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The Dirac delta generalized function.

Definition
Consider the sequence of functions for n > 1,
dn
(0, t<0 )
1 3—Ir 3
oo(t)=q M OSts Y SRS
1 ¥
0, t > - 1,_5_:_| dl
\ n b
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The Dirac delta generalized function is given by

lim §,(t) = 6(t), t e R.

n—oo

Remarks:

(a) There exist infinitely many sequences 9, that define the same
generalized function 4.

(b) For example, compare with the sequence 9, in the textbook.

The Dirac delta generalized function.

d,_ A
delta R-{0}

Fan
\

Remarks:

(a) The Dirac ¢ is a function on the domain R — {0}, and
d(t) =0 for t € R — {0}.

(b) 0 at t =0 is not defined, since 6(0) = limp_oc N = +00.

(c) ¢ is not a function on R.
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Properties of Dirac's delta.
Remark: The Dirac ¢ is not a function.

We define operations on Dirac’s ¢ as limits n — oo of the
operation on the sequence elements d,,.

Definition
d(t —c) = lim §,(t — ¢),

n—aoo

ad(t)+ bd(t) = lim [adn(t) + bdn(t)],

n—oo

f(t)o(t) = lim [f(t)dn(t)],

n—oo

b b
/6(t)dt: lim / dn(t) dt,

L[5] = lim L[3,].




Properties of Dirac's delta.

Theorem

/ o(t)dt =1, a>0.

—a

Proof:

a a 1/n
/ o(t) dt = Iim/ dn(t) dt = Iim/ ndt
n—oo n—oo 0

—a —a

"5t dt = lim Ht‘””)} — Iim {nl]

3 n—oo 0 n—oo n

a
We conclude: / o(t) dt = 1. O

—a

Properties of Dirac's delta.

Theorem
If f : IR — R is continuous, t, € R and a > 0, then

to+a
/ I(t — tp) f(t) dt = f(t,).

Proof: Introduce the change of variable 7 = t — t,,

- / st F(yde = [ 6(r) Fr+ 1) dr.

0o—a —a

a 1/n
| = Iim/ 50(7) F(r + 1) dr = Iim/ nf(r+t)dr
0

n—oo J_ n—oo

1/n
Therefore, | = lim n/ F'(T + t,) d7, where we introduced the
0

n—aoo

primitive F(t) = / f(t)dt, that is, f(t) = F'(t).




Properties of Dirac's delta.

Theorem
If f : R — R is continuous, t, € R and a > 0, then

to+a
/ 5(t — t,) F(£) dt = F(t).

0o—a

n—oo

1/n
Proof: So, I = lim n/ Fl(r+ t,) dr, with £(£) = F/(t).
0

I = lim n {F(T-i— to)

n—oo

l/n} = lim n [F(to + %) — F(to)}.

0 n—oo

l — ||m 1 — F/(to) — f(to).
to+a
We conclude: / ot — t,) (t) dt = f(t,).
to—a
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Relation between deltas and steps.

Theorem
The sequence of functions for n > 1,

(0, t<0 Y u, u,
1 1
un(t) = 4 nt, Oétgz
1, t> —.
\ n

0 U3 12 1

satisfies, for t € (—o0,0) U (0,1/n) U (1/n, o), both equations,

ul(t) = dn(t), lim up(t) = u(t), t e R.

n—oo
Remark:
» If we generalize the notion of derivative as
u'(t) = lim §,(t), then holds u/(t) = 4(t).
n—oo

» Dirac’s delta is a generalized derivative of the step function.
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Dirac’s delta in Physics.

Remarks:

(a) Dirac's delta generalized function is useful to describe
impulsive forces in mechanical systems.

(b) An impulsive force transmits a finite momentum in an
infinitely short time.

(c) For example: The momentum transmitted to a pendulum
when hit by a hammer. Newton's law of motion says,

mV'(t) = F(t), with F(t) = Fd(t — t,).

The momentum transfer is:

to+At tot+At
Al = lim mv(t) = lim / F(t) dt = F,.

Thatis, Al = F,.
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The Laplace Transform of Dirac’s delta.

Recall: The Laplace Transform can be generalized from functions
to 4, as follows, L[o(t — ¢)] = lim L[d,(t — c)].

Theorem
L[6(t—c)]=e°.

Proof:
£l3(t— ) = lim Lloa(t — ). 0a(t) = n [u(t) — u(t - 1)]

£lo(t — ) = lim n(Lfu(t— o)~ £[u(t—c— 1))

—cs —(c+1)s 1_e 7
L[(t —c)] = lim n<es T ) _ e fim 1= )

n—00 S n—o00 (%)
This is a singular limit, 8. Use I'Hopital rule.
The Laplace Transform of Dirac’s delta.
1—en
Proof: Recall: L[o(t —c)] =€ < lim ( (se) )
n
— e n 5 e n
lim (1-e )zlim( n’ )zlime_ﬁzl.
L L
We therefore conclude that L[§(t — c)] = e . ]

Remarks:

(a) This result is consistent with a previous result:

to+a
/ ot — to) F(t) dt = f(t,).
(b) L[5(t — )] = /OOO 5(t — ) et dt = e~

(¢) L[5(t — c) F(t)] :/0 5(t — c) et F(t) dt = e f(c).
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Differential equations with Dirac’s delta sources.

Example
Find the solution y to the initial value problem

y// —y=-20 5(1.' — 3), _)/(O) =1, y/(O) =0.
Solution: Compute: L[y"] — L[y] = —20 L[§(t — 3)].

Lly"] = s> L[y]-sy(0)—y'(0) = (s*—1)L[y]-s= —20e%,

S 1
— 20 —3s S —
(-1 7 ° (-1

L[y] = L[cosh(t)] — 20 L[u(t — 3) sinh(t — 3)],

We arrive to the equation L[y] =

We conclude: y(t) = cosh(t) — 20 u(t — 3) sinh(t — 3). <




Differential equations with Dirac’s delta sources.

Example
Find the solution to the initial value problem

vy +4y =6(t —7) — 6(t — 2m), y(0) =0, y'(0) = 0.

Solution: Compute: L[y"] + 4 L[y] = L[6(t — 7)] — L[6(t — 27)],

e~ TS e—27rs

(s"+4)Ly]=eT™—e?™ = Ly]= ERTia eI

. e~ TS 2 e—27rs 2
thatis tM =" @ray” 2 @+

Recall: e~ L[f(t)] = L[u(t — c) f(t — c¢)]. Therefore,

Lly] = %c [u(t—w) sin [2(t—7r)]} - % s [u(t—zw) sin [2(t_27r)]} .

Differential equations with Dirac’s delta sources.

Example
Find the solution to the initial value problem

y' + 4y =6(t — ) — 6(t — 2), y(0) =0, y'(0) = 0.

Solution: Recall:
Lly] = %L[u(t—w) sin[z(t—w)ﬂ —%c[u(t—zw) sin[2(t—27r)]}.
This implies that,

y(t) = 5 u(t — ) sin[2(t — )] — 5 u(t — 2m) sin[2(t — 27)],

We conclude: y(t) = = [u(t — 7) — u(t — 27)] sin(2t). <

N| —




