
Second order linear homogeneous ODE (Sect. 3.3).

I Review: On solutions of y ′′ + a1 y ′ + a0 y = 0.

I Characteristic polynomial with complex roots.
I Two main sets of fundamental solutions.
I A real-valued fundamental and general solutions.

I Application: The RLC circuit.

Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Definition
Any two solutions y1, y2 of the homogeneous equation

y ′′ + a1(t)y
′ + a0(t)y = 0,

are called fundamental solutions iff the functions y1, y2 are linearly
independent, that is, iff Wy1y2 6= 0.

Remark: Fundamental solutions are not unique.

Definition
Given any two fundamental solutions y1, y2, and arbitrary constants
c1, c2, the function

y(t) = c1 y1(t) + c2 y2(t)

is called the general solution of the differential equation above.



Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Theorem (Constant coefficients)

Given real constants a1, a0, consider the homogeneous, linear
differential equation on the unknown y : R → R given by

y ′′ + a1 y ′ + a0 y = 0. (1)

Let r+, r− be the roots of the characteristic polynomial
p(r) = r2 + a1r + a0, and let c0, c1 be arbitrary constants. Then,
any solution of Eq. (1) belongs to only one of the following cases:

(a) If r+ 6= r−, the general solution is y(t) = c1e
r+t + c2e

r−t .

(b) If r+ = r− ∈ R, the general solution is y(t) = (c1 + c2t)e
r+t .

Furthermore, given real constants t0, y1 and y2, there is a unique
solution to the initial value problem given by Eq. (1) and the initial
conditions

y(t0) = y1, y ′(t0) = y2.

Review: On solutions of y ′′ + a1 y
′ + a0 y = 0.

Example

Find the general solution of the equation y ′′ − y ′ − 6y = 0.

Solution: Since solutions have the form ert , we need to find the
roots of the characteristic polynomial p(r) = r2 − r − 6, that is,

r± =
1

2

(
1±

√
1 + 24

)
=

1

2
(1± 5) ⇒ r+ = 3, r− = −2.

So, r± are real-valued. A fundamental solution set is formed by

y1(t) = e3t , y2(t) = e−2t .

The general solution of the differential equations is an arbitrary
linear combination of the fundamental solutions, that is,

y(t) = c1 e3t + c2 e−2t , c1, c2 ∈ R. C

Remark: Since c1, c2 ∈ R, then y is real-valued.
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Two main sets of fundamental solutions.

Theorem (Complex roots)

If the constants a1, a0 ∈ R satisfy that a2
1 − 4a0 < 0, then the

characteristic polynomial p(r) = r2 + a1r + a0 of the equation

y ′′ + a1 y ′ + a0 y = 0 (2)

has complex roots r+ = α + iβ and r− = α− iβ, where

α = −a1

2
, β =

1

2

√
4a0 − a2

1 .

Furthermore, a fundamental set of solutions to Eq. (2) is

ỹ1(t) = e(α+iβ)t , ỹ2(t) = e(α−iβ)t ,

while another fundamental set of solutions to Eq. (2) is

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).



Two main sets of fundamental solutions.

Example

Find the general solution of the equation y ′′ − 2y ′ + 6y = 0.

Solution: We first find the roots of the characteristic polynomial,

r2−2r +6 = 0 ⇒ r± =
1

2

(
2±
√

4− 24
)

⇒ r± = 1± i
√

5.

A fundamental solution set is

ỹ1(t) = e(1+i
√

5) t , ỹ2(t) = e(1−i
√

5) t .

These are complex-valued functions. The general solution is

y(t) = c̃1 e(1+i
√

5) t + c̃2 e(1−i
√

5) t , c̃1, c̃2 ∈ C. C

Two main sets of fundamental solutions.

Remark:

I The solutions found above include real-valued and
complex-valued solutions.

I Since the differential equation is real-valued, it is usually
important in applications to obtain the most general
real-valued solution. (See RLC circuit below.)

I In the expression above it is difficult to take apart real-valued
solutions from complex-valued solutions.

I In other words: It is not simple to see what values of c̃1 and c̃2

make the general solution above to be real-valued.

I One way to find the real-valued general solution is to find
real-valued fundamental solutions.
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A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of the equation

y ′′ − 2y ′ + 6y = 0.

Solution: Recall: y(t) = c̃1e
(1+i

√
5) t + c̃2e

(1−i
√

5) t , c̃1, c̃2 ∈ C.

The Theorem above says that a real-valued fundamental set is

y1(t) = et cos(
√

5 t), y2(t) = et sin(
√

5 t).

Hence, the complex-valued general solution can also be written as

y(t) =
[
c1 cos(

√
5 t) + c2 sin(

√
5 t)

]
et , c1, c2 ∈ C.

The real-valued general solution is simple to obtain:

y(t) =
[
c1 cos(

√
5 t) + c2 sin(

√
5 t)

]
et , c1, c2 ∈ R.

We just restricted the coefficients c1, c2 to be real-valued. C



A real-valued fundamental and general solutions.

Example

Show that y1(t) = et cos(
√

5 t) and y2(t) = et sin(
√

5 t) are
fundamental solutions to the equation y ′′ − 2y ′ + 6y = 0.

Solution: We start with the complex-valued fundamental solutions,

ỹ1(t) = e(1+i
√

5) t , ỹ2(t) = e(1−i
√

5) t .

Any linear combination of these functions is solution of the
differential equation. In particular,

y1(t) =
1

2

[
ỹ1(t) + ỹ2(t)

]
, y2(t) =

1

2i

[
ỹ1(t)− ỹ2(t)

]
.

Now, recalling e(1±i
√

5) t = ete±i
√

5 t

y1(t) =
1

2

[
et e i

√
5t +et e−i

√
5t

]
, y2(t) =

1

2i

[
et e i

√
5t−et e−i

√
5t

]
,

A real-valued fundamental and general solutions.

Example

Show that y1(t) = et cos(
√

5 t) and y2(t) = et sin(
√

5 t) are
fundamental solutions to the equation y ′′ − 2y ′ + 6y = 0.

Solution: y1 =
et

2

[
e i
√

5t + e−i
√

5t
]
, y2 =

et

2i

[
e i
√

5t − e−i
√

5t
]
.

The Euler formula and its complex-conjugate formula

e i
√

5t =
[
cos(

√
5 t) + i sin(

√
5 t)

]
,

e−i
√

5 t =
[
cos(

√
5 t)− i sin(

√
5 t)

]
,

imply the inverse relations

e i
√

5t + e−i
√

5t = 2 cos(
√

5t), e i
√

5t − e−i
√

5t = 2i sin(
√

5t).

So functions y1 and y2 can be written as

y1(t) = et cos(
√

5 t), y2(t) = et sin(
√

5 t).



A real-valued fundamental and general solutions.

Example

Show that y1(t) = et cos(
√

5 t) and y2(t) = et sin(
√

5 t) are
fundamental solutions to the equation y ′′ − 2y ′ + 6y = 0.

Solution: y1(t) = et cos(
√

5 t), y2(t) = et sin(
√

5 t).

Summary:

I These functions are solutions of the differential equation.

I They are not proportional to each other, Hence li.

I Therefore, y1, y2 form a fundamental set.

I The general solution of the equation is

y(t) =
[
c1 cos(

√
5t) + c2 sin(

√
5t)

]
et .

I y is real-valued for c1, c2 ∈ R.

I y is complex-valued for c1, c2 ∈ C.

A real-valued fundamental and general solutions.

Remark:

I The proof of the Theorem follow exactly the same ideas given
in the example above.

I One has to replace the roots of the characteristic polynomial

1 + i
√

5 → α + iβ, 1− i
√

5 → α− iβ.

I The real-valued fundamental solutions are

y1(t) = eαt cos(βt), y2(t) = eαt sin(βt).



A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

y ′′ + 2 y ′ + 6 y = 0.

Solution:
The roots of the characteristic polynomial p(r) = r2 + 2r + 6 are

r± =
1

2

[
−2±

√
4− 24

]
=

1

2

[
−2±

√
−20

]
⇒ r± = −1± i

√
5.

These are complex-valued roots, with

α = −1, β =
√

5.

Real-valued fundamental solutions are

y1(t) = e−t cos(
√

5 t), y2(t) = e−t sin(
√

5 t). C

A real-valued fundamental and general solutions.

Example

Find real-valued fundamental solutions to the equation

y ′′ + 2 y ′ + 6 y = 0.

Solution: y1(t) = e−t cos(
√

5 t), y2(t) = e−t sin(
√

5 t).

1
y

t

e
− t

Differential equations like the one
in this example describe physical
processes related to damped
oscillations. For example
pendulums with friction.



A real-valued fundamental and general solutions.

Example

Find the real-valued general solution of y ′′ + 5 y = 0.

Solution: The characteristic polynomial is p(r) = r2 + 5.

Its roots are r± = ±
√

5 i . This is the case α = 0, and β =
√

5.

Real-valued fundamental solutions are

y1(t) = cos(
√

5 t), y2(t) = sin(
√

5 t).

The real-valued general solution is

y(t) = c1 cos(
√

5 t) + c2 sin(
√

5 t), c1, c2 ∈ R. C

Remark: Equations like the one in this example describe
oscillatory physical processes without dissipation.
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Application: The RLC circuit.

Consider an electric circuit with
resistance R, non-zero capacitor
C , and non-zero inductance L, as
in the figure. I (t) : electric current.

R C L

The electric current flowing in such circuit satisfies:

L I ′(t) + R I (t) +
1

C

∫ t

t0

I (s) ds = 0.

Derivate both sides above: L I ′′(t) + R I ′(t) +
1

C
I (t) = 0.

Divide by L: I ′′(t) + 2
( R

2L

)
I ′(t) +

1

LC
I (t) = 0.

Introduce α =
R

2L
and ω =

1√
LC

, then I ′′ + 2α I ′ + ω2 I = 0.

Application: The RLC circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: The characteristic polynomial is p(r) = r2 + 2αr + ω2.
The roots are:

r± =
1

2

[
−2α±

√
4α2 − 4ω2

]
⇒ r± = −α±

√
α2 − ω2.

Case (a) R = 0. This implies α = 0, so r± = ±iω. Therefore,

I1(t) = cos(ωt), I2(t) = sin(ωt).

Remark: When the circuit has no resistance, the current oscillates
without dissipation.



Application: The RLC circuit.

Example

Find real-valued fundamental solutions to I ′′ + 2α I ′ + ω2 I = 0,
where α = R/(2L), ω2 = 1/(LC ), in the cases (a) (b) below.

Solution: Recall: r± = −α±
√

α2 − ω2.

Case (b) R <
√

4L/C . This implies

R2 <
4L

C
⇔ R2

4L2
<

1

LC
⇔ α2 < ω2.

Therefore, r± = −α± i
√

ω2 − α2. The fundamental solutions are

I1(t) = e−αt cos
(√

ω2 − α2 t
)
, I2(t) = e−αt sin

(√
ω2 − α2 t

)
.

I (t) : electric current.

R C L

I

t

e
− t

1

The resistance R damps
the current oscillations.


