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Exact differential equations.

Definition
Given an open rectangle R = (t1, t2)× (u1, u2) ⊂ R2 and
continuously differentiable functions M,N : R → R, denoted as
(t, u) 7→ M(t, u) and (t, u) 7→ N(t, u), the differential equation in
the unknown function y : (t1, t2)→ R given by

N(t, y(t)) y ′(t) + M(t, y(t)) = 0

is called exact iff for every point (t, u) ∈ R holds

∂tN(t, u) = ∂uM(t, u)

Recall: we use the notation: ∂tN =
∂N

∂t
, and ∂uM =

∂M

∂u
.



Exact differential equations.

Example

Show whether the differential equation below is exact,

2ty(t) y ′(t) + 2t + y2(t) = 0.

Solution: We first identify the functions N and M,

[
2ty(t)

]
y ′(t) +

[
2t + y2(t)

]
= 0 ⇒

{
N(t, u) = 2tu,

M(t, u) = 2t + u2.

The equation is exact iff ∂tN = ∂uM. Since

N(t, u) = 2tu ⇒ ∂tN(t, u) = 2u,

M(t, u) = 2t + u2 ⇒ ∂uM(t, u) = 2u.

We conclude: ∂tN(t, u) = ∂uM(t, u). C

Remark: The ODE above is not separable and non-linear.

Exact differential equations.

Example

Show whether the differential equation below is exact,

sin(t)y ′(y) + t2ey(t)y ′(t)− y ′(t) = −y(t) cos(t)− 2tey(t).

Solution: We first identify the functions N and M, if we write[
sin(t) + t2ey(t) − 1

]
y ′(t) +

[
y(t) cos(t) + 2tey(t)

]
= 0,

we can see that

N(t, u) = sin(t) + t2eu − 1 ⇒ ∂tN(t, u) = cos(t) + 2teu,

M(t, u) = u cos(t) + 2teu ⇒ ∂uM(t, u) = cos(t) + 2teu.

The equation is exact, since ∂tN(t, u) = ∂uM(t, u). C



Exact differential equations.

Example

Show whether the linear differential equation below is exact,

y ′(t) = −a(t) y(t) + b(t), a(t) 6= 0.

Solution: We first find the functions N and M,

y ′ + a(t)y − b(t) = 0 ⇒

{
N(t, u) = 1,

M(t, u) = a(t) u − b(t).

The differential equation is not exact, since

N(t, u) = 1 ⇒ ∂tN(t, u) = 0,

M(t, u) = a(t)u − b(t) ⇒ ∂uM(t, u) = a(t).

This implies that ∂tN(t, u) 6= ∂uM(t, u). C
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The Poincaré Lemma.

Remark: The coefficients N and M of an exact equations are the
derivatives of a potential function ψ.

Lemma (Poincaré)

Given an open rectangle R = (t1, t2)× (u1, u2) ⊂ R2, the
continuously differentiable functions M,N : R → R satisfy the
equation

∂tN(t, u) = ∂uM(t, u)

iff there exists a twice continuously differentiable function
ψ : R → R, called potential function, such that for all (t, u) ∈ R
holds

∂uψ(t, u) = N(t, u), ∂tψ(t, u) = M(t, u).

Proof: (⇐) Simple:
∂tN = ∂t∂uψ,

∂uM = ∂u∂tψ,

}
⇒ ∂tN = ∂uM.

(⇒) Difficult: Poincaré, 1880.

The Poincaré Lemma.

Example

Show that the function ψ(t, u) = t2 + tu2 is the potential function
for the exact differential equation

2ty(t) y ′(t) + 2t + y2(t) = 0.

Solution: We already saw that the differential equation above is
exact, since the functions M and N,

N(t, u) = 2tu,

M(t, u) = 2t + u2

}
⇒ ∂tN = 2u = ∂uM.

The potential function is ψ(t, u) = t2 + tu2, since

∂tψ = 2t + u2 = M, ∂uψ = 2tu = N. C

Remark: The Poincaré Lemma only states necessary and sufficient
conditions on N and M for the existence of ψ.
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Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let M,N : R → R be continuously differentiable functions on an
open rectangle R = (t1, t2)× (u1, u2) ⊂ R2. If the differential
equation

N(t, y(t)) y ′(t) + M(t, y(t)) = 0 (1)

is exact, then every solution y : (t1, t2)→ R must satisfy the
algebraic equation

ψ(t, y(t)) = c ,

where c ∈ R and ψ : R → R is a potential function for Eq. (1).

Proof: 0 = N(t, y) y ′ + M(t, y) = ∂yψ(t, y)
dy

dt
+ ∂tψ(t, y)).

0 =
d

dt
ψ(t, y(t)) ⇔ ψ(t, y(t)) = c .



Implicit solutions and the potential function.

Example

Find all solutions y to the equation[
sin(t) + t2ey(t) − 1

]
y ′(t) + y(t) cos(t) + 2tey(t) = 0.

Solution: Recall: The equation is exact,

N(t, u) = sin(t) + t2eu − 1 ⇒ ∂tN(t, u) = cos(t) + 2teu,

M(t, u) = u cos(t) + 2teu ⇒ ∂uM(t, u) = cos(t) + 2teu,

hence, ∂tN = ∂uM. Poincaré Lemma says the exists ψ,

∂uψ(t, u) = N(t, u), ∂tψ(t, u) = M(t, u).

These are actually equations for ψ. From the first one,

ψ(t, u) =

∫ [
sin(t) + t2eu − 1

]
du + g(t).

Implicit solutions and the potential function.

Example

Find all solutions y to the equation[
sin(t) + t2ey(t) − 1

]
y ′(t) + y(t) cos(t) + 2tey(t) = 0.

Solution: ψ(t, u) =

∫ [
sin(t) + t2eu − 1

]
du + g(t). Integrating,

ψ(t, u) = u sin(t) + t2eu − u + g(t).

Introduce this expression into ∂tψ(t, u) = M(t, u), that is,

∂tψ(t, u) = u cos(t) + 2teu + g ′(t) = M(t, u) = u cos(t) + 2teu,

Therefore, g ′(t) = 0, so we choose g(t) = 0. We obtain,

ψ(t, u) = u sin(t) + t2eu − u.

So the solution y satisfies y(t) sin(t) + t2ey(t) − y(t) = c . C



Exact equations (Sect. 2.6).

I Exact differential equations.

I The Poincaré Lemma.
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Remark:
Sometimes a non-exact equation can we transformed into an exact
equation multiplying the equation by an integrating factor. Just
like in the case of linear differential equations.

Generalization: The integrating factor method.

Theorem (Integrating factor)

Let M,N : R → R be continuously differentiable functions on
R = (t1, t2)× (u1, u2) ⊂ R2, with N 6= 0. If the equation

N(t, y(t)) y ′(t) + M(t, y(t)) = 0

is not exact, that is, ∂tN(t, u) 6= ∂uM(t, u), and if the function

1

N(t, u)

[
∂uM(t, u)− ∂tN(t, u)

]
does not depend on the variable u, then the equation

µ(t)
[
N(t, y(t)) y ′(t) + M(t, y(t))

]
= 0

is exact, where
µ′(t)

µ(t)
=

1

N(t, u)

[
∂uM(t, u)− ∂tN(t, u)

]
.



Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation[
t2 + t y(t)

]
y ′(t) +

[
3t y(t) + y2(t)

]
= 0.

Solution: The equation is not exact:

N(t, u) = t2 + tu ⇒ ∂tN(t, u) = 2t + u,

M(t, u) = 3tu + u2 ⇒ ∂uM(t, u) = 3t + 2u,

hence ∂tN 6= ∂uM. We now verify whether the extra condition in
Theorem above holds:[

∂uM(t, u)− ∂tN(t, u)
]

N(t, u)
=

1

(t2 + tu)

[
(3t + 2u)− (2t + u)

]
[
∂uM(t, u)− ∂tN(t, u)

]
N(t, u)

=
1

t(t + u)
(t + u) =

1

t
.

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation[
t2 + t y(t)

]
y ′(t) +

[
3t y(t) + y2(t)

]
= 0.

Solution:

[
∂uM(t, u)− ∂tN(t, u)

]
N(t, u)

=
1

t
.

We find a function µ solution of
µ′

µ
=

[
∂uM − ∂tN

]
N

, that is

µ′(t)

µ(t)
=

1

t
⇒ ln(µ(t)) = ln(t) ⇒ µ(t) = t.

Therefore, the equation below is exact:[
t3 + t2 y(t)

]
y ′(t) +

[
3t2 y(t) + t y2(t)

]
= 0.



Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation[
t2 + t y(t)

]
y ′(t) +

[
3t y(t) + y2(t)

]
= 0.

Solution:
[
t3 + t2 y(t)

]
y ′(t) +

[
3t2 y(t) + t y2(t)

]
= 0.

This equation is exact:

Ñ(t, u) = t3 + t2u ⇒ ∂tÑ(t, u) = 3t2 + 2tu,

M̃(t, u) = 3t2u + tu2 ⇒ ∂uM̃(t, u) = 3t2 + 2tu,

that is, ∂tÑ = ∂uM̃. Therefore, there exists ψ such that

∂uψ(t, u) = Ñ(t, u), ∂tψ(t, u) = M̃(t, u).

From the first equation above we obtain

∂uψ = t3 + t2u ⇒ ψ(t, u) =

∫ (
t3 + t2u

)
du + g(t).

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation[
t2 + t y(t)

]
y ′(t) +

[
3t y(t) + y2(t)

]
= 0.

Solution: ψ(t, u) =

∫ (
t3 + t2u

)
du + g(t).

Integrating, ψ(t, u) = t3u +
1

2
t2u2 + g(t).

Introduce ψ in ∂tψ = M̃, where M̃ = 3t2u + tu2. So,

∂tψ(t, u) = 3t2u + tu2 + g ′(t) = M̃(t, u) = 3t2u + tu2,

So g ′(t) = 0 and we choose g(t) = 0. We conclude that a

potential function is ψ(t, u) = t3u +
1

2
t2u2.

And every solution y satisfies t3 y(t) +
1

2
t2

[
y(t)

]2
= c . C


