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Exact differential equations.

Definition

Given an open rectangle R = (t1, t5) x (u1, u2) C R? and
continuously differentiable functions M, N : R — R, denoted as
(t,u) — M(t,u) and (t,u) — N(t,u), the differential equation in
the unknown function y : (t1, t2) — R given by

N(t,y(t)) y'(t) + M(t, y(t)) = 0
is called exact iff for every point (t, u) € R holds

O:N(t,u) = 0,M(t, u)

ON oM
Recall: we use the notation: O;N = —, and O, M = —.
ot du




Exact differential equations.

Example
Show whether the differential equation below is exact,

2ty(t) y'(t) + 2t + y?(t) = 0.
Solution: We first identify the functions N and M,

N(t,u) = 2tu,

2ty ()] y'(t) + 2t + y*(t)] =0 = { M(t,u) = 2t + u°.

The equation is exact iff ;N = 0,M. Since
N(t,u) =2tu = O:N(t,u)="2u,
M(t,u) =2t +uv*> = 0,M(t,u) =2u.
We conclude: 0:N(t, u) = 0,M(t, u). <

Remark: The ODE above is not separable and non-linear.

Exact differential equations.

Example
Show whether the differential equation below is exact,

sin(t)y’(v) + t2e"y/(t) — y'(t) = —y(t) cos(t) — 2te”(?).
Solution: We first identify the functions N and M, if we write
[sin(t) + t2e() — 1] y/(t) + [y(t) cos(t) + 2te(®] =0,
we can see that
N(t,u) =sin(t) + t?e* —1 =  9:N(t,u) = cos(t) + 2te",

M(t, u) = ucos(t) + 2te" = 9,M(t,u) = cos(t) + 2te".

The equation is exact, since 0;N(t, u) = d,M(t, u). <




Exact differential equations.

Example
Show whether the linear differential equation below is exact,

y'(t) = —a(t) y(t) + b(t),  a(t) #0.
Solution: We first find the functions N and M,

fa(tly - b(f) =0 = | NEu=1L

a — =

4 d M(t,u) = a(t) u — b(t).
The differential equation is not exact, since

N(t,u)=1 = 0:N(t,u) =0,

M(t,u) = a(t)u — b(t) = O ,M(t,u) = a(t).
This implies that 0:N(t, u) # 0,M(t, u).
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The Poincaré Lemma.
Remark: The coefficients N and M of an exact equations are the
derivatives of a potential function ).

Lemma (Poincaré)

Given an open rectangle R = (t1,t2) x (u1, up) C R?, the
continuously differentiable functions M, N : R — R satisfy the

;
cqation O:N(t, u) = DuM(t, u)

iff there exists a twice continuously differentiable function
Y 1 R — R, called potential function, such that for all (t,u) € R

hold

O gt u) = N(tu),  Bwb(t,u) = M(t, u).
| 0N = 8,0,

Proof: (<) Simple: OeN = M.

roof: (<) Simple oM — 3u5’t¢,} = O

(=) Difficult: Poincaré, 1880.

The Poincaré Lemma.

Example

Show that the function 9(t, u) = t? + tu? is the potential function
for the exact differential equation

2ty(t) y'(t) + 2t + y?(t) = 0.
Solution: We already saw that the differential equation above is
exact, since the functions M and N,
N(t,u) = 2tu,
M(t,u) = 2t + v°
The potential function is ¥(t, u) = t? + tu?, since

} = 8tN:2u:8ul\/l.

Oeth =2t + u?> = M, dut) = 2tu = N. <

Remark: The Poincaré Lemma only states necessary and sufficient
conditions on NN and M for the existence of 1.
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Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let M, N : R — R be continuously differentiable functions on an
open rectangle R = (t1, t2) x (u1, up) C R2. If the differential
equation

N(t, y(t)) y'(t) + M(t,y(t)) =0 (1)

is exact, then every solution y : (t1,ta) — R must satisfy the
algebraic equation

v(t,y(t)) = c,
where c € R and ¢ : R — R is a potential function for Eq. (1).

, d
Proof: 0= N(t,y)y' + M(t.y) = dyu(t.y) = + dri(t. ).
d

0= a’(ﬁ(tv)/(t)) A w(tvy(t)) = C. L]




Implicit solutions and the potential function.

Example
Find all solutions y to the equation

[sin(t) 4 t2e() — 1] y/(t) + y(t) cos(t) + 2te*™®) = 0.
Solution: Recall: The equation is exact,
N(t,u) =sin(t) + t?e* =1 = 9;N(t,u) = cos(t) + 2te",
M(t,u) = ucos(t) +2te” = O,M(t,u) = cos(t) + 2te",
hence, 0;:N = 0,M. Poincaré Lemma says the exists 1),

Ou(t,u) = N(t,u), Ow(t,u) = M(t,u).

These are actually equations for ¢). From the first one,

Y(t,u) = /[sin(t) + t?e¥ — 1| du+ g(t).

Implicit solutions and the potential function.

Example
Find all solutions y to the equation

[sin(t) + t2e(®) — 1] y/(t) + y(t) cos(t) + 2te* ) = 0.
Solution: ¥(t, u) = /{sin(t) + t%e" — 1] du + g(t). Integrating,
Y(t,u) = usin(t) + t?e” — u+ g(t).
Introduce this expression into 0:¢(t, u) = M(t, u), that is,
O)(t, u) = ucos(t) + 2te” + g'(t) = M(t, u) = ucos(t) + 2te",

Therefore, g’(t) = 0, so we choose g(t) = 0. We obtain,
W(t, u) = usin(t) + t?e" — u.

So the solution y satisfies y(t)sin(t) + t2e¥(t) — y(t) = c. <
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Remark:

Sometimes a non-exact equation can we transformed into an exact
equation multiplying the equation by an integrating factor. Just
like in the case of linear differential equations.

Generalization: The integrating factor method.

Theorem (Integrating factor)

Let M, N : R — R be continuously differentiable functions on
R = (t1, t2) x (ug, un) C R?, with N # 0. If the equation

N(t,y(t)) y'(t) + M(t,y(t)) =0

is not exact, that is, :N(t,u) # 0,M(t, u), and if the function

N(t o) [0uM(t, u) — O:N(t, u)]

does not depend on the variable u, then the equation

p(t)[N(t, y(t)) y'(t) + M(t,y(t))] =0

is exact, where ’L:L/((:)) = N(: 0 [0uM(t, u) — O:N(t, u)].




Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

(2 +ty(t)] ¥/ (t) + [Bty(t) +y*(t)] =0.
Solution: The equation is not exact:
N(t,u) = 2 +tu = O:N(t,u) =2t + u,
M(t,u) =3tu+u®> = 9,M(t,u) =3t +2u,

hence 0;N # 0,M. We now verify whether the extra condition in
Theorem above holds:

QuM(t,u) — O:N(t,u)] 1 (3t +2u) — (2t + u)]

N(t, u) (t2 + tu)
[&,M(t, u) — O:N(t, u)] B B
N(t, u) et TY T

Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

(2 +ty(t)] ¥/ (t) + [Bty(t) +y*(t)] =0.

_[0uM(t,u) = O:N(t,u)] 1
Solution: N(t, 0) =7

' [0yM — O:N]

We find a function p solution of — =
14 N

, that is

ig;:% = In(u(t))=In(t) = p(t)=t

Therefore, the equation below is exact:

[+ 2y (t)] v/ (t) + [Bt2y(t) + ty*(t)] = 0.




Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

(2 +ty(t)] ¥/ (t) + Bty(t) + y*(t)] = 0.
Solution: [t* + t y(t)] y/(t) + [3t% y(t) + ty*(t)] = 0.
This equation is exact:
N(t,u) =t +t2u = 9;N(t,u) =3t + 2tu,
M(t,u) =3t%u+tu®> = 0,M(t,u) = 3t> + 2tu,
that is, 9;N = 0, M. Therefore, there exists Y such that

~ ~

Out(t, u) = N(t,u), Or)(t, u) = M(t, u).

From the first equation above we obtain

o =t+t2u = Y(t,u) :/(t3+t2u) du + g(t).

Generalization: The integrating factor method.

Example
Find all solutions y to the differential equation

(2 + ty(8)] ¥/ (t) + [Bty(t) +y*(t)] =0.

Solution: ¢ (t, u) = /(t3 + t?u) du + g(t).

1
Integrating, ¥(t,u) = t3u + 5 t2u? + g(t).

Introduce v in ) = M, where M = 3t2u + tu?. So,
Opb(t, u) = 3t2u + tu® + g'(t) = M(t,u) = 3t%u + tu?,

So g’(t) = 0 and we choose g(t) = 0. We conclude that a
1
potential function is 1 (t, u) = t3u + 3 202,
1
And every solution y satisfies > y(t) + 5 t2 [y(t)f = c.




