Review for Exam 4.

» 5 or 6 problems.
» Exam covers: 10.2-10.10, 11.1-11.5.
> Infinite series (10.2).
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The integral test (10.3).

Comparison tests (10.4).

The ratio test (10.5).

Alternating series (10.6).

Power series (10.7).

Taylor and Maclaurin series (10.8).
Convergence of Taylor series (10.9).
The binomial series (10.10).
Parametrization of plane curves (11.1).
Calculus with parametric curves (11.2).
Polar coordinates (11.3).

Graphing in polar coordinates (11.4).

> Areas in polar coordinates (11.5), not included.



Convergence tests for infinite series (10.2)

Example

Determine whether the series below converge or not. Specify the
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The series may converge or diverge.
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The series may converge or diverge. It converges: Geometric series.
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Example

2
Determine whether the series Z n+2)!

ﬁ converges or not.
n= 1 ’

Specify the test you use.
. . : . (n+2)!
Solution: Notice: n-th term test gives lim u =
n—oo (—3)"n!
n-term test inconclusive. This is an alternating series. We use the
ratio test on |a,|, that is,
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Then ratio test implies the series above converges absolutely;
and the alternating series theorem implies that it converges. <



Power and Taylor series (10.7-10.9)

Example

Find the Taylor polynomial order 3 centered at x = 0 of the
function f(x) = e~2%. Estimate the error made when using this
polynomial to approximate f over [—2,2].
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Find the Taylor polynomial order 3 centered at x = 0 of the
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Power and Taylor series (10.7-10.9)

Example

Find the Taylor polynomial order 3 centered at x = 0 of the
function f(x) = e~2%. Estimate the error made when using this
polynomial to approximate f over [—2,2].

3 £(n)(0)
Solution: The Taylor polynomial is T3(x) = Z x".

flx) =2, f'(x)=4e>, f(x)=-8e >,

T30 = £(0) + F1(0)x + 102 4 L0

4 8 4
T3(X)=1—2x+jx2—§x3:> T3(x):172x+2x2—§x3.
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Find the Taylor polynomial order 3 centered at x = 0 of the
function f(x) = e~2*. Estimate the error made when using this
polynomial to approximate f over [—2,2].

4
Solution: Recall: T3(x) =1—2x+2x% — 3 X3

A bound for the error on f by T, centered at a over [b, c] is
’X _ a‘n—l—l

(n+1)°
In our case: n =3, a=0, [b,c] =[-2,2] and F*)(x) = 16 e~
Since |F*)(x)| < F*)(—2) = 16 e* = M, then

|Ra(x)] < M 1FMHD(x) < M over [b,c].

16 e*|x|* 2424
A R < 252

Re(x)] < .




Power and Taylor series (10.7-10.9)

Example

Find the Taylor series centered at x = 0 of f(x) = e~?* and
determine the open interval of convergence.
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Find the Taylor series centered at x = 0 of f(x) = e~?* and
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Recall: f/(x) = —2e7%, f"(x) =4e 2%, f/(x) = —8e X

)=
This implies the formula (" (x) = (—2)" e~2*. Therefore,

o0 (n) oo . n
f(x)zzif I(O)X” = f(x):zﬂx"

!
~ nl —~ nl
The interval of convergence can be obtained with the ratio test,
app1 X" ‘ B ‘ n+1 i n! x| 1
anpx”" (n + 1)! (—2)xn n+1
. . 2|x| , .
Since lim ——— =0, the interval of convergence is (—00, ). <

n—oo n



Parametric curves and polar coordinates (11.1-11.4)

Example

Graph on the xy-plane the curve r(0) = 1 + cos(#) for 6 € [0, 7].
Find the slope of the line tangent to the curve at 6 = /2.
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Solution: This is half a cardiod:
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Example
Graph on the xy-plane the curve r(0) = 1 + cos(#) for 6 € [0, 7].
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1 x(0) = r(6) cos(0).
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Graph on the xy-plane the curve r(0) = 1 + cos(#) for 6 € [0, 7].
Find the slope of the line tangent to the curve at 6 = /2.

Solution: This is half a cardiod:
The equation for the tangent line
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. I y(6) = r(9) sin(9),
x(8) = r(6) cos(6).

y'(0) = [—sin(0)] sin(0) + [1 + cos(#)] cos(0)
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Example
Graph on the xy-plane the curve r(0) = 1 + cos(#) for 6 € [0, 7].
Find the slope of the line tangent to the curve at 6 = /2.

Solution: This is half a cardiod:
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x(8) = r(6) cos(6).

y'(0) = [—sin(#)] sin(0) + [1 + cos(8)] cos() = y'(n/2) = —1.
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Example
Graph on the xy-plane the curve r(0) = 1 + cos(#) for 6 € [0, 7].
Find the slope of the line tangent to the curve at 6 = /2.

Solution: This is half a cardiod:
The equation for the tangent line

Yy | r=1+cos(®)
. y'(0)
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. I y(6) = r(9) sin(9),
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x'(0) = [—sin(0)] cos(8)+ [14cos(8)][— sin(6)]
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Example
Graph on the xy-plane the curve r(0) = 1 + cos(#) for 6 € [0, 7].
Find the slope of the line tangent to the curve at 6 = /2.

Solution: This is half a cardiod:
The equation for the tangent line

Yy | r=1+cos(®)
. y'(0)
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. I y(6) = r(9) sin(9),
x(8) = r(6) cos(6).
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x'(0) = [—sin(0)] cos(0)+[1+cos(9)][—sin(0)] = x'(7/2) = —1.



Parametric curves and polar coordinates (11.1-11.4)

Example
Graph on the xy-plane the curve r(0) = 1 + cos(#) for 6 € [0, 7].
Find the slope of the line tangent to the curve at 6 = /2.

Solution: This is half a cardiod:
The equation for the tangent line

Yy | r=1+cos(®)
. y'(0)
\ slopeat9|sm—xl(0).
. I y(6) = r(9) sin(9),
x(8) = r(6) cos(6).

y'(0) = [—sin(#)] sin(0) + [1 + cos(8)] cos() = y'(n/2) = —1.
x'(0) = [—sin(0)] cos(0)+[1+cos(9)][—sin(0)] = x'(7/2) = —1.

We conclude: m = 1. <
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Volumes using cross-sections (6.1)

Example

Find the volume of the solid between the planes x = 3 and x = —3
with cross-sections perpendicular to the x-axis given by squares
inscribed in the circle x* 4+ y2 = 0.
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inscribed in the circle x* 4+ y2 = 0.

Solution: Let a(x) denote the side of a cross-section perpendicular
at the x-axis.



Volumes using cross-sections (6.1)

Example

Find the volume of the solid between the planes x = 3 and x = —3
with cross-sections perpendicular to the x-axis given by squares
inscribed in the circle x* 4+ y2 = 0.

Solution: Let a(x) denote the side of a cross-section perpendicular
at the x-axis. The area of such section is

A(x) = [a(x)]",



Volumes using cross-sections (6.1)

Example

Find the volume of the solid between the planes x = 3 and x = —3
with cross-sections perpendicular to the x-axis given by squares
inscribed in the circle x* 4+ y2 = 0.

Solution: Let a(x) denote the side of a cross-section perpendicular
at the x-axis. The area of such section is

A(x) = [a(x)f, a(x) =2v9 — x2.



Volumes using cross-sections (6.1)

Example

Find the volume of the solid between the planes x = 3 and x = —3
with cross-sections perpendicular to the x-axis given by squares
inscribed in the circle x* 4+ y2 = 0.

Solution: Let a(x) denote the side of a cross-section perpendicular
at the x-axis. The area of such section is

A(x) = [a(x)f, a(x) =2v9 — x2.

The volume of such solid is

v—/3 A(x) dx
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inscribed in the circle x* 4+ y2 = 0.

Solution: Let a(x) denote the side of a cross-section perpendicular
at the x-axis. The area of such section is

A(x) = [a(x)f, a(x) =2v9 — x2.

The volume of such solid is

v—/3 A(x)dx—/3 4(9 — x?) dx

-3 -3



Volumes using cross-sections (6.1)

Example

Find the volume of the solid between the planes x = 3 and x = —3
with cross-sections perpendicular to the x-axis given by squares
inscribed in the circle x* 4+ y2 = 0.

Solution: Let a(x) denote the side of a cross-section perpendicular
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Example

Find the volume of the solid between the planes x = 3 and x = —3
with cross-sections perpendicular to the x-axis given by squares
inscribed in the circle x* 4+ y2 = 0.

Solution: Let a(x) denote the side of a cross-section perpendicular
at the x-axis. The area of such section is

A(x) = [a(x)f, a(x) =2v9 — x2.

The volume of such solid is

v [ o [ -af )
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Then, V' = 4[(9)(6) — (9)(2)].
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Example

Find the volume of the solid between the planes x = 3 and x = —3
with cross-sections perpendicular to the x-axis given by squares
inscribed in the circle x* 4+ y2 = 0.

Solution: Let a(x) denote the side of a cross-section perpendicular
at the x-axis. The area of such section is

A(x) = [a(x)f, a(x) =2v9 — x2.

The volume of such solid is

v [ o [ -af )

-3 -3

Then, V = 4[(9)(6) — (9)(2)], that is, V = (9)(16). <
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Example

Find the volume of the region obtained by rotation the curve
x(y) = tan(mwy/8) for y € [0,2] about the y-axis.

Solution:
To graph the function

x =tan(my/8), y € [0, 2],
one can graph
y = (8/m) arctan(x).
Notice that
y €10,2] = x €]0,1].

y = (8/pi) arctan(x)
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Example
Find the volume of the region obtained by rotation the curve
x(y) = tan(mwy/8) for y € [0,2] about the y-axis.
Solution:
To graph the function

x = tan(my/8), y € [0,2],
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one can graph ot YTER) AN

y = (8/m) arctan(x).

Notice that
y €10,2] = x €]0,1].
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Volumes using cross-sections (6.1)

Example
Find the volume of the region obtained by rotation the curve
x(y) = tan(mwy/8) for y € [0,2] about the y-axis.
Solution:
To graph the function

x = tan(my/8), y € [0,2],
y = (8/pi) arctan(x)

one can graph ot YTER) AN

y = (8/m) arctan(x).

Notice that
y €10,2] = x €]0,1].

Therefore, V = 7r/02 [x(y)]2 dy = 7r/02 [tan(%)]z dy.
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Example

Find the volume of the region obtained by rotation the curve
x(y) = tan(mwy/8) for y € [0, 2] about the y-axis.

2
Solution: Recall: V = [ tan?(™Y) dy.
0 8
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Introduce the substitution u = my/8,
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Find the volume of the region obtained by rotation the curve
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Example

Find the volume of the region obtained by rotation the curve
x(y) = tan(mwy/8) for y € [0, 2] about the y-axis.

2
Solution: Recall: V = w/ tan2(%> dy.

0
Introduce the substitution u = wy/8, so du = (7/8) dy,
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Example

Find the volume of the region obtained by rotation the curve
x(y) = tan(mwy/8) for y € [0, 2] about the y-axis.

2
Solution: Recall: V = w/ tan2(%> dy.

0
Introduce the substitution u = wy/8, so du = (7/8) dy,

/4 /4 _ 2
V—7r8/ tanz(u)du—S/ wdu
0 0

T cos?(u)

= 8/0”4 [# ~1] du= s/oﬁ/4 [tan'(u) — 1] du.

cos?(u)
AN v=s(1-7).

V = 8[tan(u) — u] . 4
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Example
Find the volume of a pyramid with square base side a and height h.

Solution:
2
A(z) = [2y(z)]
We must find and invert

z(y) = my + b.
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Volumes integrating cross-sections: General case.

Example
Find the volume of a pyramid with square base side a and height h.

Solution:

Az) = [2y(2)]?

We must find and invert

z(y) = my + b.
2h
h=z(0) = b, 022(3/2)=m§+h = m=-"
2h ;
z(y):—?y—i-h = y(z)——%(z—h)



Volumes integrating cross-sections: General case.

Example
Find the volume of a pyramid with square base side a and height h.

Solution:

Az) = [2y(2)]?

We must find and invert

z(y) = my + b.
2h
h=z(0) = b, 022(3/2)=m§+h = m=-"
2h ;
Z(}/):—?y—i-h = }/(z)—_%(z—h).

v:/oh[—z;,(z—h>]2d227;{(z_3h)3m



Volumes integrating cross-sections: General case.

Example
Find the volume of a pyramid with square base side a and height h.

Solution:

Az) = [2y(2)]?

We must find and invert

z(y) = my + b.
2h
h=2z(0)=b, 0= (a/2)—m2+h = m=-—.
2h a
2y)=——y+h = y@)=—5-(z—h).

o= [ Togenf e R[] 5 v =S
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Remark: Curves on the xy-plane:

» A curve can be given as the graph of a function,
y = f(x), x € [xo, x1]-

» The length of the curve in this case is, (6.3),

L:/XXI\/1+ [y'(x)]? dx.

» Or a curve can be given in parametric form, as the set of
points (x(t), y(t)) for t € [to, t1].



Arc-length of curves on the plane (6.3, 11.2)

Remark: Curves on the xy-plane:

» A curve can be given as the graph of a function,
y = f(x), x € [xo, x1]-

» The length of the curve in this case is, (6.3),

L:/XXI\/1+ [y'(x)]? dx.

» Or a curve can be given in parametric form, as the set of
points (x(t), y(t)) for t € [to, t1].
» The length of the curve in this case is, (11.2)

L= /tt1 \/[x’(t)]2 + [y’(t)]2 dt.
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Example
3

1
%—l—a, for x € [1,3].

x
Solution: Recall: L / V14 [y’(x)fdx. Find y/,
X0

Find the arc-length of the function y =



Arc-length of curves on the plane (6.3)

Example
x3 1
Find the arc-length of the function y = T + ' for x € [1,3].
X
i .
Solution: Recall: L / \/1+ [y (x)]" dx. Find y’,
X0
1

/ _ 2 =



Arc-length of curves on the plane (6.3)

Example
. . x3 1
Find the arc-length of the function y = 5 + . for x € [1,3].
Solution: Recall: L = / A/ 1 dx Find y/,
y'(X)ZXQ—f = 1+ ()] =1+x"+ .
16x4 2’



Arc-length of curves on the plane (6.3)

Example
. . x3 1
Find the arc-length of the function y = 5 + . for x € [1,3].
X
Solution: Recall: L = / \/1 ® dx. Find y',
1 1
2
y'(x)—x—p = 1+ ()= 6 2
1 1
1+ [y () =x*+ g+ 2
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Example

Find the arc-length of the function y = X

1
+ —, for x € [1,3].

4x

Solution: Recall: L/ \/1 2 dx. Find y/,

Y =2y = 14 ) =
1+[y/(><)]2=x4+ﬁlx4+%:

(< +

1

4x2

16x*

)

1

-5



Arc-length of curves on the plane (6.3)

Example

Find the arc-length of the function y = X

Ax

Solution: Recall: L/ A/ 1 dx Find y/,

Y =2y = 14 ) =
1+[y/(><)]2=x4+ﬁlx4+%:

(< +

1

4x2

16x*

)

1
+ —, for x € [1,3].

1

-5



Arc-length of curves on the plane (6.3)

Example

Find the arc-length of the function y = X

Ax

Solution: Recall: L/ A/ 1 dx Find y/,

V)= - = + /()" =

1 1

L+ WP = g+ g =

16x* 2

(< +

1

4x2

16x*

)

1
+ —, for x € [1,3].

1

-5



Arc-length of curves on the plane (6.3)

Example
. . x3 1
Find the arc-length of the function y = 5 + . for x € [1,3].
Solution: Recall: L/ A/ 1 dx Find y/,
1 1
2
y'(x) = x —@ = 1+[Y()]* = o = 5
0 =+ e E (e LY
LR =5 gea+ 5 Tl



Arc-length of curves on the plane (6.3)

Example
. . x3 1
Find the arc-length of the function y = 5 + . for x € [1,3].
Solution: Recall: L/ A/ 1 dx Find y/,
1 1
2
y'(x) = x —@ = 1+[Y()]* = o = 5
0 =+ e E (e LY
LR =5 gea+ 5 Tl

3 3
1 X313 1 1 1
/1 “tza)* =3 ) =033t

We conclude that L =9 —1/6.



Work and fluid forces: Pumping liquids

Example

A rectangular container with sides a, b, and height h, is filled with
kerosene weighing k = 51.3 |b per cubic ft. Find the work needed
to empty the container if the kerosene is pumped out from the top

of the tank.
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Work and fluid forces: Pumping liquids

Example

A rectangular container with sides a, b, and height h, is filled with
kerosene weighing k = 51.3 |b per cubic ft. Find the work needed
to empty the container if the kerosene is pumped out from the top

of the tank.
Solution: _ .
The force is the kerosene weight:
‘] A F = k A(z) dz = k (ab) dz
h
77777777777 0 The work done to lift that liquid from a
: AQ) height z to h is
S N W(z) = k (ab)(h — z) dz.
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To empty the container: W = k (ab)/ (h—z)dz
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Work and fluid forces: Pumping liquids

Example

A rectangular container with sides a, b, and height h, is filled with
kerosene weighing k = 51.3 |b per cubic ft. Find the work needed
to empty the container if the kerosene is pumped out from the top

of the tank.
Solution: _ .
The force is the kerosene weight:
‘] A F = k A(z) dz = k (ab) dz
h
77777777777 0 The work done to lift that liquid from a
: AQ) height z to h is
S N W(z) = k (ab)(h — z) dz.

h 2

h
To empty the container: W = k (ab)/ (h—2z)dz=k (ab)?.
0



Review for Final Exam.

10 or 14 problems.
No multiple choice questions.
No notes, no books, no calculators.

Problems similar to homeworks.

vV Yy VvV VvV Yy

Exam covers:

» Sections 6.1, 6.3, 6.5.
Sections 7.1-7.7.
Sections 8.1-8.5, 8.7.
Sections 10.1-10.10.
Sections 11.1-11.5.

v vy VvYy
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The inverse function (7.1).

Example
Find the inverse of f(x) = 6x? — 24x + 24 for x < 2.

Solution: We call y = f(x), and we find x(y).
y=6(x>-4+4)=6(x—-2)* = (x—2)*=

X:|:—2::|:\/g = X:t:2:|:\/g.

Since we are interested in the inverse for x < 2,

x=2—/~2.

6
We can rewrite the answer as f ~(y) =2 — /y/6.

It is also correct to write f~1(x) =2 — /x/6.

o<
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1
Recall the main formula: (fﬁl)/(y = 8) = m



The inverse function (7.1).
Example

df 1
Given f(x) = 2x3 +3x2 + 3 for x > 0, find

at x = 8.

-1

df
Solution: We use y for the variable of f~1. Find at y =8.

1
Recall the main formula: (fﬁl)/(y = 8) = m

We need to find x = f~1(y = 8).



The inverse function (7.1).
Example

df 1
Given f(x) = 2x3 +3x2 + 3 for x > 0, find

at x = 8.

-1

df
Solution: We use y for the variable of f~1. Find at y =8.

1
Recall the main formula: (fﬁl)/(y = 8) = m

We need to find x = f~1(y = 8). Since
8=y



The inverse function (7.1).

Example
-1

at x = 8.

Given f(x) = 2x3 +3x2 + 3 for x > 0, find
-1

df
Solution: We use y for the variable of f~1. Find at y =8.

1

Recall the main formula: (f1)'(y =8) = iy =8)

We need to find x = f~1(y = 8). Since
8=y="1(x)
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df 1
Given f(x) = 2x3 +3x2 + 3 for x > 0, find

at x = 8.

-1

df
Solution: We use y for the variable of f~1. Find at y =8.

1
Recall the main formula: (fﬁl)/(y = 8) = m

We need to find x = f~1(y = 8). Since
8=y ="r(x)=2x3+3x*+3,
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Given f(x) = 2x3 +3x2 + 3 for x > 0, find at x = 8.
. : 1 df 1
Solution: We use y for the variable of f~*. Find at y =8.
Recall the main formula: (1) (y = 8) = !
eca € main formula: ( ) (y = ) = m

We need to find x = f~1(y = 8). Since
8=y ="r(x)=2x3+3x*+3,

by trial an error,
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Example
-1

Given f(x) = 2x3 +3x2 + 3 for x > 0, find at x = 8.
. : 1 df 1
Solution: We use y for the variable of f~*. Find at y =8.
Recall the main formula: (1) (y = 8) = !
eca € main formula: ( ) (y = ) = m

We need to find x = f~1(y = 8). Since
8=y ="r(x)=2x3+3x*+3,

by trial an error, x = 1.



The inverse function (7.1).

Example
-1

Given f(x) = 2x3 +3x2 + 3 for x > 0, find at x = 8.
. : 1 df 1
Solution: We use y for the variable of f~*. Find at y =8.
Recall the main formula: (1) (y = 8) = !
eca € main formula: ( ) (y = ) = m

We need to find x = f~1(y = 8). Since
8=y ="r(x)=2x3+3x*+3,

by trial an error, x =1. So, f(x =1) =8



The inverse function (7.1).

Example
-1

Given f(x) = 2x3 +3x2 + 3 for x > 0, find at x = 8.
. : oo dft
Solution: We use y for the variable of f~*. Find at y =8.
Recall the main formula: (f1)'(y =8) = ;
Ay =)

We need to find x = f~1(y = 8). Since
8=y ="r(x)=2x3+3x*+3,
by trial an error, x = 1. So, f(x =1) =8 and f1(y =8) = 1.



The inverse function (7.1).

Example
-1

Given f(x) = 2x3 +3x2 + 3 for x > 0, find at x = 8.
. : oo dft
Solution: We use y for the variable of f~*. Find at y =8.
Recall the main formula: (f1)'(y =8) = ;
Ay =)

We need to find x = f~1(y = 8). Since
8=y ="r(x)=2x3+3x*+3,
by trial an error, x = 1. So, f(x =1) =8 and f1(y =8) = 1.

SN ey 1
FV=9= 7 =)



The inverse function (7.1).

Example
-1

Given f(x) = 2x3 4+ 3x? + 3 for x > 0, find at x = 8.
. : oo, dfitt
Solution: We use y for the variable of f~*. Find at y =8.
Recall the main formula: (f1)'(y =8) = ;
Ay =)

We need to find x = f~1(y = 8). Since
8=y ="r(x)=2x3+3x*+3,
by trial an error, x = 1. So, f(x =1) =8 and f1(y =8) = 1.

IV oy 1 _ 1
V=9 pety=a) ~ e =1)




The inverse function (7.1).

Example
-1

df
Given f(x) = 2x3 4+ 3x? + 3 for x > 0, find at x = 8.
. : oo, dfitt
Solution: We use y for the variable of f~*. Find at y =8.
Recall the main formula: (f1)'(y =8) = ;
Ay =)

We need to find x = f~1(y = 8). Since
8=y ="r(x)=2x3+3x*+3,
by trial an error, x = 1. So, f(x =1) =8 and f1(y =8) = 1.

IV oy 1 _ 1
V=9 pety=a) ~ e =1)

We need f'(x = 1).



The inverse function (7.1).

Example
-1

df
Given f(x) = 2x3 4+ 3x? + 3 for x > 0, find at x = 8.
. : oo, dfitt
Solution: We use y for the variable of f~*. Find at y =8.
Recall the main formula: (f1)'(y =8) = ;
Ay =)

We need to find x = f~1(y = 8). Since
8=y ="r(x)=2x3+3x*+3,
by trial an error, x = 1. So, f(x =1) =8 and f1(y =8) = 1.

IV oy 1 _ 1
V=9 pety=a) ~ e =1)

We need f'(x = 1). But f/(x) = 6x2 + 6x



The inverse function (7.1).

Example
-1

df
Given f(x) = 2x3 4+ 3x? + 3 for x > 0, find at x = 8.
. : oo, dfitt
Solution: We use y for the variable of f~*. Find at y =8.
Recall the main formula: (f1)'(y =8) = ;
Ay =)

We need to find x = f~1(y = 8). Since
8=y ="r(x)=2x3+3x*+3,
by trial an error, x = 1. So, f(x =1) =8 and f1(y =8) = 1.

IV oy 1 _ 1
(Y0 =8 =G, =) ~ Flx—1)

We need f'(x = 1). But f/(x) = 6x> +6x = f/(x=1)=12.



The inverse function (7.1).

Example
. df—1
Given f(x) = 2x3 4+ 3x? + 3 for x > 0, find at x = 8.
. : oo, dfitt
Solution: We use y for the variable of f~*. Find at y =8.
Recall the main formula: (f1)'(y =8) = ;
Ay =)

We need to find x = f~1(y = 8). Since
8=y ="r(x)=2x3+3x*+3,
by trial an error, x = 1. So, f(x =1) =8 and f1(y =8) = 1.

1 1
(0 =0=FFt=8) ~ Fx—1

We need f/(x = 1). But f'(x) = 6x> +6x = f'(x=1)=12.
We obtain (f~1)(8) = 1/12.
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eTr
Evaluate I—/ sin(In(x)) dx.
1

Solution: We try the substitution u = In(x), hence du = dx/x.
s

Notice dx = x du = e" du. Therefore, | = / e sin(u) du.
0
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eTr
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Solution: We try the substitution u = In(x), hence du = dx/x.
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Notice dx = x du = e" du. Therefore, | = / e sin(u) du.
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The natural logarithm (7.2)
Example

eTr
Evaluate I—/ sin(In(x)) dx.
1

Solution: We try the substitution u = In(x), hence du = dx/x.
s

Notice dx = x du = e" du. Therefore, | = / e sin(u) du.
0
Integrate by parts twice, first, f = e¥, g’ = sin(u)

/e“ sin(u) du = —e" cos(u) + /e“ cos(u) du
/e” sin(u) du = —e" cos(u) + e“sin(u) — /e” sin(u) du.



The natural logarithm (7.2)
Example

eTr
Evaluate I—/ sin(In(x)) dx.
1

Solution: We try the substitution u = In(x), hence du = dx/x.
s

Notice dx = x du = e" du. Therefore, | = / e sin(u) du.
0
Integrate by parts twice, first, f = e¥, g’ = sin(u)

/e“ sin(u) du = —e" cos(u) + /e“ cos(u) du
/e” sin(u) du = —e" cos(u) + e“sin(u) — /e” sin(u) du.
/e” sin(u) du = % e’ (sin(u) — cos(u)).



The natural logarithm (7.2)

Example
eTr

Evaluate I—/ sin(In(x)) dx.
1

Solution: We try the substitution u = In(x), hence du = dx/x.
s

Notice dx = x du = e" du. Therefore, | = / e sin(u) du.
0
Integrate by parts twice, first, f = e¥, g’ = sin(u)

/e“ sin(u) du = —e" cos(u) + /e“ cos(u) du
/e” sin(u) du = —e" cos(u) + e“sin(u) — /e” sin(u) du.
/e” sin(u) du = % e’ (sin(u) — cos(u)).
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So, I == e"(sin(u) — cos(u))

N =
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Example
eTr

Evaluate I—/ sin(In(x)) dx.
1

Solution: We try the substitution u = In(x), hence du = dx/x.
s

Notice dx = x du = e" du. Therefore, | = / e sin(u) du.
0
Integrate by parts twice, first, f = e¥, g’ = sin(u)

/e“ sin(u) du = —e" cos(u) + /e“ cos(u) du
/e” sin(u) du = —e" cos(u) + e“sin(u) — /e” sin(u) du.

/e” sin(u) du = % e’ (sin(u) — cos(u)).

™

So, I == e"(sin(u) — cos(u)) . hence | = %(e7r —1).
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Simplify f(x) = In<5i”57(2t)>, and find the derivatives of
g(x) =3In(6In(x)), and h(x) = In(/25sin(x) cos(x)).

Solution: First: f(x) = In(sin®>(2t)) — In(7),




The natural logarithm (7.2)

Example

. 5
Simplify f(x) = In(Sln 7(2t)>, and find the derivatives of
g(x) =3In(6In(x)), and h(x) = In(/25sin(x) cos(x)).

Solution: First: f(x) = In(sin®(2t)) — In(7),
so we conclude that f(x) = 5In(sin(2t)) — In(7).



The natural logarithm (7.2)

Example

. 5
Simplify f(x) = In(SIn 7(2t)>, and find the derivatives of
g(x) =3In(6In(x)), and h(x) = In(/25sin(x) cos(x)).

Solution: First: f(x) = In(sin®(2t)) — In(7),
so we conclude that f(x) = 5In(sin(2t)) — In(7).
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Second, g'(x) =3 6In(x)
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Example

. 5
Simplify f(x) = In(SIn 7(2t)>, and find the derivatives of
g(x) =3In(6In(x)), and h(x) = In(/25sin(x) cos(x)).

Solution: First: f(x) = In(sin®(2t)) — In(7),
so we conclude that f(x) = 5In(sin(2t)) — In(7).

1
In(x)

Second, g'(x) =3 (6In(x))’, that is, g'(x) = 3

X |

1
6 In(x)



The natural logarithm (7.2)

Example

. 5
Simplify f(x) = In(Sln 7(2t)>, and find the derivatives of
g(x) =3In(6In(x)), and h(x) = In(/25sin(x) cos(x)).

Solution: First: f(x) = In(sin®(2t)) — In(7),
so we conclude that f(x) = 5In(sin(2t)) — In(7).

Second, g'(x) =3 ——(6In(x)), thatis, g'(x) =3

X |

1
6 In(x)

Sometimes it is better simplify first and derivate later,

In(x)

h(x) = = [In(25) + In(sin(x)) + In(cos(x)],

l\)\n—\



The natural logarithm (7.2)

Example

. 5
Simplify f(x) = In(SIn 7(2t)>, and find the derivatives of
g(x) =3In(6In(x)), and h(x) = In(/25sin(x) cos(x)).

Solution: First: f(x) = In(sin®(2t)) — In(7),
so we conclude that f(x) = 5In(sin(2t)) — In(7).

(6In(x))’, that is, g'(x) = 3 !

Second, g'(x) =3 —— in(x)

X |

1
6 In(x)

Sometimes it is better simplify first and derivate later,

h(x) = = [In(25) + In(sin(x)) + In(cos(x)],

l\)\n—\

He0 = 5 (S — ]
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The natural logarithm (7.2)

Example
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Solution: We try the substitution u = In(sec(x) + tan(x)). Recall
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cos(x) = cos(x)

sec(x) + tan(x) =
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Find | = sec(x)

dx
v/In(sec(x) + tan(x))
Solution: We try the substitution u = In(sec(x) + tan(x)). Recall

1 sin(x) _ ~ 14sin(x)
cos(x) = cos(x) cos(x)

sec(x) + tan(x) =
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Find | = sec(x)
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v/In(sec(x) + tan(x))
Solution: We try the substitution u = In(sec(x) + tan(x)). Recall

1 sin(x) _ 1 + sin(x)
cos(x) = cos(x) cos(x)

sec(x) + tan(x) =

~cos(x) rcos(x)cos(x) — (14 sin(x))(—sin(x))
=1 + sin(x) cos?(x) o
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Solution: We try the substitution u = In(sec(x) + tan(x)). Recall

1 sin(x) _ 1 + sin(x)
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sec(x) + tan(x) =

~cos(x) rcos(x)cos(x) — (14 sin(x))(—sin(x))
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du = [1+sin(x)] cos?(x) d cos(x) d
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Find | = sec(x)

dx
v/In(sec(x) + tan(x))
Solution: We try the substitution u = In(sec(x) + tan(x)). Recall

1 sin(x) _ 1 + sin(x)
cos(x) = cos(x) cos(x)

sec(x) + tan(x) =

~cos(x) rcos(x)cos(x) — (14 sin(x))(—sin(x))
=1 + sin(x) cos?(x) o

cos(x) [1+sin(x)] - 1 )
[sin(a] cos2(x) & cos(r) & =) e

du =
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Example

Find | = sec(x)

dx
v/In(sec(x) + tan(x))
Solution: We try the substitution u = In(sec(x) + tan(x)). Recall

1 sin(x) _ 1 + sin(x)
cos(x) = cos(x) cos(x)

sec(x) + tan(x) =

dy — cos(x) {cos(x) cos(x) — (1 4+ sin(x))(—sin(x)) 4

~ 1+sin(x) cos?(x) )
~cos(x) [1+sin(x)] e — 1 x = sec(x) dx
= [1+sin(x)] cos?(x) a cos(x) ’ ) o

du



The natural logarithm (7.2)

Example

Find | = sec(x)

dx
v/In(sec(x) + tan(x))
Solution: We try the substitution u = In(sec(x) + tan(x)). Recall

1 sin(x) _ 1 + sin(x)
cos(x) = cos(x) cos(x)

sec(x) + tan(x) =

dy — cos(x) {cos(x) cos(x) — (1 4+ sin(x))(—sin(x)) 4

~ 1+sin(x) cos?(x) )
~cos(x) [1+sin(x)] e — 1 x = sec(x) dx
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Example

Find | = sec(x)

dx
v/In(sec(x) + tan(x))
Solution: We try the substitution u = In(sec(x) + tan(x)). Recall

1 sin(x) _ 1 + sin(x)
cos(x)  cos(x) cos(x)

sec(x) + tan(x) =

dy — cos(x) {cos(x) cos(x) — (1 4+ sin(x))(—sin(x)) 4

~ 1+sin(x) cos?(x) )
~cos(x) [1+sin(x)] e — 1 x = sec(x) dx
= [1+sin(x)] cos?(x) a cos(x) ’ ) o

du
| = /ul/2 =202 = | = 2/In(sec(x) + tan(x)). <
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Solving differential equations (7.4)

Example

Find the function y solution of y' = cosgx) and y(0) = 1.
y

Solution:

y?y' = cos(x)



Solving differential equations (7.4)

Example

Find the function y solution of y' =

Solution:

yzy':cosx = /

cos(x
yg ) and y(0) = 1.

x)y'(x) dx = /cos(x) dx.
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Solution:

y2 y' =cos(x) = / x)y'(x) dx = /cos(x) dx.

The substitution v = y(x),
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Solution:
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Solving differential equations (7.4)

Example

Find the function y solution of y' = CO}S/gX) and y(0) = 1.

Solution:

y2 y' =cos(x) = / x)y'(x) dx = /cos(x) dx.

The substitution u = y(x), with du = y’(x) dx, implies

/u2 du = /cos(x) dx



Solving differential equations (7.4)

Example

Find the function y solution of y' = CO}S/gX) and y(0) = 1.

Solution:

y2y =cos(x) = / x)y'(x)dx = /cos(x) dx.
The substitution u = y(x), with du = y’(x) dx, implies

3
/u2 du = /cos(x) dx = % =sin(x) + ¢,



Solving differential equations (7.4)

Example

Find the function y solution of y' = cosgx) and y(0) = 1.
y
Solution:
y2y =cos(x) = / x)y'(x)dx = /cos(x) dx.
The substitution u = y(x), with du = y’(x) dx, implies

3
/u2 du = /cos(x) dx = % =sin(x) + ¢,
Therefore, y3(x) = 3(sin(x) + ¢).



Solving differential equations (7.4)

Example

Find the function y solution of y' = cosgx) and y(0) = 1.
y
Solution:
y2y =cos(x) = / x)y'(x)dx = /cos(x) dx.
The substitution u = y(x), with du = y’(x) dx, implies

3
/u2 du = /cos(x) dx = % =sin(x) + ¢,
Therefore, y3(x) = 3(sin(x) 4 ¢). Then, y(x) = ¥/3c + 3sin(x).



Solving differential equations (7.4)

Example

Find the function y solution of y' = cosgx) and y(0) = 1.
y
Solution:
y2y =cos(x) = / x)y'(x)dx = /cos(x) dx.
The substitution u = y(x), with du = y’(x) dx, implies

3
/u2 du = /cos(x) dx = % =sin(x) + ¢,

Therefore, y3(x) = 3(sin(x) 4 ¢). Then, y(x) = ¥/3c + 3sin(x).
Furthermore,

1=y(0)



Solving differential equations (7.4)

Example

Find the function y solution of y' = cosgx) and y(0) = 1.
y
Solution:
y2y =cos(x) = / x)y'(x)dx = /cos(x) dx.
The substitution u = y(x), with du = y’(x) dx, implies

3
/u2 du = /cos(x) dx = % =sin(x) + ¢,

Therefore, y3(x) = 3(sin(x) 4 ¢). Then, y(x) = ¥/3c + 3sin(x).
Furthermore,

1=y(0)=3c+0



Solving differential equations (7.4)

Example

Find the function y solution of y' = cosgx) and y(0) = 1.
y
Solution:
y2y =cos(x) = / x)y'(x)dx = /cos(x) dx.
The substitution u = y(x), with du = y’(x) dx, implies

3
/u2 du = /cos(x) dx = % =sin(x) + ¢,

Therefore, y3(x) = 3(sin(x) 4 ¢). Then, y(x) = ¥/3c + 3sin(x).
Furthermore,

1=y(0)=+vV3c+0 = 3c=1



Solving differential equations (7.4)

Example

Find the function y solution of y' = cosgx) and y(0) = 1.
y
Solution:
y2y =cos(x) = / x)y'(x)dx = /cos(x) dx.
The substitution u = y(x), with du = y’(x) dx, implies

3
/u2 du = /cos(x) dx = % =sin(x) + ¢,

Therefore, y3(x) = 3(sin(x) 4 ¢). Then, y(x) = ¥/3c + 3sin(x).
Furthermore,

1=y(0)=+vV3c+0 = 3c=1

We conclude that y(x) = /1 + sin(x).
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/ dx
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Solution: Substitution: u = 5sec(f), du = 5sec(f) tan(6) do,
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= | e = | e
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Example

Evaluate [ = for x > 5.

/ dx
Vx2—25'
Solution: Substitution: u = 5sec(f), du = 5sec(f) tan(6) do,

[ 5sec(0) tan(0) ,, [ sec(f) tan(6)
= | e = | e

Since x > b, sec(#) > 0 so tan(#) > 0.

sec(f) tan(0)
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Evaluate [/ / dx for x > 5

valu = , X )
Vx2 =25

Solution: Substitution: u = 5sec(f), du = 5sec(f) tan(6) db,

[ 5sec(0) tan(0) ,, [ sec(f) tan(6)
= | e = | e

Since x > b, sec(#) > 0 so tan(#) > 0.
[ sec(f) tan(0)
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B (sec() + tan(0))
I= /sec(&) (sec(6) + tan(6)) db-
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Solution: Recall: | = /sec(G) (sec(0) + tan(

)
( 0+tan0)d9

(

(

- (sec?(8) + sec(f) tan(h)) B (tan’(6) + sec’())
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Example

Evaluate [ = for x > 5.

/ dx
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(9) + tan(0)
Solution: Recall: | = /sec(G) (sec(0) + tan(

)
( 0+tan0)d9
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(
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Example
Determine whether | /OO X dx t
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Example
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Solution: Limit comparison test. Let g(x) such that:
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Improper integrals (8.7): Comparison tests

Example
x dx
converges or not.
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Determine whether | = / S
3 VX5 x3

Solution: Limit comparison test. Let g(x) such that:
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Example
Determine whether | /OO X dx t
etermine whether | = ————— converges or not.
3 VxP+x3

Solution: Limit comparison test. Let g(x) such that:
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Example
Determine whether / / L t
etermine whether | = ————— converges or not.
3 VxP+x3
Solution: Limit comparison test. Let g(x) such that:

i (x) = X i 1 i 1
m X)= 1M ——== M —— = IIiIm —.
x—»oog x—00 /x5 + x3 X—00 ngl X—00 X%

Therefore, we use the limit comparison test with g(x) = 33
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Then, by construction,
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n=1
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Example

oo 3
: ) 2\ n
Determine whether the series Z(f) converges or not.
n

n=1

Solution: The n-term test. We will need L'Hépital’s rule. Introduce
3

the function f(x) = (3>;.

X

lim (2)i = lim e{ﬂnE%)} = e3"mH°"[ln(X ]

x—00 \ X X—00

L'Hopital’s rule to find the limit in the exponent;
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Infinite series (10.2)

Example

oo 3
: ) 2\ n
Determine whether the series Z(7> converges or not.
n

n=1

Solution: The n-term test. We will need L'Hépital’s rule. Introduce
3

the function f(x) = (3>;.

X

lim (2)i = lim e{ﬂnE%)} = e3"mH°"[ln(X ]

x—00 \ X X—00

L'Hopital’s rule to find the limit in the exponent;

2 x (=2)
[ = lim M: lim (27%): lim —1:0.
x—00 X X—00 1 x—00 X

3

2\ % L
limy oo F(x) = €2 =1, then lim (7> = 1. The series diverges.
n—oo\n
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n e
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Example

o~ (n)

Determine whether the series Z (ht1)en converges or not.
n e

n=1

Solution: The ratio test implies

a1 (n+1)! (n+1)e" 1(n+2) [(n—i—l)n!]
an (n+2) e(n+1) n! e

n!



Convergence tests for infinite series (10.5)

Example
o
Determine whether the series Z
n=1

Solution: The ratio test implies

a1 (n+1)! (n+1)

(n+1)e

()

— converges or not.

an (n+2) elrt1) n!

. an+1
Therefore, lim 2+
n—oo an

e” 1(n+2) [(n—i—l)n!]

n!
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o~ (n)

Determine whether the series Z (ht1)en converges or not.
n e

n=1

Solution: The ratio test implies

a1 (n+1)! (n+1)e" 1(n+2) [(n—i—l)n!]
an (n+2) e(n+1) n! e

n!

. ant1 . n+1
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Example

o~ (n)

Determine whether the series Z (ht1)en converges or not.
n e

n=1

Solution: The ratio test implies

a1 (n+1)! (n+1)e" 1(n+2) [(n—i—l)n!]
an (n+2) e(n+1) n! e

. dn+1 .
Therefore, lim L lim
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Convergence tests for infinite series (10.5)

Example

o~ (n)

Determine whether the series Z (ht1)en converges or not.
n e

n=1

Solution: The ratio test implies

a1 (n+ 1) (n+1)e" 1(n+2) [(n—l—l)n!]
an  (n+2)eln+l) n! e (n+1) n!
Therefore, lim antl _ lim (n+1) = 0.
n—oo an n—oo e
o~ ()
Then, the ratio test implies that Z m diverges.

n=1



Power and Taylor series (10.7-10.9)

Example
1
Find the T3 centered at x = 0 of f(x) = 1

and estimate the

error of using T3 to approximate f over [—1/2,1/2].
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Example
1
Find the T3 centered at x = 0 of f(x) = 1

and estimate the

error of using T3 to approximate f over [—1/2,1/2].

Solution: Recall geometric series: T3(x) = 1+ x + x> + x°.
A bound for the error on f by T, centered at a over [b, c] is
Ix — a|™t!

Tornr <M over (bl

[Rn(x)| < M

Our case: n=3,



Power and Taylor series (10.7-10.9)

Example

1
Find the T3 centered at x = 0 of f(x) = 1 and estimate the

error of using T3 to approximate f over [—1/2,1/2].

Solution: Recall geometric series: T3(x) = 1+ x + x> + x°.
A bound for the error on f by T, centered at a over [b, c] is
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Example
1
Find the T3 centered at x = 0 of f(x) = 1

and estimate the

error of using T3 to approximate f over [—1/2,1/2].

Solution: Recall geometric series: T3(x) = 1 + x + x> + x°.
A bound for the error on f by T, centered at a over [b, c] is
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Example
1
Find the T3 centered at x = 0 of f(x) = 1

and estimate the

error of using T3 to approximate f over [—1/2,1/2].

Solution: Recall geometric series: T3(x) = 1 + x + x> + x°.
A bound for the error on f by T, centered at a over [b, c] is
’X _ a‘n+1
(n+1)!°
Ourcase: n=3,a=0, [b,c] =[-1/2,1/2], P (x) =

|Ra(x)| < M 1FMH(x)| < M over [b,c].
41

(1—=x)°>
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error of using T3 to approximate f over [—1/2,1/2].

Solution: Recall geometric series: T3(x) = 1+ x + x> + x°.

A bound for the error on f by T, centered at a over [b, c] is
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Find the T3 centered at x = 0 of f(x) =
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and estimate the

Solution: Recall geometric series: T3(x) = 1+ x + x> + x°.

A bound for the error on f by T, centered at a over [b, c] is

n+1
IRa(x)] < MM ‘f(”+1)(x)| <M over [bc].
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4
. — — = |— (4) -
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Example
Find the T3 centered at x = 0 of f(x) =
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Solution: Recall geometric series: T3(x) = 1+ x + x> + x°.
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Example
Find the T3 centered at x = 0 of f(x) =
error of using T3 to approximate f over [—1/2,1/2].

and estimate the

Solution: Recall geometric series: T3(x) = 1+ x + x> + x°.

A bound for the error on f by T, centered at a over [b, c] is

n+1
IRa(x)] < MM ‘f(”+1)(x)| <M over [bc].
R CE S Vi ST o e
4
. — — = |— (4) -
Ourcase: n=3,a2=0, [b,c] =[-1/2,1/2], £¥(x) (1—x)5

Since |F*)(x)| < F®(1/2) = —= 2541 = M, then

(1/2)5
254| ‘X|4 5 4
S S R <25(1/2) = [Rs(x) <20

Rel < =



Review for Final Exam.

10 or 14 problems.
No multiple choice questions.
No notes, no books, no calculators.

Problems similar to homeworks.

vV Yy VvV VvV Yy

Exam covers:

» Sections 6.1, 6.3, 6.5.
Sections 7.1-7.7.
Sections 8.1-8.5, 8.7.
Sections 10.1-10.10.
Sections 11.1-11.5.
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Parametric curves and polar coordinates (11.1-11.4)

Example

Compute the area shared by the interiors of the curves
ri(0) =1+ cos(f) and ra(0) =1 — cos(h) for 6 € [0, 27].
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Example
Compute the area shared by the interiors of the curves
ri(0) =1+ cos(f) and ra(0) =1 — cos(h) for 6 € [0, 27].

Solution: This is the intersection of two cardiods
By symmetry, the area of the interiors is

w/2 1 5
A= 4/ = (1 —cos(9))” df
0o 2

A=2 /ﬂp(l — 2cos() + cos*(6)) db
0

A:2E—2mW)

/2 /2 1
+ 2/ = (14 cos(26)) db.
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Example
Compute the area shared by the interiors of the curves
ri(0) =1+ cos(f) and ra(0) =1 — cos(h) for 6 € [0, 27].

Solution: This is the intersection of two cardiods
By symmetry, the area of the interiors is

w/2 1 5
A= 4/ = (1 —cos(9))” df
0o 2

A=2 /ﬂp(l — 2cos() + cos*(6)) db
0

A= 2[% — 2sin(6)

/2 /2 1
+ 2/ = (14 cos(26)) db.
0 0o 2

A= —4+f+1'(2e)’7r/2 = A=T_4 <
=T > 2Sln 0 —2 .



