Polar coordinates (Sect. 11.3)

- Review: Arc-length of a curve.
- Polar coordinates definition.
- Transformation rules Polar-Cartesian.
- Examples of curves in polar coordinates.

Definition

A curve on the plane is given in *parametric form* iff it is given by the set of points (x(t), y(t)), where the parameter $t \in I \subset \mathbb{R}$.

Definition

A curve on the plane is given in *parametric form* iff it is given by the set of points (x(t), y(t)), where the parameter $t \in I \subset \mathbb{R}$.

Remark: If the curve y = f(x) can be described by the parametric functions (x(t), y(t)), for $t \in I \subset \mathbb{R}$, and if $x'(t) \neq 0$ for $t \in I$, then holds

 $\frac{df}{dx} = \frac{(dy/dt)}{(dx/dt)}.$

Definition

A curve on the plane is given in *parametric form* iff it is given by the set of points (x(t), y(t)), where the parameter $t \in I \subset \mathbb{R}$.

Remark: If the curve y = f(x) can be described by the parametric functions (x(t), y(t)), for $t \in I \subset \mathbb{R}$, and if $x'(t) \neq 0$ for $t \in I$, then holds

 $\frac{df}{dx} = \frac{(dy/dt)}{(dx/dt)}.$

Remark: The arc-length of a continuously differentiable curve (x(t), y(y)), for $t \in [a, b]$ is the number

$$L = \int_{a}^{b} \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} dt.$$

(日) (同) (三) (三) (三) (○) (○)

Remark:

▶ The formula for the arc-length

$$L = \int_a^b \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} \, dt.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

can be used in a curve of the form y = f(x).

Remark:

▶ The formula for the arc-length

$$L = \int_a^b \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} \, dt.$$

can be used in a curve of the form y = f(x).

Just choose the trivial parametrization:

$$x(t) = t$$

Remark:

▶ The formula for the arc-length

$$L = \int_a^b \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} \, dt.$$

can be used in a curve of the form y = f(x).

Just choose the trivial parametrization:

$$x(t) = t,$$
 $y(t) = f(t).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark:

▶ The formula for the arc-length

$$L = \int_a^b \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} \, dt.$$

can be used in a curve of the form y = f(x).

Just choose the trivial parametrization:

$$x(t) = t,$$
 $y(t) = f(t).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Then
$$x'(t) = 1$$
, $y'(t) = f'(t)$,

Remark:

▶ The formula for the arc-length

$$L = \int_a^b \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} \, dt.$$

can be used in a curve of the form y = f(x).

Just choose the trivial parametrization:

$$x(t) = t,$$
 $y(t) = f(t).$

▶ Then x'(t) = 1, y'(t) = f'(t), and the arc-length formula is

$$L = \int_a^b \sqrt{1 + \left[f'(t)\right]^2} \, dt$$

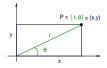
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Polar coordinates (Sect. 11.3)

- Review: Arc-length of a curve.
- Polar coordinates definition.
- Transformation rules Polar-Cartesian.
- Examples of curves in polar coordinates.

Definition

The *polar coordinates* of a point $P \in \mathbb{R}^2$ is the ordered pair (r, θ) , with $r \ge 0$ and $\theta \in [0, 2\pi)$ defined by the picture.



▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Definition

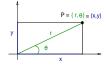
The *polar coordinates* of a point $P \in \mathbb{R}^2$ is the ordered pair (r, θ) , with $r \ge 0$ and $\theta \in [0, 2\pi)$ defined by the picture.

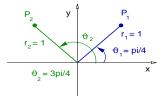
Example

Graph the points $P_1 = (1, \pi/4)$, $P_2 = (1, 3\pi/4)$.

Definition

The *polar coordinates* of a point $P \in \mathbb{R}^2$ is the ordered pair (r, θ) , with $r \ge 0$ and $\theta \in [0, 2\pi)$ defined by the picture.



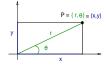


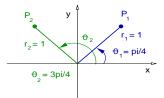
Example

Graph the points $P_1 = (1, \pi/4)$, $P_2 = (1, 3\pi/4)$.

Definition

The *polar coordinates* of a point $P \in \mathbb{R}^2$ is the ordered pair (r, θ) , with $r \ge 0$ and $\theta \in [0, 2\pi)$ defined by the picture.





Example

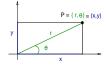
Graph the points $P_1 = (1, \pi/4)$, $P_2 = (1, 3\pi/4)$.

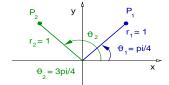
Example

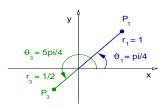
Graph the points $P_1 = (1, \pi/4)$, $P_3 = (1/2, 5\pi/4)$.

Definition

The *polar coordinates* of a point $P \in \mathbb{R}^2$ is the ordered pair (r, θ) , with $r \ge 0$ and $\theta \in [0, 2\pi)$ defined by the picture.







・ロット (日) (日) (日) (日) (日)

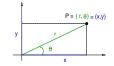
Example

Graph the points $P_1 = (1, \pi/4)$, $P_2 = (1, 3\pi/4)$.

Example

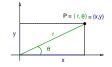
Graph the points $P_1 = (1, \pi/4)$, $P_3 = (1/2, 5\pi/4)$.

Remark: The *polar coordinates* (r, θ) are restricted to $r \ge 0$ and $\theta \in [0, 2\pi)$.



◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

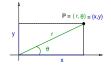
Remark: The *polar coordinates* (r, θ) are restricted to $r \ge 0$ and $\theta \in [0, 2\pi)$.



Remark:

This restriction implies that for every point P ≠ (0,0) there is a unique pair (r, θ) to label that point.

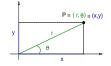
Remark: The *polar coordinates* (r, θ) are restricted to $r \ge 0$ and $\theta \in [0, 2\pi)$.



Remark:

- ► This restriction implies that for every point P ≠ (0,0) there is a unique pair (r, θ) to label that point.
- Usually this restriction is not applied, and $r \in \mathbb{R}$, $\theta \in \mathbb{R}$.

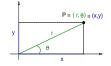
Remark: The *polar coordinates* (r, θ) are restricted to $r \ge 0$ and $\theta \in [0, 2\pi)$.



Remark:

- ► This restriction implies that for every point P ≠ (0,0) there is a unique pair (r, θ) to label that point.
- Usually this restriction is not applied, and $r \in \mathbb{R}$, $\theta \in \mathbb{R}$.
- This means that infinitely many ordered pairs (r, θ) label the same point P.

Remark: The *polar coordinates* (r, θ) are restricted to $r \ge 0$ and $\theta \in [0, 2\pi)$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

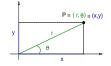
Remark:

- ► This restriction implies that for every point P ≠ (0,0) there is a unique pair (r, θ) to label that point.
- Usually this restriction is not applied, and $r \in \mathbb{R}$, $\theta \in \mathbb{R}$.
- This means that infinitely many ordered pairs (r, θ) label the same point P.

Example

Graph the points $P_1 = (1, \pi/4)$ and $P_2 = (1, -7\pi/4)$.

Remark: The *polar coordinates* (r, θ) are restricted to $r \ge 0$ and $\theta \in [0, 2\pi)$.

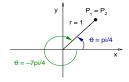


Remark:

- This restriction implies that for every point P ≠ (0,0) there is a unique pair (r, θ) to label that point.
- Usually this restriction is not applied, and $r \in \mathbb{R}$, $\theta \in \mathbb{R}$.
- This means that infinitely many ordered pairs (r, θ) label the same point P.

Example

Graph the points
$$P_1 = (1, \pi/4)$$
 and $P_2 = (1, -7\pi/4)$.

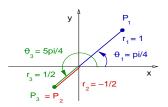


Example

Graph the points $P_1 = (1, \pi/4)$, $P_2 = (-1/2, \pi/4)$, and $P_3 = (1/2, 5\pi/4)$.

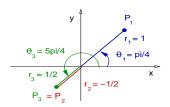
Example

Graph the points $P_1 = (1, \pi/4)$, $P_2 = (-1/2, \pi/4)$, and $P_3 = (1/2, 5\pi/4)$.

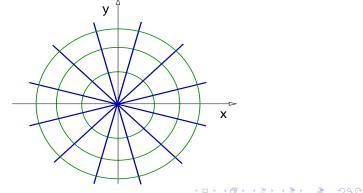


Example

Graph the points $P_1 = (1, \pi/4)$, $P_2 = (-1/2, \pi/4)$, and $P_3 = (1/2, 5\pi/4)$.



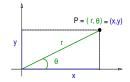
Remark: Polar coordinates are well adapted to describe circular curves and disk sections.



Polar coordinates (Sect. 11.3)

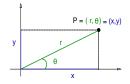
- Review: Arc-length of a curve.
- Polar coordinates definition.
- ► Transformation rules Polar-Cartesian.
- Examples of curves in polar coordinates.

Remark: The *polar coordinates* (r, θ) , with $r \ge 0$ and $\theta \in (-\pi, \pi]$ can be related to Cartesian coordinates.



▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

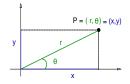
Remark: The *polar coordinates* (r, θ) , with $r \ge 0$ and $\theta \in (-\pi, \pi]$ can be related to Cartesian coordinates.



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Cartesian-polar transformations) The Cartesian coordinates of a point $P = (r, \theta)$ are given by $x = r \cos(\theta), \qquad y = r \sin(\theta).$

Remark: The *polar coordinates* (r, θ) , with $r \ge 0$ and $\theta \in (-\pi, \pi]$ can be related to Cartesian coordinates.



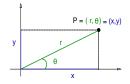
Theorem (Cartesian-polar transformations) The Cartesian coordinates of a point $P = (r, \theta)$ are given by

 $x = r \cos(\theta), \qquad y = r \sin(\theta).$

The polar coordinates of a point P = (x, y) in the first and fourth quadrants are given by

$$r = \sqrt{x^2 + y^2}, \quad \theta = \arctan\left(rac{y}{x}
ight).$$

Remark: The *polar coordinates* (r, θ) , with $r \ge 0$ and $\theta \in (-\pi, \pi]$ can be related to Cartesian coordinates.



Theorem (Cartesian-polar transformations) The Cartesian coordinates of a point $P = (r, \theta)$ are given by

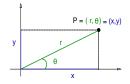
 $x = r \cos(\theta), \qquad y = r \sin(\theta).$

The polar coordinates of a point P = (x, y) in the first and fourth quadrants are given by

$$r = \sqrt{x^2 + y^2}, \quad \theta = \arctan\left(\frac{y}{x}\right).$$

Proof: $x^2 + y^2$

Remark: The *polar coordinates* (r, θ) , with $r \ge 0$ and $\theta \in (-\pi, \pi]$ can be related to Cartesian coordinates.



Theorem (Cartesian-polar transformations) The Cartesian coordinates of a point $P = (r, \theta)$ are given by

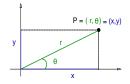
 $x = r \cos(\theta), \qquad y = r \sin(\theta).$

The polar coordinates of a point P = (x, y) in the first and fourth quadrants are given by

$$r = \sqrt{x^2 + y^2}, \quad \theta = \arctan\left(\frac{y}{x}\right).$$

Proof: $x^2 + y^2 = r^2 \cos^2(\theta) + r^2 \sin^2(\theta)$

Remark: The *polar coordinates* (r, θ) , with $r \ge 0$ and $\theta \in (-\pi, \pi]$ can be related to Cartesian coordinates.



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Cartesian-polar transformations) The Cartesian coordinates of a point $P = (r, \theta)$ are given by

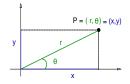
 $x = r \cos(\theta), \qquad y = r \sin(\theta).$

The polar coordinates of a point P = (x, y) in the first and fourth quadrants are given by

$$r = \sqrt{x^2 + y^2}, \quad \theta = \arctan\left(\frac{y}{x}\right).$$

Proof: $x^2 + y^2 = r^2 \cos^2(\theta) + r^2 \sin^2(\theta) = r^2$; $r \ge 0$ implies

Remark: The *polar coordinates* (r, θ) , with $r \ge 0$ and $\theta \in (-\pi, \pi]$ can be related to Cartesian coordinates.



Theorem (Cartesian-polar transformations) The Cartesian coordinates of a point $P = (r, \theta)$ are given by

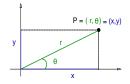
 $x = r \cos(\theta), \qquad y = r \sin(\theta).$

The polar coordinates of a point P = (x, y) in the first and fourth quadrants are given by

$$r = \sqrt{x^2 + y^2}, \quad \theta = \arctan\left(\frac{y}{x}\right).$$

Proof: $x^2 + y^2 = r^2 \cos^2(\theta) + r^2 \sin^2(\theta) = r^2$; $r \ge 0$ implies $r = \sqrt{x^2 + y^2}$.

Remark: The *polar coordinates* (r, θ) , with $r \ge 0$ and $\theta \in (-\pi, \pi]$ can be related to Cartesian coordinates.



Theorem (Cartesian-polar transformations) The Cartesian coordinates of a point $P = (r, \theta)$ are given by

 $x = r \cos(\theta), \qquad y = r \sin(\theta).$

The polar coordinates of a point P = (x, y) in the first and fourth quadrants are given by

$$r = \sqrt{x^2 + y^2}, \quad \theta = \arctan\left(\frac{y}{x}\right).$$

Proof: $x^2 + y^2 = r^2 \cos^2(\theta) + r^2 \sin^2(\theta) = r^2$; $r \ge 0$ implies $r = \sqrt{x^2 + y^2}$. Finally, $x/y = \tan(\theta)$.

Remark:

▶ If (x, y) satisfies either $x \ge 0$, $y \ge 0$, or $x \le 0$, $y \le 0$, then $\theta = \arctan(x/y)$ is in the first quadrant.

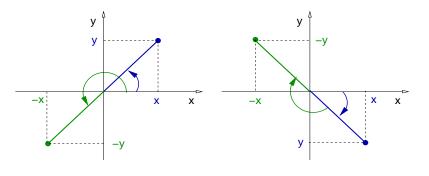
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Remark:

- ▶ If (x, y) satisfies either $x \ge 0$, $y \ge 0$, or $x \le 0$, $y \le 0$, then $\theta = \arctan(x/y)$ is in the first quadrant.
- ▶ If (x, y) satisfies either $x \ge 0$, $y \le 0$, or $x \le 0$, $y \ge 0$, then $\theta = \arctan(x/y)$ is in the fourth quadrant.

Remark:

- ▶ If (x, y) satisfies either $x \ge 0$, $y \ge 0$, or $x \le 0$, $y \le 0$, then $\theta = \arctan(x/y)$ is in the first quadrant.
- ▶ If (x, y) satisfies either $x \ge 0$, $y \le 0$, or $x \le 0$, $y \ge 0$, then $\theta = \arctan(x/y)$ is in the fourth quadrant.



Polar coordinates (Sect. 11.3)

- Review: Arc-length of a curve.
- Polar coordinates definition.
- ► Transformation rules Polar-Cartesian.
- Examples of curves in polar coordinates.

Example

Find the equation in polar coordinates of a circle radius 3 at (0,0).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the equation in polar coordinates of a circle radius 3 at (0,0).

Solution: In Cartesian coordinates the equation is

$$x^2 + y^2 = 3^2,$$

Example

Find the equation in polar coordinates of a circle radius 3 at (0,0).

Solution: In Cartesian coordinates the equation is

$$x^2 + y^2 = 3^2$$
, $r = \sqrt{x^2 + y^2}$

Example

Find the equation in polar coordinates of a circle radius 3 at (0,0).

Solution: In Cartesian coordinates the equation is

$$x^2 + y^2 = 3^2, \quad r = \sqrt{x^2 + y^2} \quad \Rightarrow \quad \begin{cases} r = 3, \\ \theta \in [0, 2\pi). \end{cases} \triangleleft$$

Example

Find the equation in polar coordinates of a circle radius 3 at (0,0).

Solution: In Cartesian coordinates the equation is

$$x^2 + y^2 = 3^2$$
, $r = \sqrt{x^2 + y^2} \Rightarrow \begin{cases} r = 3, \\ \theta \in [0, 2\pi). \end{cases}$

Example

Find the equation in polar coordinates of the line $y = \sqrt{3}x$.

Example

Find the equation in polar coordinates of a circle radius 3 at (0,0).

Solution: In Cartesian coordinates the equation is

$$x^2 + y^2 = 3^2$$
, $r = \sqrt{x^2 + y^2} \Rightarrow \begin{cases} r = 3, \\ \theta \in [0, 2\pi). \end{cases}$

Example

Find the equation in polar coordinates of the line $y = \sqrt{3}x$.

Solution: From the transformation laws,

$$\theta = \arctan(y/x)$$

Example

Find the equation in polar coordinates of a circle radius 3 at (0,0).

Solution: In Cartesian coordinates the equation is

$$x^2 + y^2 = 3^2$$
, $r = \sqrt{x^2 + y^2} \Rightarrow \begin{cases} r = 3, \\ \theta \in [0, 2\pi). \end{cases}$

Example

Find the equation in polar coordinates of the line $y = \sqrt{3}x$.

Solution: From the transformation laws,

$$\theta = \arctan(y/x) = \arctan(\sqrt{3})$$

Example

Find the equation in polar coordinates of a circle radius 3 at (0,0).

Solution: In Cartesian coordinates the equation is

$$x^2 + y^2 = 3^2$$
, $r = \sqrt{x^2 + y^2} \Rightarrow \begin{cases} r = 3, \\ \theta \in [0, 2\pi). \end{cases}$

Example

Find the equation in polar coordinates of the line $y = \sqrt{3}x$.

Solution: From the transformation laws,

$$\theta = \arctan(y/x) = \arctan(\sqrt{3}) \quad \Rightarrow \quad \begin{cases} \theta = \pi/3, \\ r \in \mathbb{R}, \end{cases} \quad \vartriangleleft$$

Example

Find the equation in polar coordinates of the circle $x^2 + (y - 3)^2 = 9$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the equation in polar coordinates of the circle $x^2 + (y - 3)^2 = 9$.

Solution: Expand the square in the equation of the circle,

Example

Find the equation in polar coordinates of the circle $x^2 + (y - 3)^2 = 9$.

Solution: Expand the square in the equation of the circle,

$$x^2 + y^2 - 6y + 9 = 9$$

Example

Find the equation in polar coordinates of the circle $x^2 + (y - 3)^2 = 9$.

Solution: Expand the square in the equation of the circle,

$$x^2 + y^2 - 6y + 9 = 9 \quad \Rightarrow \quad x^2 + y^2 = 6y.$$

Example

Find the equation in polar coordinates of the circle $x^2 + (y - 3)^2 = 9$.

Solution: Expand the square in the equation of the circle,

$$x^2 + y^2 - 6y + 9 = 9 \quad \Rightarrow \quad x^2 + y^2 = 6y.$$

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$,

Example

Find the equation in polar coordinates of the circle $x^2 + (y - 3)^2 = 9$.

Solution: Expand the square in the equation of the circle,

$$x^2 + y^2 - 6y + 9 = 9 \quad \Rightarrow \quad x^2 + y^2 = 6y.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

Example

Find the equation in polar coordinates of the circle $x^2 + (y - 3)^2 = 9$.

Solution: Expand the square in the equation of the circle,

$$x^2 + y^2 - 6y + 9 = 9 \quad \Rightarrow \quad x^2 + y^2 = 6y.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$r^2 = 6r\,\sin(\theta)$$

Example

Find the equation in polar coordinates of the circle $x^2 + (y - 3)^2 = 9$.

Solution: Expand the square in the equation of the circle,

$$x^2 + y^2 - 6y + 9 = 9 \quad \Rightarrow \quad x^2 + y^2 = 6y.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$r^2 = 6r \sin(\theta) \Rightarrow r = 6\sin(\theta),$$

Example

Find the equation in polar coordinates of the circle $x^2 + (y - 3)^2 = 9$.

Solution: Expand the square in the equation of the circle,

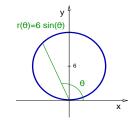
$$x^2 + y^2 - 6y + 9 = 9 \quad \Rightarrow \quad x^2 + y^2 = 6y.$$

<1

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$r^2 = 6r \sin(\theta) \Rightarrow r = 6\sin(\theta),$$

and $\theta \in [0, \pi]$.



Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: Multiply by r the whole equation,

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$. Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$,

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$x^2 + y^2 = 4x$$

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$x^2 + y^2 = 4x \quad \Rightarrow \quad x^2 - 4x + y^2 = 0.$$

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$x^{2} + y^{2} = 4x \quad \Rightarrow \quad x^{2} - 4x + y^{2} = 0.$$

Complete the square:

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$x^2 + y^2 = 4x \quad \Rightarrow \quad x^2 - 4x + y^2 = 0.$$

Complete the square:

$$[x^2 - 2\left(\frac{4}{2}\right)x + 4] - 4 + y^2 = 0$$

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$x^2 + y^2 = 4x \quad \Rightarrow \quad x^2 - 4x + y^2 = 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Complete the square:

$$[x^{2} - 2\left(\frac{4}{2}\right)x + 4] - 4 + y^{2} = 0$$
$$(x - 2)^{2} + y^{2} = 4.$$

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$x^2 + y^2 = 4x \quad \Rightarrow \quad x^2 - 4x + y^2 = 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Complete the square:

$$[x^{2} - 2\left(\frac{4}{2}\right)x + 4] - 4 + y^{2} = 0$$
$$(x - 2)^{2} + y^{2} = 4.$$

This is the equation of a circle radius r = 2 with center at (2, 0).

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

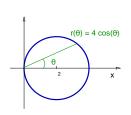
Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$x^2 + y^2 = 4x \quad \Rightarrow \quad x^2 - 4x + y^2 = 0.$$

Complete the square:

$$[x^{2} - 2\left(\frac{4}{2}\right)x + 4] - 4 + y^{2} = 0$$
$$(x - 2)^{2} + y^{2} = 4.$$

This is the equation of a circle radius r = 2 with center at (2, 0).



у

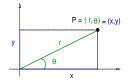
Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
 - Circles in polar coordinates.
 - Graphing the Cardiod.
 - Graphing the Lemniscate.

Review: POlar coordinates

Definition

The *polar coordinates* of a point $P \in \mathbb{R}^2$ is the ordered pair (r, θ) , with r > 0 and $\theta \in [0, 2\pi)$ defined by the picture.

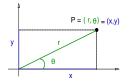


▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Review: POlar coordinates

Definition

The *polar coordinates* of a point $P \in \mathbb{R}^2$ is the ordered pair (r, θ) , with r > 0 and $\theta \in [0, 2\pi)$ defined by the picture.

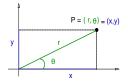


Theorem (Cartesian-polar transformations) The Cartesian coordinates of a point $P = (r, \theta)$ are given by $x = r \cos(\theta), \qquad y = r \sin(\theta).$

Review: POlar coordinates

Definition

The *polar coordinates* of a point $P \in \mathbb{R}^2$ is the ordered pair (r, θ) , with r > 0 and $\theta \in [0, 2\pi)$ defined by the picture.



Theorem (Cartesian-polar transformations) The Cartesian coordinates of a point $P = (r, \theta)$ are given by $x = r \cos(\theta), \qquad y = r \sin(\theta).$

The polar coordinates of a point P = (x, y) in the first and fourth quadrants are given by

$$r = \sqrt{x^2 + y^2}, \quad heta = \arctan\left(rac{y}{x}
ight).$$

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- ► Review: Transforming back to Cartesian.

- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
 - Circles in polar coordinates.
 - Graphing the Cardiod.
 - Graphing the Lemniscate.

Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

- ロ ト - 4 回 ト - 4 □ - 4

Solution: Multiply by r the whole equation,

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$. Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$,

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$x^2 + y^2 = 4x$$

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$x^2 + y^2 = 4x \quad \Rightarrow \quad x^2 - 4x + y^2 = 0.$$

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$x^{2} + y^{2} = 4x \quad \Rightarrow \quad x^{2} - 4x + y^{2} = 0.$$

Complete the square:

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$x^2 + y^2 = 4x \quad \Rightarrow \quad x^2 - 4x + y^2 = 0.$$

Complete the square:

$$[x^2 - 2\left(\frac{4}{2}\right)x + 4] - 4 + y^2 = 0$$

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$x^2 + y^2 = 4x \quad \Rightarrow \quad x^2 - 4x + y^2 = 0.$$

Complete the square:

$$[x^{2} - 2\left(\frac{4}{2}\right)x + 4] - 4 + y^{2} = 0$$
$$(x - 2)^{2} + y^{2} = 4.$$

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

$$x^2 + y^2 = 4x \quad \Rightarrow \quad x^2 - 4x + y^2 = 0.$$

Complete the square:

$$[x^{2} - 2\left(\frac{4}{2}\right)x + 4] - 4 + y^{2} = 0$$
$$(x - 2)^{2} + y^{2} = 4.$$

This is the equation of a circle radius r = 2 with center at (2, 0).

Example

Find the equation of the curve in Cartesian coordinates for $r = 4 \cos(\theta)$, for $\theta \in [-\pi/2, \pi/2]$.

Solution: Multiply by r the whole equation, $r^2 = 4r \cos(\theta)$.

Recall: $x = r \cos(\theta)$, and $y = r \sin(\theta)$, therefore $x^2 + y^2 = r^2$,

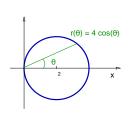
$$x^2 + y^2 = 4x \quad \Rightarrow \quad x^2 - 4x + y^2 = 0.$$

Complete the square:

$$[x^{2} - 2\left(\frac{4}{2}\right)x + 4] - 4 + y^{2} = 0$$

$$(x - 2)^{2} + y^{2} - 4$$

This is the equation of a circle radius r = 2 with center at (2,0).



у

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.

- Using symmetry to graph curves.
- Examples:
 - Circles in polar coordinates.
 - Graphing the Cardiod.
 - Graphing the Lemniscate.

Recall: The slope of the line tangent to the curve y = f(x), can be written in terms of (x(t), y(t)) as follows

 $\frac{df}{dx} = \frac{dy/dt}{dx/dt}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Recall: The slope of the line tangent to the curve y = f(x), can be written in terms of (x(t), y(t)) as follows

 $\frac{df}{dx} = \frac{dy/dt}{dx/dt}.$

- ロ ト - 4 回 ト - 4 □ - 4

Remark: If the curve is given in polar coordinates, $r = r(\theta)$,

Recall: The slope of the line tangent to the curve y = f(x), can be written in terms of (x(t), y(t)) as follows

df _	dy/dt
$\frac{d}{dx}$	$\frac{dx}{dt}$.

Remark: If the curve is given in polar coordinates, $r = r(\theta)$, then

 $x(\theta) = r(\theta) \cos(\theta)$ $y(\theta) = r(\theta) \sin(\theta)$.

Recall: The slope of the line tangent to the curve y = f(x), can be written in terms of (x(t), y(t)) as follows

df _	dy/dt
$\frac{d}{dx}$	$\frac{dx}{dt}$.

Remark: If the curve is given in polar coordinates, $r = r(\theta)$, then

$$x(\theta) = r(\theta) \cos(\theta)$$
 $y(\theta) = r(\theta) \sin(\theta)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The formula for the slope is then

$$\frac{df}{dx} = \frac{y'(\theta)}{x'(\theta)}$$

Recall: The slope of the line tangent to the curve y = f(x), can be written in terms of (x(t), y(t)) as follows

df _	dy/dt
$\frac{d}{dx}$	$\frac{dx}{dt}$.

Remark: If the curve is given in polar coordinates, $r = r(\theta)$, then

 $x(\theta) = r(\theta) \cos(\theta)$ $y(\theta) = r(\theta) \sin(\theta).$

The formula for the slope is then

$$\frac{df}{dx} = \frac{y'(\theta)}{x'(\theta)} \quad \Rightarrow \quad \frac{df}{dx} = \frac{r'(\theta)\sin(\theta) + r(\theta)\cos(\theta)}{r'(\theta)\cos(\theta) - r(\theta)\sin(\theta)}$$

Recall: The slope of the line tangent to the curve y = f(x), can be written in terms of (x(t), y(t)) as follows

df _	dy/dt
$\frac{d}{dx}$	$\frac{dx}{dt}$.

Remark: If the curve is given in polar coordinates, $r = r(\theta)$, then

 $x(\theta) = r(\theta) \cos(\theta)$ $y(\theta) = r(\theta) \sin(\theta)$.

The formula for the slope is then

$$\frac{df}{dx} = \frac{y'(\theta)}{x'(\theta)} \quad \Rightarrow \quad \frac{df}{dx} = \frac{r'(\theta)\sin(\theta) + r(\theta)\cos(\theta)}{r'(\theta)\cos(\theta) - r(\theta)\sin(\theta)}$$

If the curve passes through the origin, $r(\theta_0) = 0$, then

$$\frac{df}{dx}\Big|_{\theta_0} = \frac{r'(\theta_0)\sin(\theta_0)}{r'(\theta_0)\cos(\theta_0)}$$

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.

- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
 - Circles in polar coordinates.
 - Graphing the Cardiod.
 - Graphing the Lemniscate.

Remark: If a curve is symmetric under reflections about the *x*-*axis*, or the *y*-*axis*, or the *origin*, then the work needed to graph of the curve can be reduced.

・ロト・日本・モート モー うへで

Remark: If a curve is symmetric under reflections about the *x*-*axis*, or the *y*-*axis*, or the *origin*, then the work needed to graph of the curve can be reduced.

▶ *x-axis symmetry:* (r, θ) and $(r, -\theta)$ belong to the graph.

Remark: If a curve is symmetric under reflections about the *x*-*axis*, or the *y*-*axis*, or the *origin*, then the work needed to graph of the curve can be reduced.

- ▶ *x*-axis symmetry: (r, θ) and $(r, -\theta)$ belong to the graph.
- Origin symmetry: (r, θ) and $(-r, \theta)$ belong to the graph.

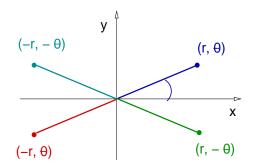
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: If a curve is symmetric under reflections about the *x*-*axis*, or the *y*-*axis*, or the *origin*, then the work needed to graph of the curve can be reduced.

- ▶ *x*-axis symmetry: (r, θ) and $(r, -\theta)$ belong to the graph.
- Origin symmetry: (r, θ) and $(-r, \theta)$ belong to the graph.
- ▶ *y*-axis symmetry: (r, θ) and $(-r, -\theta)$ belong to the graph.

Remark: If a curve is symmetric under reflections about the *x*-*axis*, or the *y*-*axis*, or the *origin*, then the work needed to graph of the curve can be reduced.

- ▶ *x*-axis symmetry: (r, θ) and $(r, -\theta)$ belong to the graph.
- Origin symmetry: (r, θ) and $(-r, \theta)$ belong to the graph.
- ▶ *y*-axis symmetry: (r, θ) and $(-r, -\theta)$ belong to the graph.



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
 - Circles in polar coordinates.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

- Graphing the Cardiod.
- Graphing the Lemniscate.

Remark: Circles centered at the origin are trivial to graph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Remark: Circles centered at the origin are trivial to graph.

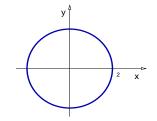
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example Graph the curve r = 2, $\theta \in [0, 2\pi)$.

Remark: Circles centered at the origin are trivial to graph.

Example

Graph the curve r = 2, $\theta \in [0, 2\pi)$.



▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 魚 ● の < @

Remark: Circles centered at the origin are trivial to graph.

Example

Graph the curve r = 2, $\theta \in [0, 2\pi)$.

y[°] 2 x[°]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

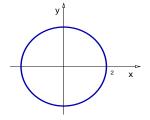
Remark:

Circles not centered at the origin are more complicated to graph.

Remark: Circles centered at the origin are trivial to graph.

Example

Graph the curve r = 2, $\theta \in [0, 2\pi)$.



◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Remark:

Circles not centered at the origin are more complicated to graph.

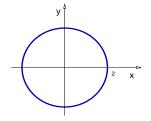
Example

Graph the curve $r = 4\cos(\theta), \ \theta \in [0, 2\pi).$

Remark: Circles centered at the origin are trivial to graph.

Example

Graph the curve r = 2, $\theta \in [0, 2\pi)$.



◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Remark:

Circles not centered at the origin are more complicated to graph.

Example

Graph the curve $r = 4\cos(\theta), \ \theta \in [0, 2\pi).$

Solution: Back to Cartesian:

Remark: Circles centered at the origin are trivial to graph.

Example

Graph the curve r = 2, $\theta \in [0, 2\pi)$.

y " _______2 _ x =

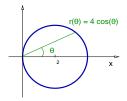
Remark:

Circles not centered at the origin are more complicated to graph.

Example

Graph the curve $r = 4\cos(\theta), \ \theta \in [0, 2\pi).$

Solution: Back to Cartesian:



◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Remark: We now use the graph of the function $r = 4\cos(\theta)$ to graph the curve $r = 4\cos(\theta)$ in the *xy*-plane.

Remark: We now use the graph of the function $r = 4\cos(\theta)$ to graph the curve $r = 4\cos(\theta)$ in the *xy*-plane.

Example

Graph the curve $r = 4\cos(\theta)$, $\theta \in [0, 2\pi)$.

Remark: We now use the graph of the function $r = 4\cos(\theta)$ to graph the curve $r = 4\cos(\theta)$ in the *xy*-plane.

Example

Graph the curve $r = 4\cos(\theta)$, $\theta \in [0, 2\pi)$.

Solution:

Notice that $r(\theta) = r(-\theta)$. (Reflection about x-axis symmetry.)

Remark: We now use the graph of the function $r = 4\cos(\theta)$ to graph the curve $r = 4\cos(\theta)$ in the *xy*-plane.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Graph the curve $r = 4\cos(\theta)$, $\theta \in [0, 2\pi)$.

Solution:

Notice that $r(\theta) = r(-\theta)$. (Reflection about x-axis symmetry.)

The graph of $r = 4\cos(\theta)$ is

Circles in polar coordinates

Remark: We now use the graph of the function $r = 4\cos(\theta)$ to graph the curve $r = 4\cos(\theta)$ in the *xy*-plane.

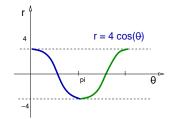
Example

Graph the curve $r = 4\cos(\theta)$, $\theta \in [0, 2\pi)$.

Solution:

Notice that $r(\theta) = r(-\theta)$. (Reflection about *x*-axis symmetry.)

The graph of $r = 4\cos(\theta)$ is



Circles in polar coordinates

Remark: We now use the graph of the function $r = 4\cos(\theta)$ to graph the curve $r = 4\cos(\theta)$ in the *xy*-plane.

Example

Graph the curve $r = 4\cos(\theta)$, $\theta \in [0, 2\pi)$.

Solution:

Notice that $r(\theta) = r(-\theta)$. (Reflection about x-axis symmetry.) The graph of $r = 4\cos(\theta)$ is $4 \qquad r = 4 \cos(\theta)$

r

The graph above helps to do the curve on the *xy*-plane.

Circles in polar coordinates

Remark: We now use the graph of the function $r = 4\cos(\theta)$ to graph the curve $r = 4\cos(\theta)$ in the *xy*-plane.

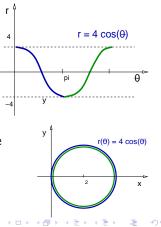
Example

Graph the curve $r = 4\cos(\theta)$, $\theta \in [0, 2\pi)$.

Solution:

Notice that $r(\theta) = r(-\theta)$. (Reflection about *x*-axis symmetry.) The graph of $r = 4\cos(\theta)$ is

The graph above helps to do the curve on the *xy*-plane. We actually cover the circle twice!



Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
 - Circles in polar coordinates.
 - Graphing the Cardiod.
 - Graphing the Lemniscate.

Example

Graph on the *xy*-plane the curve $r = 1 - \cos(\theta)$, $\theta \in [0, 2\pi)$.

Example

Graph on the *xy*-plane the curve $r = 1 - \cos(\theta)$, $\theta \in [0, 2\pi)$.

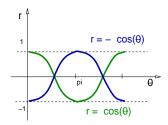
Solution: We first graph the function $r = 1 - \cos(\theta)$.

Example

Graph on the *xy*-plane the curve $r = 1 - \cos(\theta)$, $\theta \in [0, 2\pi)$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

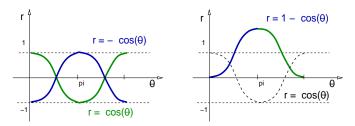
Solution: We first graph the function $r = 1 - \cos(\theta)$.



Example

Graph on the *xy*-plane the curve $r = 1 - \cos(\theta)$, $\theta \in [0, 2\pi)$.

Solution: We first graph the function $r = 1 - \cos(\theta)$.

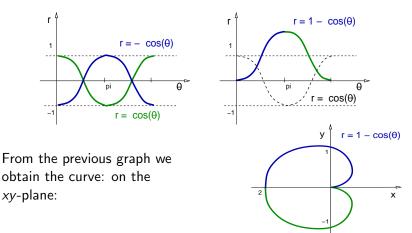


▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Example

Graph on the *xy*-plane the curve $r = 1 - \cos(\theta)$, $\theta \in [0, 2\pi)$.

Solution: We first graph the function $r = 1 - \cos(\theta)$.



900

3

< /₽> < ∋

Example

Graph on the *xy*-plane the curve $r = 1 + \cos(\theta)$, $\theta \in [0, 2\pi)$.

Example

Graph on the *xy*-plane the curve $r = 1 + \cos(\theta)$, $\theta \in [0, 2\pi)$.

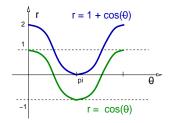
Solution: We first graph the function $r = 1 + \cos(\theta)$.

Example

Graph on the *xy*-plane the curve $r = 1 + \cos(\theta)$, $\theta \in [0, 2\pi)$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

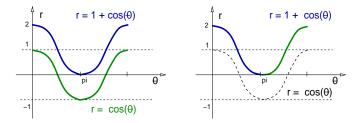
Solution: We first graph the function $r = 1 + \cos(\theta)$.



Example

Graph on the *xy*-plane the curve $r = 1 + \cos(\theta)$, $\theta \in [0, 2\pi)$.

Solution: We first graph the function $r = 1 + \cos(\theta)$.



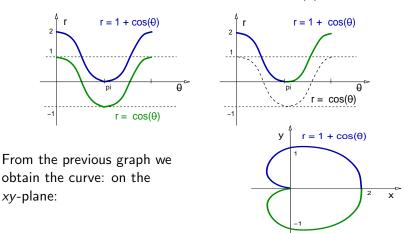
(日)、

- 25

Example

Graph on the xy-plane the curve $r = 1 + \cos(\theta)$, $\theta \in [0, 2\pi)$.

Solution: We first graph the function $r = 1 + \cos(\theta)$.



590

< 47 →

< □ ►

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
 - Circles in polar coordinates.
 - Graphing the Cardiod.
 - Graphing the Lemniscate.

Example

Graph on the *xy*-plane the curve $r^2 = \sin(2\theta)$, $\theta \in [0, 2\pi)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Graph on the xy-plane the curve $r^2 = \sin(2\theta)$, $\theta \in [0, 2\pi)$.

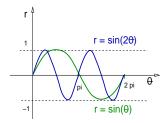
◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Solution: We first graph the function $r = \pm \sqrt{\sin(2\theta)}$.

Example

Graph on the xy-plane the curve $r^2 = \sin(2\theta)$, $\theta \in [0, 2\pi)$.

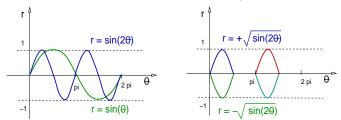
Solution: We first graph the function $r = \pm \sqrt{\sin(2\theta)}$.



Example

Graph on the xy-plane the curve $r^2 = \sin(2\theta)$, $\theta \in [0, 2\pi)$.

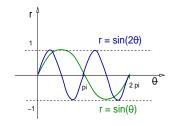
Solution: We first graph the function $r = \pm \sqrt{\sin(2\theta)}$.



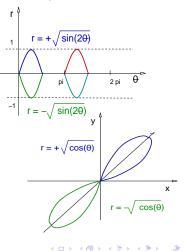
Example

Graph on the xy-plane the curve $r^2 = \sin(2\theta)$, $\theta \in [0, 2\pi)$.

Solution: We first graph the function $r = \pm \sqrt{\sin(2\theta)}$.



From the previous graph we obtain the curve: on the *xy*-plane:



Area of regions in polar coordinates (Sect. 11.5)

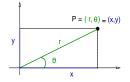
- Review: Few curves in polar coordinates.
- Formula for the area or regions in polar coordinates.

Calculating areas in polar coordinates.

Transformation rules Polar-Cartesian.

Definition

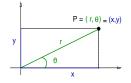
The *polar coordinates* of a point $P \in \mathbb{R}^2$ is the ordered pair (r, θ) , with r > 0 and $\theta \in [0, 2\pi)$ defined by the picture.



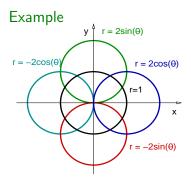
▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Transformation rules Polar-Cartesian.

Definition The *polar coordinates* of a point $P \in \mathbb{R}^2$ is the ordered pair (r, θ) , with r > 0 and $\theta \in [0, 2\pi)$ defined by the picture.

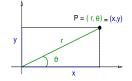


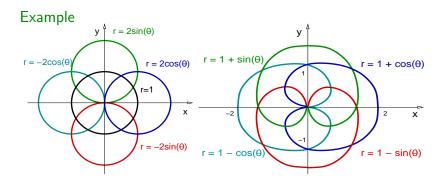
▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ



Transformation rules Polar-Cartesian.

Definition The *polar coordinates* of a point $P \in \mathbb{R}^2$ is the ordered pair (r, θ) , with r > 0 and $\theta \in [0, 2\pi)$ defined by the picture.





◆□▶ ◆□▶ ◆□▶ ◆□▶ = 三 のへで

Area of regions in polar coordinates (Sect. 11.5)

- Review: Few curves in polar coordinates.
- ► Formula for the area or regions in polar coordinates.

Calculating areas in polar coordinates.

Theorem

If the functions $r_1, r_2 : [\alpha, \beta] \to \mathbb{R}$ are continuous and $0 \leq r_1 \leq r_2$, then the area of a region $D \subset \mathbb{R}^2$ given by

 $D = \{ (r, \theta) \in \mathbb{R}^2 : r \in [r_1(\theta), r_2(\theta)], \theta \in [\alpha, \beta] \}.$

is given by the integral

$$A(D) = \int_{\alpha}^{\beta} \frac{1}{2} \left(\left[r_2(\theta) \right]^2 - \left[r_1(\theta) \right]^2 \right) d\theta.$$

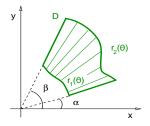
Theorem

If the functions $r_1, r_2 : [\alpha, \beta] \to \mathbb{R}$ are continuous and $0 \leq r_1 \leq r_2$, then the area of a region $D \subset \mathbb{R}^2$ given by

 $D = \{ (r, \theta) \in \mathbb{R}^2 : r \in [r_1(\theta), r_2(\theta)], \theta \in [\alpha, \beta] \}.$

is given by the integral

$$A(D) = \int_{\alpha}^{\beta} \frac{1}{2} \left(\left[r_2(\theta) \right]^2 - \left[r_1(\theta) \right]^2 \right) d\theta.$$



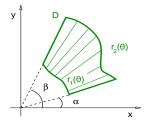
Theorem

If the functions $r_1, r_2 : [\alpha, \beta] \to \mathbb{R}$ are continuous and $0 \leq r_1 \leq r_2$, then the area of a region $D \subset \mathbb{R}^2$ given by

 $D = \{ (r, \theta) \in \mathbb{R}^2 : r \in [r_1(\theta), r_2(\theta)], \theta \in [\alpha, \beta] \}.$

is given by the integral

$$A(D) = \int_{\alpha}^{\beta} \frac{1}{2} \left(\left[r_2(\theta) \right]^2 - \left[r_1(\theta) \right]^2 \right) d\theta.$$



Remark: This result includes the case of $r_1 = 0$, which are fan-shaped regions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Idea of the Proof: Introduce a partition $\theta_k = k \Delta \theta$,

Idea of the Proof: Introduce a partition $\theta_k = k \Delta \theta$, with $k = 1, \dots, n$,

(ロ)、(型)、(E)、(E)、 E、 の(の)

Idea of the Proof: Introduce a partition $\theta_k = k \Delta \theta$, with $k = 1, \cdots, n$, and $\Delta \theta = \frac{\beta - \alpha}{n}$

・ロト・(部・・モー・モー・)への

Idea of the Proof: Introduce a partition $\theta_k = k \Delta \theta$, with $k = 1, \dots, n$, and $\Delta \theta = \frac{\beta - \alpha}{n}$

Idea of the Proof: Introduce a partition $\theta_k = k \Delta \theta$, with $k = 1, \dots, n$, and $\Delta \theta = \frac{\beta - \alpha}{n}$ The area of each fan-shaped region on the figure is, $A_k = \frac{1}{2} [r(\theta_k)]^2 \Delta \theta.$

х

Idea of the Proof: Introduce a partition $\theta_k = k \Delta \theta$, with $k = 1, \dots, n$, and $\Delta \theta = \frac{\beta - \alpha}{n}$ The area of each fan-shaped region on the figure is, $A_k = \frac{1}{2} [r(\theta_k)]^2 \Delta \theta.$

 $\overset{\scriptscriptstyle \mathsf{A}}{\mathsf{\mathsf{A}}}$ Riemann sum that approximates the green region area is

$$\sum_{k=1}^{n} A_k = \sum_{k=1}^{n} \frac{1}{2} [r(\theta_k)]^2 \Delta \theta.$$

・ロット (雪) (山) (山) (山)

Idea of the Proof: Introduce a partition $\theta_k = k \Delta \theta$, with $k = 1, \dots, n$, and $\Delta \theta = \frac{\beta - \alpha}{n}$ The area of each fan-shaped region on the figure is, $A_k = \frac{1}{2} [r(\theta_k)]^2 \Delta \theta.$

A Riemann sum that approximates the green region area is

$$\sum_{k=1}^{n} A_k = \sum_{k=1}^{n} \frac{1}{2} [r(\theta_k)]^2 \Delta \theta.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Refining the partition and taking a limit $n \to \infty$

Idea of the Proof: Introduce a partition $\theta_k = k \Delta \theta$, with $k = 1, \dots, n$, and $\Delta \theta = \frac{\beta - \alpha}{n}$ The area of each fan-shaped region on the figure is, $A_k = \frac{1}{2} [r(\theta_k)]^2 \Delta \theta.$

A Riemann sum that approximates the green region area is

$$\sum_{k=1}^{n} A_k = \sum_{k=1}^{n} \frac{1}{2} \left[r(\theta_k) \right]^2 \Delta \theta.$$

Refining the partition and taking a limit $n \to \infty$ one can prove that the Riemann sum above converges and the limit is called

$$A(D) = \int_{\alpha}^{\beta} \frac{1}{2} [r(\theta)]^2 d\theta.$$

Area of regions in polar coordinates (Sect. 11.5)

- Review: Few curves in polar coordinates.
- Formula for the area or regions in polar coordinates.

► Calculating areas in polar coordinates.

Example

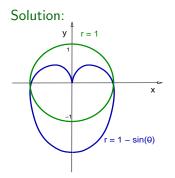
Find the area inside the circle r = 1 and outside the cardiod $r = 1 - \sin(\theta)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

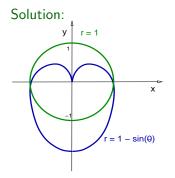
Find the area inside the circle r = 1 and outside the cardiod $r = 1 - \sin(\theta)$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ



Example

Find the area inside the circle r = 1 and outside the cardiod $r = 1 - \sin(\theta)$.



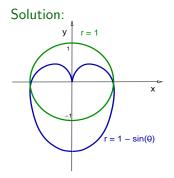
The Theorem implies

$$A = \int_{lpha}^{eta} rac{1}{2} \left(1 - \left[1 - \sin(heta)
ight]^2
ight) d heta.$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Example

Find the area inside the circle r = 1 and outside the cardiod $r = 1 - \sin(\theta)$.



The Theorem implies

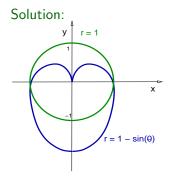
$${\cal A} = \int_lpha^eta {1\over 2} \left(1 - \left[1 - \sin(heta)
ight]^2
ight) d heta.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

We need to find α and β .

Example

Find the area inside the circle r = 1 and outside the cardiod $r = 1 - \sin(\theta)$.



The Theorem implies

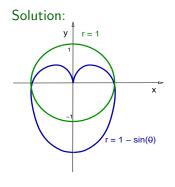
$$A = \int_{lpha}^{eta} rac{1}{2} \left(1 - \left[1 - \sin(heta)
ight]^2
ight) d heta.$$

We need to find α and β . They are the intersection of the circle and the cardiod:

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Example

Find the area inside the circle r = 1 and outside the cardiod $r = 1 - \sin(\theta)$.



$$1=1-\sin(\theta)$$

The Theorem implies

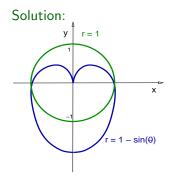
$$A = \int_{lpha}^{eta} rac{1}{2} \left(1 - \left[1 - \sin(heta)
ight]^2
ight) d heta.$$

We need to find α and β . They are the intersection of the circle and the cardiod:

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Example

Find the area inside the circle r = 1 and outside the cardiod $r = 1 - \sin(\theta)$.



The Theorem implies

$$A = \int_{lpha}^{eta} rac{1}{2} \left(1 - \left[1 - \sin(heta)
ight]^2
ight) d heta.$$

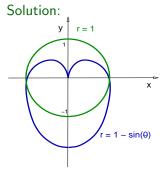
We need to find α and β . They are the intersection of the circle and the cardiod:

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

 $1 = 1 - \sin(\theta) \Rightarrow \sin(\theta) = 0$

Example

Find the area inside the circle r = 1 and outside the cardiod $r = 1 - \sin(\theta)$.



The Theorem implies

$$A = \int_{lpha}^{eta} rac{1}{2} \left(1 - \left[1 - \sin(heta)
ight]^2
ight) d heta.$$

We need to find α and β . They are the intersection of the circle and the cardiod:

$$1 = 1 - \sin(\theta) \quad \Rightarrow \quad \sin(\theta) = 0 \quad \Rightarrow \quad \begin{cases} lpha = 0, \\ eta = \pi. \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Example

Find the area inside the circle r = 1 and outside the cardiod $r = 1 - \sin(\theta)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: Therefore:
$$A = \int_0^{\pi} \frac{1}{2} \left(1 - \left[1 - \sin(\theta)\right]^2\right) d\theta.$$

Example

Find the area inside the circle r = 1 and outside the cardiod $r = 1 - \sin(\theta)$.

Solution: Therefore: $A = \int_0^{\pi} \frac{1}{2} \left(1 - \left[1 - \sin(\theta) \right]^2 \right) d\theta.$

$$A=rac{1}{2}\int_{0}^{\pi}ig(2\sin(heta)-\sin^2(heta)ig)\,d heta$$

- ロ ト - 4 回 ト - 4 □ - 4

Example

Find the area inside the circle r = 1 and outside the cardiod $r = 1 - \sin(\theta)$.

Solution: Therefore: $A = \int_0^{\pi} \frac{1}{2} \left(1 - \left[1 - \sin(\theta) \right]^2 \right) d\theta.$

$$A = \frac{1}{2} \int_0^{\pi} (2\sin(\theta) - \sin^2(\theta)) \ d\theta$$

$$A = \frac{1}{2} \int_0^{\pi} \left(2\sin(\theta) - \frac{1}{2} \left[1 - \cos(2\theta) \right] \right) d\theta$$

Example

Find the area inside the circle r = 1 and outside the cardiod $r = 1 - \sin(\theta)$.

Solution: Therefore: $A = \int_0^{\pi} \frac{1}{2} \left(1 - \left[1 - \sin(\theta) \right]^2 \right) d\theta.$

$$A = \frac{1}{2} \int_0^{\pi} (2\sin(\theta) - \sin^2(\theta)) \ d\theta$$

$$A = \frac{1}{2} \int_0^{\pi} \left(2\sin(\theta) - \frac{1}{2} \left[1 - \cos(2\theta) \right] \right) d\theta$$
$$A = \frac{1}{2} \left(-2\cos(\theta) \Big|_0^{\pi} - \frac{1}{2} \left[-2\cos(\theta) \Big|_0^{\pi} - \frac{1}{2$$

Example

Find the area inside the circle r = 1 and outside the cardiod $r = 1 - \sin(\theta)$.

Solution: Therefore: $A = \int_0^{\pi} \frac{1}{2} \left(1 - \left[1 - \sin(\theta) \right]^2 \right) d\theta.$

$$A = \frac{1}{2} \int_0^{\pi} (2\sin(\theta) - \sin^2(\theta)) \ d\theta$$

$$A = \frac{1}{2} \int_0^{\pi} \left(2\sin(\theta) - \frac{1}{2} \left[1 - \cos(2\theta) \right] \right) d\theta$$
$$A = \frac{1}{2} \left(-2\cos(\theta) \Big|_0^{\pi} - \frac{1}{2} \left[\pi - \frac{1}{2}\sin(2\theta) \Big|_0^{\pi} \right] \right)$$

・ロト・西ト・ヨト・ヨー シック

Example

Find the area inside the circle r = 1 and outside the cardiod $r = 1 - \sin(\theta)$.

Solution: Therefore: $A = \int_0^{\pi} \frac{1}{2} \left(1 - \left[1 - \sin(\theta) \right]^2 \right) d\theta.$

$$A = rac{1}{2} \int_0^{\pi} (2\sin(heta) - \sin^2(heta)) \ d heta$$

$$A = \frac{1}{2} \int_0^{\pi} (2\sin(\theta) - \frac{1}{2} [1 - \cos(2\theta)]) d\theta$$
$$A = \frac{1}{2} \Big(-2\cos(\theta) \Big|_0^{\pi} - \frac{1}{2} \Big[\pi - \frac{1}{2}\sin(2\theta) \Big|_0^{\pi} \Big] \Big)$$
$$A = \frac{1}{2} \Big(4 - \frac{\pi}{2} \Big)$$

Example

Find the area inside the circle r = 1 and outside the cardiod $r = 1 - \sin(\theta)$.

Solution: Therefore: $A = \int_0^{\pi} \frac{1}{2} \left(1 - \left[1 - \sin(\theta) \right]^2 \right) d\theta.$

$$A=rac{1}{2}\int_{0}^{\pi}ig(2\sin(heta)-\sin^2(heta)ig)\,d heta$$

$$A = \frac{1}{2} \int_0^{\pi} \left(2\sin(\theta) - \frac{1}{2} \left[1 - \cos(2\theta) \right] \right) d\theta$$
$$A = \frac{1}{2} \left(-2\cos(\theta) \Big|_0^{\pi} - \frac{1}{2} \left[\pi - \frac{1}{2}\sin(2\theta) \Big|_0^{\pi} \right] \right)$$
$$A = \frac{1}{2} \left(4 - \frac{\pi}{2} \right) \quad \Rightarrow \quad A = 2 - \frac{\pi}{4}.$$

◆ロト ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● ④ ● ●

 \triangleleft

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: We first review that these curves are actually circles.

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: We first review that these curves are actually circles.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $r = \cos(\theta)$

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = cos(\theta)$ and $r = sin(\theta)$.

Solution: We first review that these curves are actually circles.

$$r = \cos(\theta) \quad \Leftrightarrow \quad r^2 = r\cos(\theta)$$

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: We first review that these curves are actually circles.

$$r = \cos(\theta) \quad \Leftrightarrow \quad r^2 = r\cos(\theta) \quad \Leftrightarrow \quad x^2 + y^2 = x.$$

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: We first review that these curves are actually circles.

$$r = \cos(\theta) \quad \Leftrightarrow \quad r^2 = r\cos(\theta) \quad \Leftrightarrow \quad x^2 + y^2 = x.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Completing the square in x we obtain

$$\left(x - \frac{1}{2}\right)^2 + y^2 = \left(\frac{1}{2}\right)^2.$$

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = cos(\theta)$ and $r = sin(\theta)$.

Solution: We first review that these curves are actually circles.

$$r = \cos(\theta) \quad \Leftrightarrow \quad r^2 = r\cos(\theta) \quad \Leftrightarrow \quad x^2 + y^2 = x.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Completing the square in x we obtain

$$\left(x-\frac{1}{2}\right)^2+y^2=\left(\frac{1}{2}\right)^2.$$

Analogously, $r = \sin(\theta)$ is the circle

$$x^{2} + \left(y - \frac{1}{2}\right)^{2} = \left(\frac{1}{2}\right)^{2}.$$

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = cos(\theta)$ and $r = sin(\theta)$.

Solution: We first review that these curves are actually circles.

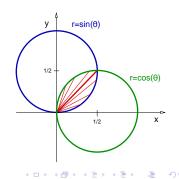
$$r = \cos(\theta) \quad \Leftrightarrow \quad r^2 = r\cos(\theta) \quad \Leftrightarrow \quad x^2 + y^2 = x.$$

Completing the square in x we obtain

$$\left(x - \frac{1}{2}\right)^2 + y^2 = \left(\frac{1}{2}\right)^2.$$

Analogously, $r = \sin(\theta)$ is the circle

$$x^{2} + \left(y - \frac{1}{2}\right)^{2} = \left(\frac{1}{2}\right)^{2}.$$



Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: The Theorem implies: $A = 2 \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) d\theta$;

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: The Theorem implies: $A = 2 \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) d\theta$;

$$A = \int_0^{\pi/4} \frac{1}{2} \big[1 - \cos(2\theta) \big] \, d\theta$$

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: The Theorem implies: $A = 2 \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) d\theta$;

$$A = \int_0^{\pi/4} \frac{1}{2} \left[1 - \cos(2\theta) \right] d\theta = \frac{1}{2} \left[\left(\frac{\pi}{4} - 0 \right) - \frac{1}{2} \sin(2\theta) \Big|_0^{\pi/4} \right];$$

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: The Theorem implies: $A = 2 \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) d\theta$;

$$A = \int_0^{\pi/4} \frac{1}{2} \left[1 - \cos(2\theta) \right] d\theta = \frac{1}{2} \left[\left(\frac{\pi}{4} - 0 \right) - \frac{1}{2} \sin(2\theta) \Big|_0^{\pi/4} \right];$$
$$A = \frac{1}{2} \left[\frac{\pi}{4} - \left(\frac{1}{2} - 0 \right) \right]$$

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: The Theorem implies: $A = 2 \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) d\theta$;

$$A = \int_0^{\pi/4} \frac{1}{2} \left[1 - \cos(2\theta) \right] d\theta = \frac{1}{2} \left[\left(\frac{\pi}{4} - 0 \right) - \frac{1}{2} \sin(2\theta) \Big|_0^{\pi/4} \right];$$
$$A = \frac{1}{2} \left[\frac{\pi}{4} - \left(\frac{1}{2} - 0 \right) \right] = \frac{\pi}{8} - \frac{1}{4}$$

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: The Theorem implies: $A = 2 \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) d\theta$;

$$A = \int_0^{\pi/4} \frac{1}{2} \left[1 - \cos(2\theta) \right] d\theta = \frac{1}{2} \left[\left(\frac{\pi}{4} - 0 \right) - \frac{1}{2} \sin(2\theta) \Big|_0^{\pi/4} \right];$$
$$A = \frac{1}{2} \left[\frac{\pi}{4} - \left(\frac{1}{2} - 0 \right) \right] = \frac{\pi}{8} - \frac{1}{4} \quad \Rightarrow \quad A = \frac{1}{8} (\pi - 2).$$

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = cos(\theta)$ and $r = sin(\theta)$.

Solution: The Theorem implies: $A = 2 \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) d\theta$;

$$A = \int_0^{\pi/4} \frac{1}{2} \left[1 - \cos(2\theta) \right] d\theta = \frac{1}{2} \left[\left(\frac{\pi}{4} - 0 \right) - \frac{1}{2} \sin(2\theta) \Big|_0^{\pi/4} \right];$$
$$A = \frac{1}{2} \left[\frac{\pi}{4} - \left(\frac{1}{2} - 0 \right) \right] = \frac{\pi}{8} - \frac{1}{4} \quad \Rightarrow \quad A = \frac{1}{8} (\pi - 2).$$

<1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Also works: $A = \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) \, d\theta + \int_{\pi/4}^{\pi/2} \frac{1}{2} \cos^2(\theta) \, d\theta.$