

Convolution solutions (Sect. 6.6).

- ► Convolution of two functions.
- Properties of convolutions.
- ► Laplace Transform of a convolution.
- Impulse response solution.
- Solution decomposition theorem.

Convolution of two functions.

Definition

The *convolution* of piecewise continuous functions $f, g : \mathbb{R} \to \mathbb{R}$ is the function $f * g : \mathbb{R} \to \mathbb{R}$ given by

$$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)\,d au$$

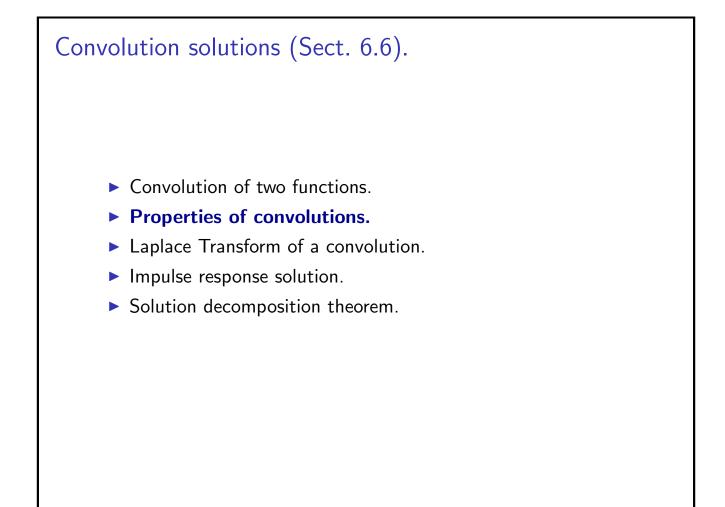
Remarks:

- f * g is also called the generalized product of f and g.
- The definition of convolution of two functions also holds in the case that one of the functions is a generalized function, like Dirac's delta.

Convolution of two functions.

Example

Find the convolution of $f(t) = e^{-t}$ and $g(t) = \sin(t)$. Solution: By definition: $(f * g)(t) = \int_0^t e^{-\tau} \sin(t - \tau) d\tau$. Integrate by parts twice: $\int_0^t e^{-\tau} \sin(t - \tau) d\tau = \left[e^{-\tau} \cos(t - \tau)\right]\Big|_0^t - \left[e^{-\tau} \sin(t - \tau)\right]\Big|_0^t - \int_0^t e^{-\tau} \sin(t - \tau) d\tau$, $2\int_0^t e^{-\tau} \sin(t - \tau) d\tau = \left[e^{-\tau} \cos(t - \tau)\right]\Big|_0^t - \left[e^{-\tau} \sin(t - \tau)\right]\Big|_0^t$, $2(f * g)(t) = e^{-t} - \cos(t) - 0 + \sin(t)$. We conclude: $(f * g)(t) = \frac{1}{2}[e^{-t} + \sin(t) - \cos(t)]$.



Properties of convolutions.

Theorem (Properties)

For every piecewise continuous functions f, g, and h, hold:

- (i) Commutativity: f * g = g * f;
- (ii) Associativity: f * (g * h) = (f * g) * h;
- (iii) Distributivity: f * (g + h) = f * g + f * h;
- (iv) Neutral element: f * 0 = 0;
- (v) Identity element: $f * \delta = f$.

Proof:

(v):
$$(f * \delta)(t) = \int_0^t f(\tau) \,\delta(t-\tau) \,d\tau = f(t).$$

Properties of convolutions.

Proof:

(1): Commutativity: f * g = g * f.

The definition of convolution is,

$$(f*g)(t) = \int_0^t f(\tau) g(t-\tau) d\tau.$$

Change the integration variable: $\hat{\tau} = t - \tau$, hence $d\hat{\tau} = -d\tau$,

$$(f*g)(t) = \int_t^0 f(t-\hat{\tau}) g(\hat{\tau})(-1) d\hat{\tau}$$

$$(f*g)(t)=\int_0^t g(\hat{ au})\,f(t-\hat{ au})\,d\hat{ au}$$

We conclude: (f * g)(t) = (g * f)(t).

Convolution solutions (Sect. 6.6). Convolution of two functions. Properties of convolutions. Laplace Transform of a convolution. Impulse response solution.

Solution decomposition theorem.

Laplace Transform of a convolution.

Theorem (Laplace Transform) If f, g have well-defined Laplace Transforms $\mathcal{L}[f]$, $\mathcal{L}[g]$, then

 $\mathcal{L}[f * g] = \mathcal{L}[f] \mathcal{L}[g].$

Proof: The key step is to interchange two integrals. We start we the product of the Laplace transforms,

$$\mathcal{L}[f] \mathcal{L}[g] = \left[\int_0^\infty e^{-st} f(t) \, dt \right] \left[\int_0^\infty e^{-s\tilde{t}} g(\tilde{t}) \, d\tilde{t} \right]$$
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty e^{-s\tilde{t}} g(\tilde{t}) \left(\int_0^\infty e^{-st} f(t) \, dt \right) d\tilde{t},$$
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty g(\tilde{t}) \left(\int_0^\infty e^{-s(t+\tilde{t})} f(t) \, dt \right) d\tilde{t}.$$

Laplace Transform of a convolution. Proof: Recall: $\mathcal{L}[f] \mathcal{L}[g] = \int_{0}^{\infty} g(\tilde{t}) \left(\int_{0}^{\infty} e^{-s(t+\tilde{t})} f(t) dt \right) d\tilde{t}.$ Change variables: $\tau = t + \tilde{t}$, hence $d\tau = dt$; $\mathcal{L}[f] \mathcal{L}[g] = \int_{0}^{\infty} g(\tilde{t}) \left(\int_{\tilde{t}}^{\infty} e^{-s\tau} f(\tau - \tilde{t}) d\tau \right) d\tilde{t}.$ $\mathcal{L}[f] \mathcal{L}[g] = \int_{0}^{\infty} \int_{\tilde{t}}^{\infty} e^{-s\tau} g(\tilde{t}) f(\tau - \tilde{t}) d\tau d\tilde{t}.$ The key step: Switch the order of integration. $\mathcal{L}[f] \mathcal{L}[g] = \int_{0}^{\infty} \int_{0}^{\tau} e^{-s\tau} g(\tilde{t}) f(\tau - \tilde{t}) d\tilde{t} d\tau.$ Laplace Transform of a convolution.

Proof: Recall:
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty \int_0^\tau e^{-s\tau} g(\tilde{t}) f(\tau - \tilde{t}) d\tilde{t} d\tau.$$

Then, is straightforward to check that

$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty e^{-s\tau} \left(\int_0^\tau g(\tilde{t}) f(\tau - \tilde{t}) d\tilde{t} \right) d\tau,$$
$$\mathcal{L}[f] \mathcal{L}[g] = \int_0^\infty e^{-s\tau} (g * f)(\tau) d\tau$$
$$\mathcal{L}[f] \mathcal{L}[g] = \mathcal{L}[g * f]$$

We conclude: $\mathcal{L}[f * g] = \mathcal{L}[f] \mathcal{L}[g].$

Convolution solutions (Sect. 6.6). Convolution of two functions. Properties of convolutions. Laplace Transform of a convolution. Impulse response solution. Solution decomposition theorem.

Impulse response solution. Definition The *impulse response solution* is the function y_{δ} solution of the IVP $y_{\delta}'' + a_1 y_{\delta}' + a_0 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0, \quad c \in \mathbb{R}.$ Example Find the impulse response solution of the IVP $y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0.$ Solution: $\mathcal{L}[y_{\delta}''] + 2 \mathcal{L}[y_{\delta}] + 2 \mathcal{L}[y_{\delta}] = \mathcal{L}[\delta(t - c)].$ $(s^2 + 2s + 2) \mathcal{L}[y_{\delta}] = e^{-cs} \quad \Rightarrow \quad \mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s^2 + 2s + 2)}.$

Impulse response solution.

Example

Find the impulse response solution of the IVP

$$y_{\delta}'' + 2 y_{\delta}' + 2 y_{\delta} = \delta(t-c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0,.$$

Solution: Recall: $\mathcal{L}[y_{\delta}] = rac{e^{-cs}}{(s^2+2s+2)}.$

Find the roots of the denominator,

$$s^2+2s+2=0 \quad \Rightarrow \quad s_\pm=rac{1}{2}\left[-2\pm\sqrt{4-8}
ight]$$

Complex roots. We complete the square:

$$s^{2} + 2s + 2 = \left[s^{2} + 2\left(\frac{2}{2}\right)s + 1\right] - 1 + 2 = (s+1)^{2} + 1.$$

Therefore, $\mathcal{L}[y_{\delta}] = rac{e^{-cs}}{(s+1)^2+1}.$

Impulse response solution.

Example

Find the impulse response solution of the IVP

$$y_{\delta}'' + 2y_{\delta}' + 2y_{\delta} = \delta(t - c), \quad y_{\delta}(0) = 0, \quad y_{\delta}'(0) = 0, .$$

Solution: Recall: $\mathcal{L}[y_{\delta}] = \frac{e^{-cs}}{(s+1)^2 + 1}.$
Recall: $\mathcal{L}[\sin(t)] = \frac{1}{s^2 + 1}, \text{ and } \mathcal{L}[f](s - c) = \mathcal{L}[e^{ct} f(t)].$
$$\frac{1}{(s+1)^2 + 1} = \mathcal{L}[e^{-t} \sin(t)] \quad \Rightarrow \quad \mathcal{L}[y_{\delta}] = e^{-cs} \mathcal{L}[e^{-t} \sin(t)].$$
Since $e^{-cs} \mathcal{L}[f](s) = \mathcal{L}[u(t - c) f(t - c)],$
we conclude $y_{\delta}(t) = u(t - c) e^{-(t - c)} \sin(t - c).$

Convolution solutions (Sect. 6.6).

- Convolution of two functions.
- Properties of convolutions.
- ► Laplace Transform of a convolution.
- Impulse response solution.
- **•** Solution decomposition theorem.

Solution decomposition theorem. Theorem (Solution decomposition) The solution y to the IVP $y'' + a_1 y' + a_0 y = g(t), \quad y(0) = y_0, \quad y'(0) = y_1,$ can be decomposed as $\mathbf{y}(t) = \mathbf{y}_h(t) + (\mathbf{y}_\delta * \mathbf{g})(t),$ where y_h is the solution of the homogeneous IVP $y_h'' + a_1 y_h' + a_0 y_h = 0, \quad y_h(0) = y_0, \quad y_h'(0) = y_1,$ and y_{δ} is the impulse response solution, that is, $y_{\delta}^{\prime\prime}+a_{\scriptscriptstyle I}\,y_{\delta}^{\prime}+a_{\scriptscriptstyle 0}\,y_{\delta}=\delta(t),\quad y_{\delta}(0)=0,\quad y_{\delta}^{\prime}(0)=0.$ Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: $\mathcal{L}[y''] + 2\mathcal{L}[y'] + 2\mathcal{L}[y] = \mathcal{L}[sin(at)]$, and recall,

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s(1) - (-1), \qquad \mathcal{L}[y'] = s \mathcal{L}[y] - 1.$$

$$(s^{2}+2s+2)\mathcal{L}[y] - s + 1 - 2 = \mathcal{L}[\sin(at)].$$

$$\mathcal{L}[y] = \frac{(s+1)}{(s^2+2s+2)} + \frac{1}{(s^2+2s+2)} \mathcal{L}[\sin(at)].$$

Solution decomposition theorem.

Example

Use the Solution Decomposition Theorem to express the solution of

$$y'' + 2y' + 2y = \sin(at), \quad y(0) = 1, \quad y'(0) = -1.$$

Solution: Recall:
$$\mathcal{L}[y] = \frac{(s+1)}{(s^2+2s+2)} + \frac{1}{(s^2+2s+2)} \mathcal{L}[\sin(at)].$$

But: $\mathcal{L}[y_h] = \frac{(s+1)}{(s^2+2s+2)} = \frac{(s+1)}{(s+1)^2+1} = \mathcal{L}[e^{-t}\cos(t)],$

and:
$$\mathcal{L}[y_{\delta}] = \frac{1}{(s^2 + 2s + 2)} = \frac{1}{(s+1)^2 + 1} = \mathcal{L}[e^{-t}\sin(t)].$$
 So,

$$\mathcal{L}[y] = \mathcal{L}[y_h] + \mathcal{L}[y_\delta] \mathcal{L}[g(t)] \implies y(t) = y_h(t) + (y_\delta * g)(t),$$

So: $y(t) = e^{-t} \cos(t) + \int_0^t e^{-\tau} \sin(\tau) \sin[a(t-\tau)] d\tau. \triangleleft$

Solution decomposition theorem.
Proof: Compute:
$$\mathcal{L}[y''] + a_1 \mathcal{L}[y'] + a_0 \mathcal{L}[y] = \mathcal{L}[g(t)]$$
, and recall,
 $\mathcal{L}[y''] = s^2 \mathcal{L}[y] - sy_0 - y_1, \qquad \mathcal{L}[y'] = s \mathcal{L}[y] - y_0.$
 $(s^2 + a_1s + a_0) \mathcal{L}[y] - sy_0 - y_1 - a_1y_0 = \mathcal{L}[g(t)].$
 $\mathcal{L}[y] = \frac{(s + a_1)y_0 + y_1}{(s^2 + a_1s + a_0)} + \frac{1}{(s^2 + a_1s + a_0)} \mathcal{L}[g(t)].$
Recall: $\mathcal{L}[y_h] = \frac{(s + a_1)y_0 + y_1}{(s^2 + a_1s + a_0)}, \text{ and } \mathcal{L}[y_\delta] = \frac{1}{(s^2 + a_1s + a_0)}.$
Since, $\mathcal{L}[y] = \mathcal{L}[y_h] + \mathcal{L}[y_\delta] \mathcal{L}[g(t)], \text{ so } y(t) = y_h(t) + (y_\delta * g)(t).$
Equivalently: $y(t) = y_h(t) + \int_0^t y_\delta(\tau)g(t - \tau) d\tau.$