Polar coordinates (Sect. 11.3)

- Review: Arc-length of a curve.
- Polar coordinates definition.
- Transformation rules Polar-Cartesian.
- Examples of curves in polar coordinates.

Review: Arc-length of a curve

Definition
A curve on the plane is given in parametric form iff it is given by the set of points $(x(t), y(t))$, where the parameter $t \in I \subset \mathbb{R}$.

Review: Arc-length of a curve

Definition
A curve on the plane is given in parametric form iff it is given by the set of points $(x(t), y(t))$, where the parameter $t \in I \subset \mathbb{R}$.

Remark: If the curve $y=f(x)$ can be described by the parametric functions $(x(t), y(t))$, for $t \in I \subset \mathbb{R}$, and if $x^{\prime}(t) \neq 0$ for $t \in I$, then holds

$$
\frac{d f}{d x}=\frac{(d y / d t)}{(d x / d t)}
$$

Review: Arc-length of a curve

Definition

A curve on the plane is given in parametric form iff it is given by the set of points $(x(t), y(t))$, where the parameter $t \in I \subset \mathbb{R}$.

Remark: If the curve $y=f(x)$ can be described by the parametric functions $(x(t), y(t))$, for $t \in I \subset \mathbb{R}$, and if $x^{\prime}(t) \neq 0$ for $t \in I$, then holds

$$
\frac{d f}{d x}=\frac{(d y / d t)}{(d x / d t)}
$$

Remark: The arc-length of a continuously differentiable curve $(x(t), y(y))$, for $t \in[a, b]$ is the number

$$
L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

Review: Arc-length of a curve

Remark:

- The formula for the arc-length

$$
L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

can be used in a curve of the form $y=f(x)$.

Review: Arc-length of a curve

Remark:

- The formula for the arc-length

$$
L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

can be used in a curve of the form $y=f(x)$.

- Just choose the trivial parametrization:

$$
x(t)=t
$$

Review: Arc-length of a curve

Remark:

- The formula for the arc-length

$$
L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

can be used in a curve of the form $y=f(x)$.

- Just choose the trivial parametrization:

$$
x(t)=t, \quad y(t)=f(t)
$$

Review: Arc-length of a curve

Remark:

- The formula for the arc-length

$$
L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

can be used in a curve of the form $y=f(x)$.

- Just choose the trivial parametrization:

$$
x(t)=t, \quad y(t)=f(t)
$$

- Then $x^{\prime}(t)=1, y^{\prime}(t)=f^{\prime}(t)$,

Review: Arc-length of a curve

Remark:

- The formula for the arc-length

$$
L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

can be used in a curve of the form $y=f(x)$.

- Just choose the trivial parametrization:

$$
x(t)=t, \quad y(t)=f(t)
$$

- Then $x^{\prime}(t)=1, y^{\prime}(t)=f^{\prime}(t)$, and the arc-length formula is

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t
$$

Polar coordinates (Sect. 11.3)

- Review: Arc-length of a curve.
- Polar coordinates definition.
- Transformation rules Polar-Cartesian.
- Examples of curves in polar coordinates.

Polar coordinates definition

Definition
The polar coordinates of a point $P \in \mathbb{R}^{2}$ is the ordered pair (r, θ), with $r \geqslant 0$ and $\theta \in[0,2 \pi)$ defined by the picture.

Polar coordinates definition

Definition

The polar coordinates of a point $P \in \mathbb{R}^{2}$ is the ordered pair (r, θ), with $r \geqslant 0$ and $\theta \in[0,2 \pi)$ defined by the picture.

Example

Graph the points $P_{1}=(1, \pi / 4)$, $P_{2}=(1,3 \pi / 4)$.

Polar coordinates definition

Definition

The polar coordinates of a point $P \in \mathbb{R}^{2}$ is the ordered pair (r, θ), with $r \geqslant 0$ and $\theta \in[0,2 \pi)$ defined by the picture.

Example

Graph the points $P_{1}=(1, \pi / 4)$, $P_{2}=(1,3 \pi / 4)$.

Polar coordinates definition

Definition

The polar coordinates of a point $P \in \mathbb{R}^{2}$ is the ordered pair (r, θ), with $r \geqslant 0$ and $\theta \in[0,2 \pi)$ defined by the picture.

Example

Graph the points $P_{1}=(1, \pi / 4)$, $P_{2}=(1,3 \pi / 4)$.

Example

Graph the points $P_{1}=(1, \pi / 4)$, $P_{3}=(1 / 2,5 \pi / 4)$.

Polar coordinates definition

Definition

The polar coordinates of a point $P \in \mathbb{R}^{2}$ is the ordered pair (r, θ), with $r \geqslant 0$ and $\theta \in[0,2 \pi)$ defined by the picture.

Example

Graph the points $P_{1}=(1, \pi / 4)$, $P_{2}=(1,3 \pi / 4)$.

Example

Graph the points $P_{1}=(1, \pi / 4)$, $P_{3}=(1 / 2,5 \pi / 4)$.

Polar coordinates definition

Remark: The polar coordinates (r, θ) are restricted to $r \geqslant 0$ and $\theta \in[0,2 \pi)$.

Polar coordinates definition

Remark: The polar coordinates (r, θ) are restricted to $r \geqslant 0$ and $\theta \in[0,2 \pi)$.

Remark:

- This restriction implies that for every point $P \neq(0,0)$ there is a unique pair (r, θ) to label that point.

Polar coordinates definition

Remark: The polar coordinates (r, θ) are restricted to $r \geqslant 0$ and $\theta \in[0,2 \pi)$.

Remark:

- This restriction implies that for every point $P \neq(0,0)$ there is a unique pair (r, θ) to label that point.
- Usually this restriction is not applied, and $r \in \mathbb{R}, \theta \in \mathbb{R}$.

Polar coordinates definition

Remark: The polar coordinates (r, θ) are restricted to $r \geqslant 0$ and $\theta \in[0,2 \pi)$.

Remark:

- This restriction implies that for every point $P \neq(0,0)$ there is a unique pair (r, θ) to label that point.
- Usually this restriction is not applied, and $r \in \mathbb{R}, \theta \in \mathbb{R}$.
- This means that infinitely many ordered pairs (r, θ) label the same point P.

Polar coordinates definition

Remark: The polar coordinates (r, θ) are restricted to $r \geqslant 0$ and $\theta \in[0,2 \pi)$.

Remark:

- This restriction implies that for every point $P \neq(0,0)$ there is a unique pair (r, θ) to label that point.
- Usually this restriction is not applied, and $r \in \mathbb{R}, \theta \in \mathbb{R}$.
- This means that infinitely many ordered pairs (r, θ) label the same point P.

Example

Graph the points $P_{1}=(1, \pi / 4)$ and
$P_{2}=(1,-7 \pi / 4)$.

Polar coordinates definition

Remark: The polar coordinates (r, θ) are restricted to $r \geqslant 0$ and $\theta \in[0,2 \pi)$.

Remark:

- This restriction implies that for every point $P \neq(0,0)$ there is a unique pair (r, θ) to label that point.
- Usually this restriction is not applied, and $r \in \mathbb{R}, \theta \in \mathbb{R}$.
- This means that infinitely many ordered pairs (r, θ) label the same point P.

Example

Graph the points $P_{1}=(1, \pi / 4)$ and $P_{2}=(1,-7 \pi / 4)$.

Polar coordinates definition

Example

Graph the points $P_{1}=(1, \pi / 4)$,
$P_{2}=(-1 / 2, \pi / 4)$, and
$P_{3}=(1 / 2,5 \pi / 4)$.

Polar coordinates definition

Example

Graph the points $P_{1}=(1, \pi / 4)$,
$P_{2}=(-1 / 2, \pi / 4)$, and
$P_{3}=(1 / 2,5 \pi / 4)$.

Polar coordinates definition

Example

Graph the points $P_{1}=(1, \pi / 4)$,
$P_{2}=(-1 / 2, \pi / 4)$, and
$P_{3}=(1 / 2,5 \pi / 4)$.

Remark: Polar coordinates are well adapted to describe circular curves and disk sections.

Polar coordinates (Sect. 11.3)

- Review: Arc-length of a curve.
- Polar coordinates definition.
- Transformation rules Polar-Cartesian.
- Examples of curves in polar coordinates.

Transformation rules Polar-Cartesian.

Remark: The polar coordinates (r, θ), with $r \geqslant 0$ and $\theta \in(-\pi, \pi]$ can be related to Cartesian coordinates.

Transformation rules Polar-Cartesian.

Remark: The polar coordinates (r, θ), with $r \geqslant 0$ and $\theta \in(-\pi, \pi]$ can be related to Cartesian coordinates.

Theorem (Cartesian-polar transformations)
The Cartesian coordinates of a point $P=(r, \theta)$ are given by

$$
x=r \cos (\theta), \quad y=r \sin (\theta)
$$

Transformation rules Polar-Cartesian.

Remark: The polar coordinates (r, θ), with $r \geqslant 0$ and $\theta \in(-\pi, \pi]$ can be related to Cartesian coordinates.

Theorem (Cartesian-polar transformations)
The Cartesian coordinates of a point $P=(r, \theta)$ are given by

$$
x=r \cos (\theta), \quad y=r \sin (\theta)
$$

The polar coordinates of a point $P=(x, y)$ in the first and fourth quadrants are given by

$$
r=\sqrt{x^{2}+y^{2}}, \quad \theta=\arctan \left(\frac{y}{x}\right)
$$

Transformation rules Polar-Cartesian.

Remark: The polar coordinates (r, θ), with $r \geqslant 0$ and $\theta \in(-\pi, \pi]$ can be related to Cartesian coordinates.

Theorem (Cartesian-polar transformations)
The Cartesian coordinates of a point $P=(r, \theta)$ are given by

$$
x=r \cos (\theta), \quad y=r \sin (\theta)
$$

The polar coordinates of a point $P=(x, y)$ in the first and fourth quadrants are given by

$$
r=\sqrt{x^{2}+y^{2}}, \quad \theta=\arctan \left(\frac{y}{x}\right) .
$$

Proof: $x^{2}+y^{2}$

Transformation rules Polar-Cartesian.

Remark: The polar coordinates (r, θ), with $r \geqslant 0$ and $\theta \in(-\pi, \pi]$ can be related to Cartesian coordinates.

Theorem (Cartesian-polar transformations)

The Cartesian coordinates of a point $P=(r, \theta)$ are given by

$$
x=r \cos (\theta), \quad y=r \sin (\theta)
$$

The polar coordinates of a point $P=(x, y)$ in the first and fourth quadrants are given by

$$
r=\sqrt{x^{2}+y^{2}}, \quad \theta=\arctan \left(\frac{y}{x}\right)
$$

Proof: $x^{2}+y^{2}=r^{2} \cos ^{2}(\theta)+r^{2} \sin ^{2}(\theta)$

Transformation rules Polar-Cartesian.

Remark: The polar coordinates (r, θ), with $r \geqslant 0$ and $\theta \in(-\pi, \pi]$ can be related to Cartesian coordinates.

Theorem (Cartesian-polar transformations)

The Cartesian coordinates of a point $P=(r, \theta)$ are given by

$$
x=r \cos (\theta), \quad y=r \sin (\theta)
$$

The polar coordinates of a point $P=(x, y)$ in the first and fourth quadrants are given by

$$
r=\sqrt{x^{2}+y^{2}}, \quad \theta=\arctan \left(\frac{y}{x}\right)
$$

Proof: $x^{2}+y^{2}=r^{2} \cos ^{2}(\theta)+r^{2} \sin ^{2}(\theta)=r^{2} ; r \geqslant 0$ implies

Transformation rules Polar-Cartesian.

Remark: The polar coordinates (r, θ), with $r \geqslant 0$ and $\theta \in(-\pi, \pi]$ can be related to Cartesian coordinates.

Theorem (Cartesian-polar transformations)

The Cartesian coordinates of a point $P=(r, \theta)$ are given by

$$
x=r \cos (\theta), \quad y=r \sin (\theta)
$$

The polar coordinates of a point $P=(x, y)$ in the first and fourth quadrants are given by

$$
r=\sqrt{x^{2}+y^{2}}, \quad \theta=\arctan \left(\frac{y}{x}\right)
$$

Proof: $x^{2}+y^{2}=r^{2} \cos ^{2}(\theta)+r^{2} \sin ^{2}(\theta)=r^{2} ; r \geqslant 0$ implies $r=\sqrt{x^{2}+y^{2}}$.

Transformation rules Polar-Cartesian.

Remark: The polar coordinates (r, θ), with $r \geqslant 0$ and $\theta \in(-\pi, \pi]$ can be related to Cartesian coordinates.

Theorem (Cartesian-polar transformations)

The Cartesian coordinates of a point $P=(r, \theta)$ are given by

$$
x=r \cos (\theta), \quad y=r \sin (\theta)
$$

The polar coordinates of a point $P=(x, y)$ in the first and fourth quadrants are given by

$$
r=\sqrt{x^{2}+y^{2}}, \quad \theta=\arctan \left(\frac{y}{x}\right)
$$

Proof: $x^{2}+y^{2}=r^{2} \cos ^{2}(\theta)+r^{2} \sin ^{2}(\theta)=r^{2} ; r \geqslant 0$ implies $r=\sqrt{x^{2}+y^{2}}$. Finally, $x / y=\tan (\theta)$.

Transformation rules Polar-Cartesian.

Remark:

- If (x, y) satisfies either $x \geqslant 0, y \geqslant 0$, or $x \leqslant 0, y \leqslant 0$, then $\theta=\arctan (x / y)$ is in the first quadrant.

Transformation rules Polar-Cartesian.

Remark:

- If (x, y) satisfies either $x \geqslant 0, y \geqslant 0$, or $x \leqslant 0, y \leqslant 0$, then $\theta=\arctan (x / y)$ is in the first quadrant.
- If (x, y) satisfies either $x \geqslant 0, y \leqslant 0$, or $x \leqslant 0, y \geqslant 0$, then $\theta=\arctan (x / y)$ is in the fourth quadrant.

Transformation rules Polar-Cartesian.

Remark:

- If (x, y) satisfies either $x \geqslant 0, y \geqslant 0$, or $x \leqslant 0, y \leqslant 0$, then $\theta=\arctan (x / y)$ is in the first quadrant.
- If (x, y) satisfies either $x \geqslant 0, y \leqslant 0$, or $x \leqslant 0, y \geqslant 0$, then $\theta=\arctan (x / y)$ is in the fourth quadrant.

Polar coordinates (Sect. 11.3)

- Review: Arc-length of a curve.
- Polar coordinates definition.
- Transformation rules Polar-Cartesian.
- Examples of curves in polar coordinates.

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of a circle radius 3 at $(0,0)$.

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of a circle radius 3 at $(0,0)$.
Solution: In Cartesian coordinates the equation is

$$
x^{2}+y^{2}=3^{2}
$$

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of a circle radius 3 at $(0,0)$.
Solution: In Cartesian coordinates the equation is

$$
x^{2}+y^{2}=3^{2}, \quad r=\sqrt{x^{2}+y^{2}}
$$

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of a circle radius 3 at $(0,0)$.
Solution: In Cartesian coordinates the equation is

$$
x^{2}+y^{2}=3^{2}, \quad r=\sqrt{x^{2}+y^{2}} \Rightarrow\left\{\begin{array}{l}
r=3 \\
\theta \in[0,2 \pi)
\end{array}\right.
$$

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of a circle radius 3 at $(0,0)$.
Solution: In Cartesian coordinates the equation is

$$
x^{2}+y^{2}=3^{2}, \quad r=\sqrt{x^{2}+y^{2}} \Rightarrow\left\{\begin{array}{l}
r=3, \\
\theta \in[0,2 \pi) .
\end{array}\right.
$$

Example
Find the equation in polar coordinates of the line $y=\sqrt{3} x$.

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of a circle radius 3 at $(0,0)$.
Solution: In Cartesian coordinates the equation is

$$
x^{2}+y^{2}=3^{2}, \quad r=\sqrt{x^{2}+y^{2}} \Rightarrow\left\{\begin{array}{l}
r=3, \\
\theta \in[0,2 \pi) .
\end{array}\right.
$$

Example
Find the equation in polar coordinates of the line $y=\sqrt{3} x$.
Solution: From the transformation laws,

$$
\theta=\arctan (y / x)
$$

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of a circle radius 3 at $(0,0)$.
Solution: In Cartesian coordinates the equation is

$$
x^{2}+y^{2}=3^{2}, \quad r=\sqrt{x^{2}+y^{2}} \Rightarrow\left\{\begin{array}{l}
r=3, \\
\theta \in[0,2 \pi) .
\end{array}\right.
$$

Example
Find the equation in polar coordinates of the line $y=\sqrt{3} x$.
Solution: From the transformation laws,

$$
\theta=\arctan (y / x)=\arctan (\sqrt{3})
$$

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of a circle radius 3 at $(0,0)$.
Solution: In Cartesian coordinates the equation is

$$
x^{2}+y^{2}=3^{2}, \quad r=\sqrt{x^{2}+y^{2}} \Rightarrow\left\{\begin{array}{l}
r=3, \\
\theta \in[0,2 \pi) .
\end{array}\right.
$$

Example
Find the equation in polar coordinates of the line $y=\sqrt{3} x$.
Solution: From the transformation laws,

$$
\theta=\arctan (y / x)=\arctan (\sqrt{3}) \Rightarrow\left\{\begin{array}{l}
\theta=\pi / 3, \\
r \in \mathbb{R},
\end{array}\right.
$$

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of the circle $x^{2}+(y-3)^{2}=9$.

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of the circle $x^{2}+(y-3)^{2}=9$.

Solution: Expand the square in the equation of the circle,

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of the circle $x^{2}+(y-3)^{2}=9$.

Solution: Expand the square in the equation of the circle,

$$
x^{2}+y^{2}-6 y+9=9
$$

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of the circle $x^{2}+(y-3)^{2}=9$.

Solution: Expand the square in the equation of the circle,

$$
x^{2}+y^{2}-6 y+9=9 \quad \Rightarrow \quad x^{2}+y^{2}=6 y
$$

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of the circle $x^{2}+(y-3)^{2}=9$.

Solution: Expand the square in the equation of the circle,

$$
x^{2}+y^{2}-6 y+9=9 \quad \Rightarrow \quad x^{2}+y^{2}=6 y .
$$

Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$,

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of the circle $x^{2}+(y-3)^{2}=9$.

Solution: Expand the square in the equation of the circle,

$$
x^{2}+y^{2}-6 y+9=9 \quad \Rightarrow \quad x^{2}+y^{2}=6 y .
$$

Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of the circle $x^{2}+(y-3)^{2}=9$.

Solution: Expand the square in the equation of the circle,

$$
x^{2}+y^{2}-6 y+9=9 \quad \Rightarrow \quad x^{2}+y^{2}=6 y
$$

Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
r^{2}=6 r \sin (\theta)
$$

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of the circle $x^{2}+(y-3)^{2}=9$.

Solution: Expand the square in the equation of the circle,

$$
x^{2}+y^{2}-6 y+9=9 \quad \Rightarrow \quad x^{2}+y^{2}=6 y
$$

Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
r^{2}=6 r \sin (\theta) \quad \Rightarrow \quad r=6 \sin (\theta),
$$

Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of the circle $x^{2}+(y-3)^{2}=9$.

Solution: Expand the square in the equation of the circle,

$$
x^{2}+y^{2}-6 y+9=9 \quad \Rightarrow \quad x^{2}+y^{2}=6 y
$$

Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
r^{2}=6 r \sin (\theta) \quad \Rightarrow \quad r=6 \sin (\theta)
$$

and $\theta \in[0, \pi]$.

Examples of curves in polar coordinates

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Examples of curves in polar coordinates

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation,

Examples of curves in polar coordinates

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.

Examples of curves in polar coordinates

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$,

Examples of curves in polar coordinates

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$. Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

Examples of curves in polar coordinates

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x
$$

Examples of curves in polar coordinates

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x \quad \Rightarrow \quad x^{2}-4 x+y^{2}=0
$$

Examples of curves in polar coordinates

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x \quad \Rightarrow \quad x^{2}-4 x+y^{2}=0
$$

Complete the square:

Examples of curves in polar coordinates

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x \quad \Rightarrow \quad x^{2}-4 x+y^{2}=0
$$

Complete the square:

$$
\left[x^{2}-2\left(\frac{4}{2}\right) x+4\right]-4+y^{2}=0
$$

Examples of curves in polar coordinates

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x \quad \Rightarrow \quad x^{2}-4 x+y^{2}=0
$$

Complete the square:

$$
\begin{gathered}
{\left[x^{2}-2\left(\frac{4}{2}\right) x+4\right]-4+y^{2}=0} \\
(x-2)^{2}+y^{2}=4
\end{gathered}
$$

Examples of curves in polar coordinates

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x \quad \Rightarrow \quad x^{2}-4 x+y^{2}=0
$$

Complete the square:

$$
\begin{gathered}
{\left[x^{2}-2\left(\frac{4}{2}\right) x+4\right]-4+y^{2}=0} \\
(x-2)^{2}+y^{2}=4
\end{gathered}
$$

This is the equation of a circle radius $r=2$ with center at $(2,0)$.

Examples of curves in polar coordinates

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x \quad \Rightarrow \quad x^{2}-4 x+y^{2}=0
$$

Complete the square:

$$
\begin{gathered}
{\left[x^{2}-2\left(\frac{4}{2}\right) x+4\right]-4+y^{2}=0} \\
(x-2)^{2}+y^{2}=4
\end{gathered}
$$

This is the equation of a circle radius $r=2$ with center at $(2,0)$.

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
- Circles in polar coordinates.
- Graphing the Cardiod.
- Graphing the Lemniscate.

Review: POlar coordinates

Definition

The polar coordinates of a point $P \in \mathbb{R}^{2}$ is the ordered pair (r, θ), with $r>0$ and $\theta \in[0,2 \pi)$ defined by the picture.

Review: POlar coordinates

Definition

The polar coordinates of a point $P \in \mathbb{R}^{2}$ is the ordered pair (r, θ), with $r>0$ and $\theta \in[0,2 \pi)$ defined by the picture.

Theorem (Cartesian-polar transformations)
The Cartesian coordinates of a point $P=(r, \theta)$ are given by

$$
x=r \cos (\theta), \quad y=r \sin (\theta)
$$

Review: POlar coordinates

Definition

The polar coordinates of a point $P \in \mathbb{R}^{2}$ is the ordered pair (r, θ), with $r>0$ and $\theta \in[0,2 \pi)$ defined by the picture.

Theorem (Cartesian-polar transformations)
The Cartesian coordinates of a point $P=(r, \theta)$ are given by

$$
x=r \cos (\theta), \quad y=r \sin (\theta)
$$

The polar coordinates of a point $P=(x, y)$ in the first and fourth quadrants are given by

$$
r=\sqrt{x^{2}+y^{2}}, \quad \theta=\arctan \left(\frac{y}{x}\right)
$$

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
- Circles in polar coordinates.
- Graphing the Cardiod.
- Graphing the Lemniscate.

Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation,

Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.

Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$,

Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x
$$

Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x \quad \Rightarrow \quad x^{2}-4 x+y^{2}=0
$$

Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x \quad \Rightarrow \quad x^{2}-4 x+y^{2}=0
$$

Complete the square:

Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x \quad \Rightarrow \quad x^{2}-4 x+y^{2}=0
$$

Complete the square:

$$
\left[x^{2}-2\left(\frac{4}{2}\right) x+4\right]-4+y^{2}=0
$$

Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x \quad \Rightarrow \quad x^{2}-4 x+y^{2}=0
$$

Complete the square:

$$
\begin{gathered}
{\left[x^{2}-2\left(\frac{4}{2}\right) x+4\right]-4+y^{2}=0} \\
(x-2)^{2}+y^{2}=4 .
\end{gathered}
$$

Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x \quad \Rightarrow \quad x^{2}-4 x+y^{2}=0
$$

Complete the square:

$$
\begin{gathered}
{\left[x^{2}-2\left(\frac{4}{2}\right) x+4\right]-4+y^{2}=0} \\
(x-2)^{2}+y^{2}=4
\end{gathered}
$$

This is the equation of a circle radius $r=2$ with center at $(2,0)$.

Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for $r=4 \cos (\theta)$, for $\theta \in[-\pi / 2, \pi / 2]$.

Solution: Multiply by r the whole equation, $r^{2}=4 r \cos (\theta)$.
Recall: $x=r \cos (\theta)$, and $y=r \sin (\theta)$, therefore $x^{2}+y^{2}=r^{2}$,

$$
x^{2}+y^{2}=4 x \quad \Rightarrow \quad x^{2}-4 x+y^{2}=0
$$

Complete the square:

$$
\begin{gathered}
{\left[x^{2}-2\left(\frac{4}{2}\right) x+4\right]-4+y^{2}=0} \\
(x-2)^{2}+y^{2}=4 .
\end{gathered}
$$

This is the equation of a circle radius $r=2$ with center at $(2,0)$.

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
- Circles in polar coordinates.
- Graphing the Cardiod.
- Graphing the Lemniscate.

Computing the slope of tangent lines

Recall: The slope of the line tangent to the curve $y=f(x)$, can be written in terms of $(x(t), y(t))$ as follows

$$
\frac{d f}{d x}=\frac{d y / d t}{d x / d t}
$$

Computing the slope of tangent lines

Recall: The slope of the line tangent to the curve $y=f(x)$, can be written in terms of $(x(t), y(t))$ as follows

$$
\frac{d f}{d x}=\frac{d y / d t}{d x / d t}
$$

Remark: If the curve is given in polar coordinates, $r=r(\theta)$,

Computing the slope of tangent lines

Recall: The slope of the line tangent to the curve $y=f(x)$, can be written in terms of $(x(t), y(t))$ as follows

$$
\frac{d f}{d x}=\frac{d y / d t}{d x / d t}
$$

Remark: If the curve is given in polar coordinates, $r=r(\theta)$, then

$$
x(\theta)=r(\theta) \cos (\theta) \quad y(\theta)=r(\theta) \sin (\theta)
$$

Computing the slope of tangent lines

Recall: The slope of the line tangent to the curve $y=f(x)$, can be written in terms of $(x(t), y(t))$ as follows

$$
\frac{d f}{d x}=\frac{d y / d t}{d x / d t}
$$

Remark: If the curve is given in polar coordinates, $r=r(\theta)$, then

$$
x(\theta)=r(\theta) \cos (\theta) \quad y(\theta)=r(\theta) \sin (\theta)
$$

The formula for the slope is then

$$
\frac{d f}{d x}=\frac{y^{\prime}(\theta)}{x^{\prime}(\theta)}
$$

Computing the slope of tangent lines

Recall: The slope of the line tangent to the curve $y=f(x)$, can be written in terms of $(x(t), y(t))$ as follows

$$
\frac{d f}{d x}=\frac{d y / d t}{d x / d t}
$$

Remark: If the curve is given in polar coordinates, $r=r(\theta)$, then

$$
x(\theta)=r(\theta) \cos (\theta) \quad y(\theta)=r(\theta) \sin (\theta)
$$

The formula for the slope is then

$$
\frac{d f}{d x}=\frac{y^{\prime}(\theta)}{x^{\prime}(\theta)} \Rightarrow \frac{d f}{d x}=\frac{r^{\prime}(\theta) \sin (\theta)+r(\theta) \cos (\theta)}{r^{\prime}(\theta) \cos (\theta)-r(\theta) \sin (\theta)}
$$

Computing the slope of tangent lines

Recall: The slope of the line tangent to the curve $y=f(x)$, can be written in terms of $(x(t), y(t))$ as follows

$$
\frac{d f}{d x}=\frac{d y / d t}{d x / d t}
$$

Remark: If the curve is given in polar coordinates, $r=r(\theta)$, then

$$
x(\theta)=r(\theta) \cos (\theta) \quad y(\theta)=r(\theta) \sin (\theta)
$$

The formula for the slope is then

$$
\frac{d f}{d x}=\frac{y^{\prime}(\theta)}{x^{\prime}(\theta)} \Rightarrow \frac{d f}{d x}=\frac{r^{\prime}(\theta) \sin (\theta)+r(\theta) \cos (\theta)}{r^{\prime}(\theta) \cos (\theta)-r(\theta) \sin (\theta)}
$$

If the curve passes through the origin, $r\left(\theta_{0}\right)=0$, then

$$
\left.\frac{d f}{d x}\right|_{\theta_{0}}=\frac{r^{\prime}\left(\theta_{0}\right) \sin \left(\theta_{0}\right)}{r^{\prime}\left(\theta_{0}\right) \cos \left(\theta_{0}\right)} .
$$

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
- Circles in polar coordinates.
- Graphing the Cardiod.
- Graphing the Lemniscate.

Using symmetry to graph curves

Remark: If a curve is symmetric under reflections about the x-axis, or the y-axis, or the origin, then the work needed to graph of the curve can be reduced.

Using symmetry to graph curves

Remark: If a curve is symmetric under reflections about the x-axis, or the y-axis, or the origin, then the work needed to graph of the curve can be reduced.

- x-axis symmetry: (r, θ) and $(r,-\theta)$ belong to the graph.

Using symmetry to graph curves

Remark: If a curve is symmetric under reflections about the x-axis, or the y-axis, or the origin, then the work needed to graph of the curve can be reduced.

- x-axis symmetry: (r, θ) and $(r,-\theta)$ belong to the graph.
- Origin symmetry: (r, θ) and $(-r, \theta)$ belong to the graph.

Using symmetry to graph curves

Remark: If a curve is symmetric under reflections about the x-axis, or the y-axis, or the origin, then the work needed to graph of the curve can be reduced.

- x-axis symmetry: (r, θ) and $(r,-\theta)$ belong to the graph.
- Origin symmetry: (r, θ) and $(-r, \theta)$ belong to the graph.
- y-axis symmetry: (r, θ) and $(-r,-\theta)$ belong to the graph.

Using symmetry to graph curves

Remark: If a curve is symmetric under reflections about the x-axis, or the y-axis, or the origin, then the work needed to graph of the curve can be reduced.

- x-axis symmetry: (r, θ) and $(r,-\theta)$ belong to the graph.
- Origin symmetry: (r, θ) and $(-r, \theta)$ belong to the graph.
- y-axis symmetry: (r, θ) and $(-r,-\theta)$ belong to the graph.

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
- Circles in polar coordinates.
- Graphing the Cardiod.
- Graphing the Lemniscate.

Circles in polar coordinates

Remark: Circles centered at the origin are trivial to graph.

Circles in polar coordinates

Remark: Circles centered at the origin are trivial to graph.

Example
Graph the curve $r=2, \quad \theta \in[0,2 \pi)$.

Circles in polar coordinates

Remark: Circles centered at the origin are trivial to graph.

Example

Graph the curve $r=2, \quad \theta \in[0,2 \pi)$.

Circles in polar coordinates

Remark: Circles centered at the origin are trivial to graph.

Example

Graph the curve $r=2, \quad \theta \in[0,2 \pi)$.

Remark:

Circles not centered at the origin are more complicated to graph.

Circles in polar coordinates

Remark: Circles centered at the origin are trivial to graph.

Example

Graph the curve $r=2, \quad \theta \in[0,2 \pi)$.

Remark:

Circles not centered at the origin are more complicated to graph.

Example

Graph the curve $r=4 \cos (\theta), \quad \theta \in[0,2 \pi)$.

Circles in polar coordinates

Remark: Circles centered at the origin are trivial to graph.

Example

Graph the curve $r=2, \quad \theta \in[0,2 \pi)$.

Remark:

Circles not centered at the origin are more complicated to graph.

Example

Graph the curve
$r=4 \cos (\theta), \quad \theta \in[0,2 \pi)$.
Solution: Back to Cartesian:

Circles in polar coordinates

Remark: Circles centered at the origin are trivial to graph.

Example

Graph the curve $r=2, \quad \theta \in[0,2 \pi)$.

Remark:

Circles not centered at the origin are more complicated to graph.

Example

Graph the curve
$r=4 \cos (\theta), \quad \theta \in[0,2 \pi)$.
Solution: Back to Cartesian:

Circles in polar coordinates

Remark: We now use the graph of the function $r=4 \cos (\theta)$ to graph the curve $r=4 \cos (\theta)$ in the $x y$-plane.

Circles in polar coordinates

Remark: We now use the graph of the function $r=4 \cos (\theta)$ to graph the curve $r=4 \cos (\theta)$ in the $x y$-plane.

Example
Graph the curve $r=4 \cos (\theta), \quad \theta \in[0,2 \pi)$.

Circles in polar coordinates

Remark: We now use the graph of the function $r=4 \cos (\theta)$ to graph the curve $r=4 \cos (\theta)$ in the $x y$-plane.

Example
Graph the curve $r=4 \cos (\theta), \quad \theta \in[0,2 \pi)$.
Solution:
Notice that $r(\theta)=r(-\theta)$.
(Reflection about x-axis symmetry.)

Circles in polar coordinates

Remark: We now use the graph of the function $r=4 \cos (\theta)$ to graph the curve $r=4 \cos (\theta)$ in the $x y$-plane.

Example
Graph the curve $r=4 \cos (\theta), \quad \theta \in[0,2 \pi)$.
Solution:
Notice that $r(\theta)=r(-\theta)$.
(Reflection about x-axis symmetry.)
The graph of $r=4 \cos (\theta)$ is

Circles in polar coordinates

Remark: We now use the graph of the function $r=4 \cos (\theta)$ to graph the curve $r=4 \cos (\theta)$ in the $x y$-plane.

Example
Graph the curve $r=4 \cos (\theta), \quad \theta \in[0,2 \pi)$.

Solution:

Notice that $r(\theta)=r(-\theta)$. (Reflection about x-axis symmetry.)
The graph of $r=4 \cos (\theta)$ is

Circles in polar coordinates

Remark: We now use the graph of the function $r=4 \cos (\theta)$ to graph the curve $r=4 \cos (\theta)$ in the $x y$-plane.

Example
Graph the curve $r=4 \cos (\theta), \quad \theta \in[0,2 \pi)$.

Solution:

Notice that $r(\theta)=r(-\theta)$.
(Reflection about x-axis symmetry.)
The graph of $r=4 \cos (\theta)$ is

The graph above helps to do the curve on the $x y$-plane.

Circles in polar coordinates

Remark: We now use the graph of the function $r=4 \cos (\theta)$ to graph the curve $r=4 \cos (\theta)$ in the $x y$-plane.

Example
Graph the curve $r=4 \cos (\theta), \quad \theta \in[0,2 \pi)$.

Solution:

Notice that $r(\theta)=r(-\theta)$.
(Reflection about x-axis symmetry.)
The graph of $r=4 \cos (\theta)$ is

The graph above helps to do the curve on the $x y$-plane. We actually cover the circle twice!

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
- Circles in polar coordinates.
- Graphing the Cardiod.
- Graphing the Lemniscate.

Graphing the Cardiod

Example

Graph on the $x y$-plane the curve $r=1-\cos (\theta), \quad \theta \in[0,2 \pi)$.

Graphing the Cardiod

Example

Graph on the $x y$-plane the curve $r=1-\cos (\theta), \quad \theta \in[0,2 \pi)$.
Solution: We first graph the function $r=1-\cos (\theta)$.

Graphing the Cardiod

Example

Graph on the $x y$-plane the curve $r=1-\cos (\theta), \quad \theta \in[0,2 \pi)$.
Solution: We first graph the function $r=1-\cos (\theta)$.

Graphing the Cardiod

Example

Graph on the $x y$-plane the curve $r=1-\cos (\theta), \theta \in[0,2 \pi)$.
Solution: We first graph the function $r=1-\cos (\theta)$.

Graphing the Cardiod

Example

Graph on the $x y$-plane the curve $r=1-\cos (\theta), \theta \in[0,2 \pi)$.
Solution: We first graph the function $r=1-\cos (\theta)$.

From the previous graph we obtain the curve: on the $x y$-plane:

Graphing the Cardiod

Example

Graph on the $x y$-plane the curve $r=1+\cos (\theta), \quad \theta \in[0,2 \pi)$.

Graphing the Cardiod

Example

Graph on the $x y$-plane the curve $r=1+\cos (\theta), \quad \theta \in[0,2 \pi)$.
Solution: We first graph the function $r=1+\cos (\theta)$.

Graphing the Cardiod

Example

Graph on the $x y$-plane the curve $r=1+\cos (\theta), \quad \theta \in[0,2 \pi)$.
Solution: We first graph the function $r=1+\cos (\theta)$.

Graphing the Cardiod

Example

Graph on the $x y$-plane the curve $r=1+\cos (\theta), \quad \theta \in[0,2 \pi)$.
Solution: We first graph the function $r=1+\cos (\theta)$.

Graphing the Cardiod

Example

Graph on the $x y$-plane the curve $r=1+\cos (\theta), \theta \in[0,2 \pi)$.
Solution: We first graph the function $r=1+\cos (\theta)$.

From the previous graph we obtain the curve: on the $x y$-plane:

Graphing in polar coordinates (Sect. 11.4)

- Review: Polar coordinates.
- Review: Transforming back to Cartesian.
- Computing the slope of tangent lines.
- Using symmetry to graph curves.
- Examples:
- Circles in polar coordinates.
- Graphing the Cardiod.
- Graphing the Lemniscate.

Graphing the Lemniscate

Example

Graph on the $x y$-plane the curve $r^{2}=\sin (2 \theta), \quad \theta \in[0,2 \pi)$.

Graphing the Lemniscate

Example

Graph on the $x y$-plane the curve $r^{2}=\sin (2 \theta), \quad \theta \in[0,2 \pi)$.
Solution: We first graph the function $r= \pm \sqrt{\sin (2 \theta)}$.

Graphing the Lemniscate

Example

Graph on the $x y$-plane the curve $r^{2}=\sin (2 \theta), \quad \theta \in[0,2 \pi)$.
Solution: We first graph the function $r= \pm \sqrt{\sin (2 \theta)}$.

Graphing the Lemniscate

Example

Graph on the $x y$-plane the curve $r^{2}=\sin (2 \theta), \quad \theta \in[0,2 \pi)$.
Solution: We first graph the function $r= \pm \sqrt{\sin (2 \theta)}$.

Graphing the Lemniscate

Example

Graph on the $x y$-plane the curve $r^{2}=\sin (2 \theta), \quad \theta \in[0,2 \pi)$.
Solution: We first graph the function $r= \pm \sqrt{\sin (2 \theta)}$.

From the previous graph we obtain the curve: on the $x y$-plane:

Area of regions in polar coordinates (Sect. 11.5)

- Review: Few curves in polar coordinates.
- Formula for the area or regions in polar coordinates.
- Calculating areas in polar coordinates.

Transformation rules Polar-Cartesian.

Definition

The polar coordinates of a point $P \in \mathbb{R}^{2}$ is the ordered pair (r, θ), with $r>0$ and $\theta \in[0,2 \pi)$ defined by the picture.

Transformation rules Polar-Cartesian.

Definition

The polar coordinates of a point $P \in \mathbb{R}^{2}$ is the ordered pair (r, θ), with $r>0$ and $\theta \in[0,2 \pi)$ defined by the picture.

Example

Transformation rules Polar-Cartesian.

Definition

The polar coordinates of a point $P \in \mathbb{R}^{2}$ is the ordered pair (r, θ), with $r>0$ and $\theta \in[0,2 \pi)$ defined by the picture.

Example

Area of regions in polar coordinates (Sect. 11.5)

- Review: Few curves in polar coordinates.
- Formula for the area or regions in polar coordinates.
- Calculating areas in polar coordinates.

Formula for the area or regions in polar coordinates

Theorem
If the functions $r_{1}, r_{2}:[\alpha, \beta] \rightarrow \mathbb{R}$ are continuous and $0 \leqslant r_{1} \leqslant r_{2}$, then the area of a region $D \subset \mathbb{R}^{2}$ given by

$$
D=\left\{(r, \theta) \in \mathbb{R}^{2}: r \in\left[r_{1}(\theta), r_{2}(\theta)\right], \theta \in[\alpha, \beta]\right\} .
$$

is given by the integral

$$
A(D)=\int_{\alpha}^{\beta} \frac{1}{2}\left(\left[r_{2}(\theta)\right]^{2}-\left[r_{1}(\theta)\right]^{2}\right) d \theta
$$

Formula for the area or regions in polar coordinates

Theorem
If the functions $r_{1}, r_{2}:[\alpha, \beta] \rightarrow \mathbb{R}$ are continuous and $0 \leqslant r_{1} \leqslant r_{2}$, then the area of a region $D \subset \mathbb{R}^{2}$ given by

$$
D=\left\{(r, \theta) \in \mathbb{R}^{2}: r \in\left[r_{1}(\theta), r_{2}(\theta)\right], \theta \in[\alpha, \beta]\right\} .
$$

is given by the integral

$$
A(D)=\int_{\alpha}^{\beta} \frac{1}{2}\left(\left[r_{2}(\theta)\right]^{2}-\left[r_{1}(\theta)\right]^{2}\right) d \theta
$$

Formula for the area or regions in polar coordinates

Theorem
If the functions $r_{1}, r_{2}:[\alpha, \beta] \rightarrow \mathbb{R}$ are continuous and $0 \leqslant r_{1} \leqslant r_{2}$, then the area of a region $D \subset \mathbb{R}^{2}$ given by

$$
D=\left\{(r, \theta) \in \mathbb{R}^{2}: r \in\left[r_{1}(\theta), r_{2}(\theta)\right], \theta \in[\alpha, \beta]\right\} .
$$

is given by the integral

$$
A(D)=\int_{\alpha}^{\beta} \frac{1}{2}\left(\left[r_{2}(\theta)\right]^{2}-\left[r_{1}(\theta)\right]^{2}\right) d \theta .
$$

Remark: This result includes the case of $r_{1}=0$, which are fan-shaped regions.

Formula for the area or regions in polar coordinates
Idea of the Proof: Introduce a partition $\theta_{k}=k \Delta \theta$,

Formula for the area or regions in polar coordinates
Idea of the Proof: Introduce a partition $\theta_{k}=k \Delta \theta$, with
$k=1, \cdots, n$,

Formula for the area or regions in polar coordinates

Idea of the Proof: Introduce a partition $\theta_{k}=k \Delta \theta$, with
$k=1, \cdots, n$, and $\Delta \theta=\frac{\beta-\alpha}{n}$

Formula for the area or regions in polar coordinates

 Idea of the Proof: Introduce a partition $\theta_{k}=k \Delta \theta$, with $k=1, \cdots, n$, and $\Delta \theta=\frac{\beta-\alpha}{n}$

Formula for the area or regions in polar coordinates

Idea of the Proof: Introduce a partition $\theta_{k}=k \Delta \theta$, with $k=1, \cdots, n$, and $\Delta \theta=\frac{\beta-\alpha}{n}$

The area of each fan-shaped region on the figure is,

$$
A_{k}=\frac{1}{2}\left[r\left(\theta_{k}\right)\right]^{2} \Delta \theta
$$

Formula for the area or regions in polar coordinates

Idea of the Proof: Introduce a partition $\theta_{k}=k \Delta \theta$, with $k=1, \cdots, n$, and $\Delta \theta=\frac{\beta-\alpha}{n}$

The area of each fan-shaped region on the figure is,

$$
A_{k}=\frac{1}{2}\left[r\left(\theta_{k}\right)\right]^{2} \Delta \theta .
$$

A Riemann sum that approximates the green region area is

$$
\sum_{k=1}^{n} A_{k}=\sum_{k=1}^{n} \frac{1}{2}\left[r\left(\theta_{k}\right)\right]^{2} \Delta \theta
$$

Formula for the area or regions in polar coordinates

Idea of the Proof: Introduce a partition $\theta_{k}=k \Delta \theta$, with $k=1, \cdots, n$, and $\Delta \theta=\frac{\beta-\alpha}{n}$

The area of each fan-shaped region on the figure is,

$$
A_{k}=\frac{1}{2}\left[r\left(\theta_{k}\right)\right]^{2} \Delta \theta
$$

A Riemann sum that approximates the green region area is

$$
\sum_{k=1}^{n} A_{k}=\sum_{k=1}^{n} \frac{1}{2}\left[r\left(\theta_{k}\right)\right]^{2} \Delta \theta
$$

Refining the partition and taking a limit $n \rightarrow \infty$

Formula for the area or regions in polar coordinates

Idea of the Proof: Introduce a partition $\theta_{k}=k \Delta \theta$, with $k=1, \cdots, n$, and $\Delta \theta=\frac{\beta-\alpha}{n}$

The area of each fan-shaped region on the figure is,

$$
A_{k}=\frac{1}{2}\left[r\left(\theta_{k}\right)\right]^{2} \Delta \theta
$$

A Riemann sum that approximates the green region area is

$$
\sum_{k=1}^{n} A_{k}=\sum_{k=1}^{n} \frac{1}{2}\left[r\left(\theta_{k}\right)\right]^{2} \Delta \theta
$$

Refining the partition and taking a limit $n \rightarrow \infty$ one can prove that the Riemann sum above converges and the limit is called

$$
A(D)=\int_{\alpha}^{\beta} \frac{1}{2}[r(\theta)]^{2} d \theta
$$

Area of regions in polar coordinates (Sect. 11.5)

- Review: Few curves in polar coordinates.
- Formula for the area or regions in polar coordinates.
- Calculating areas in polar coordinates.

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Solution:

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Solution:

The Theorem implies
$A=\int_{\alpha}^{\beta} \frac{1}{2}\left(1-[1-\sin (\theta)]^{2}\right) d \theta$.

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Solution:

The Theorem implies
$A=\int_{\alpha}^{\beta} \frac{1}{2}\left(1-[1-\sin (\theta)]^{2}\right) d \theta$.
We need to find α and β.

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Solution:

The Theorem implies
$A=\int_{\alpha}^{\beta} \frac{1}{2}\left(1-[1-\sin (\theta)]^{2}\right) d \theta$.
We need to find α and β. They are the intersection of the circle and the cardiod:

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Solution:

$$
1=1-\sin (\theta)
$$

The Theorem implies
$A=\int_{\alpha}^{\beta} \frac{1}{2}\left(1-[1-\sin (\theta)]^{2}\right) d \theta$.
We need to find α and β. They are the intersection of the circle and the cardiod:

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Solution:

The Theorem implies
$A=\int_{\alpha}^{\beta} \frac{1}{2}\left(1-[1-\sin (\theta)]^{2}\right) d \theta$.
We need to find α and β. They are the intersection of the circle and the cardiod:

$$
1=1-\sin (\theta) \quad \Rightarrow \quad \sin (\theta)=0
$$

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Solution:

The Theorem implies
$A=\int_{\alpha}^{\beta} \frac{1}{2}\left(1-[1-\sin (\theta)]^{2}\right) d \theta$.
We need to find α and β. They are the intersection of the circle and the cardiod:

$$
1=1-\sin (\theta) \quad \Rightarrow \quad \sin (\theta)=0 \quad \Rightarrow \quad\left\{\begin{array}{l}
\alpha=0 \\
\beta=\pi
\end{array}\right.
$$

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Solution: Therefore: $A=\int_{0}^{\pi} \frac{1}{2}\left(1-[1-\sin (\theta)]^{2}\right) d \theta$.

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Solution: Therefore: $A=\int_{0}^{\pi} \frac{1}{2}\left(1-[1-\sin (\theta)]^{2}\right) d \theta$.

$$
A=\frac{1}{2} \int_{0}^{\pi}\left(2 \sin (\theta)-\sin ^{2}(\theta)\right) d \theta
$$

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Solution: Therefore: $A=\int_{0}^{\pi} \frac{1}{2}\left(1-[1-\sin (\theta)]^{2}\right) d \theta$.

$$
\begin{gathered}
A=\frac{1}{2} \int_{0}^{\pi}\left(2 \sin (\theta)-\sin ^{2}(\theta)\right) d \theta \\
A=\frac{1}{2} \int_{0}^{\pi}\left(2 \sin (\theta)-\frac{1}{2}[1-\cos (2 \theta)]\right) d \theta
\end{gathered}
$$

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Solution: Therefore: $A=\int_{0}^{\pi} \frac{1}{2}\left(1-[1-\sin (\theta)]^{2}\right) d \theta$.

$$
\begin{gathered}
A=\frac{1}{2} \int_{0}^{\pi}\left(2 \sin (\theta)-\sin ^{2}(\theta)\right) d \theta \\
A=\frac{1}{2} \int_{0}^{\pi}\left(2 \sin (\theta)-\frac{1}{2}[1-\cos (2 \theta)]\right) d \theta \\
A=\frac{1}{2}\left(-\left.2 \cos (\theta)\right|_{0} ^{\pi}-\right.
\end{gathered}
$$

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Solution: Therefore: $A=\int_{0}^{\pi} \frac{1}{2}\left(1-[1-\sin (\theta)]^{2}\right) d \theta$.

$$
\begin{gathered}
A=\frac{1}{2} \int_{0}^{\pi}\left(2 \sin (\theta)-\sin ^{2}(\theta)\right) d \theta \\
A=\frac{1}{2} \int_{0}^{\pi}\left(2 \sin (\theta)-\frac{1}{2}[1-\cos (2 \theta)]\right) d \theta \\
A=\frac{1}{2}\left(-\left.2 \cos (\theta)\right|_{0} ^{\pi}-\frac{1}{2}\left[\pi-\left.\frac{1}{2} \sin (2 \theta)\right|_{0} ^{\pi}\right]\right)
\end{gathered}
$$

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Solution: Therefore: $A=\int_{0}^{\pi} \frac{1}{2}\left(1-[1-\sin (\theta)]^{2}\right) d \theta$.

$$
\begin{gathered}
A=\frac{1}{2} \int_{0}^{\pi}\left(2 \sin (\theta)-\sin ^{2}(\theta)\right) d \theta \\
A=\frac{1}{2} \int_{0}^{\pi}\left(2 \sin (\theta)-\frac{1}{2}[1-\cos (2 \theta)]\right) d \theta \\
A=\frac{1}{2}\left(-\left.2 \cos (\theta)\right|_{0} ^{\pi}-\frac{1}{2}\left[\pi-\left.\frac{1}{2} \sin (2 \theta)\right|_{0} ^{\pi}\right]\right) \\
A=\frac{1}{2}\left(4-\frac{\pi}{2}\right)
\end{gathered}
$$

Calculating areas in polar coordinates

Example

Find the area inside the circle $r=1$ and outside the cardiod $r=1-\sin (\theta)$.

Solution: Therefore: $A=\int_{0}^{\pi} \frac{1}{2}\left(1-[1-\sin (\theta)]^{2}\right) d \theta$.

$$
\begin{gather*}
A=\frac{1}{2} \int_{0}^{\pi}\left(2 \sin (\theta)-\sin ^{2}(\theta)\right) d \theta \\
A=\frac{1}{2} \int_{0}^{\pi}\left(2 \sin (\theta)-\frac{1}{2}[1-\cos (2 \theta)]\right) d \theta \\
A=\frac{1}{2}\left(-\left.2 \cos (\theta)\right|_{0} ^{\pi}-\frac{1}{2}\left[\pi-\left.\frac{1}{2} \sin (2 \theta)\right|_{0} ^{\pi}\right]\right) \\
A=\frac{1}{2}\left(4-\frac{\pi}{2}\right) \Rightarrow A=2-\frac{\pi}{4} .
\end{gather*}
$$

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: We first review that these curves are actually circles.

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: We first review that these curves are actually circles.

$$
r=\cos (\theta)
$$

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: We first review that these curves are actually circles.

$$
r=\cos (\theta) \quad \Leftrightarrow \quad r^{2}=r \cos (\theta)
$$

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: We first review that these curves are actually circles.

$$
r=\cos (\theta) \quad \Leftrightarrow \quad r^{2}=r \cos (\theta) \quad \Leftrightarrow \quad x^{2}+y^{2}=x
$$

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: We first review that these curves are actually circles.

$$
r=\cos (\theta) \quad \Leftrightarrow \quad r^{2}=r \cos (\theta) \quad \Leftrightarrow \quad x^{2}+y^{2}=x
$$

Completing the square in x we obtain

$$
\left(x-\frac{1}{2}\right)^{2}+y^{2}=\left(\frac{1}{2}\right)^{2}
$$

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: We first review that these curves are actually circles.

$$
r=\cos (\theta) \quad \Leftrightarrow \quad r^{2}=r \cos (\theta) \quad \Leftrightarrow \quad x^{2}+y^{2}=x
$$

Completing the square in x we obtain

$$
\left(x-\frac{1}{2}\right)^{2}+y^{2}=\left(\frac{1}{2}\right)^{2}
$$

Analogously, $r=\sin (\theta)$ is the circle

$$
x^{2}+\left(y-\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
$$

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: We first review that these curves are actually circles.

$$
r=\cos (\theta) \quad \Leftrightarrow \quad r^{2}=r \cos (\theta) \quad \Leftrightarrow \quad x^{2}+y^{2}=x
$$

Completing the square in x we obtain

$$
\left(x-\frac{1}{2}\right)^{2}+y^{2}=\left(\frac{1}{2}\right)^{2}
$$

Analogously, $r=\sin (\theta)$ is the circle

$$
x^{2}+\left(y-\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
$$

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: The Theorem implies: $A=2 \int_{0}^{\pi / 4} \frac{1}{2} \sin ^{2}(\theta) d \theta$;

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: The Theorem implies: $A=2 \int_{0}^{\pi / 4} \frac{1}{2} \sin ^{2}(\theta) d \theta$;

$$
A=\int_{0}^{\pi / 4} \frac{1}{2}[1-\cos (2 \theta)] d \theta
$$

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: The Theorem implies: $A=2 \int_{0}^{\pi / 4} \frac{1}{2} \sin ^{2}(\theta) d \theta$;

$$
A=\int_{0}^{\pi / 4} \frac{1}{2}[1-\cos (2 \theta)] d \theta=\frac{1}{2}\left[\left(\frac{\pi}{4}-0\right)-\left.\frac{1}{2} \sin (2 \theta)\right|_{0} ^{\pi / 4}\right]
$$

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: The Theorem implies: $A=2 \int_{0}^{\pi / 4} \frac{1}{2} \sin ^{2}(\theta) d \theta$;

$$
\begin{aligned}
A & =\int_{0}^{\pi / 4} \frac{1}{2}[1-\cos (2 \theta)] d \theta=\frac{1}{2}\left[\left(\frac{\pi}{4}-0\right)-\left.\frac{1}{2} \sin (2 \theta)\right|_{0} ^{\pi / 4}\right] \\
& A=\frac{1}{2}\left[\frac{\pi}{4}-\left(\frac{1}{2}-0\right)\right]
\end{aligned}
$$

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: The Theorem implies: $A=2 \int_{0}^{\pi / 4} \frac{1}{2} \sin ^{2}(\theta) d \theta$;

$$
\begin{aligned}
A= & \int_{0}^{\pi / 4} \frac{1}{2}[1-\cos (2 \theta)] d \theta=\frac{1}{2}\left[\left(\frac{\pi}{4}-0\right)-\left.\frac{1}{2} \sin (2 \theta)\right|_{0} ^{\pi / 4}\right] \\
& A=\frac{1}{2}\left[\frac{\pi}{4}-\left(\frac{1}{2}-0\right)\right]=\frac{\pi}{8}-\frac{1}{4}
\end{aligned}
$$

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: The Theorem implies: $A=2 \int_{0}^{\pi / 4} \frac{1}{2} \sin ^{2}(\theta) d \theta$;

$$
\begin{gathered}
A=\int_{0}^{\pi / 4} \frac{1}{2}[1-\cos (2 \theta)] d \theta=\frac{1}{2}\left[\left(\frac{\pi}{4}-0\right)-\left.\frac{1}{2} \sin (2 \theta)\right|_{0} ^{\pi / 4}\right] ; \\
A=\frac{1}{2}\left[\frac{\pi}{4}-\left(\frac{1}{2}-0\right)\right]=\frac{\pi}{8}-\frac{1}{4} \Rightarrow A=\frac{1}{8}(\pi-2) .
\end{gathered}
$$

Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r=\cos (\theta)$ and $r=\sin (\theta)$.

Solution: The Theorem implies: $A=2 \int_{0}^{\pi / 4} \frac{1}{2} \sin ^{2}(\theta) d \theta$;

$$
\begin{gathered}
A=\int_{0}^{\pi / 4} \frac{1}{2}[1-\cos (2 \theta)] d \theta=\frac{1}{2}\left[\left(\frac{\pi}{4}-0\right)-\left.\frac{1}{2} \sin (2 \theta)\right|_{0} ^{\pi / 4}\right] ; \\
A=\frac{1}{2}\left[\frac{\pi}{4}-\left(\frac{1}{2}-0\right)\right]=\frac{\pi}{8}-\frac{1}{4} \Rightarrow A=\frac{1}{8}(\pi-2) .
\end{gathered}
$$

Also works: $A=\int_{0}^{\pi / 4} \frac{1}{2} \sin ^{2}(\theta) d \theta+\int_{\pi / 4}^{\pi / 2} \frac{1}{2} \cos ^{2}(\theta) d \theta$.

