Modeling with first order equations (Sect. 2.3).

- ▶ Main example: Salt in a water tank.
 - ► The experimental device.
 - The main equations.
 - Analysis of the mathematical model.
 - Predictions for particular situations.

Salt in a water tank.

Problem: Describe the salt concentration in a tank with water if salty water comes in and goes out of the tank.

Main ideas of the test:

- ► Since the mass of salt and water is conserved, we construct a mathematical model for the salt concentration in water.
- ▶ The amount of salt in the tank depends on the salt concentration coming in and going out of the tank.
- ▶ The salt in the tank also depends on the water rates coming in and going out of the tank.
- ▶ To construct a model means to find the differential equation that takes into account the above properties of the system.
- ► Finding the solution to the differential equation with a particular initial condition means we can predict the evolution of the salt in the tank if we know the tank initial condition.

Modeling with first order equations (Sect. 2.3).

- ► Main example: Salt in a water tank.
 - ► The experimental device.
 - ► The main equations.
 - ► Analysis of the mathematical model.
 - Predictions for particular situations.

The experimental device.

Definitions:

- $ightharpoonup r_i(t)$, $r_o(t)$: Rates in and out of water entering and leaving the tank at the time t.
- ▶ $q_i(t)$, $q_o(t)$: Salt concentration of the water entering and leaving the tank at the time t.
- \triangleright V(t): Water volume in the tank at the time t.
- ightharpoonup Q(t): Salt mass in the tank at the time t.

Units:

$$egin{aligned} igl[r_i(t)igr] &= igl[r_o(t)igr] = rac{ ext{Volume}}{ ext{Time}}, & igl[q_i(t)igr] &= igl[q_o(t)igr] = rac{ ext{Mass}}{ ext{Volume}}. \ & igl[V(t)igr] &= ext{Volume}, & igl[Q(t)igr] &= ext{Mass}. \end{aligned}$$

Modeling with first order equations (Sect. 2.3).

- ► Main example: Salt in a water tank.
 - ► The experimental device.
 - ► The main equations.
 - Analysis of the mathematical model.
 - Predictions for particular situations.

The main equations.

Remark: The mass conservation provides the main equations of the mathematical description for salt in water.

Main equations:

$$\frac{d}{dt}V(t) = r_i(t) - r_o(t),$$
 Volume conservation, (1)

$$\frac{d}{dt}Q(t) = r_i(t) q_i(t) - r_o(t) q_o(t), \quad \text{Mass conservation}, \quad (2)$$

$$q_o(t) = \frac{Q(t)}{V(t)},$$
 Instantaneously mixed, (3)

$$r_i, r_o$$
: Constants. (4)

The main equations.

Remarks:

$$\left[\frac{dV}{dt}\right] = \frac{\text{Volume}}{\text{Time}} = \left[r_i - r_o\right],$$

$$\left[\frac{dQ}{dt}\right] = \frac{\mathsf{Mass}}{\mathsf{Time}} = \left[r_i q_i - r_o q_o\right],$$

$$\left[r_iq_i - r_oq_o\right] = rac{\mathsf{Volume}}{\mathsf{Time}} \, rac{\mathsf{Mass}}{\mathsf{Volume}} = rac{\mathsf{Mass}}{\mathsf{Time}}.$$

Modeling with first order equations (Sect. 2.3).

- ► Main example: Salt in a water tank.
 - ► The experimental device.
 - ► The main equations.
 - ► Analysis of the mathematical model.
 - Predictions for particular situations.

Analysis of the mathematical model.

Eqs. (4) and (1) imply

$$V(t) = (r_i - r_o) t + V_0, (5)$$

where $V(0) = V_0$ is the initial volume of water in the tank.

Eqs. (3) and (2) imply

$$\frac{d}{dt}Q(t) = r_i q_i(t) - r_o \frac{Q(t)}{V(t)}.$$
 (6)

Eqs. (5) and (6) imply

$$\frac{d}{dt}Q(t) = r_i \, q_i(t) - \frac{r_o}{(r_i - r_o) \, t + V_0} \, Q(t). \tag{7}$$

Analysis of the mathematical model.

Recall:
$$\frac{d}{dt}Q(t) = r_i q_i(t) - \frac{r_o}{(r_i - r_o)t + V_0} Q(t)$$
.

Notation:
$$a(t) = \frac{r_o}{(r_i - r_o) t + V_0}$$
, and $b(t) = r_i q_i(t)$.

The main equation of the description is given by

$$Q'(t) = -a(t) Q(t) + b(t).$$

Linear ODE for Q. Solution: Integrating factor method.

$$Q(t)=rac{1}{\mu(t)}\left[Q_0+\int_0^t \mu(s)\,b(s)\,ds
ight]$$

with $Q(0)=Q_0$, where $\mu(t)=e^{A(t)}$ and $A(t)=\int_0^t a(s)\,ds$.

Modeling with first order equations (Sect. 2.3).

- ► Main example: Salt in a water tank.
 - ► The experimental device.
 - ▶ The main equations.
 - ► Analysis of the mathematical model.
 - ► Predictions for particular situations.

Predictions for particular situations.

Example

Assume that $r_i = r_o = r$ and q_i are constants. If r, q_i , Q_0 and V_0 are given, find Q(t).

Solution: Always holds Q'(t) = -a(t) Q(t) + b(t). In this case:

$$a(t) = \frac{r_o}{(r_i - r_o)t + V_0} \quad \Rightarrow \quad a(t) = \frac{r}{V_0} = a_0,$$

$$b(t) = r_i q_i(t) \Rightarrow b(t) = rq_i = b_0.$$

We need to solve the IVP:

$$Q'(t) = -a_0 Q(t) + b_0, \quad Q(0) = Q_0.$$

Predictions for particular situations.

Example

Assume that $r_i = r_o = r$ and q_i are constants. If r, q_i , Q_0 and V_0 are given, find Q(t).

Solution: Recall the IVP: $Q'(t) = -a_0 Q(t) + b_0$, $Q(0) = Q_0$.

Integrating factor method:

$$A(t) = a_0 t, \quad \mu(t) = e^{a_0 t}, \quad Q(t) = rac{1}{\mu(t)} \left[Q_0 + \int_0^t \mu(s) \, b_0 \, ds
ight].$$

$$\int_0^t \mu(s) \, b_0 \, ds = \frac{b_0}{a_0} \left(e^{a_0 t} - 1 \right) \Rightarrow Q(t) = e^{-a_0 t} \left[Q_0 + \frac{b_0}{a_0} \left(e^{a_0 t} - 1 \right) \right].$$

So:
$$Q(t) = \left(Q_0 - \frac{b_0}{a_0}\right) e^{-a_0 t} + \frac{b_0}{a_0}$$
. But $\frac{b_0}{a_0} = rq_i \frac{V_0}{r} = q_i V_0$.

We conclude: $Q(t) = (Q_0 - q_i V_0) e^{-rt/V_0} + q_i V_0$.

Predictions for particular situations.

Example

Assume that $r_i = r_o = r$ and q_i are constants. If r, q_i , Q_0 and V_0 are given, find Q(t).

Solution: Recall: $Q(t) = (Q_0 - q_i V_0) e^{-rt/V_0} + q_i V_0$.

Particular cases:

$$\blacktriangleright \ \frac{Q_0}{V_0} > q_i;$$

•
$$\frac{Q_0}{V_0} = q_i$$
, so $Q(t) = Q_0$;

$$\qquad \qquad \frac{Q_0}{V_0} < q_i.$$

Predictions for particular situations.

Example

Assume that $r_i = r_o = r$ and q_i are constants. If r = 2 liters/min, $q_i = 0$, $V_0 = 200$ liters, $Q_0/V_0 = 1$ grams/liter, find t_1 such that $q(t_1) = Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: This problem is a particular case $q_i=0$ of the previous Example. Since $Q(t)=\left(Q_0-q_i\,V_0\right)\,e^{-rt/V_0}+q_i\,V_0$, we get

$$Q(t) = Q_0 e^{-rt/V_0}.$$

Since $V(t)=(r_i-r_o)\,t+V_0$ and $r_i=r_o$, we obtain $V(t)=V_0$. So q(t)=Q(t)/V(t) is given by $q(t)=\frac{Q_0}{V_0}\,e^{-rt/V_0}$. Therefore,

$$rac{1}{100} \, rac{Q_0}{V_0} = q(t_1) = rac{Q_0}{V_0} \, e^{-rt_1/V_0} \quad \Rightarrow \quad e^{-rt_1/V_0} = rac{1}{100}.$$

Predictions for particular situations.

Example

Assume that $r_i=r_o=r$ and q_i are constants. If r=2 liters/min, $q_i=0$, $V_0=200$ liters, $Q_0/V_0=1$ grams/liter, find t_1 such that $q(t_1)=Q(t_1)/V(t_1)$ is 1% the initial value.

Solution: Recall: $e^{-rt_1/V_0}=rac{1}{100}$. Then,

$$-rac{r}{V_0} t_1 = \ln\Bigl(rac{1}{100}\Bigr) = -\ln(100) \quad \Rightarrow \quad rac{r}{V_0} t_1 = \ln(100).$$

 \triangleleft

We conclude that $t_1 = \frac{V_0}{r} \ln(100)$.

In this case: $t_1 = 100 \ln(100)$.

Predictions for particular situations.

Example

Assume that $r_i = r_o = r$ are constants. If $r = 5x10^6$ gal/year, $q_i(t) = 2 + \sin(2t)$ grams/gal, $V_0 = 10^6$ gal, $Q_0 = 0$, find Q(t).

Solution: Recall: Q'(t) = -a(t) Q(t) + b(t). In this case:

$$a(t) = \frac{r_o}{(r_i - r_o) t + V_0} \quad \Rightarrow \quad a(t) = \frac{r}{V_0} = a_0,$$

$$b(t) = r_i q_i(t) \Rightarrow b(t) = r[2 + \sin(2t)].$$

We need to solve the IVP: $Q'(t) = -a_0 Q(t) + b(t)$, Q(0) = 0.

$$Q(t) = \frac{1}{\mu(t)} \int_0^t \mu(s) \, b(s) \, ds, \quad \mu(t) = e^{a_0 t},$$

We conclude: $Q(t) = re^{-rt/V_0} \int_0^t e^{rs/V_0} \left[2 + \sin(2s)\right] ds$.