

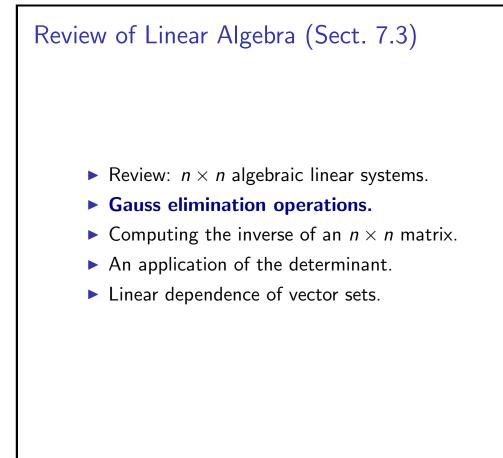
Review: $n \times n$ algebraic linear systems.

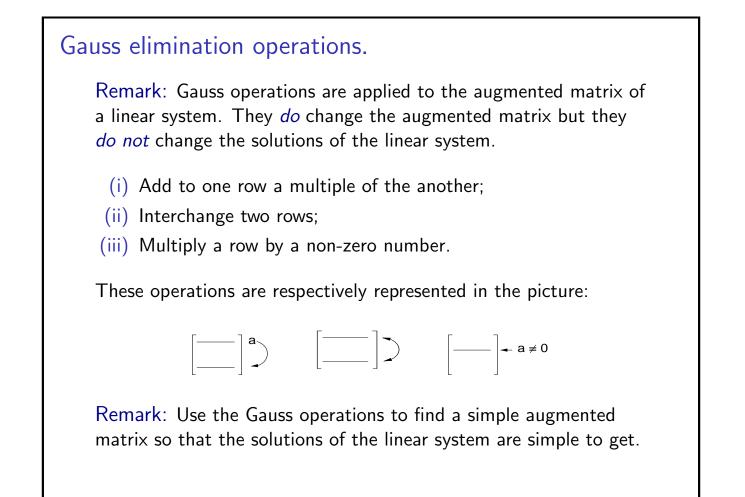
Recall: An $n \times n$ algebraic linear system: Given $A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$, find $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ solution of $A\mathbf{x} = \mathbf{b}$.

Remark: All the information of the linear system is summarized in the *augmented matrix*,

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} & b_n \end{bmatrix} \Leftrightarrow [A|\mathbf{b}]$$

$n \times n \text{ systems of linear algebraic equations.}$ Example Find the augmented matrix of the system $2x_1 - x_2 = 0, \\ -x_1 + 2x_2 = 3.$ Solution: The coefficient matrix and the source vector are $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}.$ therefore, the augmented matrix is $[A|\mathbf{b}] = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix}.$





Gauss elimination operations.Example
Use Gauss operations to find the solution of $2x_1 - x_2 = 0$,
 $-x_1 + 2x_2 = 3$.Solution: Write down the augmented matrix of the system: $\begin{bmatrix} 2 & -1 & & & 0 \\ -1 & 2 & & & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & & & 0 \\ -2 & 4 & & & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & & & 0 \\ 0 & 3 & & & 6 \end{bmatrix} \rightarrow$ $\begin{bmatrix} 2 & -1 & & & 0 \\ -1 & 2 & & & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & & & 0 \\ -2 & 4 & & & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & & & 0 \\ 0 & 3 & & & 6 \end{bmatrix} \rightarrow$ $\begin{bmatrix} 2 & -1 & & & 0 \\ 0 & 1 & & & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & & & 2 \\ 0 & 1 & & & & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & & & 1 \\ 0 & 1 & & & 2 \end{bmatrix}$ The linear system above has the same solution as $x_1 - 0 = 1$,
 $0 + x_2 = 2$.We conclude: $x_1 = 1$ and $x_2 = 2$. \checkmark

Gauss elimination operations.Example $2x_1 - x_2 = 0$,
 $-\frac{1}{2}x_1 + \frac{1}{4}x_2 = -\frac{1}{4}$.Use Gauss operations to find the solution of $-\frac{1}{2}x_1 + \frac{1}{4}x_2 = -\frac{1}{4}$.Solution: $\begin{bmatrix} 2 & -1 & & 0 \\ -\frac{1}{2} & \frac{1}{4} & & -\frac{1}{4} \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & & 0 \\ -2 & 1 & & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & & 0 \\ 0 & 0 & & 1 \end{bmatrix}$ The linear system above has the same solution as $2x_1 - x_2 = 0$,
0 = 1.We conclude that the system has no solutions. \triangleleft Remark: If $[A|\mathbf{b}] \rightarrow [\tilde{A}|\tilde{\mathbf{b}}]$ having a row $[0, \cdots, 0|1]$, then $A\mathbf{x} = \mathbf{b}$
has no soutions.

Gauss elimination operations.

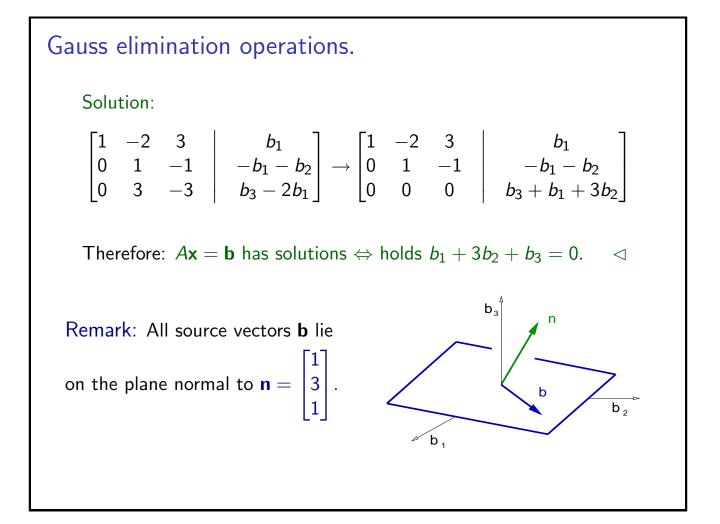
Example

Find all vectors **b** such that the system $A\mathbf{x} = \mathbf{b}$ has solutions, where

$$A = \begin{bmatrix} 1 & -2 & 3 \\ -1 & 1 & -2 \\ 2 & -1 & 3 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} A|\mathbf{b}] = \begin{bmatrix} 1 & -2 & 3 & | & b_1 \\ -1 & 1 & -2 & | & b_2 \\ 2 & -1 & 3 & | & b_2 \\ 2 & -1 & 3 & | & b_2 \\ b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & | & b_1 \\ 0 & -1 & 1 & | & b_1 + b_2 \\ 2 & -1 & 3 & | & b_1 \\ 0 & 1 & -1 & | & -b_1 - b_2 \\ 2 & -1 & 3 & | & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & | & b_1 \\ 0 & 1 & -1 & | & -b_1 - b_2 \\ 0 & 3 & -3 & | & b_3 - 2b_1 \end{bmatrix}$$



Gauss elimination operations. Example $x_1 + 2x_2 + x_3 = 1,$ Find x_1, x_2, x_3 , solution of $-3x_1 + x_2 + 3x_3 = 24,$ $x_2 - 4x_3 = -1.$ Solution: $[A|\mathbf{b}] = \begin{bmatrix} 1 & 2 & 1 & | & 1 \\ -3 & 1 & 3 & | & 24 \\ 0 & 1 & -4 & | & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & | & 1 \\ 0 & 7 & 6 & | & 27 \\ 0 & 1 & -4 & | & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 9 & | & 3 \\ 0 & 1 & -4 & | & -1 \\ 0 & 7 & 6 & | & 27 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 9 & | & 3 \\ 0 & 1 & -4 & | & -1 \\ 0 & 0 & 34 & | & 34 \end{bmatrix}$

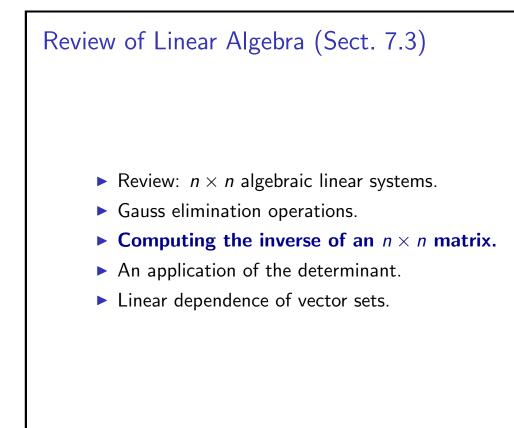
Gauss elimination operations.

Example

$$x_1 + 2x_2 + x_3 = 1$$
,
Find x_1 , x_2 , x_3 , solution of $-3x_1 + x_2 + 3x_3 = 24$,
 $x_2 - 4x_3 = -1$.

Solution:

$$\begin{bmatrix} 1 & 0 & 9 & | & 3 \\ 0 & 1 & -4 & | & -1 \\ 0 & 0 & 34 & | & 34 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 9 & | & 3 \\ 0 & 1 & -4 & | & -1 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & -4 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & -6 \\ 0 & 1 & 0 & | & 3 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \Rightarrow \mathbf{x} = \begin{bmatrix} -6 \\ 3 \\ 1 \end{bmatrix}.$$



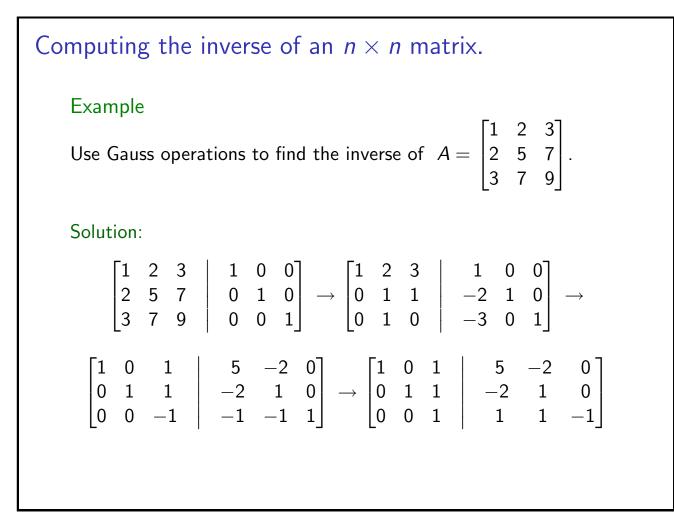
Computing the inverse of an $n \times n$ matrix.

Remark: Gauss operations can be used to compute the inverse of a matrix.

The 2 × 2 case: Find A^{-1} such that $AA^{-1} = I_2$ Denote: $A^{-1} = [\mathbf{x}_1, \mathbf{x}_2]$. Then $A[\mathbf{x}_1, \mathbf{x}_2] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. That is, $A\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $A\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Gauss operations on $\begin{bmatrix} A & 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} A & 0 \\ 1 \end{bmatrix}$. We can solve both systems at once: $\begin{bmatrix} A & 1 & 0 \\ 0 & 1 \end{bmatrix}$. That is, do Gauss operations on $\begin{bmatrix} A & I_2 \end{bmatrix}$.

Computing the inverse of an $n \times n$ matrix. Example Use Gauss operations to find the inverse of $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$. Solution: $\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 \\ 0 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix}$ $\rightarrow \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 \\ -\frac{1}{4} & \frac{1}{2} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{vmatrix} \frac{3}{4} & -\frac{1}{2} \\ -\frac{1}{4} & \frac{1}{2} \end{bmatrix}$

That is,
$$A^{-1} = \begin{bmatrix} \frac{3}{4} & -\frac{1}{2} \\ -\frac{1}{4} & \frac{1}{2} \end{bmatrix}$$
, or, $A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & -2 \\ -1 & 2 \end{bmatrix}$.



Computing the inverse of an $n \times n$ matrix.

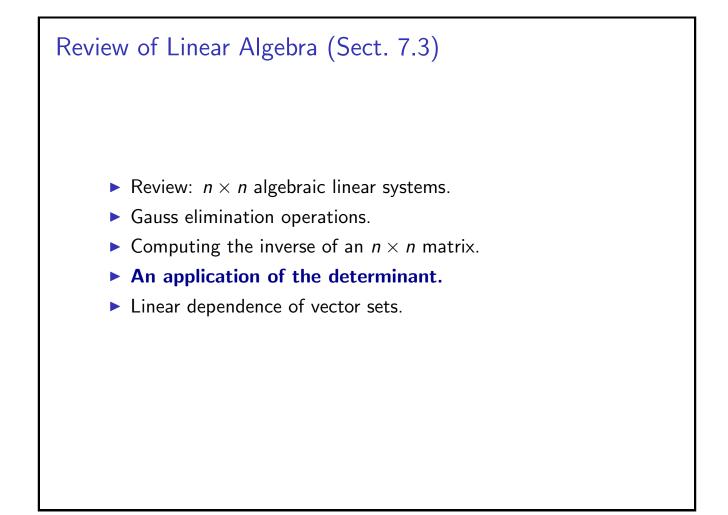
Example

Use Gauss operations to find the inverse of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 9 \end{bmatrix}$.

Solution:

$$\begin{bmatrix} 1 & 0 & 1 & & 5 & -2 & 0 \\ 0 & 1 & 1 & & -2 & 1 & 0 \\ 0 & 0 & 1 & & 1 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & & 4 & -3 & 1 \\ 0 & 1 & 0 & & -3 & 0 & 1 \\ 0 & 0 & 1 & & 1 & 1 & -1 \end{bmatrix}$$

We conclude that
$$A^{-1} = \begin{bmatrix} 4 & -3 & 1 \\ -3 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$
.



An application of the determinant.

Theorem

An $n \times n$ matrix A is invertible iff holds $det(A) \neq 0$.

Example

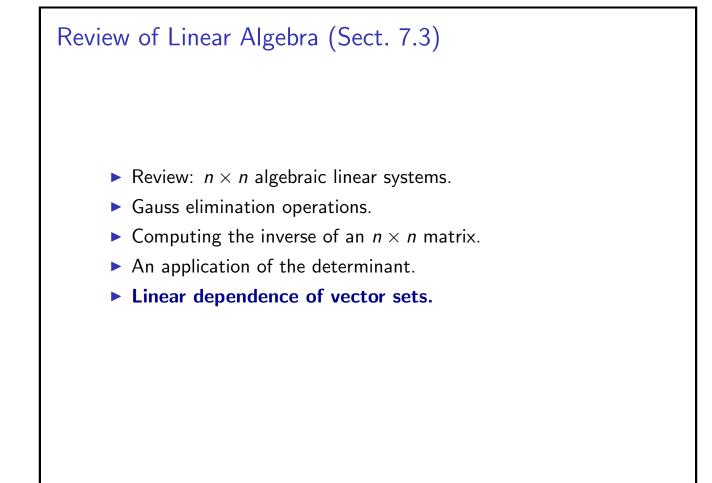
Is matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 9 \end{bmatrix}$ invertible?

Solution: We only need to compute the determinant of A.

$$\det(A) = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 9 \end{vmatrix} = (1) \begin{vmatrix} 5 & 7 \\ 7 & 9 \end{vmatrix} - (2) \begin{vmatrix} 2 & 7 \\ 3 & 9 \end{vmatrix} + (3) \begin{vmatrix} 2 & 5 \\ 3 & 7 \end{vmatrix}$$

$$\det(A) = (45 - 49) - 2(18 - 21) + 3(14 - 15) = -4 + 6 - 3$$

Since det(A) = $-1 \neq 0$, matrix A is invertible.



Linear dependence of vector sets.

Definition

A set of *n* vectors $\{\mathbf{v}_1, \cdots, \mathbf{v}_k\}$, with $k \ge 1$ is called linearly dependent iff there exists constants c_1, \cdots, c_k with at least one of them non-zero such that

$$c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k = \mathbf{0}.$$

Remarks:

(a) Suppose that the nonzero number is c_1 . Then

$$\mathbf{v}_1 = -rac{c_2}{c_1}\,\mathbf{v}_2-\cdots-rac{c_k}{c_1}\,\mathbf{v}_k.$$

(b) {v₁, · · · , v_k} is linearly dependent iff one of the vectors is a linear combination of the others.

Linear dependence of vector sets. Example (a) A set of two co-linear vectors is linearly dependent. For example: $\left\{ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} -2 \\ -4 \end{bmatrix} \right\}$. Indeed, $2\mathbf{v}_1 + \mathbf{v}_2 = \mathbf{0}$. (b) A set of three co-planar vectors is linearly dependent. (c) Any set containing the zero vector is linearly dependent. (c) Any set containing the zero vector is linearly dependent. For example: $\left\{ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \ \mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$. Indeed, (1) $\begin{bmatrix} 0 \\ 0 \end{bmatrix} + (0) \begin{bmatrix} 1 \\ 2 \end{bmatrix} + (0) \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Linear dependence of vector sets.

Definition

A set of *n*-vectors $\{\mathbf{v}_1, \cdots, \mathbf{v}_k\}$, with $k \ge 1$ is called linearly independent iff the only linear combination

 $c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k = \mathbf{0}.$

is the one with $c_1 = \cdots = c_k = 0$.

Remark: A non-empty vector set is linearly independent iff the set is not linearly dependent.

Example

Show that $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\}$ is linearly independent. Solution: Find c_1 , c_2 solution of $c_1 \begin{bmatrix} 1\\2\\3 \end{bmatrix} + c_2 \begin{bmatrix} -1\\1\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$. $c_1 - c_2 = 0, \quad 2c_1 + c_2 = 0, \quad 3c_1 = 0 \quad \Rightarrow \quad c_1 = 0, \quad c_2 = 0$. Linear dependence of vector sets.

Example

Is the set
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\5 \end{bmatrix} \right\}$$
 linearly independent?
Solution: Find c_1, c_2, c_3 solution of

$$c_{1} \begin{bmatrix} 1\\2\\3 \end{bmatrix} + c_{2} \begin{bmatrix} 3\\2\\1 \end{bmatrix} c_{3} \begin{bmatrix} -1\\2\\5 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \Leftrightarrow \begin{array}{c} c_{1} + 3c_{2} - c_{3} = 0, \\ \Rightarrow & 2c_{1} + 2c_{2} + 2c_{3} = 0, \\ 3c_{1} + c_{2} + 5c_{3} = 0. \end{array}$$
$$\begin{bmatrix} 1 & 3 & -1\\2 & 2 & 2\\3 & 1 & 5 \end{bmatrix} \begin{bmatrix} c_{1}\\c_{2}\\c_{3} \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & -1\\2 & 2 & 2\\3 & 1 & 5 \end{bmatrix} \begin{bmatrix} c_{1}\\c_{2}\\c_{3} \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & -1\\2 & 2 & 2\\3 & 1 & 5 \end{bmatrix} \begin{bmatrix} c_{1}\\c_{2}\\c_{3} \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & -1\\2 & 2 & 2\\3 & 1 & 5 \end{bmatrix} \begin{bmatrix} c_{1}\\c_{2}\\c_{3} \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & -1\\2 & 2 & 2\\3 & 1 & 5 \end{bmatrix} \begin{bmatrix} c_{1}\\c_{2}\\c_{3} \end{bmatrix} = \begin{bmatrix} 0\\c_{3}\\c_{3} \end{bmatrix} = \begin{bmatrix} 0\\c_{3}\\c_{$$

Linear dependence of vector sets. Example Is the set $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\5 \end{bmatrix} \right\}$ linearly independent? Solution: $\begin{bmatrix} 1 & 3 & -1\\2 & 2 & 2\\3 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -1\\0 & -4 & 4\\0 & -8 & 8 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -1\\2 & 2 & 2\\3 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2\\0 & -8 & 8 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -1\\0\\0 & -8 & 8 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -1\\0\\0 & -8 & 8 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2\\0 & 1 & -1\\0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2\\0 & 1 & -1\\0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} c_1 + 2c_3 = 0, \\ c_2 - c_3 = 0. \end{bmatrix}$ That is, $c_1 = -2c_3, c_2 = c_3$, and c_3 free. Linear dependence of vector sets.

Example Is the set $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\2\\5 \end{bmatrix} \right\}$ linearly independent? Solution: Recall: $c_1 = -2c_3$, $c_2 = c_3$, and c_3 is free. Since c_3 is free, we choose $c_3 = 1$. Then, we have shown that $\left(-2\right) \begin{bmatrix} 1\\2\\3 \end{bmatrix} + (1) \begin{bmatrix} 3\\2\\1 \end{bmatrix} + (1) \begin{bmatrix} -1\\2\\5 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$. We conclude: The vector set is linearly dependent.