9
∣∣ 3

0 1 −4
∣∣ −1

0 0 1
∣∣ 1

 →

1 0 0
∣∣ −6

0 1 0
∣∣ 3

0 0 1
∣∣ 1

 ⇒ x =

−6
3
1

 .
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Computing the inverse of an n × n matrix.

Remark: Gauss operations can be used to compute the inverse of
a matrix.

The 2× 2 case: Find A−1 such that AA−1 = I2

Denote: A−1 = [x1, x2]. Then A [x1, x2] =

[
1 0
0 1

]
.

That is, A x1 =

[
1
0

]
and A x2 =

[
0
1

]
.

Gauss operations on

[
A

∣∣∣∣∣ 1

0

]
and

[
A

∣∣∣∣∣ 0

1

]
.

We can solve both systems at once:

[
A

∣∣∣∣∣ 1

0

0

1

]
.

That is, do Gauss operations on [ A | I2 ].

Computing the inverse of an n × n matrix.

Example

Use Gauss operations to find the inverse of A =

[
2 2
1 3

]
.

Solution:[
2 2

∣∣ 1 0
1 3

∣∣ 0 1

]
→

[
1 3

∣∣ 0 1
2 2

∣∣ 1 0

]
→

[
1 3

∣∣ 0 1
0 −4

∣∣ 1 −2

]

→
[
1 3

∣∣ 0 1
0 1

∣∣ −1
4

1
2

]
→

[
1 0

∣∣ 3
4 −1

2
0 1

∣∣ −1
4

1
2

]

That is, A−1 =

[
3
4 −1

2
−1

4
1
2

]
, or, A−1 =

1

4

[
3 −2
−1 2

]
. C



Computing the inverse of an n × n matrix.

Example

Use Gauss operations to find the inverse of A =

1 2 3
2 5 7
3 7 9

.

Solution:1 2 3
∣∣ 1 0 0

2 5 7
∣∣ 0 1 0

3 7 9
∣∣ 0 0 1

 →

1 2 3
∣∣ 1 0 0

0 1 1
∣∣ −2 1 0

0 1 0
∣∣ −3 0 1

 →

1 0 1
∣∣ 5 −2 0

0 1 1
∣∣ −2 1 0

0 0 −1
∣∣ −1 −1 1

 →

1 0 1
∣∣ 5 −2 0

0 1 1
∣∣ −2 1 0

0 0 1
∣∣ 1 1 −1



Computing the inverse of an n × n matrix.

Example

Use Gauss operations to find the inverse of A =

1 2 3
2 5 7
3 7 9

.

Solution:1 0 1
∣∣ 5 −2 0

0 1 1
∣∣ −2 1 0

0 0 1
∣∣ 1 1 −1

 →

1 0 0
∣∣ 4 −3 1

0 1 0
∣∣ −3 0 1

0 0 1
∣∣ 1 1 −1



We conclude that A−1 =

 4 −3 1
−3 0 1
1 1 −1

. C
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An application of the determinant.

Theorem
An n × n matrix A is invertible iff holds det(A) 6= 0.

Example

Is matrix A =

1 2 3
2 5 7
3 7 9

 invertible?

Solution: We only need to compute the determinant of A.

det(A) =

∣∣∣∣∣∣
1 2 3
2 5 7
3 7 9

∣∣∣∣∣∣ = (1)

∣∣∣∣5 7
7 9

∣∣∣∣− (2)

∣∣∣∣2 7
3 9

∣∣∣∣ + (3)

∣∣∣∣2 5
3 7

∣∣∣∣
det(A) = (45− 49)− 2(18− 21) + 3(14− 15) = −4 + 6− 3

Since det(A) = −1 6= 0, matrix A is invertible. C
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Linear dependence of vector sets.

Definition
A set of n vectors {v 1, · · · , v k}, with k > 1 is called linearly
dependent iff there exists constants c1, · · · , ck with at least one of
them non-zero such that

c1 v 1 + · · ·+ ck v k = 0.

Remarks:

(a) Suppose that the nonzero number is c1. Then

v1 = −c2

c1
v2 − · · · −

ck

c1
vk .

(b) {v 1, · · · , v k} is linearly dependent iff one of the vectors is a
linear combination of the others.



Linear dependence of vector sets.

Example

(a) A set of two co-linear vectors is linearly dependent.

For example:
{
v1 =

[
1
2

]
, v2 =

[
−2
−4

]}
.

Indeed, 2v1 + v2 = 0.

(b) A set of three co-planar vectors is linearly dependent.

(c) Any set containing the zero vector is linearly dependent.

For example:
{
v1 =

[
1
2

]
, v2 =

[
2
1

]
, 0 =

[
0
0

]}
.

Indeed,

(1)

[
0
0

]
+ (0)

[
1
2

]
+ (0)

[
2
1

]
=

[
0
0

]
.

Linear dependence of vector sets.

Definition
A set of n-vectors {v 1, · · · , v k}, with k > 1 is called linearly
independent iff the only linear combination

c1 v 1 + · · ·+ ck v k = 0.

is the one with c1 = · · · = ck = 0.

Remark: A non-empty vector set is linearly independent iff the set
is not linearly dependent.

Example

Show that
{1

2
3

 ,

−1
1
0

}
is linearly independent.

Solution: Find c1, c2 solution of c1

1
2
3

 + c2

−1
1
0

 =

0
0
0

.

c1 − c2 = 0, 2c1 + c2 = 0, 3c1 = 0 ⇒ c1 = 0, c2 = 0.



Linear dependence of vector sets.

Example

Is the set
{1

2
3

 ,

3
2
1

 ,

−1
2
5

}
linearly independent?

Solution: Find c1, c2, c3 solution of

c1

1
2
3

 + c2

3
2
1

 c3

−1
2
5

 =

0
0
0

 ⇔
c1 + 3c2 − c3 = 0,

2c1 + 2c2 + 2c3 = 0,

3c1 + c2 + 5c3 = 0.1 3 −1
2 2 2
3 1 5

 c1

c2

c3

 =

0
0
0

 ⇒

1 3 −1
∣∣ 0

2 2 2
∣∣ 0

3 1 5
∣∣ 0

 .

Linear dependence of vector sets.

Example

Is the set
{1

2
3

 ,

3
2
1

 ,

−1
2
5

}
linearly independent?

Solution: 1 3 −1
∣∣ 0

2 2 2
∣∣ 0

3 1 5
∣∣ 0

 →

1 3 −1
∣∣ 0

0 −4 4
∣∣ 0

0 −8 8
∣∣ 0

 →

1 3 −1
∣∣ 0

0 1 −1
∣∣ 0

0 0 0
∣∣ 0

 →

1 0 2
∣∣ 0

0 1 −1
∣∣ 0

0 0 0
∣∣ 0

 ⇒
c1 + 2c3 = 0,

c2 − c3 = 0.

That is, c1 = −2c3, c2 = c3, and c3 free.



Linear dependence of vector sets.

Example

Is the set
{1

2
3

 ,

3
2
1

 ,

−1
2
5

}
linearly independent?

Solution: Recall: c1 = −2c3, c2 = c3, and c3 is free.

Since c3 is free, we choose c3 = 1. Then, we have shown that

(−2)

1
2
3

 + (1)

3
2
1

 + (1)

−1
2
5

 =

0
0
0

 .

We conclude: The vector set is linearly dependent.


