Second order linear homogeneous ODE (Sect. 3.3).

- ▶ Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- ► Characteristic polynomial with complex roots.
 - ▶ Two main sets of fundamental solutions.
 - ▶ A real-valued fundamental and general solutions.
- ▶ Application: The RLC circuit.

Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Definition

Any two solutions y_1 , y_2 of the homogeneous equation

$$y'' + a_1(t)y' + a_0(t)y = 0,$$

are called *fundamental solutions* iff the functions y_1 , y_2 are linearly independent, that is, iff $W_{y_1y_2} \neq 0$.

Remark: Fundamental solutions are not unique.

Definition

Given any two fundamental solutions y_1 , y_2 , and arbitrary constants c_1 , c_2 , the function

$$y(t) = c_1 y_1(t) + c_2 y_2(t)$$

is called the *general solution* of the differential equation above.

Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Theorem (Constant coefficients)

Given real constants a_1 , a_0 , consider the homogeneous, linear differential equation on the unknown $y : \mathbb{R} \to \mathbb{R}$ given by

$$y'' + a_1 y' + a_0 y = 0. (1)$$

Let r_+ , r_- be the roots of the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$, and let c_0 , c_1 be arbitrary constants. Then, any solution of Eq. (1) belongs to only one of the following cases:

- (a) If $r_+ \neq r_-$, the general solution is $y(t) = c_1 e^{r_+ t} + c_2 e^{r_- t}$.
- (b) If $r_+ = r_- \in \mathbb{R}$, the general solution is $y(t) = (c_1 + c_2 t)e^{r_+ t}$.

Furthermore, given real constants t_0 , y_1 and y_2 , there is a unique solution to the initial value problem given by Eq. (1) and the initial conditions

$$y(t_0) = y_1, y'(t_0) = y_2.$$

Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.

Example

Find the general solution of the equation y'' - y' - 6y = 0.

Solution: Since solutions have the form e^{rt} , we need to find the roots of the characteristic polynomial $p(r) = r^2 - r - 6$, that is,

$$r_{\pm} = \frac{1}{2} \left(1 \pm \sqrt{1 + 24} \right) = \frac{1}{2} (1 \pm 5) \quad \Rightarrow \quad r_{+} = 3, \quad r_{-} = -2.$$

So, r_{\pm} are real-valued. A fundamental solution set is formed by

$$y_1(t) = e^{3t}, y_2(t) = e^{-2t}.$$

The general solution of the differential equations is an arbitrary linear combination of the fundamental solutions, that is,

$$y(t) = c_1 e^{3t} + c_2 e^{-2t}, \qquad c_1, c_2 \in \mathbb{R}.$$

Remark: Since $c_1, c_2 \in \mathbb{R}$, then y is real-valued.

Second order linear homogeneous ODE.

- ▶ Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- ► Characteristic polynomial with complex roots.
 - ► Two main sets of fundamental solutions.
 - ► A real-valued fundamental and general solutions.
- ▶ Application: The RLC circuit.

Two main sets of fundamental solutions.

Theorem (Complex roots)

If the constants a_1 , $a_0 \in \mathbb{R}$ satisfy that $a_1^2 - 4a_0 < 0$, then the characteristic polynomial $p(r) = r^2 + a_1 r + a_0$ of the equation

$$y'' + a_1 y' + a_0 y = 0 (2)$$

has complex roots $r_+ = \alpha + i\beta$ and $r_- = \alpha - i\beta$, where

$$\alpha = -\frac{a_1}{2}, \qquad \beta = \frac{1}{2}\sqrt{4a_0 - a_1^2}.$$

Furthermore, a fundamental set of solutions to Eq. (2) is

$$\tilde{y}_1(t) = e^{(\alpha+i\beta)t}, \qquad \tilde{y}_2(t) = e^{(\alpha-i\beta)t},$$

while another fundamental set of solutions to Eq. (2) is

$$y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$$

Two main sets of fundamental solutions.

Example

Find the general solution of the equation y'' - 2y' + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

$$r^2 - 2r + 6 = 0$$
 \Rightarrow $r_{\pm} = \frac{1}{2} (2 \pm \sqrt{4 - 24})$ \Rightarrow $r_{\pm} = 1 \pm i\sqrt{5}$.

A fundamental solution set is

$$\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

These are complex-valued functions. The general solution is

$$y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}, \qquad \tilde{c}_1, \tilde{c}_2 \in \mathbb{C}.$$

Two main sets of fundamental solutions.

Remark:

- ➤ The solutions found above include real-valued and complex-valued solutions.
- ➤ Since the differential equation is real-valued, it is usually important in applications to obtain the most general real-valued solution. (See RLC circuit below.)
- ▶ In the expression above it is difficult to take apart real-valued solutions from complex-valued solutions.
- ▶ In other words: It is not simple to see what values of \tilde{c}_1 and \tilde{c}_2 make the general solution above to be real-valued.
- ➤ One way to find the real-valued general solution is to find real-valued fundamental solutions.

Second order linear homogeneous ODE.

- ▶ Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- ► Characteristic polynomial with complex roots.
 - ▶ Two main sets of fundamental solutions.
 - ► A real-valued fundamental and general solutions.
- ▶ Application: The RLC circuit.

A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

$$y'' - 2y' + 6y = 0.$$

Solution: Recall: $y(t) = \tilde{c}_1 e^{(1+i\sqrt{5})t} + \tilde{c}_2 e^{(1-i\sqrt{5})t}$, $\tilde{c}_1, \tilde{c}_2 \in \mathbb{C}$.

The Theorem above says that a real-valued fundamental set is

$$y_1(t) = e^t \cos(\sqrt{5} t), \quad y_2(t) = e^t \sin(\sqrt{5} t).$$

Hence, the complex-valued general solution can also be written as

$$y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)\right] e^t, \qquad c_1, c_2 \in \mathbb{C}.$$

The real-valued general solution is simple to obtain:

$$y(t) = \left[c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t)\right] e^t, \qquad c_1, c_2 \in \mathbb{R}.$$

 \leq

We just restricted the coefficients c_1 , c_2 to be real-valued.

Example

Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: We start with the complex-valued fundamental solutions,

$$\tilde{y}_1(t) = e^{(1+i\sqrt{5})t}, \qquad \tilde{y}_2(t) = e^{(1-i\sqrt{5})t}.$$

Any linear combination of these functions is solution of the differential equation. In particular,

$$y_1(t) = \frac{1}{2} \big[\tilde{y}_1(t) + \tilde{y}_2(t) \big], \quad y_2(t) = \frac{1}{2i} \big[\tilde{y}_1(t) - \tilde{y}_2(t) \big].$$

Now, recalling $e^{(1\pm i\sqrt{5})t} = e^t e^{\pm i\sqrt{5}t}$

$$y_1(t) = \frac{1}{2} \left[e^t e^{i\sqrt{5}t} + e^t e^{-i\sqrt{5}t} \right], \quad y_2(t) = \frac{1}{2i} \left[e^t e^{i\sqrt{5}t} - e^t e^{-i\sqrt{5}t} \right],$$

A real-valued fundamental and general solutions.

Example

Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution:
$$y_1 = \frac{e^t}{2} [e^{i\sqrt{5}t} + e^{-i\sqrt{5}t}], \quad y_2 = \frac{e^t}{2i} [e^{i\sqrt{5}t} - e^{-i\sqrt{5}t}].$$

The Euler formula and its complex-conjugate formula

$$e^{i\sqrt{5}t} = \left[\cos(\sqrt{5}t) + i\sin(\sqrt{5}t)\right],$$

$$e^{-i\sqrt{5}t} = \left[\cos(\sqrt{5}t) - i\sin(\sqrt{5}t)\right],$$

imply the inverse relations

$$e^{i\sqrt{5}t} + e^{-i\sqrt{5}t} = 2\cos(\sqrt{5}t), \quad e^{i\sqrt{5}t} - e^{-i\sqrt{5}t} = 2i\sin(\sqrt{5}t).$$

So functions y_1 and y_2 can be written as

$$y_1(t) = e^t \cos(\sqrt{5} t), \qquad y_2(t) = e^t \sin(\sqrt{5} t).$$

Example

Show that $y_1(t) = e^t \cos(\sqrt{5} t)$ and $y_2(t) = e^t \sin(\sqrt{5} t)$ are fundamental solutions to the equation y'' - 2y' + 6y = 0.

Solution: $y_1(t) = e^t \cos(\sqrt{5} t)$, $y_2(t) = e^t \sin(\sqrt{5} t)$.

Summary:

- ▶ These functions are solutions of the differential equation.
- ▶ They are not proportional to each other, Hence li.
- ▶ Therefore, y_1 , y_2 form a fundamental set.
- ▶ The general solution of the equation is

$$y(t) = \left[c_1 \cos(\sqrt{5}t) + c_2 \sin(\sqrt{5}t)\right] e^t.$$

- ▶ y is real-valued for c_1 , $c_2 \in \mathbb{R}$.
- ▶ y is complex-valued for c_1 , $c_2 \in \mathbb{C}$.

A real-valued fundamental and general solutions.

Remark:

- ▶ The proof of the Theorem follow exactly the same ideas given in the example above.
- ▶ One has to replace the roots of the characteristic polynomial

$$1+i\sqrt{5}$$
 \rightarrow $\alpha+i\beta$, $1-i\sqrt{5}$ \rightarrow $\alpha-i\beta$.

▶ The real-valued fundamental solutions are

$$y_1(t) = e^{\alpha t} \cos(\beta t), \qquad y_2(t) = e^{\alpha t} \sin(\beta t).$$

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution:

The roots of the characteristic polynomial $p(r) = r^2 + 2r + 6$ are

$$r_{\pm} = \frac{1}{2} \left[-2 \pm \sqrt{4 - 24} \right] = \frac{1}{2} \left[-2 \pm \sqrt{-20} \right] \ \Rightarrow \ r_{\pm} = -1 \pm i \sqrt{5}.$$

These are complex-valued roots, with

$$\alpha = -1, \qquad \beta = \sqrt{5}.$$

Real-valued fundamental solutions are

$$y_1(t) = e^{-t} \cos(\sqrt{5} t), \qquad y_2(t) = e^{-t} \sin(\sqrt{5} t).$$

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

$$y'' + 2y' + 6y = 0.$$

Solution: $y_1(t) = e^{-t} \cos(\sqrt{5} t)$, $y_2(t) = e^{-t} \sin(\sqrt{5} t)$.

Differential equations like the one in this example describe physical processes related to damped oscillations. For example pendulums with friction.

Example

Find the real-valued general solution of y'' + 5y = 0.

Solution: The characteristic polynomial is $p(r) = r^2 + 5$.

Its roots are $r_{\pm} = \pm \sqrt{5}i$. This is the case $\alpha = 0$, and $\beta = \sqrt{5}$.

Real-valued fundamental solutions are

$$y_1(t) = \cos(\sqrt{5} t), \qquad y_2(t) = \sin(\sqrt{5} t).$$

The real-valued general solution is

$$y(t) = c_1 \cos(\sqrt{5} t) + c_2 \sin(\sqrt{5} t), \qquad c_1, c_2 \in \mathbb{R}.$$

Remark: Equations like the one in this example describe oscillatory physical processes without dissipation.

Second order linear homogeneous ODE.

- ▶ Review: On solutions of $y'' + a_1 y' + a_0 y = 0$.
- ► Characteristic polynomial with complex roots.
 - ▶ Two main sets of fundamental solutions.
 - A real-valued fundamental and general solutions.
- ► Application: The RLC circuit.

Application: The RLC circuit.

Consider an electric circuit with resistance R, non-zero capacitor C, and non-zero inductance L, as in the figure.

I (t): electric current.

The electric current flowing in such circuit satisfies:

$$LI'(t) + RI(t) + \frac{1}{C} \int_{t_0}^t I(s) ds = 0.$$

Derivate both sides above: $LI''(t) + RI'(t) + \frac{1}{C}I(t) = 0$.

Divide by
$$L$$
: $I''(t) + 2\left(\frac{R}{2L}\right)I'(t) + \frac{1}{LC}I(t) = 0$.

Introduce
$$\alpha = \frac{R}{2L}$$
 and $\omega = \frac{1}{\sqrt{LC}}$, then $I'' + 2\alpha I' + \omega^2 I = 0$.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: The characteristic polynomial is $p(r) = r^2 + 2\alpha r + \omega^2$. The roots are:

$$r_{\pm} = \frac{1}{2} \left[-2\alpha \pm \sqrt{4\alpha^2 - 4\omega^2} \right] \quad \Rightarrow \quad r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}.$$

Case (a) R=0. This implies $\alpha=0$, so $r_{\pm}=\pm i\omega$. Therefore,

$$I_1(t) = \cos(\omega t), \qquad I_2(t) = \sin(\omega t).$$

Remark: When the circuit has no resistance, the current oscillates without dissipation.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to $I'' + 2\alpha I' + \omega^2 I = 0$, where $\alpha = R/(2L)$, $\omega^2 = 1/(LC)$, in the cases (a) (b) below.

Solution: Recall: $r_{\pm} = -\alpha \pm \sqrt{\alpha^2 - \omega^2}$.

Case (b) $R < \sqrt{4L/C}$. This implies

$$R^2 < \frac{4L}{C} \Leftrightarrow \frac{R^2}{4L^2} < \frac{1}{LC} \Leftrightarrow \alpha^2 < \omega^2.$$

Therefore, $r_{\pm}=-\alpha\pm i\sqrt{\omega^2-\alpha^2}$. The fundamental solutions are

$$I_1(t) = e^{-\alpha t} \cos(\sqrt{\omega^2 - \alpha^2} t), \quad I_2(t) = e^{-\alpha t} \sin(\sqrt{\omega^2 - \alpha^2} t).$$

The resistance R damps the current oscillations.