Systems of linear differential equations (Sect. 7.1).

- \triangleright $n \times n$ systems of linear differential equations.
- ▶ Second order equations and first order systems.
- ▶ Main concepts from Linear Algebra.

$n \times n$ systems of linear differential equations.

Remark: Many physical systems must be described with more than one differential equation.

Example

Newton's law of motion for a particle of mass m moving in space. The unknown and the force are vector-valued functions,

$$\mathbf{x}(t) = egin{bmatrix} x_1(t) \ x_2(t) \ x_3(t) \end{bmatrix}, \qquad \mathbf{F}(t) = egin{bmatrix} F_1(t,\mathbf{x}) \ F_2(t,\mathbf{x}) \ F_3(t,\mathbf{x}) \end{bmatrix}.$$

The equation of motion are: $m \frac{d^2 \mathbf{x}}{dt^2} = \mathbf{F}(t, \mathbf{x}(t))$. These are three differential equations,

$$m\frac{d^2x_1}{dt^2} = F_1(t, \mathbf{x}(t)), \quad m\frac{d^2x_2}{dt^2} = F_2(t, \mathbf{x}(t)), \quad m\frac{d^2x_3}{dt^2} = F_3(t, \mathbf{x}(t)).$$

$n \times n$ systems of linear differential equations.

Definition

An $n \times n$ system of linear first order differential equations is the following: Given the functions a_{ij} , $g_i:[a,b] \to \mathbb{R}$, where $i,j=1,\cdots,n$, find n functions $x_j:[a,b] \to \mathbb{R}$ solutions of the n linear differential equations

$$x'_1 = a_{11}(t) x_1 + \dots + a_{1n}(t) x_n + g_1(t)$$

 \vdots
 $x'_n = a_{n1}(t) x_1 + \dots + a_{nn}(t) x_n + g_n(t).$

The system is called *homogeneous* iff the source functions satisfy that $g_1 = \cdots = g_n = 0$.

$n \times n$ systems of linear differential equations.

Example

n=1: Single differential equation: Find $x_1(t)$ solution of

$$x_1' = a_{11}(t) x_1 + g_1(t).$$

Example

n=2: 2 × 2 linear system: Find $x_1(t)$ and $x_2(t)$ solutions of

$$x'_1 = a_{11}(t) x_1 + a_{12}(t) x_2 + g_1(t),$$

 $x'_2 = a_{21}(t) x_1 + a_{22}(t) x_2 + g_2(t).$

Example

n=2: 2 × 2 homogeneous linear system: Find $x_1(t)$ and $x_2(t)$,

$$x'_1 = a_{11}(t) x_1 + a_{12}(t) x_2$$

 $x'_2 = a_{21}(t) x_1 + a_{22}(t) x_2.$

$n \times n$ systems of linear differential equations.

Example

Find $x_1(t)$, $x_2(t)$ solutions of the 2×2 , $x_1' = x_1 - x_2$, constant coefficients, homogeneous system $x_2' = -x_1 + x_2$.

Solution: Add up the equations, and subtract the equations,

$$(x_1 + x_2)' = 0,$$
 $(x_1 - x_2)' = 2(x_1 - x_2).$

Introduce the unknowns $v=x_1+x_2$, $w=x_1-x_2$, then

$$v'=0 \quad \Rightarrow \quad v=c_1,$$

$$w'=2w \quad \Rightarrow \quad w=c_2e^{2t}.$$

Back to
$$x_1$$
 and x_2 : $x_1 = \frac{1}{2}(v + w), \quad x_2 = \frac{1}{2}(v - w).$

We conclude:
$$x_1(t) = \frac{1}{2}(c_1 + c_2 e^{2t}), \quad x_2(t) = \frac{1}{2}(c_1 - c_2 e^{2t}).$$

Systems of linear differential equations (Sect. 7.1).

- ightharpoonup n imes n systems of linear differential equations.
- ► Second order equations and first order systems.
- ▶ Main concepts from Linear Algebra.

Second order equations and first order systems.

Theorem (Reduction to first order)

Every solution y to the second order linear equation

$$y'' + p(t)y' + q(t)y = g(t), (1)$$

defines a solution $x_1 = y$ and $x_2 = y'$ of the 2×2 first order linear differential system

$$x_1' = x_2, \tag{2}$$

$$x_2' = -q(t)x_1 - p(t)x_2 + g(t).$$
 (3)

Conversely, every solution x_1 , x_2 of the 2×2 first order linear system in Eqs. (2)-(3) defines a solution $y = x_1$ of the second order differential equation in (1).

Second order equations and first order systems.

Proof:

 (\Rightarrow) Given y solution of y'' + p(t)y' + q(t)y = g(t),

introduce $x_1 = y$ and $x_2 = y'$, hence $x_1' = y' = x_2$, that is,

$$x_1' = x_2$$
.

Then, $x_2' = y'' = -q(t)y - p(t)y' + g(t)$. That is,

$$x_2' = -q(t)x_1 - p(t)x_2 + g(t).$$

 (\Leftarrow) Introduce $x_2 = x_1'$ into $x_2' = -q(t)x_1 - p(t)x_2 + g(t)$.

$$x_1'' = -q(t)x_1 - p(t)x_1' + g(t),$$

that is

$$x_1'' + p(t)x_1' + q(t)x_1 = g(t).$$

Second order equations and first order systems.

Example

Express as a first order system the equation

$$y'' + 2y' + 2y = \sin(at).$$

Solution: Introduce the new unknowns

$$x_1 = y$$
, $x_2 = y'$ \Rightarrow $x'_1 = x_2$.

Then, the differential equation can be written as

$$x_2' + 2x_2 + 2x_1 = \sin(at).$$

We conclude that

$$x'_1 = x_2.$$

 $x'_2 = -2x_1 - 2x_2 + \sin(at).$

Second order equations and first order systems.

Remark: Systems of first order equations can, sometimes, be transformed into a second order single equation.

Example

Express as a single second order equation the 2×2 system and solve it,

$$x_1' = -x_1 + 3x_2,$$

 $x_2' = x_1 - x_2.$

Solution: Compute x_1 from the second equation: $x_1 = x_2' + x_2$. Introduce this expression into the first equation,

$$(x'_2 + x_2)' = -(x'_2 + x_2) + 3x_2,$$

 $x''_2 + x'_2 = -x'_2 - x_2 + 3x_2,$
 $x''_2 + 2x'_2 - 2x_2 = 0.$

Second order equations and first order systems.

Example

Express as a single second order equation the 2×2 system and solve it,

$$x_1' = -x_1 + 3x_2,$$

 $x_2' = x_1 - x_2.$

Solution: Recall: $x_2'' + 2x_2' - 2x_2 = 0$.

$$r^2+2r-2=0$$
 \Rightarrow $r_{\pm}=\frac{1}{2}\left[-2\pm\sqrt{4+8}\right]$ \Rightarrow $r_{\pm}=-1\pm\sqrt{3}.$

Therefore, $x_2 = c_1 e^{r_+ t} + c_2 e^{r_- t}$. Since $x_1 = x_2' + x_2$,

$$x_1 = (c_1 r_+ e^{r_+ t} + c_2 r_- e^{r_- t}) + (c_1 e^{r_+ t} + c_2 e^{r_- t}),$$

We conclude: $x_1 = c_1(1 + r_+) e^{r_+ t} + c_2(1 + r_-) e^{r_- t}$.

Systems of linear differential equations (Sect. 7.1).

- ightharpoonup n imes n systems of linear differential equations.
- ▶ Second order equations and first order systems.
- ► Main concepts from Linear Algebra.

Remark: Ideas from Linear Algebra are useful to study systems of linear differential equations. We review:

- ightharpoonup Matrices $m \times n$.
- ► Matrix operations.
- ► *n*-vectors, dot product.
- matrix-vector product.

Definition

An $m \times n$ matrix, A, is an array of numbers

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}, \qquad \begin{array}{c} m \text{ rows,} \\ n \text{ columns.} \end{array}$$

where $a_{ij} \in \mathbb{C}$ and $i = 1, \dots, m$, and $j = 1, \dots, n$. An $n \times n$ matrix is called a square matrix.

Main concepts from Linear Algebra.

Example

(a)
$$2 \times 2$$
 matrix: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

(b)
$$2 \times 3$$
 matrix: $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.

(c)
$$3 \times 2$$
 matrix: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$.

(d)
$$2 \times 2$$
 complex-valued matrix: $A = \begin{bmatrix} 1+i & 2-i \\ 3 & 4i \end{bmatrix}$.

(e) The coefficients of a linear system can be grouped in a matrix,

$$\begin{cases} x_1' = -x_1 + 3x_2 \\ x_2' = x_1 - x_2 \end{cases} \Rightarrow A = \begin{bmatrix} -1 & 3 \\ 1 & -1 \end{bmatrix}.$$

Remark: An $m \times 1$ matrix is called an m-vector.

Definition

An m-vector, \mathbf{v} , is the array of numbers $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix}$, where the vector components $v_i \in \mathbb{C}$, with $i=1,\cdots,m$.

Example

The unknowns of a 2×2 linear system can be grouped in a 2-vector, for example,

$$\begin{cases} x_1' = -x_1 + 3x_2 \\ x_2' = x_1 - x_2 \end{cases} \Rightarrow \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Main concepts from Linear Algebra.

Remark: We present only examples of matrix operations.

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

(a) A-transpose: Interchange rows with columns:

$$A^T = \begin{bmatrix} 1 & 3i \\ 2+i & 2 \\ -1+2i & 1 \end{bmatrix}$$
. Notice that: $(A^T)^T = A$.

(b) A-conjugate: Conjugate every matrix coefficient:

$$\overline{A} = \begin{bmatrix} 1 & 2-i & -1-2i \\ -3i & 2 & 1 \end{bmatrix}$$
. Notice that: $\overline{(\overline{A})} = A$.

Matrix A is real iff $\overline{A} = A$. Matrix A is imaginary iff $\overline{A} = -A$.

Example

Consider a 2×3 matrix $A = \begin{bmatrix} 1 & 2+i & -1+2i \\ 3i & 2 & 1 \end{bmatrix}$.

(a) A-adjoint: Conjugate and transpose:

$$A^* = \begin{bmatrix} 1 & -3i \\ 2-i & 2 \\ -1-2i & 1 \end{bmatrix}.$$
 Notice that: $(A^*)^* = A$.

(b) Addition of two $m \times n$ matrices is performed component-wise:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} (1+2) & (2+3) \\ (3+5) & (4+1) \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 8 & 5 \end{bmatrix}.$$

The addition $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ is not defined.

Main concepts from Linear Algebra.

Example

Consider a
$$2 \times 3$$
 matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$.

(a) Multiplication of a matrix by a number is performed component-wise:

$$2A = 2 \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 10 \\ 4 & 8 & 12 \end{bmatrix}, \quad \begin{bmatrix} 8 & 12 \\ 16 & 20 \end{bmatrix} = 4 \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}.$$

Also:

$$\frac{A}{3} = \frac{1}{3} \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 1 & \frac{5}{3} \\ \frac{2}{3} & \frac{4}{3} & 2 \end{bmatrix}.$$

Example

(a) Matrix multiplication. The matrix sizes is important:

$$A$$
 times B defines AB $m \times n$ $n \times \ell$ $m \times \ell$

Example: A is 2×2 , B is 2×3 , so AB is 2×3 :

$$AB = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 16 & 23 & 30 \\ 6 & 9 & 12 \end{bmatrix}.$$

Notice B is 2×3 , A is 2×2 , so BA is not defined.

$$BA = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$$
 not defined.

Main concepts from Linear Algebra.

Remark: The matrix product is not commutative, that is, in general holds $AB \neq BA$.

Example

Find
$$AB$$
 and BA for $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix}$.

Solution:

$$AB = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} (6-2) & (0+1) \\ (-3+4) & (0-2) \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 1 & -2 \end{bmatrix}.$$

$$BA = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} (6+0) & (-3+0) \\ (4+1) & (-2-2) \end{bmatrix} = \begin{bmatrix} 6 & -3 \\ 5 & -4 \end{bmatrix}.$$

So
$$AB \neq BA$$
.

Remark: There exist matrices $A \neq 0$ and $B \neq 0$ with AB = 0.

Example

Find
$$\overrightarrow{AB}$$
 for $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$.

Solution:

$$AB = egin{bmatrix} 1 & -1 \ -1 & 1 \end{bmatrix} egin{bmatrix} 1 & -1 \ 1 & -1 \end{bmatrix} = egin{bmatrix} (1-1) & (-1+1) \ (-1+1) & (1-1) \end{bmatrix} = egin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}.$$

 \triangleleft

Recall: If $a, b \in \mathbb{R}$ and ab = 0, then either a = 0 or b = 0.

We have just shown that this statement is not true for matrices.