Generalized sources (Sect. 6.5).

- ▶ The Dirac delta generalized function.
- ▶ Properties of Dirac's delta.
- ▶ Relation between deltas and steps.
- ▶ Dirac's delta in Physics.
- ► The Laplace Transform of Dirac's delta.
- ▶ Differential equations with Dirac's delta sources.

- ► The Dirac delta generalized function.
- Properties of Dirac's delta.
- ▶ Relation between deltas and steps.
- ▶ Dirac's delta in Physics.
- ▶ The Laplace Transform of Dirac's delta.
- ▶ Differential equations with Dirac's delta sources.

The Dirac delta generalized function.

Definition

Consider the sequence of functions for $n \ge 1$,

$$\delta_n(t) = \left\{ egin{array}{ll} 0, & t < 0 \ n, & 0 \leqslant t \leqslant rac{1}{n} \ 0, & t > rac{1}{n}. \end{array}
ight.$$

The Dirac delta generalized function is given by

$$\lim_{n\to\infty}\delta_n(t)=\delta(t), \qquad t\in\mathbb{R}.$$

Remarks:

- (a) There exist infinitely many sequences δ_n that define the same generalized function δ .
- (b) For example, compare with the sequence δ_n in the textbook.

The Dirac delta generalized function.

Remarks:

- (a) The Dirac δ is a function on the domain $\mathbb{R}-\{0\}$, and $\delta(t)=0$ for $t\in\mathbb{R}-\{0\}$.
- (b) δ at t = 0 is not defined, since $\delta(0) = \lim_{n \to \infty} n = +\infty$.
- (c) δ is not a function on \mathbb{R} .

Generalized sources (Sect. 6.5).

- ▶ The Dirac delta generalized function.
- ► Properties of Dirac's delta.
- ▶ Relation between deltas and steps.
- Dirac's delta in Physics.
- ▶ The Laplace Transform of Dirac's delta.
- ▶ Differential equations with Dirac's delta sources.

Properties of Dirac's delta.

Remark: The Dirac δ is not a function.

We define operations on Dirac's δ as limits $n \to \infty$ of the operation on the sequence elements δ_n .

Definition

$$\delta(t-c) = \lim_{n \to \infty} \delta_n(t-c),$$

$$a\delta(t) + b\delta(t) = \lim_{n \to \infty} \left[a\delta_n(t) + b\delta_n(t) \right],$$

$$f(t)\delta(t) = \lim_{n \to \infty} \left[f(t)\delta_n(t) \right],$$

$$\int_a^b \delta(t) dt = \lim_{n \to \infty} \int_a^b \delta_n(t) dt,$$

$$\mathcal{L}[\delta] = \lim_{n \to \infty} \mathcal{L}[\delta_n].$$

Properties of Dirac's delta.

Theorem

$$\int_{-a}^{a} \delta(t) dt = 1, \qquad a > 0.$$

Proof:

$$\int_{-a}^{a} \delta(t) dt = \lim_{n \to \infty} \int_{-a}^{a} \delta_n(t) dt = \lim_{n \to \infty} \int_{0}^{1/n} n dt$$

$$\int_{-a}^{a} \delta(t) dt = \lim_{n \to \infty} \left[n \left(t \Big|_{0}^{1/n} \right) \right] = \lim_{n \to \infty} \left[n \frac{1}{n} \right].$$

We conclude: $\int_{-a}^{a} \delta(t) dt = 1$.

Properties of Dirac's delta.

Theorem

If $f: \mathbb{R} \to \mathbb{R}$ is continuous, $t_0 \in \mathbb{R}$ and a > 0, then

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: Introduce the change of variable $\tau=t-t_0$,

$$I = \int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = \int_{-a}^{a} \delta(\tau) f(\tau+t_0) d\tau,$$

$$I = \lim_{n \to \infty} \int_{-a}^{a} \delta_n(\tau) f(\tau + t_0) d\tau = \lim_{n \to \infty} \int_{0}^{1/n} n f(\tau + t_0) d\tau$$

Therefore, $I = \lim_{n \to \infty} n \int_0^{1/n} F'(\tau + t_0) d\tau$, where we introduced the primitive $F(t) = \int f(t) dt$, that is, f(t) = F'(t).

Properties of Dirac's delta.

Theorem

If $f: \mathbb{R} \to \mathbb{R}$ is continuous, $t_0 \in \mathbb{R}$ and a > 0, then

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

Proof: So,
$$I = \lim_{n \to \infty} n \int_0^{1/n} F'(\tau + t_0) d\tau$$
, with $f(t) = F'(t)$.

$$I = \lim_{n \to \infty} n \left[F(\tau + t_0) \Big|_0^{1/n} \right] = \lim_{n \to \infty} n \left[F\left(t_0 + \frac{1}{n}\right) - F(t_0) \right].$$

$$I=\lim_{n o\infty}rac{\left[F\left(t_0+rac{1}{n}
ight)-F(t_0)
ight]}{rac{1}{n}}=F'(t_0)=f(t_0).$$

We conclude:
$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) \, f(t) \, dt = f(t_0).$$

- ▶ The Dirac delta generalized function.
- Properties of Dirac's delta.
- ► Relation between deltas and steps.
- Dirac's delta in Physics.
- ► The Laplace Transform of Dirac's delta.
- ▶ Differential equations with Dirac's delta sources.

Relation between deltas and steps.

Theorem

The sequence of functions for $n \ge 1$,

$$u_n(t) = \left\{ egin{array}{ll} 0, & t < 0 \ nt, & 0 \leqslant t \leqslant rac{1}{n} \ 1, & t > rac{1}{n}. \end{array}
ight.$$

satisfies, for $t \in (-\infty,0) \cup (0,1/n) \cup (1/n,\infty)$, both equations,

$$u'_n(t) = \delta_n(t), \qquad \lim_{n \to \infty} u_n(t) = u(t), \qquad t \in \mathbb{R}.$$

Remark:

- ▶ If we generalize the notion of derivative as $u'(t) = \lim_{n \to \infty} \delta_n(t)$, then holds $u'(t) = \delta(t)$.
- ▶ Dirac's delta is a generalized derivative of the step function.

- ► The Dirac delta generalized function.
- ► Properties of Dirac's delta.
- ▶ Relation between deltas and steps.
- ► Dirac's delta in Physics.
- ▶ The Laplace Transform of Dirac's delta.
- ▶ Differential equations with Dirac's delta sources.

Dirac's delta in Physics.

Remarks:

- (a) Dirac's delta generalized function is useful to describe *impulsive forces* in mechanical systems.
- (b) An impulsive force transmits a finite momentum in an infinitely short time.
- (c) For example: The momentum transmitted to a pendulum when hit by a hammer. Newton's law of motion says,

$$m v'(t) = F(t)$$
, with $F(t) = F_0 \delta(t - t_0)$.

The momentum transfer is:

$$\Delta I = \lim_{\Delta t \to 0} mv(t) \Big|_{t_0 - \Delta t}^{t_0 + \Delta t} = \lim_{\Delta t \to 0} \int_{t_0 - \Delta t}^{t_0 + \Delta t} F(t) dt = F_0.$$

That is, $\Delta I = F_0$.

- ▶ The Dirac delta generalized function.
- Properties of Dirac's delta.
- ▶ Relation between deltas and steps.
- ▶ Dirac's delta in Physics.
- ► The Laplace Transform of Dirac's delta.
- ▶ Differential equations with Dirac's delta sources.

The Laplace Transform of Dirac's delta.

Recall: The Laplace Transform can be generalized from functions to δ , as follows, $\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)]$.

Theorem

$$\mathcal{L}[\delta(t-c)] = e^{-cs}.$$

Proof:

$$\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} \mathcal{L}[\delta_n(t-c)], \qquad \delta_n(t) = n \left[u(t) - u(t - \frac{1}{n}) \right].$$

$$\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} n \left(\mathcal{L}[u(t-c)] - \mathcal{L}\left[u(t-c - \frac{1}{n})\right] \right)$$

$$\mathcal{L}[\delta(t-c)] = \lim_{n \to \infty} n \left(\frac{e^{-cs}}{s} - \frac{e^{-(c + \frac{1}{n})s}}{s} \right) = e^{-cs} \lim_{n \to \infty} \frac{(1 - e^{-\frac{s}{n}})}{(\frac{s}{n})}.$$

This is a singular limit, $\frac{0}{0}$. Use l'Hôpital rule.

The Laplace Transform of Dirac's delta.

Proof: Recall:
$$\mathcal{L}[\delta(t-c)] = e^{-cs} \lim_{n \to \infty} \frac{(1-e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)}.$$

$$\lim_{n \to \infty} \frac{(1-e^{-\frac{s}{n}})}{\left(\frac{s}{n}\right)} = \lim_{n \to \infty} \frac{(-\frac{s}{n^2}e^{-\frac{s}{n}})}{\left(-\frac{s}{n^2}\right)} = \lim_{n \to \infty} e^{-\frac{s}{n}} = 1.$$

We therefore conclude that $\mathcal{L}[\delta(t-c)] = e^{-cs}$.

Remarks:

(a) This result is consistent with a previous result:

$$\int_{t_0-a}^{t_0+a} \delta(t-t_0) f(t) dt = f(t_0).$$

(b)
$$\mathcal{L}[\delta(t-c)] = \int_0^\infty \delta(t-c) e^{-st} dt = e^{-cs}$$
.

(c)
$$\mathcal{L}[\delta(t-c)f(t)] = \int_0^\infty \delta(t-c)e^{-st}f(t)dt = e^{-cs}f(c).$$

Generalized sources (Sect. 6.5).

- ▶ The Dirac delta generalized function.
- Properties of Dirac's delta.
- ▶ Relation between deltas and steps.
- Dirac's delta in Physics.
- ▶ The Laplace Transform of Dirac's delta.
- **▶** Differential equations with Dirac's delta sources.

Differential equations with Dirac's delta sources.

Example

Find the solution y to the initial value problem

$$y'' - y = -20 \delta(t - 3),$$
 $y(0) = 1,$ $y'(0) = 0.$

Solution: Compute: $\mathcal{L}[y''] - \mathcal{L}[y] = -20 \mathcal{L}[\delta(t-3)]$.

$$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - s y(0) - y'(0) \quad \Rightarrow \quad (s^2 - 1) \mathcal{L}[y] - s = -20 e^{-3s},$$

We arrive to the equation $\mathcal{L}[y] = \frac{s}{(s^2-1)} - 20 \, e^{-3s} \, \frac{1}{(s^2-1)}$,

$$\mathcal{L}[y] = \mathcal{L}[\cosh(t)] - 20 \mathcal{L}[u(t-3) \sinh(t-3)],$$

We conclude: $y(t) = \cosh(t) - 20 u(t-3) \sinh(t-3)$.

Differential equations with Dirac's delta sources.

Example

Find the solution to the initial value problem

$$y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi),$$
 $y(0) = 0,$ $y'(0) = 0.$

Solution: Compute: $\mathcal{L}[y''] + 4\mathcal{L}[y] = \mathcal{L}[\delta(t-\pi)] - \mathcal{L}[\delta(t-2\pi)]$,

$$(s^2+4) \mathcal{L}[y] = e^{-\pi s} - e^{-2\pi s} \quad \Rightarrow \quad \mathcal{L}[y] = \frac{e^{-\pi s}}{(s^2+4)} - \frac{e^{-2\pi s}}{(s^2+4)},$$

that is,
$$\mathcal{L}[y] = \frac{e^{-\pi s}}{2} \frac{2}{(s^2 + 4)} - \frac{e^{-2\pi s}}{2} \frac{2}{(s^2 + 4)}$$
.

Recall: $e^{-cs} \mathcal{L}[f(t)] = \mathcal{L}[u(t-c) f(t-c)]$. Therefore,

$$\mathcal{L}[y] = \frac{1}{2} \mathcal{L}\Big[u(t-\pi) \sin\big[2(t-\pi)\big]\Big] - \frac{1}{2} \mathcal{L}\Big[u(t-2\pi) \sin\big[2(t-2\pi)\big]\Big].$$

Differential equations with Dirac's delta sources.

Example

Find the solution to the initial value problem

$$y'' + 4y = \delta(t - \pi) - \delta(t - 2\pi),$$
 $y(0) = 0,$ $y'(0) = 0.$

Solution: Recall:

$$\mathcal{L}[y] = \frac{1}{2} \mathcal{L} \Big[u(t-\pi) \sin \big[2(t-\pi) \big] \Big] - \frac{1}{2} \mathcal{L} \Big[u(t-2\pi) \sin \big[2(t-2\pi) \big] \Big].$$

This implies that,

$$y(t) = \frac{1}{2} u(t - \pi) \sin[2(t - \pi)] - \frac{1}{2} u(t - 2\pi) \sin[2(t - 2\pi)],$$

We conclude:
$$y(t) = \frac{1}{2} \left[u(t-\pi) - u(t-2\pi) \right] \sin(2t)$$
.