
Polar coordinates (Sect. 11.3)

I Review: Arc-length of a curve.

I Polar coordinates definition.

I Transformation rules Polar-Cartesian.

I Examples of curves in polar coordinates.



Review: Arc-length of a curve

Definition
A curve on the plane is given in parametric form iff it is given by
the set of points

(
x(t), y(t)

)
, where the parameter t ∈ I ⊂ R.

Remark: If the curve y = f (x) can be described by the parametric
functions

(
x(t), y(t)

)
, for t ∈ I ⊂ R, and if x ′(t) 6= 0 for t ∈ I ,

then holds
df

dx
=

(dy/dt)

(dx/dt)
.

Remark: The arc-length of a continuously differentiable curve(
x(t), y(y)

)
, for t ∈ [a, b] is the number

L =

∫ b

a

√[
x ′(t)

]2
+

[
y ′(t)

]2
dt.
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Review: Arc-length of a curve

Remark:

I The formula for the arc-length

L =

∫ b

a

√[
x ′(t)

]2
+

[
y ′(t)

]2
dt.

can be used in a curve of the form y = f (x).

I Just choose the trivial parametrization:

x(t) = t, y(t) = f (t).

I Then x ′(t) = 1, y ′(t) = f ′(t), and the arc-length formula is

L =

∫ b

a

√
1 +

[
f ′(t)

]2
dt.
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Polar coordinates definition

Definition
The polar coordinates of a point P ∈ R2 is the
ordered pair (r , θ), with r > 0 and θ ∈ [0, 2π)
defined by the picture. x

r

0

P = ( r,   )0 = (x,y)

y

Example

Graph the points P1 = (1, π/4),
P2 = (1, 3π/4).

1

x

y
2

P  

0

1
P  

r  = 1

0  = 3pi/4

0  = pi/4

r  = 1

2

2
2 1

Example

Graph the points P1 = (1, π/4),
P3 = (1/2, 5π/4). 3

x

y
1

P  

0  = pi/4

r  = 11

1

P  
3

r  = 1/2

0  = 5pi/4
3
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Polar coordinates definition

Remark: The polar coordinates (r , θ)
are restricted to r > 0 and θ ∈ [0, 2π).

x

r

0

P = ( r,   )0 = (x,y)

y

Remark:

I This restriction implies that for every point P 6= (0, 0) there is
a unique pair (r , θ) to label that point.

I Usually this restriction is not applied, and r ∈ R, θ ∈ R.

I This means that infinitely many ordered pairs (r , θ) label the
same point P.

Example

Graph the points P1 = (1, π/4) and
P2 = (1,−7π/4). 0 = −7pi/4

x

r = 1

0 = pi/4

y
1 2P  = P
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Polar coordinates definition

Example

Graph the points P1 = (1, π/4),
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Remark: Polar coordinates are well adapted to describe circular
curves and disk sections.
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Transformation rules Polar-Cartesian.

Remark: The polar coordinates (r , θ), with
r > 0 and θ ∈ (−π, π] can be related to
Cartesian coordinates.

x

r

0

P = ( r,   )0 = (x,y)

y

Theorem (Cartesian-polar transformations)

The Cartesian coordinates of a point P = (r , θ) are given by

x = r cos(θ), y = r sin(θ).

The polar coordinates of a point P = (x , y) in the first and fourth
quadrants are given by

r =
√

x2 + y2, θ = arctan
(y

x

)
.

Proof: x2 + y2 = r2 cos2(θ) + r2 sin2(θ) = r2; r > 0 implies
r =

√
x2 + y2. Finally, x/y = tan(θ).
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Transformation rules Polar-Cartesian.

Remark:

I If (x , y) satisfies either x > 0, y > 0, or x 6 0, y 6 0, then
θ = arctan(x/y) is in the first quadrant.

I If (x , y) satisfies either x > 0, y 6 0, or x 6 0, y > 0, then
θ = arctan(x/y) is in the fourth quadrant.
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Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of a circle radius 3 at (0, 0).

Solution: In Cartesian coordinates the equation is

x2 + y2 = 32, r =
√

x2 + y2 ⇒

{
r = 3,

θ ∈ [0, 2π). C

Example

Find the equation in polar coordinates of the line y =
√

3 x .

Solution: From the transformation laws,

θ = arctan(y/x) = arctan
(√

3
)

⇒

{
θ = π/3,

r ∈ R, C
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Examples of curves in polar coordinates

Example

Find the equation in polar coordinates of the circle
x2 + (y − 3)2 = 9.

Solution: Expand the square in the equation of the circle,

x2 + y2 − 6y + 9 = 9 ⇒ x2 + y2 = 6y .

Recall: x = r cos(θ), and y = r sin(θ),
therefore x2 + y2 = r2,

r2 = 6r sin(θ) ⇒ r = 6 sin(θ),

and θ ∈ [0, π]. C

r(0)=6 sin(0)

6

0

x

y
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Examples of curves in polar coordinates

Example

Find the equation of the curve in Cartesian coordinates for
r = 4 cos(θ), for θ ∈ [−π/2, π/2].

Solution: Multiply by r the whole equation, r2 = 4r cos(θ).

Recall: x = r cos(θ), and y = r sin(θ), therefore x2 + y2 = r2,

x2 + y2 = 4x ⇒ x2 − 4x + y2 = 0.

Complete the square:[
x2 − 2

(4

2

)
x + 4

]
− 4 + y2 = 0

(x − 2)2 + y2 = 4.

This is the equation of a circle radius
r = 2 with center at (2, 0). C

r(0) = 4 cos(0)

y
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x
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Graphing in polar coordinates (Sect. 11.4)

I Review: Polar coordinates.

I Review: Transforming back to Cartesian.

I Computing the slope of tangent lines.

I Using symmetry to graph curves.
I Examples:

I Circles in polar coordinates.
I Graphing the Cardiod.
I Graphing the Lemniscate.



Review: POlar coordinates

Definition
The polar coordinates of a point P ∈ R2 is the
ordered pair (r , θ), with r > 0 and θ ∈ [0, 2π)
defined by the picture.

x

r

0

P = ( r,   )0 = (x,y)

y

Theorem (Cartesian-polar transformations)

The Cartesian coordinates of a point P = (r , θ) are given by

x = r cos(θ), y = r sin(θ).

The polar coordinates of a point P = (x , y) in the first and fourth
quadrants are given by

r =
√

x2 + y2, θ = arctan
(y

x

)
.
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Review: Transforming back to Cartesian

Example

Find the equation of the curve in Cartesian coordinates for
r = 4 cos(θ), for θ ∈ [−π/2, π/2].

Solution: Multiply by r the whole equation, r2 = 4r cos(θ).

Recall: x = r cos(θ), and y = r sin(θ), therefore x2 + y2 = r2,

x2 + y2 = 4x ⇒ x2 − 4x + y2 = 0.

Complete the square:[
x2 − 2

(4

2

)
x + 4

]
− 4 + y2 = 0

(x − 2)2 + y2 = 4.

This is the equation of a circle radius
r = 2 with center at (2, 0). C

r(0) = 4 cos(0)

y
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I Review: Polar coordinates.

I Review: Transforming back to Cartesian.

I Computing the slope of tangent lines.

I Using symmetry to graph curves.
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Computing the slope of tangent lines

Recall: The slope of the line tangent to the curve y = f (x), can
be written in terms of (x(t), y(t)) as follows

df

dx
=

dy/dt

dx/dt
.

Remark: If the curve is given in polar coordinates, r = r(θ), then

x(θ) = r(θ) cos(θ) y(θ) = r(θ) sin(θ).

The formula for the slope is then

df

dx
=

y ′(θ)

x ′(θ)
⇒ df

dx
=

r ′(θ) sin(θ) + r(θ) cos(θ)

r ′(θ) cos(θ)− r(θ) sin(θ)
.

If the curve passes through the origin, r(θ0) = 0, then

df

dx

∣∣∣
θ0

=
r ′(θ0) sin(θ0)

r ′(θ0) cos(θ0)
.
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Using symmetry to graph curves

Remark: If a curve is symmetric under reflections about the x-axis,
or the y-axis, or the origin, then the work needed to graph of the
curve can be reduced.

I x-axis symmetry: (r , θ) and (r ,−θ) belong to the graph.

I Origin symmetry: (r , θ) and (−r , θ) belong to the graph.

I y-axis symmetry: (r , θ) and (−r ,−θ) belong to the graph.

(r, − 0)

(r, 0)

x

y
(−r, − 0)

(−r, 0)
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Circles in polar coordinates

Remark: Circles centered at the origin are trivial to graph.

Example

Graph the curve r = 2, θ ∈ [0, 2π).

y

x2

Remark:
Circles not centered at the origin are more complicated to graph.

Example

Graph the curve
r = 4 cos(θ), θ ∈ [0, 2π).

Solution: Back to Cartesian:

r(0) = 4 cos(0)

y

2

0

x
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Circles in polar coordinates

Remark: We now use the graph of the function r = 4 cos(θ) to
graph the curve r = 4 cos(θ) in the xy -plane.

Example

Graph the curve r = 4 cos(θ), θ ∈ [0, 2π).

Solution:

Notice that r(θ) = r(−θ).
(Reflection about x-axis symmetry.)

The graph of r = 4 cos(θ) is

r = 4 cos(0)

pi

r

0

4

−4

The graph above helps to do the curve on the
xy -plane. We actually cover the circle twice!

r(0) = 4 cos(0)

y

2 x

y
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Graphing the Cardiod

Example

Graph on the xy -plane the curve r = 1− cos(θ), θ ∈ [0, 2π).

Solution: We first graph the function r = 1− cos(θ).

−1

pi

r

0

r = −  cos(0)

r =  cos(0)

1

r =  cos(0)
pi 0

1

−1

r = 1 −  cos(0)r

From the previous graph we
obtain the curve: on the
xy -plane:

−1

y r = 1 − cos(0)

x

1

2
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Graphing the Lemniscate

Example

Graph on the xy -plane the curve r2 = sin(2θ), θ ∈ [0, 2π).

Solution: We first graph the function r = ±
√

sin(2θ).

r = sin(20)

−1

1

0

r

r = sin(0)

pi 2 pi

r = −    sin(20)
−1

1

0
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pi 2 pi
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From the previous graph we
obtain the curve: on the
xy -plane:

r = −    cos(0)

x

y

r = +    cos(0)
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Area of regions in polar coordinates (Sect. 11.5)

I Review: Few curves in polar coordinates.

I Formula for the area or regions in polar coordinates.

I Calculating areas in polar coordinates.



Transformation rules Polar-Cartesian.

Definition
The polar coordinates of a point P ∈ R2 is the
ordered pair (r , θ), with r > 0 and θ ∈ [0, 2π)
defined by the picture.
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0

P = ( r,   )0 = (x,y)

y

Example

r = −2cos(0)

x

r=1

r = 2sin(0)y

r = 2cos(0)

r = −2sin(0)

2 x

r = 1 − sin(0)r = 1 − cos(0)

r = 1 + cos(0)r = 1 + sin(0)

y

1

−1

−2
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Definition
The polar coordinates of a point P ∈ R2 is the
ordered pair (r , θ), with r > 0 and θ ∈ [0, 2π)
defined by the picture.
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Area of regions in polar coordinates (Sect. 11.5)

I Review: Few curves in polar coordinates.

I Formula for the area or regions in polar coordinates.

I Calculating areas in polar coordinates.



Formula for the area or regions in polar coordinates

Theorem
If the functions r1, r2 : [α, β]→ R are continuous and 0 6 r1 6 r2,
then the area of a region D ⊂ R2 given by

D =
{
(r , θ) ∈ R2 : r ∈ [r1(θ), r2(θ)], θ ∈ [α, β]

}
.

is given by the integral

A(D) =

∫ β

α

1

2

([
r2(θ)

]2 −
[
r1(θ)

]2
)

dθ.

α

r (0) 

x

y

1
r (0)

2

D 

β

Remark: This result includes the
case of r1 = 0, which are fan-shaped
regions.
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Formula for the area or regions in polar coordinates

Idea of the Proof: Introduce a partition θk = k ∆θ,

with

k = 1, · · · , n, and ∆θ =
β − α

n

k r (0) 

x

y D 

β

α

A

The area of each fan-shaped region on
the figure is,

Ak =
1

2

[
r(θk)

]2
∆θ.

A Riemann sum that approximates the green region area is
n∑

k=1

Ak =
n∑

k=1

1

2

[
r(θk)

]2
∆θ.

Refining the partition and taking a limit n →∞ one can prove
that the Riemann sum above converges and the limit is called

A(D) =

∫ β

α

1

2

[
r(θ)

]2
dθ.
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Area of regions in polar coordinates (Sect. 11.5)

I Review: Few curves in polar coordinates.

I Formula for the area or regions in polar coordinates.

I Calculating areas in polar coordinates.



Calculating areas in polar coordinates

Example

Find the area inside the circle r = 1 and outside the cardiod
r = 1− sin(θ).

Solution:

r = 1 − sin(0)

x

r = 1y

1

−1

The Theorem implies

A =

∫ β

α

1

2

(
1−

[
1− sin(θ)

]2)
dθ.

We need to find α and β. They
are the intersection of the circle
and the cardiod:

1 = 1− sin(θ) ⇒ sin(θ) = 0 ⇒

{
α = 0,

β = π.
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Calculating areas in polar coordinates

Example

Find the area inside the circle r = 1 and outside the cardiod
r = 1− sin(θ).

Solution: Therefore: A =

∫ π

0

1

2

(
1−

[
1− sin(θ)

]2)
dθ.

A =
1

2

∫ π

0

(
2 sin(θ)− sin2(θ)

)
dθ

A =
1

2

∫ π

0

(
2 sin(θ)− 1

2

[
1− cos(2θ)

])
dθ

A =
1

2

(
−2 cos(θ)

∣∣∣π
0
− 1

2

[
π − 1

2
sin(2θ)

∣∣∣π
0

])
A =

1

2

(
4− π

2

)
⇒ A = 2− π

4
. C



Calculating areas in polar coordinates

Example

Find the area inside the circle r = 1 and outside the cardiod
r = 1− sin(θ).

Solution: Therefore: A =

∫ π

0

1

2

(
1−

[
1− sin(θ)

]2)
dθ.

A =
1

2

∫ π

0

(
2 sin(θ)− sin2(θ)

)
dθ

A =
1

2

∫ π

0

(
2 sin(θ)− 1

2

[
1− cos(2θ)

])
dθ

A =
1

2

(
−2 cos(θ)

∣∣∣π
0
− 1

2

[
π − 1

2
sin(2θ)

∣∣∣π
0

])
A =

1

2

(
4− π

2

)
⇒ A = 2− π

4
. C



Calculating areas in polar coordinates

Example

Find the area inside the circle r = 1 and outside the cardiod
r = 1− sin(θ).

Solution: Therefore: A =

∫ π

0

1

2

(
1−

[
1− sin(θ)

]2)
dθ.

A =
1

2

∫ π

0

(
2 sin(θ)− sin2(θ)

)
dθ

A =
1

2

∫ π

0

(
2 sin(θ)− 1

2

[
1− cos(2θ)

])
dθ

A =
1

2

(
−2 cos(θ)

∣∣∣π
0
− 1

2

[
π − 1

2
sin(2θ)

∣∣∣π
0

])
A =

1

2

(
4− π

2

)
⇒ A = 2− π

4
. C



Calculating areas in polar coordinates

Example

Find the area inside the circle r = 1 and outside the cardiod
r = 1− sin(θ).

Solution: Therefore: A =

∫ π

0

1

2

(
1−

[
1− sin(θ)

]2)
dθ.

A =
1

2

∫ π

0

(
2 sin(θ)− sin2(θ)

)
dθ

A =
1

2

∫ π

0

(
2 sin(θ)− 1

2

[
1− cos(2θ)

])
dθ

A =
1

2

(
−2 cos(θ)

∣∣∣π
0
−

1

2

[
π − 1

2
sin(2θ)

∣∣∣π
0

])
A =

1

2

(
4− π

2

)
⇒ A = 2− π

4
. C



Calculating areas in polar coordinates

Example

Find the area inside the circle r = 1 and outside the cardiod
r = 1− sin(θ).

Solution: Therefore: A =

∫ π

0

1

2

(
1−

[
1− sin(θ)

]2)
dθ.

A =
1

2

∫ π

0

(
2 sin(θ)− sin2(θ)

)
dθ

A =
1

2

∫ π

0

(
2 sin(θ)− 1

2

[
1− cos(2θ)

])
dθ

A =
1

2

(
−2 cos(θ)

∣∣∣π
0
− 1

2

[
π − 1

2
sin(2θ)

∣∣∣π
0

])

A =
1

2

(
4− π

2

)
⇒ A = 2− π

4
. C



Calculating areas in polar coordinates

Example

Find the area inside the circle r = 1 and outside the cardiod
r = 1− sin(θ).

Solution: Therefore: A =

∫ π

0

1

2

(
1−

[
1− sin(θ)

]2)
dθ.

A =
1

2

∫ π

0

(
2 sin(θ)− sin2(θ)

)
dθ

A =
1

2

∫ π

0

(
2 sin(θ)− 1

2

[
1− cos(2θ)

])
dθ

A =
1

2

(
−2 cos(θ)

∣∣∣π
0
− 1

2

[
π − 1

2
sin(2θ)

∣∣∣π
0

])
A =

1

2

(
4− π

2

)

⇒ A = 2− π

4
. C



Calculating areas in polar coordinates

Example

Find the area inside the circle r = 1 and outside the cardiod
r = 1− sin(θ).

Solution: Therefore: A =

∫ π

0

1

2

(
1−

[
1− sin(θ)

]2)
dθ.

A =
1

2

∫ π

0

(
2 sin(θ)− sin2(θ)

)
dθ

A =
1

2

∫ π

0

(
2 sin(θ)− 1

2

[
1− cos(2θ)

])
dθ

A =
1

2

(
−2 cos(θ)

∣∣∣π
0
− 1

2

[
π − 1

2
sin(2θ)

∣∣∣π
0

])
A =

1

2

(
4− π

2

)
⇒ A = 2− π

4
. C



Calculating areas in polar coordinates

Example

Find the area of the intersection of the interior of the regions
bounded by the curves r = cos(θ) and r = sin(θ).

Solution: We first review that these curves are actually circles.

r = cos(θ) ⇔ r2 = r cos(θ) ⇔ x2 + y2 = x .

Completing the square in x we obtain(
x − 1

2

)2
+ y2 =

(1

2

)2
.

Analogously, r = sin(θ) is the circle

x2 +
(
y − 1

2

)2
=

(1

2

)2
.

1/2

y r=sin(0)

r=cos(0)

x1/2
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Calculating areas in polar coordinates

Example
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2
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π
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4
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(π − 2).

C
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∫ π/4
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1

2
sin2(θ) dθ +

∫ π/2

π/4

1

2
cos2(θ) dθ.
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