On linear and non-linear equations. (Sect. 2.4).

- ▶ Review: Linear differential equations.
- ▶ Non-linear differential equations.
- ▶ Properties of solutions to non-linear ODE.
- ► The Bernoulli equation.

Review: Linear differential equations.

Theorem (Variable coefficients)

Given continuous functions $a, b: (t_1, t_2) \to \mathbb{R}$, with $t_2 > t_1$, and given constants $t_0 \in (t_1, t_2)$, $y_0 \in \mathbb{R}$, the IVP

$$y' = -a(t) y + b(t),$$
 $y(t_0) = y_0,$

has the unique solution $y:(t_1,t_2) o \mathbb{R}$ given by

$$y(t) = \frac{1}{\mu(t)} \Big[y_0 + \int_{t_0}^t \mu(s) \, b(s) \, ds \Big], \tag{1}$$

where the integrating factor function is given by

$$\mu(t)=e^{A(t)}, \qquad A(t)=\int_{t_0}^t a(s)\,ds.$$

Proof: Based on the integration factor method.

Review: Linear differential equations.

Remarks:

- ▶ The Theorem above assumes that the coefficients a, b, are continuous in $(t_1, t_2) \subset \mathbb{R}$.
- ▶ The Theorem above implies:
 - (a) There is an explicit expression for the solutions of a linear IVP, given in Eq. (1).
 - (b) For every initial condition $y_0 \in \mathbb{R}$ there exists a unique solution to a linear IVP.
 - (c) For every initial condition $y_0 \in \mathbb{R}$ the corresponding solution y(t) of a linear IVP is defined for all $t \in (t_1, t_2)$.
- ► None of these properties holds for solutions to non-linear differential equations.

On linear and non-linear equations. (Sect. 2.4).

- ▶ Review: Linear differential equations.
- ► Non-linear differential equations.
- ▶ Properties of solutions to non-linear ODE.
- ► The Bernoulli equation.

Non-linear differential equations.

Definition

An ordinary differential equation y'(t) = f(t, y(t)) is called *non-linear* iff the function $(t, u) \mapsto f(t, u)$ is non-linear in the second argument.

Example

- (a) The differential equation $y'(t)=\frac{t^2}{y^3(t)}$ is non-linear, since the function $f(t,u)=t^2/u^3$ is non-linear in the second argument.
- (b) The differential equation $y'(t) = 2ty(t) + \ln(y(t))$ is non-linear, since the function $f(t, u) = 2tu + \ln(u)$ is non-linear in the second argument, due to the term $\ln(u)$.
- (c) The differential equation $\frac{y'(t)}{y(t)} = 2t^2$ is linear, since the function $f(t, u) = 2t^2u$ is linear in the second argument.

On linear and non-linear equations. (Sect. 2.4).

- ▶ Review: Linear differential equations.
- ► Non-linear differential equations.
- ▶ Properties of solutions to non-linear ODE.
- ► The Bernoulli equation.

Theorem (Non-linear ODE)

Fix a non-empty rectangle $R=(t_1,t_2)\times (u_1,u_2)\subset \mathbb{R}^2$ and fix a function $f:R\to\mathbb{R}$ denoted as $(t,u)\mapsto f(t,u)$. If the functions f and $\partial_u f$ are continuous on R, and $(t_0,y_0)\in R$, then there exists a smaller open rectangle $\hat{R}\subset R$ with $(t_0,y_0)\in \hat{R}$ such that the IVP

$$y'(t) = f(t, y(t)),$$
 $y(t_0) = y_0$

has a unique solution y on the set $\hat{R} \subset \mathbb{R}^2$.

Remarks:

- (i) There is no general explicit expression for the solution y(t) to a non-linear ODE.
- (ii) Non-uniqueness of solution to the IVP above may happen at points $(t, u) \in \mathbb{R}^2$ where $\partial_u f$ is not continuous.
- (iii) Changing the initial data y_0 may change the domain on the variable t where the solution y(t) is defined.

Properties of solutions to non-linear ODE.

Example

Given non-zero constants a_1 , a_2 , a_3 , a_4 , find every solution y of

$$y' = \frac{t^2}{(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1)}.$$

Solution: The ODE is separable. So first, rewrite the equation as

$$(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1) y' = t^2,$$

then we integrate in t on both sides of the equation,

$$\int (y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1) y' dt = \int t^2 dt + c.$$

Introduce the substitution u = y(t), so du = y'(t) dt,

$$\int (u^4 + a_4 u^3 + a_3 u^2 + a_2 u + a_1) du = \int t^2 dt + c.$$

Example

Given non-zero constants a_1 , a_2 , a_3 , a_4 , find every solution y of

$$y' = \frac{t^2}{(y^4 + a_4 y^3 + a_3 y^2 + a_2 y + a_1)}.$$

Solution:

Recall: $\int (u^4 + a_4 u^3 + a_3 u^2 + a_2 u + a_1) du = \int t^2 dt + c.$

Integrate, and in the result substitute back the function y:

$$\frac{1}{5}y^5(t) + \frac{a_4}{4}y^4(t) + \frac{a_3}{3}y^3(t) + \frac{a_2}{2}y^2(t) + a_1y(t) = \frac{t^3}{3} + c.$$

The solution is in implicit form. It is the root of a polynomial degree five. There is no formula for the roots of a general polynomial degree five or bigger.

There is no explicit expression for solutions y of the ODE. \triangleleft

Properties of solutions to non-linear ODE.

Example

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t),$$
 $y(0) = 0.$

Remark: The equation above is non-linear, separable, and the function $f(t, u) = u^{1/3}$ has derivative

$$\partial_u f = \frac{1}{3} \frac{1}{u^{2/3}},$$

so $\partial_u f$ is not continuous at u = 0.

The initial condition above is precisely where f is not continuous.

Solution: There are two solutions to the IVP above:

The first solution is

$$y_1(t) = 0.$$

Example

Find every solution y of the initial value problem

$$y'(t) = y^{1/3}(t),$$
 $y(0) = 0.$

Solution: The second solution is obtained as follows:

$$\int [y(t)]^{-1/3} y'(t) dt = \int dt + c.$$

Then, the substitution u = y(t), with du = y'(t) dt, implies that

$$\int u^{-1/3} du = \int dt + c \quad \Rightarrow \quad \frac{3}{2} \big[y(t) \big]^{2/3} = t + c,$$

$$y(t) = \left[\frac{2}{3}(t+c)\right]^{3/2} \Rightarrow 0 = y(0) = \left(\frac{2}{3}c\right)^{3/2} \Rightarrow c = 0.$$

So, the second solution is: $y_2(t) = \left(\frac{2}{3}t\right)^{3/2}$. Recall $y_1(t) = 0$. \triangleleft

Properties of solutions to non-linear ODE.

Example

Find the solution y to the initial value problem

$$y'(t) = y^2(t), y(0) = y_0.$$

Solution: This is a separable equation. So,

$$\int \frac{y'\,dt}{y^2} = \int dt + c \quad \Rightarrow \quad -\frac{1}{y} = t + c \quad \Rightarrow \quad y(t) = -\frac{1}{t+c}.$$

Using the initial condition in the expression above,

$$y_0 = y(0) = -\frac{1}{c}$$
 \Rightarrow $c = -\frac{1}{y_0}$ \Rightarrow $y(t) = \frac{1}{\left(\frac{1}{y_0} - t\right)}$.

This solution diverges at $t = 1/y_0$, so its domain is $\mathbb{R} - \{y_0\}$.

The solution domain depends on the values of the initial data y_0 .

Summary:

- ► Linear ODE:
 - (a) There is an explicit expression for the solution of a linear IVP.
 - (b) For every initial condition $y_0 \in \mathbb{R}$ there exists a unique solution to a linear IVP.
 - (c) The domain of the solution of a linear IVP is defined for every initial condition $y_0 \in \mathbb{R}$.
- ► Non-linear ODE:
 - (i) There is no general explicit expression for the solution y(t) to a non-linear ODE.
 - (ii) Non-uniqueness of solution to a non-linear IVP may happen at points $(t, u) \in \mathbb{R}^2$ where $\partial_u f$ is not continuous.
 - (iii) Changing the initial data y_0 may change the domain on the variable t where the solution y(t) is defined.

On linear and non-linear equations. (Sect. 2.4).

- ▶ Review: Linear differential equations.
- ▶ Non-linear differential equations.
- ▶ Properties of solutions to non-linear ODE.
- ► The Bernoulli equation.

The Bernoulli equation.

Remark: The Bernoulli equation is a non-linear differential equation that can be transformed into a linear differential equation.

Definition

Given functions p, $q : \mathbb{R} \to \mathbb{R}$ and a real number n, the differential equation in the unknown function $y : \mathbb{R} \to \mathbb{R}$ given by

$$y' + p(t)y = q(t)y^n$$

is called the Bernoulli equation.

Theorem

The function $y : \mathbb{R} \to \mathbb{R}$ is a solution of the Bernoulli equation for

$$y' + p(t) y = q(t) y^n, \qquad n \neq 1,$$

iff the function $v = 1/y^{(n-1)}$ is solution of the linear differential equation v' - (n-1)p(t) v = -(n-1)q(t).

The Bernoulli equation.

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation

$$y'=a_0y+b_0y^3.$$

Solution: This is a Bernoulli equation. Divide the equation by y^3 ,

$$\frac{y'}{y^3} = \frac{a_0}{y^2} + b_0.$$

Introduce the function $v = 1/y^2$, with derivative $v' = -2(y'/y^3)$, into the differential equation above,

$$-\frac{v'}{2} = a_0 v + b_0 \quad \Rightarrow \quad v' = -2a_0 v - 2b_0 \quad \Rightarrow \quad v' + 2a_0 v = -2b_0.$$

The Bernoulli equation.

Example

Given arbitrary constants a_0 and b_0 , find every solution of the differential equation $v' = a_0 v + b_0 v^3$.

Solution: Recall: $v' + 2a_0v = -2b_0$.

The last equation is a linear differential equation for v. This equation can be solved using the integrating factor method. Multiply the equation by $\mu(t)=e^{2a_0t}$,

$$(e^{2a_0t}v)' = -2b_0 e^{2a_0t} \quad \Rightarrow \quad e^{2a_0t}v = -\frac{b_0}{a_0} e^{2a_0t} + c$$

We obtain that $v = c e^{-2a_0t} - \frac{b_0}{a_0}$. Since $v = 1/y^2$,

$$\frac{1}{y^2} = c e^{-2a_0t} - \frac{b_0}{a_0} \quad \Rightarrow \quad y = \pm \frac{1}{\left(c e^{-2a_0t} - \frac{b_0}{a_0}\right)^{1/2}}.$$