Binomial functions and Taylor series (Sect. 10.10)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Review: The Taylor Theorem.
- The binomial function.
- Evaluating non-elementary integrals.
- The Euler identity.
- Taylor series table.

Recall: If $f : D \to \mathbb{R}$ is infinitely differentiable, and $a, x \in D$, then

 $f(x) = T_n(x) + R_n(x),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Recall: If $f : D \to \mathbb{R}$ is infinitely differentiable, and $a, x \in D$, then

 $f(x) = T_n(x) + R_n(x),$

・ロト・日本・モート モー うへぐ

where the Taylor polynomial T_n and the Remainder function R_n

Recall: If $f : D \to \mathbb{R}$ is infinitely differentiable, and $a, x \in D$, then

 $f(x) = T_n(x) + R_n(x),$

where the Taylor polynomial T_n and the Remainder function R_n are

$$T_n(x) = f(a) + f'(a) (x - a) + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n,$$

$$R_n(x) = \frac{f^{(n+1)}(c(x))}{(n+1)!} (x - a)^{n+1}, \text{ with } c \in (a, x).$$

・ロト・日本・モート モー うへぐ

Recall: If $f : D \to \mathbb{R}$ is infinitely differentiable, and $a, x \in D$, then

 $f(x) = T_n(x) + R_n(x),$

where the Taylor polynomial T_n and the Remainder function R_n are

$$T_n(x) = f(a) + f'(a) (x - a) + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n,$$

$$R_n(x) = \frac{f^{(n+1)}(c(x))}{(n+1)!} (x - a)^{n+1}, \text{ with } c \in (a, x).$$

Furthermore, if $R_n(x) \to 0$ as $n \to \infty$ for every $x \in I \subset D$, then the *Taylor series* centered at x = a, $T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$, converges to the function f on the interval I, and f(x) = T(x).

Binomial functions and Taylor series (Sect. 10.10)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Review: The Taylor Theorem.
- ► The binomial function.
- Evaluating non-elementary integrals.
- The Euler identity.
- Taylor series table.

Definition The *binomial function* is a function of the form

 $f_m(x) = (1+x)^m, \qquad m \in \mathbb{R}.$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Definition The *binomial function* is a function of the form

 $f_m(x) = (1+x)^m, \qquad m \in \mathbb{R}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the Taylor polynomial T_3 centered at a = 0 of f_m .

Definition The *binomial function* is a function of the form

 $f_m(x) = (1+x)^m, \qquad m \in \mathbb{R}.$

Example

Find the Taylor polynomial T_3 centered at a = 0 of f_m .

Solution: The derivatives of the function $f(x) = (1 + x)^m$ are

Definition The *binomial function* is a function of the form

$$f_m(x) = (1+x)^m, \qquad m \in \mathbb{R}.$$

Example

Find the Taylor polynomial T_3 centered at a = 0 of f_m .

Solution: The derivatives of the function $f(x) = (1 + x)^m$ are

$$f'(x) = m(1+x)^{(m-1)},$$

Definition The *binomial function* is a function of the form

$$f_m(x) = (1+x)^m, \qquad m \in \mathbb{R}.$$

Example

Find the Taylor polynomial T_3 centered at a = 0 of f_m .

Solution: The derivatives of the function $f(x) = (1 + x)^m$ are

$$f'(x) = m(1+x)^{(m-1)}, \quad f''(x) = m(m-1)(1+x)^{(m-2)},$$

Definition The *binomial function* is a function of the form

$$f_m(x) = (1+x)^m, \qquad m \in \mathbb{R}.$$

Example

Find the Taylor polynomial T_3 centered at a = 0 of f_m .

Solution: The derivatives of the function $f(x) = (1 + x)^m$ are

$$f'(x) = m(1+x)^{(m-1)}, \quad f''(x) = m(m-1)(1+x)^{(m-2)},$$

$$f^{(3)}(x) = m(m-1)(m-2)(1+x)^{(m-3)}.$$

Definition The *binomial function* is a function of the form

$$f_m(x) = (1+x)^m, \qquad m \in \mathbb{R}.$$

Example

Find the Taylor polynomial T_3 centered at a = 0 of f_m .

Solution: The derivatives of the function $f(x) = (1 + x)^m$ are

$$f'(x) = m(1+x)^{(m-1)}, \quad f''(x) = m(m-1)(1+x)^{(m-2)},$$

$$f^{(3)}(x) = m(m-1)(m-2)(1+x)^{(m-3)}.$$

$$T_3(x) = 1 + mx + \frac{m(m-1)}{2!}x^2 + \frac{m(m-1)(m-2)}{3!}x^3. \quad \triangleleft$$

Remark: If m is a positive integer, then the binomial function f_m is a polynomial,

Remark: If m is a positive integer, then the binomial function f_m is a polynomial, therefore the Taylor series is the same polynomial,

Remark: If *m* is a positive integer, then the binomial function f_m is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first m + 1 terms non-zero.

・ロト・日本・モート モー うへぐ

Remark: If *m* is a positive integer, then the binomial function f_m is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first m + 1 terms non-zero.

Example

Find the Taylor series of $f_2(x) = (1 + x)^2$.

Remark: If *m* is a positive integer, then the binomial function f_m is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first m + 1 terms non-zero.

Example

Find the Taylor series of $f_2(x) = (1+x)^2$.

Solution: Expanding the the binomial $f_2(x) = (1+x)^2$,

Remark: If *m* is a positive integer, then the binomial function f_m is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first m + 1 terms non-zero.

Example

Find the Taylor series of $f_2(x) = (1+x)^2$.

Solution: Expanding the the binomial $f_2(x) = (1 + x)^2$,

$$f_2(x) = 1 + 2x + x^2$$

Remark: If *m* is a positive integer, then the binomial function f_m is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first m + 1 terms non-zero.

Example

Find the Taylor series of $f_2(x) = (1+x)^2$.

Solution: Expanding the the binomial $f_2(x) = (1 + x)^2$,

$$f_2(x) = 1 + 2x + x^2 \quad \Rightarrow \quad f'(x) = 2 + 2x,$$

Remark: If *m* is a positive integer, then the binomial function f_m is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first m + 1 terms non-zero.

Example

Find the Taylor series of $f_2(x) = (1+x)^2$.

Solution: Expanding the the binomial $f_2(x) = (1 + x)^2$,

$$f_2(x) = 1 + 2x + x^2 \quad \Rightarrow \quad f'(x) = 2 + 2x, \quad f''(x) = 2.$$

Remark: If *m* is a positive integer, then the binomial function f_m is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first m + 1 terms non-zero.

Example

Find the Taylor series of $f_2(x) = (1+x)^2$.

Solution: Expanding the the binomial $f_2(x) = (1 + x)^2$,

$$f_2(x) = 1 + 2x + x^2 \quad \Rightarrow \quad f'(x) = 2 + 2x, \quad f''(x) = 2.$$

Since all derivatives higher or equal the third vanish,

Remark: If *m* is a positive integer, then the binomial function f_m is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first m + 1 terms non-zero.

Example

Find the Taylor series of $f_2(x) = (1+x)^2$.

Solution: Expanding the the binomial $f_2(x) = (1 + x)^2$,

$$f_2(x) = 1 + 2x + x^2 \quad \Rightarrow \quad f'(x) = 2 + 2x, \quad f''(x) = 2.$$

Since all derivatives higher or equal the third vanish,

$$T(x) = 1 + f'(0)x + \frac{f''(0)}{2}x^2$$

Remark: If *m* is a positive integer, then the binomial function f_m is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first m + 1 terms non-zero.

Example

Find the Taylor series of $f_2(x) = (1+x)^2$.

Solution: Expanding the the binomial $f_2(x) = (1 + x)^2$,

$$f_2(x) = 1 + 2x + x^2 \quad \Rightarrow \quad f'(x) = 2 + 2x, \quad f''(x) = 2.$$

Since all derivatives higher or equal the third vanish,

$$T(x) = 1 + f'(0)x + rac{f''(0)}{2}x^2 \quad \Rightarrow \quad T(x) = 1 + 2x + x^2.$$

・ロト・西ト・ヨト・ヨー シック

Remark: If *m* is a positive integer, then the binomial function f_m is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first m + 1 terms non-zero.

Example

Find the Taylor series of $f_2(x) = (1+x)^2$.

Solution: Expanding the the binomial $f_2(x) = (1 + x)^2$,

$$f_2(x) = 1 + 2x + x^2 \quad \Rightarrow \quad f'(x) = 2 + 2x, \quad f''(x) = 2.$$

Since all derivatives higher or equal the third vanish,

$$T(x) = 1 + f'(0)x + \frac{f''(0)}{2}x^2 \Rightarrow T(x) = 1 + 2x + x^2.$$

 \triangleleft

That is, $f_2(x) = T(x)$.

Remark: If m is not a positive integer, then the Taylor series of the binomial function has infinitely many non-zero terms.

Remark: If m is not a positive integer, then the Taylor series of the binomial function has infinitely many non-zero terms.

Theorem

The Taylor series for the binomial function $f_m(x) = (1 + x)^m$, with m not a positive integer converges for |x| < 1 and is given by

$$T(x) = 1 + \sum_{n=1}^{\infty} \binom{m}{n} x^n,$$

with the binomial coefficients $\binom{m}{1} = m$, $\binom{m}{2} = \frac{m(m-1)}{2!}$, and

$$\binom{m}{n} = \frac{m(m-1)\cdots(m-(n-1))}{n!}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof: The *n*-derivative of the binomial function is $f^{(n)}(x) = m(m-1)\cdots(m-(n-1))(1+x)^{(m-n)},$

Proof: The *n*-derivative of the binomial function is $f^{(n)}(x) = m(m-1)\cdots(m-(n-1))(1+x)^{(m-n)},$

therefore, the *n*-Taylor coefficient at a = 0 is

$$\frac{f^{(n)}(0)}{n!} = \frac{m(m-1)\cdots(m-(n-1))}{n!}$$

Proof: The *n*-derivative of the binomial function is $f^{(n)}(x) = m(m-1)\cdots(m-(n-1))(1+x)^{(m-n)},$

therefore, the *n*-Taylor coefficient at a = 0 is

$$\frac{f^{(n)}(0)}{n!} = \frac{m(m-1)\cdots(m-(n-1))}{n!} = \binom{m}{n}$$

Proof: The *n*-derivative of the binomial function is $f^{(n)}(x) = m(m-1)\cdots(m-(n-1))(1+x)^{(m-n)},$

therefore, the *n*-Taylor coefficient at a = 0 is

$$\frac{f^{(n)}(0)}{n!} = \frac{m(m-1)\cdots(m-(n-1))}{n!} = \binom{m}{n}$$

Since f(0) = 1,

Proof: The *n*-derivative of the binomial function is $f^{(n)}(x) = m(m-1)\cdots(m-(n-1))(1+x)^{(m-n)},$

therefore, the *n*-Taylor coefficient at a = 0 is

$$\frac{f^{(n)}(0)}{n!} = \frac{m(m-1)\cdots(m-(n-1))}{n!} = \binom{m}{n}.$$

Since f(0) = 1, the Taylor series of the binomial function is

$$T(x) = 1 + \sum_{n=1}^{\infty} \binom{m}{n} x^n,$$

Proof: The *n*-derivative of the binomial function is $f^{(n)}(x) = m(m-1)\cdots(m-(n-1))(1+x)^{(m-n)},$

therefore, the *n*-Taylor coefficient at a = 0 is

$$\frac{f^{(n)}(0)}{n!} = \frac{m(m-1)\cdots(m-(n-1))}{n!} = \binom{m}{n}.$$

・ロト・日本・日本・日本・日本・今日・

Since f(0) = 1, the Taylor series of the binomial function is

$$T(x) = 1 + \sum_{n=1}^{\infty} \binom{m}{n} x^n,$$

The ratio test:
$$\frac{|x^{n+1} \binom{m}{n+1}|}{|x^n \binom{m}{n}|}$$

Proof: The *n*-derivative of the binomial function is $f^{(n)}(x) = m(m-1)\cdots(m-(n-1))(1+x)^{(m-n)},$

therefore, the *n*-Taylor coefficient at a = 0 is

$$\frac{f^{(n)}(0)}{n!} = \frac{m(m-1)\cdots(m-(n-1))}{n!} = \binom{m}{n}.$$

・ロト・日本・日本・日本・日本・今日・

Since f(0) = 1, the Taylor series of the binomial function is

$$T(x) = 1 + \sum_{n=1}^{\infty} {m \choose n} x^n,$$

The ratio test:
$$\frac{|x^{n+1} {m \choose n+1}|}{|x^n {m \choose n}|} = |x \frac{m-n}{(n+1)}| \to |x| \text{ as } n \to \infty.$$

Proof: The *n*-derivative of the binomial function is $f^{(n)}(x) = m(m-1)\cdots(m-(n-1))(1+x)^{(m-n)},$

therefore, the *n*-Taylor coefficient at a = 0 is

$$\frac{f^{(n)}(0)}{n!} = \frac{m(m-1)\cdots(m-(n-1))}{n!} = \binom{m}{n}.$$

Since f(0) = 1, the Taylor series of the binomial function is

$$T(x) = 1 + \sum_{n=1}^{\infty} \binom{m}{n} x^n,$$

The ratio test: $\frac{\left|x^{n+1}\binom{m}{n+1}\right|}{\left|x^{n}\binom{m}{n}\right|} = \left|x\frac{m-n}{(n+1)}\right| \to |x| \text{ as } n \to \infty.$

Therefore, the series converges for |x| < 1.

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●
Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: Compute the binomial coefficients $\binom{1/2}{n}$:

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/2}$.

Solution: Compute the binomial coefficients $\binom{1/2}{n}$: $\binom{1/2}{1} = \frac{1}{2}$,

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/2}$.

Solution: Compute the binomial coefficients $\binom{1/2}{n}$: $\binom{1/2}{1} = \frac{1}{2}$,

$$\binom{1/2}{2} = \frac{\left(\frac{1}{2}\right)\left(\frac{1}{2} - 1\right)}{2!}$$

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/2}$.

Solution: Compute the binomial coefficients $\binom{1/2}{n}$: $\binom{1/2}{1} = \frac{1}{2}$,

$$\binom{1/2}{2} = \frac{\binom{1}{2}\binom{1}{2} - 1}{2!} = \frac{\binom{1}{2}\binom{-1}{2}}{2!}$$

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/2}$.

Solution: Compute the binomial coefficients $\binom{1/2}{n}$: $\binom{1/2}{1} = \frac{1}{2}$,

$$\binom{1/2}{2} = \frac{\binom{1}{2}\binom{1}{2} - 1}{2!} = \frac{\binom{1}{2}\binom{-1}{2}}{2!} = \frac{\binom{-1}{4}}{2}$$

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/2}$.

Solution: Compute the binomial coefficients $\binom{1/2}{n}$: $\binom{1/2}{1} = \frac{1}{2}$,

$$\binom{1/2}{2} = \frac{\left(\frac{1}{2}\right)\left(\frac{1}{2} - 1\right)}{2!} = \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} = \frac{\left(-\frac{1}{4}\right)}{2} = -\frac{1}{8},$$

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/2}$.

Solution: Compute the binomial coefficients $\binom{1/2}{n}$: $\binom{1/2}{1} = \frac{1}{2}$,

$$\binom{1/2}{2} = \frac{\left(\frac{1}{2}\right)\left(\frac{1}{2} - 1\right)}{2!} = \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} = \frac{\left(-\frac{1}{4}\right)}{2} = -\frac{1}{8},$$

$$\binom{1/2}{3} = \frac{\binom{1}{2}\binom{1}{2} - 1\binom{1}{2} - 2}{3!}$$

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/2}$.

Solution: Compute the binomial coefficients $\binom{1/2}{n}$: $\binom{1/2}{1} = \frac{1}{2}$,

$$\binom{1/2}{2} = \frac{\binom{1}{2}\binom{1}{2} - 1}{2!} = \frac{\binom{1}{2}\binom{-1}{2}}{2!} = \frac{\binom{-1}{4}}{2} = -\frac{1}{8},$$

$$\binom{1/2}{3} = \frac{\binom{1}{2}\binom{1}{2} - 1\binom{1}{2} - 2}{3!} = \frac{\binom{1}{2}\binom{-1}{2}\binom{-3}{2}}{3!}$$

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/2}$.

Solution: Compute the binomial coefficients $\binom{1/2}{n}$: $\binom{1/2}{1} = \frac{1}{2}$,

$$\binom{1/2}{2} = \frac{\binom{1}{2}\binom{1}{2} - 1}{2!} = \frac{\binom{1}{2}\binom{-1}{2}}{2!} = \frac{\binom{-1}{4}}{2} = -\frac{1}{8},$$

$$\binom{1/2}{3} = \frac{\left(\frac{1}{2}\right)\left(\frac{1}{2} - 1\right)\left(\frac{1}{2} - 2\right)}{3!} = \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!} = \frac{\left(\frac{3}{8}\right)}{6}$$

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/2}$.

Solution: Compute the binomial coefficients $\binom{1/2}{n}$: $\binom{1/2}{1} = \frac{1}{2}$, $\binom{1/2}{2} = \frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)}{2!} = \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!} = \frac{\left(-\frac{1}{4}\right)}{2} = -\frac{1}{8}$, $\binom{1/2}{3} = \frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!} = \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!} = \frac{\left(\frac{3}{8}\right)}{6} = \frac{1}{16}$.

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/2}$.

Solution: Compute the binomial coefficients $\binom{1/2}{n}$: $\binom{1/2}{1} = \frac{1}{2}$, $\binom{1/2}{2} = \frac{\binom{1}{2}\binom{1}{2}-1}{2!} = \frac{\binom{1}{2}\binom{1}{-\frac{1}{2}}}{2!} = \frac{\binom{1}{-\frac{1}{4}}}{2!} = -\frac{1}{2},$ $\binom{1/2}{3} = \frac{\binom{1}{2}\binom{1}{2} - 1\binom{1}{2} - 2}{3!} = \frac{\binom{1}{2}\binom{-1}{2}\binom{-3}{2}}{2!} = \frac{\binom{3}{8}}{6} = \frac{1}{16}.$ $\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{2} + \frac{x^3}{16} - \cdots$ \triangleleft

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example

Find the Taylor series of the binomial function $f(x) = (1 - x)^{1/2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the Taylor series of the binomial function $f(x) = (1 - x)^{1/2}$.

Solution: Substitute x by -x in $\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \cdots$.

Example

Find the Taylor series of the binomial function $f(x) = (1 - x)^{1/2}$.

Solution: Substitute x by -x in $\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \cdots$. We obtain: $\sqrt{1-x} = 1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} - \cdots$.

Example

Find the Taylor series of the binomial function $f(x) = (1 - x)^{1/2}$.

Solution: Substitute x by
$$-x$$
 in $\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \cdots$.
We obtain: $\sqrt{1-x} = 1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} - \cdots$.

Example

Find the Taylor series of the binomial function $f(x) = (1 - x^2)^{1/2}$.

Example

Find the Taylor series of the binomial function $f(x) = (1 - x)^{1/2}$.

Solution: Substitute x by
$$-x$$
 in $\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \cdots$.
We obtain: $\sqrt{1-x} = 1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} - \cdots$.

Example

Find the Taylor series of the binomial function $f(x) = (1 - x^2)^{1/2}$.

Solution: Substitute x by
$$-x^2$$
 in $\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \cdots$.

Example

Find the Taylor series of the binomial function $f(x) = (1 - x)^{1/2}$.

Solution: Substitute x by
$$-x$$
 in $\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \cdots$.
We obtain: $\sqrt{1-x} = 1 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^3}{16} - \cdots$.

Example

Find the Taylor series of the binomial function $f(x) = (1 - x^2)^{1/2}$.

Solution: Substitute x by
$$-x^2$$
 in $\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \cdots$
We obtain: $\sqrt{1-x^2} = 1 - \frac{x^2}{2} - \frac{x^4}{8} - \frac{x^6}{16} - \cdots$.

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/3}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/3}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: Compute the binomial coefficients $\binom{1/3}{n}$:

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/3}$.

Solution: Compute the binomial coefficients $\binom{1/3}{n}$: $\binom{1/3}{1} = \frac{1}{3}$,

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/3}$.

Solution: Compute the binomial coefficients $\binom{1/3}{n}$: $\binom{1/3}{1} = \frac{1}{3}$,

$$\binom{1/3}{2} = \frac{\left(\frac{1}{3}\right)\left(\frac{1}{3} - 1\right)}{2!}$$

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/3}$.

Solution: Compute the binomial coefficients $\binom{1/3}{n}$: $\binom{1/3}{1} = \frac{1}{3}$,

$$\binom{1/3}{2} = \frac{\binom{1}{3}\binom{1}{3} - 1}{2!} = \frac{\binom{1}{3}\binom{-2}{-3}}{2!}$$

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/3}$.

Solution: Compute the binomial coefficients $\binom{1/3}{n}$: $\binom{1/3}{1} = \frac{1}{3}$,

$$\binom{1/3}{2} = \frac{\binom{1}{3}\binom{1}{3} - 1}{2!} = \frac{\binom{1}{3}\binom{-2}{-3}}{2!} = \frac{\binom{-2}{9}}{2}$$

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/3}$.

Solution: Compute the binomial coefficients $\binom{1/3}{n}$: $\binom{1/3}{1} = \frac{1}{3}$,

$$\binom{1/3}{2} = \frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)}{2!} = \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!} = \frac{\left(-\frac{2}{9}\right)}{2} = -\frac{1}{9},$$

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/3}$.

Solution: Compute the binomial coefficients $\binom{1/3}{n}$: $\binom{1/3}{1} = \frac{1}{3}$,

$$\binom{1/3}{2} = \frac{\binom{1}{3}\binom{1}{3} - 1}{2!} = \frac{\binom{1}{3}\binom{-2}{-3}}{2!} = \frac{\binom{-2}{9}}{2} = -\frac{1}{9},$$

$$\binom{1/3}{3} = \frac{\left(\frac{1}{3}\right)\left(\frac{1}{3} - 1\right)\left(\frac{1}{3} - 2\right)}{3!}$$

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/3}$.

Solution: Compute the binomial coefficients $\binom{1/3}{n}$: $\binom{1/3}{1} = \frac{1}{3}$,

$$\binom{1/3}{2} = \frac{\binom{1}{3}\binom{1}{3} - 1}{2!} = \frac{\binom{1}{3}\binom{-2}{3}}{2!} = \frac{\binom{-2}{9}}{2} = -\frac{1}{9},$$

$$\binom{1/3}{3} = \frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)}{3!} = \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}$$

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/3}$.

Solution: Compute the binomial coefficients $\binom{1/3}{n}$: $\binom{1/3}{1} = \frac{1}{3}$,

$$\binom{1/3}{2} = \frac{\binom{1}{3}\binom{1}{3} - 1}{2!} = \frac{\binom{1}{3}\binom{-2}{3}}{2!} = \frac{\binom{-2}{9}}{2} = -\frac{1}{9},$$

$$\binom{1/3}{3} = \frac{\left(\frac{1}{3}\right)\left(\frac{1}{3} - 1\right)\left(\frac{1}{3} - 2\right)}{3!} = \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!} = \frac{\left(\frac{10}{27}\right)}{6}$$

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/3}$.

Solution: Compute the binomial coefficients $\binom{1/3}{n}$: $\binom{1/3}{1} = \frac{1}{3}$, $\binom{1/3}{2} = \frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)}{2!} = \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!} = \frac{\left(-\frac{2}{9}\right)}{2} = -\frac{1}{9}$, $\binom{1/3}{3} = \frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)}{3!} = \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!} = \frac{\left(\frac{10}{27}\right)}{6} = \frac{5}{81}$.

Example

Find the Taylor series of the binomial function $f(x) = (1 + x)^{1/3}$.

Solution: Compute the binomial coefficients $\binom{1/3}{n}$: $\binom{1/3}{1} = \frac{1}{3}$, $\binom{1/3}{2} = \frac{\binom{1}{3}\binom{1}{3} - 1}{2!} = \frac{\binom{1}{3}\binom{-2}{-3}}{2!} = \frac{\binom{-2}{9}}{2} = -\frac{1}{6},$ $\binom{1/3}{3} = \frac{\binom{1}{3}\binom{1}{3} - 1\binom{1}{3} - 2}{3!} = \frac{\binom{1}{3}\binom{-2}{3}\binom{-5}{3}}{3!} = \frac{\binom{10}{27}}{6} = \frac{5}{8!}.$ $\sqrt[3]{1+x} = 1 + \frac{x}{3} - \frac{x^2}{0} + \frac{5}{81}x^3 - \cdots$ \triangleleft

Binomial functions and Taylor series (Sect. 10.10)

- Review: The Taylor Theorem.
- The binomial function.
- Evaluating non-elementary integrals.

- The Euler identity.
- Taylor series table.

Remark: Non-elementary integrals can be evaluated integrating term by term the integrand Taylor series.

Remark: Non-elementary integrals can be evaluated integrating term by term the integrand Taylor series.

・ロト・日本・モート モー うへぐ

Example

Approximate the integral
$$I = \int_0^1 e^{-x^2} dx$$
.

Remark: Non-elementary integrals can be evaluated integrating term by term the integrand Taylor series.

Example

Approximate the integral $I = \int_0^1 e^{-x^2} dx$. Solution: Recall the Taylor series $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$.

Remark: Non-elementary integrals can be evaluated integrating term by term the integrand Taylor series.

Example

Approximate the integral $I = \int_0^1 e^{-x^2} dx$. Solution: Recall the Taylor series $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$. Substitute x by $-x^2$ in the Taylor series,

Remark: Non-elementary integrals can be evaluated integrating term by term the integrand Taylor series.

Example

Approximate the integral $I = \int_0^1 e^{-x^2} dx$. Solution: Recall the Taylor series $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$. Substitute x by $-x^2$ in the Taylor series,

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \cdots$$

Remark: Non-elementary integrals can be evaluated integrating term by term the integrand Taylor series.

Example

Approximate the integral $I = \int_0^1 e^{-x^2} dx$. Solution: Recall the Taylor series $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$. Substitute x by $-x^2$ in the Taylor series,

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \cdots$$

$$\int e^{-x^2} dx = x - \frac{x^3}{3} + \frac{x^5}{(2!)(5)} - \frac{x^7}{(3!)(7)} + \cdots$$
Evaluating non-elementary integrals

Remark: Non-elementary integrals can be evaluated integrating term by term the integrand Taylor series.

Example

Approximate the integral $I = \int_{0}^{1} e^{-x^{2}} dx$. Solution: Recall the Taylor series $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{2!} + \cdots$ Substitute x by $-x^2$ in the Taylor series. $e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{2!} + \cdots$ $\int e^{-x^2} dx = x - \frac{x^3}{3} + \frac{x^5}{(2!)(5)} - \frac{x^7}{(3!)(7)} + \cdots$ r^{1} , 1 1 1

$$\int_0^{\infty} e^{-x^2} dx = 1 - \frac{1}{3} + \frac{1}{(2!)(5)} - \frac{1}{(3!)(7)} + \cdots \qquad \triangleleft$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Binomial functions and Taylor series (Sect. 10.10)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Review: The Taylor Theorem.
- The binomial function.
- Evaluating non-elementary integrals.
- ► The Euler identity.
- Taylor series table.

Remark: The Taylor expansions

$$\cos(\theta) = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots, \quad \sin(\theta) = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots,$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Remark: The Taylor expansions

$$\cos(\theta) = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots, \quad \sin(\theta) = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots,$$

imply that

$$\cos(\theta) + i\sin(\theta) = 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} - \cdots,$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Remark: The Taylor expansions

$$\cos(\theta) = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots, \quad \sin(\theta) = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots,$$

imply that

$$\cos(\theta) + i\sin(\theta) = 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} - \cdots,$$

$$\cos(\theta) + i\sin(\theta) = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \cdots,$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Remark: The Taylor expansions

$$\cos(\theta) = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots, \quad \sin(\theta) = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots,$$

imply that

$$\cos(\theta) + i\sin(\theta) = 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} - \cdots,$$

$$\cos(\theta) + i\sin(\theta) = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \cdots,$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

This and $e^x = 1 + x + \frac{x}{2!} + \frac{x}{3!} + \cdots$

Remark: The Taylor expansions

$$\cos(\theta) = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots, \quad \sin(\theta) = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots,$$

imply that

$$\cos(\theta) + i\sin(\theta) = 1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \frac{\theta^4}{4!} + i\frac{\theta^5}{5!} - \cdots,$$

$$\cos(\theta) + i\sin(\theta) = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \frac{(i\theta)^5}{5!} + \cdots,$$

This and $e^x = 1 + x + \frac{x}{2!} + \frac{x^2}{3!} + \cdots$ suggest the definition:

 $e^{i\theta} = \cos(\theta) + i\sin(\theta).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Binomial functions and Taylor series (Sect. 10.10)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Review: The Taylor Theorem.
- The binomial function.
- Evaluating non-elementary integrals.
- The Euler identity.
- ► Taylor series table.

Taylor series table

Remark: Table of frequently used Taylor series.

$$\begin{aligned} \frac{1}{1-x} &= \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots, \qquad |x| < 1, \\ \frac{1}{1+x} &= \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + \cdots, \qquad |x| < 1, \\ e^x &= \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots, \qquad |x| < \infty, \\ \sin(x) &= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots, \quad |x| < \infty, \\ \cos(x) &= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots, \qquad |x| < \infty. \end{aligned}$$

<□ > < @ > < E > < E > E のQ @

Parametrizations of curves on a plane (Sect. 11.1)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Review: Curves on the plane.
- Parametric equations of a curve.
- Examples of curves on the plane.
- The cycloid.

Remarks:

Curves on a plane can be described by the set of points (x, y) solutions of an equation

F(x,y)=0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remarks:

Curves on a plane can be described by the set of points (x, y) solutions of an equation

F(x,y)=0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• A particular case is the graph of a function y = f(x).

Remarks:

Curves on a plane can be described by the set of points (x, y) solutions of an equation

F(x,y)=0.

A particular case is the graph of a function y = f(x). In this case: F(x, y) = y − f(x).

Remarks:

Curves on a plane can be described by the set of points (x, y) solutions of an equation

$$F(x,y)=0.$$

A particular case is the graph of a function y = f(x). In this case: F(x, y) = y − f(x).

Example

• Circle centered at P = (0,0) radius r:

$$x^2 + y^2 = r^2.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remarks:

Curves on a plane can be described by the set of points (x, y) solutions of an equation

$$F(x,y)=0.$$

A particular case is the graph of a function y = f(x). In this case: F(x, y) = y − f(x).

Example

• Circle centered at P = (0,0) radius r:

$$x^2 + y^2 = r^2.$$

• Circle centered at $P = (x_0, y_0)$ radius r:

$$(x - x_0)^2 + (y - y_0)^2 = r^2.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

• An ellipse centered at P = (0, 0) with radius *a* and *b*,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Example

• An ellipse centered at P = (0, 0) with radius *a* and *b*,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

A sphere is the particular case a = b = r.

Example

• An ellipse centered at P = (0, 0) with radius a and b,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

A sphere is the particular case a = b = r.

• A hyperbola with asymptotes $y = \pm x$,

$$x^2 - y^2 = 1.$$

Example

• An ellipse centered at P = (0, 0) with radius a and b,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

A sphere is the particular case a = b = r.

• A hyperbola with asymptotes $y = \pm x$,

$$x^2 - y^2 = 1.$$

• A hyperbola with asymptotes $y = \pm \frac{b}{a} x$,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

Example

• A parabola with minimum at (0,0),

$$y = x^2$$
.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

• A parabola with minimum at (0,0),

$$y = x^2$$
.

• A parabola with minimum at (a, b),

$$y = c (x - a)^2 + b, \qquad c > 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

• A parabola with minimum at (0,0),

$$y = x^2$$
.

• A parabola with minimum at (a, b),

$$y = c (x - a)^2 + b, \qquad c > 0.$$

► A parabola with maximum at (a, b),

$$y = -c (x - a)^2 + b, \qquad c > 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Parametrizations of curves on a plane (Sect. 11.1)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Review: Curves on the plane.
- Parametric equations of a curve.
- Examples of curves on the plane.
- The cycloid.

Remarks:

 A curve on a plane can always be thought as the motion of a particle as function of time.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Remarks:

- A curve on a plane can always be thought as the motion of a particle as function of time.
- ► Every curve given by F(x, y) = 0 can be described as the set of points (x(t), y(t)) traveled by a particle for t ∈ [a, b].

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remarks:

- A curve on a plane can always be thought as the motion of a particle as function of time.
- ► Every curve given by F(x, y) = 0 can be described as the set of points (x(t), y(t)) traveled by a particle for t ∈ [a, b].

Definition

A curve on the plane is given in *parametric form* iff it is given by the set of points (x(t), y(t)), where the parameter $t \in I \subset \mathbb{R}$.

Remarks:

- A curve on a plane can always be thought as the motion of a particle as function of time.
- ► Every curve given by F(x, y) = 0 can be described as the set of points (x(t), y(t)) traveled by a particle for t ∈ [a, b].

Definition

A curve on the plane is given in *parametric form* iff it is given by the set of points (x(t), y(t)), where the parameter $t \in I \subset \mathbb{R}$.

Remark: If the interval *I* is closed, I = [a, b], then (x(a), y(a)) and (x(b), y(b)) are called the *initial* and *terminal* points of the curve.

Parametrizations of curves on a plane (Sect. 11.1)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Review: Curves on the plane.
- Parametric equations of a curve.
- Examples of curves on the plane.
- The cycloid.

Example

Describe the curve $x(t) = \cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Describe the curve $x(t) = \cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Solution:

The functions x and y above satisfy the equation

Example

Describe the curve $x(t) = \cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 + [y(t)]^2 =$

Example

Describe the curve $x(t) = \cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 + [y(t)]^2 =$ $\cos^2(t) + \sin^2(t)$

Example

Describe the curve $x(t) = \cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^{2} + [y(t)]^{2} =$ $\cos^{2}(t) + \sin^{2}(t) = 1.$

Example

Describe the curve $x(t) = \cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^{2} + [y(t)]^{2} = \cos^{2}(t) + \sin^{2}(t) = 1.$

This is a circle.

Example

Describe the curve $x(t) = \cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^{2} + [y(t)]^{2} =$ $\cos^{2}(t) + \sin^{2}(t) = 1.$ This is a circle.

This is the equation of a circle radius r = 1, centered at (0, 0).

Example

Describe the curve $x(t) = \cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^{2} + [y(t)]^{2} = \cos^{2}(t) + \sin^{2}(t) = 1.$

This is a circle.

This is the equation of a circle radius r = 1, centered at (0, 0). The circle is traversed in counterclockwise direction, starting and ending at (1, 0).

Example

Describe the curve $x(t) = \sin(t)$, $y(t) = \cos(t)$, for $t \in [0, 2\pi]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Describe the curve $x(t) = \sin(t)$, $y(t) = \cos(t)$, for $t \in [0, 2\pi]$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Solution:

The functions x and y above satisfy the equation

Example

Describe the curve $x(t) = \sin(t)$, $y(t) = \cos(t)$, for $t \in [0, 2\pi]$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 + [y(t)]^2 =$

Example

Describe the curve $x(t) = \sin(t)$, $y(t) = \cos(t)$, for $t \in [0, 2\pi]$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^{2} + [y(t)]^{2} =$ sin²(t) + cos²(t)

Example

Describe the curve $x(t) = \sin(t)$, $y(t) = \cos(t)$, for $t \in [0, 2\pi]$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^{2} + [y(t)]^{2} =$ $\sin^{2}(t) + \cos^{2}(t) = 1.$

Example

Describe the curve $x(t) = \sin(t)$, $y(t) = \cos(t)$, for $t \in [0, 2\pi]$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^{2} + [y(t)]^{2} =$ $\sin^{2}(t) + \cos^{2}(t) = 1.$

This is a circle.

Example

Describe the curve $x(t) = \sin(t)$, $y(t) = \cos(t)$, for $t \in [0, 2\pi]$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^{2} + [y(t)]^{2} =$ $\sin^{2}(t) + \cos^{2}(t) = 1.$

This is a circle.

This is the equation of a circle radius r = 1, centered at (0, 0).

Example

Describe the curve $x(t) = \sin(t)$, $y(t) = \cos(t)$, for $t \in [0, 2\pi]$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^{2} + [y(t)]^{2} =$ $\sin^{2}(t) + \cos^{2}(t) = 1.$

This is a circle.

This is the equation of a circle radius r = 1, centered at (0, 0). The circle is traversed in clockwise direction, starting and ending at (0, 1).

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = 3\sin(t)$, for $t \in [0, \pi/2]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = 3\sin(t)$, for $t \in [0, \pi/2]$.

Solution:

The functions x and y above satisfy the equation

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = 3\sin(t)$, for $t \in [0, \pi/2]$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 + [y(t)]^2 =$

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = 3\sin(t)$, for $t \in [0, \pi/2]$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^{2} + [y(t)]^{2} =$ $3^{2}\cos^{2}(t) + 3^{2}\sin^{2}(t)$

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = 3\sin(t)$, for $t \in [0, \pi/2]$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^{2} + [y(t)]^{2} =$ 3² cos²(t) + 3² sin²(t) = 3².

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = 3\sin(t)$, for $t \in [0, \pi/2]$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 + [y(t)]^2 =$

 $3^2 \cos^2(t) + 3^2 \sin^2(t) = 3^2.$

This is a portion of a circle.

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = 3\sin(t)$, for $t \in [0, \pi/2]$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 + [y(t)]^2 =$

 $3^2 \cos^2(t) + 3^2 \sin^2(t) = 3^2.$

This is a portion of a circle.

This is the equation of a 1/4 circle radius r = 3, centered at (0, 0).

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = 3\sin(t)$, for $t \in [0, \pi/2]$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 + [y(t)]^2 =$

 $3^2 \cos^2(t) + 3^2 \sin^2(t) = 3^2.$

This is a portion of a circle.

This is the equation of a 1/4 circle radius r = 3, centered at (0, 0). The circle is traversed in counterclockwise direction, starting at (3, 0) and ending at (0, 3).

Example

Describe the curve $x(t) = 3\cos(2t)$, $y(t) = 3\sin(2t)$, for $t \in [0, \pi/2]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Describe the curve $x(t) = 3\cos(2t)$, $y(t) = 3\sin(2t)$, for $t \in [0, \pi/2]$.

Solution:

The functions x and y above satisfy the equation

Example

Describe the curve $x(t) = 3\cos(2t)$, $y(t) = 3\sin(2t)$, for $t \in [0, \pi/2]$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 + [y(t)]^2 =$

Example

Describe the curve $x(t) = 3\cos(2t)$, $y(t) = 3\sin(2t)$, for $t \in [0, \pi/2]$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^{2} + [y(t)]^{2} =$ 3² cos²(2t) + 3² sin²(2t)

Example

Describe the curve $x(t) = 3\cos(2t)$, $y(t) = 3\sin(2t)$, for $t \in [0, \pi/2]$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 + [y(t)]^2 =$

 $3^2\cos^2(2t) + 3^2\sin^2(2t) = 3^2.$

Example

Describe the curve $x(t) = 3\cos(2t)$, $y(t) = 3\sin(2t)$, for $t \in [0, \pi/2]$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 + [y(t)]^2 =$

 $3^2\cos^2(2t) + 3^2\sin^2(2t) = 3^2.$

This is a portion of a circle.

Example

Describe the curve $x(t) = 3\cos(2t)$, $y(t) = 3\sin(2t)$, for $t \in [0, \pi/2]$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 + [y(t)]^2 =$

 $3^2\cos^2(2t) + 3^2\sin^2(2t) = 3^2.$

This is a portion of a circle.

This is the equation of a 1/2 circle radius r = 3, centered at (0, 0).

Example

Describe the curve $x(t) = 3\cos(2t)$, $y(t) = 3\sin(2t)$, for $t \in [0, \pi/2]$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 + [y(t)]^2 =$

 $3^2\cos^2(2t) + 3^2\sin^2(2t) = 3^2.$

This is a portion of a circle.

This is the equation of a 1/2 circle radius r = 3, centered at (0, 0). The circle is traversed in counterclockwise direction, starting at (3, 0) and ending at (-3, 0).

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

Solution:

The functions x and yabove satisfy the equation

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution:

The functions x and yabove satisfy the equation

$$\frac{[x(t)]^2}{3^2} + [y(t)]^2 =$$

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Solution:

The functions x and yabove satisfy the equation

$$\frac{[x(t)]^2}{3^2} + [y(t)]^2 =$$

 $\cos^2(t) + \sin^2(t)$

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:

The functions x and yabove satisfy the equation

$$\frac{[x(t)]^2}{3^2} + [y(t)]^2 =$$

 $\cos^2(t) + \sin^2(t) = 1.$

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

Solution:

The functions x and yabove satisfy the equation

$$\frac{[x(t)]^2}{3^2} + [y(t)]^2 =$$

$$\cos^2(t) + \sin^2(t) = 1.$$

This is an ellipse.

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

Solution:

The functions x and yabove satisfy the equation

$$\frac{[x(t)]^2}{3^2} + [y(t)]^2 =$$

$$\cos^2(t) + \sin^2(t) = 1.$$

This is an ellipse.

This is the equation of an ellipse with x-radius 3 and y-radius 1, centered at (0, 0).

Example

Describe the curve $x(t) = 3\cos(t)$, $y(t) = \sin(t)$, for $t \in [0, 2\pi]$.

Solution:

The functions x and yabove satisfy the equation

$$\frac{[x(t)]^2}{3^2} + [y(t)]^2 =$$

$$\cos^2(t) + \sin^2(t) = 1.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

This is an ellipse.

This is the equation of an ellipse with x-radius 3 and y-radius 1, centered at (0,0). The ellipse is traversed in counterclockwise direction, starting and ending at (3,0).

Example

Describe the curve $x(t) = \cosh(t)$, $y(t) = \sinh(t)$, for $t \in [0, \infty)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Describe the curve $x(t) = \cosh(t)$, $y(t) = \sinh(t)$, for $t \in [0, \infty)$.

Solution:

The functions x and yabove satisfy the equation

Example

Describe the curve $x(t) = \cosh(t)$, $y(t) = \sinh(t)$, for $t \in [0, \infty)$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 - [y(t)]^2 =$

Example

Describe the curve $x(t) = \cosh(t)$, $y(t) = \sinh(t)$, for $t \in [0, \infty)$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 - [y(t)]^2 =$

 $\cosh^2(t) - \sinh^2(t)$
Example

Describe the curve $x(t) = \cosh(t)$, $y(t) = \sinh(t)$, for $t \in [0, \infty)$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 - [y(t)]^2 =$

 $\cosh^2(t) - \sinh^2(t) = 1.$

Example

Describe the curve $x(t) = \cosh(t)$, $y(t) = \sinh(t)$, for $t \in [0, \infty)$.

Solution:

The functions x and yabove satisfy the equation

 $[x(t)]^2 - [y(t)]^2 =$

$$\cosh^2(t) - \sinh^2(t) = 1.$$

This is a portion of a hyperbola.

Example

Describe the curve $x(t) = \cosh(t)$, $y(t) = \sinh(t)$, for $t \in [0, \infty)$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 - [y(t)]^2 =$

$$\cosh^2(t) - \sinh^2(t) = 1.$$

This is a portion of a hyperbola.

This is the equation of a hyperbola with asymptotes $y = \pm x$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Describe the curve $x(t) = \cosh(t)$, $y(t) = \sinh(t)$, for $t \in [0, \infty)$.

Solution:

The functions x and y above satisfy the equation

 $[x(t)]^2 - [y(t)]^2 =$

$$\cosh^2(t) - \sinh^2(t) = 1.$$

This is a portion of a hyperbola.

This is the equation of a hyperbola with asymptotes $y = \pm x$. The hyperbola portion starts at (1,0).

 \triangleleft

Example

Describe the curve $x(t) = -\sec(t)$, $y(t) = \tan(t)$, for $t \in [0, \pi/2)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Describe the curve $x(t) = -\sec(t)$, $y(t) = \tan(t)$, for $t \in [0, \pi/2)$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Solution:

Recall: $tan^{2}(t) + 1 = sec^{2}(t)$.

Example

Describe the curve $x(t) = -\sec(t)$, $y(t) = \tan(t)$, for $t \in [0, \pi/2)$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Solution:

Recall: $tan^2(t) + 1 = sec^2(t)$. Therefore,

 $[x(t)]^2 - [y(t)]^2 =$

Example

Describe the curve $x(t) = -\sec(t)$, $y(t) = \tan(t)$, for $t \in [0, \pi/2)$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Solution:

Recall: $tan^2(t) + 1 = sec^2(t)$. Therefore,

> $[x(t)]^2 - [y(t)]^2 =$ $\sec^2(t) - \tan^2(t)$

Example

Describe the curve $x(t) = -\sec(t)$, $y(t) = \tan(t)$, for $t \in [0, \pi/2)$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Solution:

Recall: $tan^2(t) + 1 = sec^2(t)$. Therefore,

> $[x(t)]^2 - [y(t)]^2 =$ $\sec^2(t) - \tan^2(t) = 1.$

Example

Describe the curve $x(t) = -\sec(t)$, $y(t) = \tan(t)$, for $t \in [0, \pi/2)$.

Solution:

Recall: $tan^2(t) + 1 = sec^2(t)$. Therefore,

> $[x(t)]^2 - [y(t)]^2 =$ $\sec^2(t) - \tan^2(t) = 1.$

This is a portion of a hyperbola.

Example

Describe the curve $x(t) = -\sec(t)$, $y(t) = \tan(t)$, for $t \in [0, \pi/2)$.

Solution:

Recall: $tan^2(t) + 1 = sec^2(t)$. Therefore,

> $[x(t)]^{2} - [y(t)]^{2} =$ sec²(t) - tan²(t) = 1.

This is a portion of a hyperbola.

This is the equation of a hyperbola with asymptotes $y = \pm x$.

Example

Describe the curve $x(t) = -\sec(t)$, $y(t) = \tan(t)$, for $t \in [0, \pi/2)$.

Solution:

Recall: $tan^2(t) + 1 = sec^2(t)$. Therefore,

> $[x(t)]^2 - [y(t)]^2 =$ $\sec^2(t) - \tan^2(t) = 1.$

This is a portion of a hyperbola.

This is the equation of a hyperbola with asymptotes $y = \pm x$. The hyperbola portion starts at (-1, 0).

<1

Example

Describe the curve $x(t) = t^2$, y(t) = t + 1, for $t \in (-\infty, \infty)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Describe the curve $x(t) = t^2$, y(t) = t + 1, for $t \in (-\infty, \infty)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution:

Since t = y - 1,

Example

Describe the curve $x(t) = t^2$, y(t) = t + 1, for $t \in (-\infty, \infty)$.

Solution:

Since t = y - 1, then

 $x=(y-1)^2.$

Example

Describe the curve $x(t) = t^2$, y(t) = t + 1, for $t \in (-\infty, \infty)$.

Solution:

Since t = y - 1, then

 $x=(y-1)^2.$

This is a parabola.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Example

Describe the curve $x(t) = t^2$, y(t) = t + 1, for $t \in (-\infty, \infty)$.

This is the equation of a parabola opening to the right.

Example

Describe the curve $x(t) = t^2$, y(t) = t + 1, for $t \in (-\infty, \infty)$.

This is the equation of a parabola opening to the right. Passing through (1,0) (for t = -1),

Example

Describe the curve $x(t) = t^2$, y(t) = t + 1, for $t \in (-\infty, \infty)$.

This is the equation of a parabola opening to the right. Passing through (1,0) (for t = -1), then (0,1) (for t = 0),

Example

Describe the curve $x(t) = t^2$, y(t) = t + 1, for $t \in (-\infty, \infty)$.

This is the equation of a parabola opening to the right. Passing through (1,0) (for t = -1), then (0,1) (for t = 0), and then (1,2) (for t = 1).

Parametrizations of curves on a plane (Sect. 11.1)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Review: Curves on the plane.
- Parametric equations of a curve.
- Examples of curves on the plane.
- ► The cycloid.

Definition

A *cycloid* with parameter a > 0 is the curve given by

 $x(t) = a(t - \sin(t)), \quad y(t) = a(1 - \cos(t)), \quad t \in \mathbb{R}.$

Definition

A cycloid with parameter a > 0 is the curve given by

 $x(t) = a(t - \sin(t)), \quad y(t) = a(1 - \cos(t)), \quad t \in \mathbb{R}.$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark: From the equation of the cycloid we see that

 $x(t) - at = a\sin(t),$

Definition

A cycloid with parameter a > 0 is the curve given by

 $x(t) = a(t - \sin(t)), \quad y(t) = a(1 - \cos(t)), \quad t \in \mathbb{R}.$

Remark: From the equation of the cycloid we see that

$$x(t) - at = a\sin(t),$$
 $y(t) - a = a\cos(t).$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A cycloid with parameter a > 0 is the curve given by

 $x(t) = a(t - \sin(t)), \quad y(t) = a(1 - \cos(t)), \quad t \in \mathbb{R}.$

Remark: From the equation of the cycloid we see that

$$x(t) - at = a\sin(t),$$
 $y(t) - a = a\cos(t).$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Therefore, $[x(t) - at]^2 + [y(t) - a]^2 = a^2$.

Definition

A cycloid with parameter a > 0 is the curve given by

 $x(t) = a(t - \sin(t)), \quad y(t) = a(1 - \cos(t)), \quad t \in \mathbb{R}.$

Remark: From the equation of the cycloid we see that

$$x(t) - at = a\sin(t),$$
 $y(t) - a = a\cos(t).$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Therefore,
$$[x(t) - at]^2 + [y(t) - a]^2 = a^2$$
.

Remarks:

This is not the equation of a circle.

Definition

A cycloid with parameter a > 0 is the curve given by

 $x(t) = a(t - \sin(t)), \quad y(t) = a(1 - \cos(t)), \quad t \in \mathbb{R}.$

Remark: From the equation of the cycloid we see that

$$x(t) - at = a\sin(t),$$
 $y(t) - a = a\cos(t).$

Therefore, $[x(t) - at]^2 + [y(t) - a]^2 = a^2$.

Remarks:

- This is not the equation of a circle.
- The point (x(t), y(t)) belongs to a moving circle.

Definition

A cycloid with parameter a > 0 is the curve given by

 $x(t) = a(t - \sin(t)), \quad y(t) = a(1 - \cos(t)), \quad t \in \mathbb{R}.$

Remark: From the equation of the cycloid we see that

$$x(t) - at = a\sin(t),$$
 $y(t) - a = a\cos(t).$

Therefore, $[x(t) - at]^2 + [y(t) - a]^2 = a^2$.

Remarks:

- This is not the equation of a circle.
- The point (x(t), y(t)) belongs to a moving circle.
- The cycloid played an important role in designing precise pendulum clocks, needed for navigation in the 17th century.

Arc-length of a curve on the plane (Sect. 11.2)

- Review: Parametric curves on the plane.
- The slope of tangent lines to curves.
- The arc-length of a curve.
- The arc-length function and differential.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A curve on the plane is given in *parametric form* iff it is given by the set of points (x(t), y(t)), where the parameter $t \in I \subset \mathbb{R}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A curve on the plane is given in *parametric form* iff it is given by the set of points (x(t), y(t)), where the parameter $t \in I \subset \mathbb{R}$.

Example

Describe the curve $x(t) = \cosh(t)$, $y(t) = \sinh(t)$, for $t \in [0, \infty)$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A curve on the plane is given in *parametric form* iff it is given by the set of points (x(t), y(t)), where the parameter $t \in I \subset \mathbb{R}$.

Example

Describe the curve $x(t) = \cosh(t)$, $y(t) = \sinh(t)$, for $t \in [0, \infty)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Solution:

 $[x(t)]^2 - [y(t)]^2 =$

Definition

A curve on the plane is given in *parametric form* iff it is given by the set of points (x(t), y(t)), where the parameter $t \in I \subset \mathbb{R}$.

Example

Describe the curve $x(t) = \cosh(t)$, $y(t) = \sinh(t)$, for $t \in [0, \infty)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Solution:

 $[x(t)]^2 - [y(t)]^2 =$ $\cosh^2(t) - \sinh^2(t)$

Definition

A curve on the plane is given in *parametric form* iff it is given by the set of points (x(t), y(t)), where the parameter $t \in I \subset \mathbb{R}$.

Example

Describe the curve $x(t) = \cosh(t)$, $y(t) = \sinh(t)$, for $t \in [0, \infty)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Solution:

 $[x(t)]^{2} - [y(t)]^{2} =$ $\cosh^{2}(t) - \sinh^{2}(t) = 1.$

Definition

A curve on the plane is given in *parametric form* iff it is given by the set of points (x(t), y(t)), where the parameter $t \in I \subset \mathbb{R}$.

Example

Describe the curve $x(t) = \cosh(t)$, $y(t) = \sinh(t)$, for $t \in [0, \infty)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Solution:

 $[x(t)]^{2} - [y(t)]^{2} =$ $\cosh^{2}(t) - \sinh^{2}(t) = 1.$

This is a portion of a hyperbola

Definition

A curve on the plane is given in *parametric form* iff it is given by the set of points (x(t), y(t)), where the parameter $t \in I \subset \mathbb{R}$.

Example

Describe the curve $x(t) = \cosh(t)$, $y(t) = \sinh(t)$, for $t \in [0, \infty)$.

Solution:

 $[x(t)]^{2} - [y(t)]^{2} =$ $\cosh^{2}(t) - \sinh^{2}(t) = 1.$

This is a portion of a hyperbola with asymptotes $y = \pm x$,
Definition

A curve on the plane is given in *parametric form* iff it is given by the set of points (x(t), y(t)), where the parameter $t \in I \subset \mathbb{R}$.

Example

Describe the curve $x(t) = \cosh(t)$, $y(t) = \sinh(t)$, for $t \in [0, \infty)$.

Solution:

$$[x(t)]^2 - [y(t)]^2 =$$

$$\cosh^2(t) - \sinh^2(t) = 1.$$

This is a portion of a hyperbola with asymptotes $y = \pm x$, starting at (1,0).

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Definition

A cycloid with parameter a > 0 is the curve given by

 $x(t) = a(t - \sin(t)), \quad y(t) = a(1 - \cos(t)), \quad t \in \mathbb{R}.$

Definition

A cycloid with parameter a > 0 is the curve given by

 $x(t) = a(t - \sin(t)), \quad y(t) = a(1 - \cos(t)), \quad t \in \mathbb{R}.$

Remark: From the equation of the cycloid we see that

 $x(t) - at = a\sin(t),$

Definition

A *cycloid* with parameter a > 0 is the curve given by

$$x(t) = a(t - \sin(t)), \quad y(t) = a(1 - \cos(t)), \quad t \in \mathbb{R}.$$

Remark: From the equation of the cycloid we see that

$$x(t) - at = a\sin(t),$$
 $y(t) - a = a\cos(t).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ = のへぐ

Definition

A *cycloid* with parameter a > 0 is the curve given by

$$x(t) = a(t - \sin(t)), \quad y(t) = a(1 - \cos(t)), \quad t \in \mathbb{R}.$$

Remark: From the equation of the cycloid we see that

$$x(t) - at = a\sin(t),$$
 $y(t) - a = a\cos(t).$

Therefore, $[x(t) - at]^2 + [y(t) - a]^2 = a^2$.

Definition

A *cycloid* with parameter a > 0 is the curve given by

$$x(t) = a(t - \sin(t)), \quad y(t) = a(1 - \cos(t)), \quad t \in \mathbb{R}.$$

Remark: From the equation of the cycloid we see that

$$x(t) - at = a\sin(t),$$
 $y(t) - a = a\cos(t).$

Therefore,
$$[x(t) - at]^2 + [y(t) - a]^2 = a^2$$
.

Remarks:

▶ This is not the equation of a circle.

Definition

A *cycloid* with parameter a > 0 is the curve given by

$$x(t) = a(t - \sin(t)), \quad y(t) = a(1 - \cos(t)), \quad t \in \mathbb{R}.$$

Remark: From the equation of the cycloid we see that

$$x(t) - at = a\sin(t),$$
 $y(t) - a = a\cos(t).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Therefore, $[x(t) - at]^2 + [y(t) - a]^2 = a^2$.

Remarks:

- This is not the equation of a circle.
- The point (x(t), y(t)) belongs to a moving circle.

Definition

A *cycloid* with parameter a > 0 is the curve given by

$$x(t) = a(t - \sin(t)), \quad y(t) = a(1 - \cos(t)), \quad t \in \mathbb{R}.$$

Remark: From the equation of the cycloid we see that

$$x(t) - at = a\sin(t),$$
 $y(t) - a = a\cos(t).$

Therefore, $[x(t) - at]^2 + [y(t) - a]^2 = a^2$.

Remarks:

- This is not the equation of a circle.
- The point (x(t), y(t)) belongs to a moving circle.
- The cycloid played an important role in designing precise pendulum clocks, needed for navigation in the 17th century.

Arc-length of a curve on the plane (Sect. 11.2)

- Review: Parametric curves on the plane.
- ► The slope of tangent lines to curves.
- The arc-length of a curve.
- The arc-length function and differential.

Definition

A curve defined by the parametric function values (x(t), y(t)), for $t \in I \subset \mathbb{R}$, is *differentiable* iff each function x and y is differentiable on the interval *I*.

Definition

A curve defined by the parametric function values (x(t), y(t)), for $t \in I \subset \mathbb{R}$, is *differentiable* iff each function x and y is differentiable on the interval I.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem

Assume that the curve defined by the graph of the function y = f(x), for $x \in (a, b)$, can be described by the parametric function values (x(t), y(t)), for $t \in I \subset \mathbb{R}$.

Definition

A curve defined by the parametric function values (x(t), y(t)), for $t \in I \subset \mathbb{R}$, is *differentiable* iff each function x and y is differentiable on the interval I.

Theorem

Assume that the curve defined by the graph of the function y = f(x), for $x \in (a, b)$, can be described by the parametric function values (x(t), y(t)), for $t \in I \subset \mathbb{R}$. If this parametric curve is differentiable and $x'(t) \neq 0$ for $t \in I$, then holds

 $\frac{df}{dx}=\frac{(dy/dt)}{(dx/dt)}.$

Definition

A curve defined by the parametric function values (x(t), y(t)), for $t \in I \subset \mathbb{R}$, is *differentiable* iff each function x and y is differentiable on the interval I.

Theorem

Assume that the curve defined by the graph of the function y = f(x), for $x \in (a, b)$, can be described by the parametric function values (x(t), y(t)), for $t \in I \subset \mathbb{R}$. If this parametric curve is differentiable and $x'(t) \neq 0$ for $t \in I$, then holds

$$\frac{df}{dx} = \frac{(dy/dt)}{(dx/dt)}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proof: Express y(t) = f(x(t)),

Definition

A curve defined by the parametric function values (x(t), y(t)), for $t \in I \subset \mathbb{R}$, is *differentiable* iff each function x and y is differentiable on the interval I.

Theorem

Assume that the curve defined by the graph of the function y = f(x), for $x \in (a, b)$, can be described by the parametric function values (x(t), y(t)), for $t \in I \subset \mathbb{R}$. If this parametric curve is differentiable and $x'(t) \neq 0$ for $t \in I$, then holds

$$\frac{df}{dx} = \frac{(dy/dt)}{(dx/dt)}.$$

(日) (同) (三) (三) (三) (○) (○)

Proof: Express y(t) = f(x(t)), then

$$\frac{dy}{dt} = \frac{df}{dx} \frac{dx}{dt}$$

Definition

A curve defined by the parametric function values (x(t), y(t)), for $t \in I \subset \mathbb{R}$, is *differentiable* iff each function x and y is differentiable on the interval I.

Theorem

Assume that the curve defined by the graph of the function y = f(x), for $x \in (a, b)$, can be described by the parametric function values (x(t), y(t)), for $t \in I \subset \mathbb{R}$. If this parametric curve is differentiable and $x'(t) \neq 0$ for $t \in I$, then holds

$$\frac{df}{dx} = \frac{(dy/dt)}{(dx/dt)}.$$

Proof: Express y(t) = f(x(t)), then

$$\frac{dy}{dt} = \frac{df}{dx}\frac{dx}{dt} \Rightarrow \frac{df}{dx} = \frac{(dy/dt)}{(dx/dt)}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remark: The formula $\frac{df}{dx} = \frac{(dy/dt)}{(dx/dt)}$ provides an alternative way to find the slope of the line tangent to the graph of the function f.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Find the slope of the tangent lines to a circle radius r at (0,0).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Example

Find the slope of the tangent lines to a circle radius r at (0,0).

・ロト・日本・モート モー うへぐ

Solution: The equation of the circle is $x^2 + y^2 = r^2$.

Example

Find the slope of the tangent lines to a circle radius r at (0,0).

Solution: The equation of the circle is $x^2 + y^2 = r^2$. One possible set of parametric equations are:

$$x(t) = r \cos(nt),$$
 $y(t) = r \sin(nt),$ $n \ge 1.$

Example

Find the slope of the tangent lines to a circle radius r at (0,0).

Solution: The equation of the circle is $x^2 + y^2 = r^2$. One possible set of parametric equations are:

$$x(t) = r \cos(nt),$$
 $y(t) = r \sin(nt),$ $n \ge 1.$

The derivatives of the parametric functions are

$$x'(t) = -nr \sin(nt), \qquad y'(t) = nr \cos(nt).$$

Example

Find the slope of the tangent lines to a circle radius r at (0,0).

Solution: The equation of the circle is $x^2 + y^2 = r^2$. One possible set of parametric equations are:

$$x(t) = r \cos(nt),$$
 $y(t) = r \sin(nt),$ $n \ge 1.$

The derivatives of the parametric functions are

$$x'(t) = -nr \sin(nt), \qquad y'(t) = nr \cos(nt).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The slope of the tangent lines to the circle at $x_0 = cos(nt_0)$ is

$$y'(x_0) = \frac{y'(t_0)}{x'(t_0)}$$

Example

Find the slope of the tangent lines to a circle radius r at (0,0).

Solution: The equation of the circle is $x^2 + y^2 = r^2$. One possible set of parametric equations are:

$$x(t) = r \cos(nt),$$
 $y(t) = r \sin(nt),$ $n \ge 1.$

The derivatives of the parametric functions are

$$x'(t) = -nr \sin(nt), \qquad y'(t) = nr \cos(nt).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The slope of the tangent lines to the circle at $x_0 = cos(nt_0)$ is

$$y'(x_0) = \frac{y'(t_0)}{x'(t_0)} = \frac{-nr \cos(nt_0)}{nr \sin(nt_0)}$$

Example

Find the slope of the tangent lines to a circle radius r at (0,0).

Solution: The equation of the circle is $x^2 + y^2 = r^2$. One possible set of parametric equations are:

$$x(t) = r \cos(nt),$$
 $y(t) = r \sin(nt),$ $n \ge 1.$

The derivatives of the parametric functions are

$$x'(t) = -nr \sin(nt), \qquad y'(t) = nr \cos(nt).$$

The slope of the tangent lines to the circle at $x_0 = cos(nt_0)$ is

$$y'(x_0) = \frac{y'(t_0)}{x'(t_0)} = \frac{-nr \cos(nt_0)}{nr \sin(nt_0)} \quad \Rightarrow \quad y'(x_0) = -\frac{1}{\tan(nt_0)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the slope of the tangent lines to a circle radius r at (0,0).

Solution: The equation of the circle is $x^2 + y^2 = r^2$. One possible set of parametric equations are:

$$x(t) = r \cos(nt),$$
 $y(t) = r \sin(nt),$ $n \ge 1.$

The derivatives of the parametric functions are

$$x'(t) = -nr \sin(nt), \qquad y'(t) = nr \cos(nt).$$

The slope of the tangent lines to the circle at $x_0 = cos(nt_0)$ is

$$y'(x_0) = \frac{y'(t_0)}{x'(t_0)} = \frac{-nr \cos(nt_0)}{nr \sin(nt_0)} \quad \Rightarrow \quad y'(x_0) = -\frac{1}{\tan(nt_0)}.$$

Remark: In the first quadrant holds $y'(x_0) = \frac{-x_0}{\sqrt{1-(x_0)^2}}$.

(日) (同) (三) (三) (三) (○) (○)

Arc-length of a curve on the plane (Sect. 11.2)

- Review: Parametric curves on the plane.
- The slope of tangent lines to curves.
- The arc-length of a curve.
- The arc-length function and differential.

Definition

The *length* or *arc length* of a curve in the plane or in space is the limit of the polygonal line length, as the polygonal line approximates the original curve.

Definition

The *length* or *arc length* of a curve in the plane or in space is the limit of the polygonal line length, as the polygonal line approximates the original curve.

Theorem

The arc-length of a continuously differentiable curve (x(t), y(y)), for $t \in [a, b]$ is the number

$$L = \int_a^b \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} dt.$$

Idea of the Proof: The curve length is the limit of the polygonal line length, as the polygonal line approximates the original curve.

(日) (同) (日) (日)

Idea of the Proof: The curve length is the limit of the polygonal line length, as the polygonal line approximates the original curve.

(日) (同) (日) (日)

$$L_{N} = \sum_{n=0}^{N-1} \sqrt{(\Delta x_{k})^{2} + (\Delta y_{k})^{2}} \qquad \{a = t_{0}, t_{1}, \cdots, t_{N-1}, t_{N} = b\}$$

Idea of the Proof: The curve length is the limit of the polygonal line length, as the polygonal line approximates the original curve.

(日) (同) (日) (日)

$$L_{N} = \sum_{n=0}^{N-1} \sqrt{(\Delta x_{k})^{2} + (\Delta y_{k})^{2}} \qquad \{a = t_{0}, t_{1}, \cdots, t_{N-1}, t_{N} = b\},\$$

$$L_N \simeq \sum_{n=0}^{N-1} \sqrt{\left[x'(t_k^*)\right]^2 + \left[y'(t_k^*)\right]^2} \Delta t_k,$$

Idea of the Proof: The curve length is the limit of the polygonal line length, as the polygonal line approximates the original curve.

・ロト ・ 同ト ・ 日下 ・ 日

$$L_{N} = \sum_{n=0}^{N-1} \sqrt{(\Delta x_{k})^{2} + (\Delta y_{k})^{2}} \qquad \{a = t_{0}, t_{1}, \cdots, t_{N-1}, t_{N} = b\},\$$

$$L_N \simeq \sum_{n=0}^{N-1} \sqrt{\left[x'(t_k^*)\right]^2 + \left[y'(t_k^*)\right]^2} \,\Delta t_k,$$
$$L_N \xrightarrow{N \to \infty} L = \int_a^b \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} \,dt.$$

Example

Find the length of the curve $(r \cos(t), r \sin(t))$, for r > 0 and $t \in [\pi/4, 3\pi/4]$. (Quarter of a circle.)

Example

Find the length of the curve $(r \cos(t), r \sin(t))$, for r > 0 and $t \in [\pi/4, 3\pi/4]$. (Quarter of a circle.)

Solution: Compute the derivatives

Example

Find the length of the curve $(r \cos(t), r \sin(t))$, for r > 0 and $t \in [\pi/4, 3\pi/4]$. (Quarter of a circle.)

Solution: Compute the derivatives $(-r\sin(t), r\cos(t))$.

Example

Find the length of the curve $(r \cos(t), r \sin(t))$, for r > 0 and $t \in [\pi/4, 3\pi/4]$. (Quarter of a circle.)

Solution: Compute the derivatives $(-r\sin(t), r\cos(t))$. The length of the curve is given by the formula

$$L = \int_{\pi/4}^{3\pi/4} \sqrt{\left[-r\sin(t)\right]^2 + \left[r\cos(t)\right]^2} dt$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Find the length of the curve $(r \cos(t), r \sin(t))$, for r > 0 and $t \in [\pi/4, 3\pi/4]$. (Quarter of a circle.)

Solution: Compute the derivatives $(-r\sin(t), r\cos(t))$. The length of the curve is given by the formula

$$L = \int_{\pi/4}^{3\pi/4} \sqrt{\left[-r\sin(t)\right]^2 + \left[r\cos(t)\right]^2} \, dt$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$L = \int_{\pi/4}^{3\pi/4} \sqrt{r^2 (\left[-\sin(t)\right]^2 + \left[\cos(t)\right]^2)} \, dt$$
Example

Find the length of the curve $(r \cos(t), r \sin(t))$, for r > 0 and $t \in [\pi/4, 3\pi/4]$. (Quarter of a circle.)

Solution: Compute the derivatives $(-r\sin(t), r\cos(t))$. The length of the curve is given by the formula

$$L = \int_{\pi/4}^{3\pi/4} \sqrt{\left[-r\sin(t)\right]^2 + \left[r\cos(t)\right]^2} \, dt$$

$$L = \int_{\pi/4}^{3\pi/4} \sqrt{r^2 (\left[-\sin(t)\right]^2 + \left[\cos(t)\right]^2)} \, dt = \int_{\pi/4}^{3\pi/4} r \, dt.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

Find the length of the curve $(r \cos(t), r \sin(t))$, for r > 0 and $t \in [\pi/4, 3\pi/4]$. (Quarter of a circle.)

Solution: Compute the derivatives $(-r\sin(t), r\cos(t))$. The length of the curve is given by the formula

$$L = \int_{\pi/4}^{3\pi/4} \sqrt{\left[-r\sin(t)\right]^2 + \left[r\cos(t)\right]^2} \, dt$$

$$L = \int_{\pi/4}^{3\pi/4} \sqrt{r^2 (\left[-\sin(t)\right]^2 + \left[\cos(t)\right]^2)} \, dt = \int_{\pi/4}^{3\pi/4} r \, dt.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Hence, $L = \frac{\pi}{2} r$.

Example

Find the length of the curve $(r \cos(t), r \sin(t))$, for r > 0 and $t \in [\pi/4, 3\pi/4]$. (Quarter of a circle.)

Solution: Compute the derivatives $(-r\sin(t), r\cos(t))$. The length of the curve is given by the formula

$$L = \int_{\pi/4}^{3\pi/4} \sqrt{\left[-r\sin(t)\right]^2 + \left[r\cos(t)\right]^2} \, dt$$

$$L = \int_{\pi/4}^{3\pi/4} \sqrt{r^2 (\left[-\sin(t)\right]^2 + \left[\cos(t)\right]^2)} \, dt = \int_{\pi/4}^{3\pi/4} r \, dt.$$

Hence, $L = \frac{\pi}{2} r$. (The length of quarter circle of radius r.) \lhd

(日) (同) (三) (三) (三) (○) (○)

Example

Find the length of the spiral $(t \cos(t), t \sin(t))$, for $t \in [0, t_0]$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

Find the length of the spiral $(t \cos(t), t \sin(t))$, for $t \in [0, t_0]$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution: The derivative of the parametric curve is

 $\big(x'(t),y'(t)\big)$

Example

Find the length of the spiral $(t \cos(t), t \sin(t))$, for $t \in [0, t_0]$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ = のへぐ

Solution: The derivative of the parametric curve is

$$(x'(t), y'(t)) = ([-t\sin(t) + \cos(t)],$$

Example

Find the length of the spiral $(t \cos(t), t \sin(t))$, for $t \in [0, t_0]$.

Solution: The derivative of the parametric curve is

$$(x'(t), y'(t)) = ([-t\sin(t) + \cos(t)], [t\cos(t) + \sin(t)]),$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ = のへぐ

Example

Find the length of the spiral $(t \cos(t), t \sin(t))$, for $t \in [0, t_0]$.

Solution: The derivative of the parametric curve is

$$(x'(t), y'(t)) = ([-t\sin(t) + \cos(t)], [t\cos(t) + \sin(t)]),$$
$$(x')^{2} + (y')^{2} = [t^{2}\sin^{2}(t) + \cos^{2}(t) - 2t\sin(t)\cos(t)] + [t^{2}\cos^{2}(t) + \sin^{2}(t) + 2t\sin(t)\cos(t)]$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ = のへぐ

Example

Find the length of the spiral $(t \cos(t), t \sin(t))$, for $t \in [0, t_0]$.

Solution: The derivative of the parametric curve is

$$(x'(t), y'(t)) = ([-t\sin(t) + \cos(t)], [t\cos(t) + \sin(t)]),$$
$$(x')^{2} + (y')^{2} = [t^{2}\sin^{2}(t) + \cos^{2}(t) - 2t\sin(t)\cos(t)] + [t^{2}\cos^{2}(t) + \sin^{2}(t) + 2t\sin(t)\cos(t)]$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We obtain $(x')^2 + (y')^2 = t^2 + 1$.

Example

Find the length of the spiral $(t \cos(t), t \sin(t))$, for $t \in [0, t_0]$.

Solution: The derivative of the parametric curve is

$$(x'(t), y'(t)) = ([-t\sin(t) + \cos(t)], [t\cos(t) + \sin(t)]),$$
$$(x')^{2} + (y')^{2} = [t^{2}\sin^{2}(t) + \cos^{2}(t) - 2t\sin(t)\cos(t)]$$
$$+ [t^{2}\cos^{2}(t) + \sin^{2}(t) + 2t\sin(t)\cos(t)]$$

We obtain $(x')^2 + (y')^2 = t^2 + 1$. The curve length is given by

- ロ ト - 4 回 ト - 4 □ - 4

$$L(t_0) = \int_0^{t_0} \sqrt{1+t^2} \, dt$$

Example

Find the length of the spiral $(t \cos(t), t \sin(t))$, for $t \in [0, t_0]$.

Solution: The derivative of the parametric curve is

$$\begin{aligned} & (x'(t), y'(t)) = \left(\left[-t\sin(t) + \cos(t) \right], \left[t\cos(t) + \sin(t) \right] \right), \\ & (x')^2 + (y')^2 = \left[t^2\sin^2(t) + \cos^2(t) - 2t\sin(t)\cos(t) \right] \\ & \quad + \left[t^2\cos^2(t) + \sin^2(t) + 2t\sin(t)\cos(t) \right] \end{aligned}$$

We obtain $(x')^2 + (y')^2 = t^2 + 1$. The curve length is given by

$$L(t_0) = \int_0^{t_0} \sqrt{1+t^2} \, dt = \left[\frac{t}{2} \sqrt{1+t^2} + \frac{1}{2} \ln(t+\sqrt{1+t^2})\right] \Big|_0^{t_0}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Find the length of the spiral $(t \cos(t), t \sin(t))$, for $t \in [0, t_0]$.

Solution: The derivative of the parametric curve is

$$\begin{aligned} & (x'(t), y'(t)) = \left(\left[-t\sin(t) + \cos(t) \right], \left[t\cos(t) + \sin(t) \right] \right), \\ & (x')^2 + (y')^2 = \left[t^2\sin^2(t) + \cos^2(t) - 2t\sin(t)\cos(t) \right] \\ & \quad + \left[t^2\cos^2(t) + \sin^2(t) + 2t\sin(t)\cos(t) \right] \end{aligned}$$

We obtain $(x')^2 + (y')^2 = t^2 + 1$. The curve length is given by

$$L(t_0) = \int_0^{t_0} \sqrt{1+t^2} \, dt = \left[\frac{t}{2} \sqrt{1+t^2} + \frac{1}{2} \ln\left(t+\sqrt{1+t^2}\right)\right] \Big|_0^{t_0}.$$

We conclude that $L(t_0) = \frac{t_0}{2}\sqrt{1+t_0^2} + \frac{1}{2}\ln(t_0 + \sqrt{1+t_0^2})$.

Arc-length of a curve on the plane (Sect. 11.2)

- Review: Parametric curves on the plane.
- The slope of tangent lines to curves.
- The arc-length of a curve.
- ► The arc-length function and differential.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark: The previous example suggests to introduce the length function of a curve.

Remark: The previous example suggests to introduce the length function of a curve.

Definition

The *arc-length function* of a continuously differentiable curve given by (x(t), y(t)) for $t \in [t_0, t_1]$ is given by

$$L(t) = \int_{t_0}^t \sqrt{\left[x'(\tau)\right]^2 + \left[y'(\tau)\right]^2} \, d\tau$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark: The previous example suggests to introduce the length function of a curve.

Definition

The *arc-length function* of a continuously differentiable curve given by (x(t), y(t)) for $t \in [t_0, t_1]$ is given by

$$L(t) = \int_{t_0}^t \sqrt{\left[x'(\tau)\right]^2 + \left[y'(\tau)\right]^2} \, d\tau$$

Remarks:

(a) The value L(t) of the length function is the length along the curve (x(t), y(t)) from t_0 to t.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remark: The previous example suggests to introduce the length function of a curve.

Definition

The *arc-length function* of a continuously differentiable curve given by (x(t), y(t)) for $t \in [t_0, t_1]$ is given by

$$L(t) = \int_{t_0}^t \sqrt{\left[x'(\tau)\right]^2 + \left[y'(\tau)\right]^2} \, d\tau$$

Remarks:

- (a) The value L(t) of the length function is the length along the curve (x(t), y(t)) from t_0 to t.
- (b) If the curve is the position of a moving particle as function of time, then the value L(t) is the distance traveled by the particle from the time t_0 to t.

Remark: The arc-length differential is the differential of the arc-length function,

Remark: The arc-length differential is the differential of the arc-length function, that is,

$$dL = \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} dt.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Remark: The arc-length differential is the differential of the arc-length function, that is,

$$dL = \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} dt.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This is a useful notation.

Remark: The arc-length differential is the differential of the arc-length function, that is,

$$dL = \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} dt.$$

This is a useful notation.

Example

Find the length of $x(t) = (2t+1)^{3/2}/3$, $y(t) = t + t^2$ for $t \in [0,1]$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark: The arc-length differential is the differential of the arc-length function, that is,

$$dL = \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} dt.$$

This is a useful notation.

Example

Find the length of $x(t) = (2t+1)^{3/2}/3$, $y(t) = t + t^2$ for $t \in [0,1]$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution: We first compute the length differential,

$$dL = \left[\frac{1}{3}\frac{3}{2}(2t+1)^{1/2}2\right]^2 + \left[1+2t\right]^2$$

Remark: The arc-length differential is the differential of the arc-length function, that is,

$$dL = \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} dt.$$

This is a useful notation.

Example

Find the length of $x(t) = (2t+1)^{3/2}/3$, $y(t) = t + t^2$ for $t \in [0,1]$.

Solution: We first compute the length differential,

$$dL = \left[\frac{1}{3}\frac{3}{2}(2t+1)^{1/2}2\right]^2 + \left[1+2t\right]^2 = (2t+1)+1+4t+4t^2$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remark: The arc-length differential is the differential of the arc-length function, that is,

$$dL = \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} dt.$$

This is a useful notation.

Example

Find the length of $x(t) = (2t+1)^{3/2}/3$, $y(t) = t + t^2$ for $t \in [0,1]$.

Solution: We first compute the length differential,

$$dL = \left[\frac{1}{3}\frac{3}{2}(2t+1)^{1/2}2\right]^2 + \left[1+2t\right]^2 = (2t+1)+1+4t+4t^2$$
$$L = \int_0^1 (4t^2+6t+2) dt$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remark: The arc-length differential is the differential of the arc-length function, that is,

$$dL = \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} dt.$$

This is a useful notation.

Example

Find the length of $x(t) = (2t+1)^{3/2}/3$, $y(t) = t + t^2$ for $t \in [0,1]$.

Solution: We first compute the length differential,

$$dL = \left[\frac{1}{3}\frac{3}{2}(2t+1)^{1/2}2\right]^2 + \left[1+2t\right]^2 = (2t+1)+1+4t+4t^2$$

$$L = \int_0^1 (4t^2 + 6t + 2) \, dt = \left(\frac{4t^3}{3} + 3t^2 + 2t\right)\Big|_0^1 = \frac{19}{3}. \quad \triangleleft$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで