Binomial functions and Taylor series (Sect. 10.10)

- Review: The Taylor Theorem.
- The binomial function.
- Evaluating non-elementary integrals.
- The Euler identity.
- Taylor series table.

Review: The Taylor Theorem

Recall: If $f: D \rightarrow \mathbb{R}$ is infinitely differentiable, and $a, x \in D$, then

$$
f(x)=T_{n}(x)+R_{n}(x)
$$

Review: The Taylor Theorem

Recall: If $f: D \rightarrow \mathbb{R}$ is infinitely differentiable, and $a, x \in D$, then

$$
f(x)=T_{n}(x)+R_{n}(x)
$$

where the Taylor polynomial T_{n} and the Remainder function R_{n}

Review: The Taylor Theorem

Recall: If $f: D \rightarrow \mathbb{R}$ is infinitely differentiable, and $a, x \in D$, then

$$
f(x)=T_{n}(x)+R_{n}(x)
$$

where the Taylor polynomial T_{n} and the Remainder function R_{n} are

$$
\begin{aligned}
& T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& R_{n}(x)=\frac{f^{(n+1)}(c(x))}{(n+1)!}(x-a)^{n+1}, \quad \text { with } \quad c \in(a, x)
\end{aligned}
$$

Review: The Taylor Theorem

Recall: If $f: D \rightarrow \mathbb{R}$ is infinitely differentiable, and $a, x \in D$, then

$$
f(x)=T_{n}(x)+R_{n}(x)
$$

where the Taylor polynomial T_{n} and the Remainder function R_{n} are

$$
\begin{aligned}
& T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& R_{n}(x)=\frac{f^{(n+1)}(c(x))}{(n+1)!}(x-a)^{n+1}, \quad \text { with } \quad c \in(a, x)
\end{aligned}
$$

Furthermore, if $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ for every $x \in I \subset D$, then the Taylor series centered at $x=a, T(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$, converges to the function f on the interval I, and $f(x)=T(x)$.

Binomial functions and Taylor series (Sect. 10.10)

- Review: The Taylor Theorem.
- The binomial function.
- Evaluating non-elementary integrals.
- The Euler identity.
- Taylor series table.

The binomial function

Definition

The binomial function is a function of the form

$$
f_{m}(x)=(1+x)^{m}, \quad m \in \mathbb{R}
$$

The binomial function

Definition

The binomial function is a function of the form

$$
f_{m}(x)=(1+x)^{m}, \quad m \in \mathbb{R}
$$

Example
Find the Taylor polynomial T_{3} centered at $a=0$ of f_{m}.

The binomial function

Definition

The binomial function is a function of the form

$$
f_{m}(x)=(1+x)^{m}, \quad m \in \mathbb{R}
$$

Example
Find the Taylor polynomial T_{3} centered at $a=0$ of f_{m}.
Solution: The derivatives of the function $f(x)=(1+x)^{m}$ are

The binomial function

Definition

The binomial function is a function of the form

$$
f_{m}(x)=(1+x)^{m}, \quad m \in \mathbb{R}
$$

Example
Find the Taylor polynomial T_{3} centered at $a=0$ of f_{m}.
Solution: The derivatives of the function $f(x)=(1+x)^{m}$ are

$$
f^{\prime}(x)=m(1+x)^{(m-1)}
$$

The binomial function

Definition

The binomial function is a function of the form

$$
f_{m}(x)=(1+x)^{m}, \quad m \in \mathbb{R}
$$

Example
Find the Taylor polynomial T_{3} centered at $a=0$ of f_{m}.
Solution: The derivatives of the function $f(x)=(1+x)^{m}$ are

$$
f^{\prime}(x)=m(1+x)^{(m-1)}, \quad f^{\prime \prime}(x)=m(m-1)(1+x)^{(m-2)},
$$

The binomial function

Definition

The binomial function is a function of the form

$$
f_{m}(x)=(1+x)^{m}, \quad m \in \mathbb{R}
$$

Example

Find the Taylor polynomial T_{3} centered at $a=0$ of f_{m}.
Solution: The derivatives of the function $f(x)=(1+x)^{m}$ are

$$
\begin{gathered}
f^{\prime}(x)=m(1+x)^{(m-1)}, \quad f^{\prime \prime}(x)=m(m-1)(1+x)^{(m-2)}, \\
f^{(3)}(x)=m(m-1)(m-2)(1+x)^{(m-3)} .
\end{gathered}
$$

The binomial function

Definition

The binomial function is a function of the form

$$
f_{m}(x)=(1+x)^{m}, \quad m \in \mathbb{R}
$$

Example

Find the Taylor polynomial T_{3} centered at $a=0$ of f_{m}.
Solution: The derivatives of the function $f(x)=(1+x)^{m}$ are

$$
\begin{gathered}
f^{\prime}(x)=m(1+x)^{(m-1)}, \quad f^{\prime \prime}(x)=m(m-1)(1+x)^{(m-2)} \\
f^{(3)}(x)=m(m-1)(m-2)(1+x)^{(m-3)} \\
T_{3}(x)=1+m x+\frac{m(m-1)}{2!} x^{2}+\frac{m(m-1)(m-2)}{3!} x^{3} . \triangleleft
\end{gathered}
$$

The binomial function

Remark: If m is a positive integer, then the binomial function f_{m} is
a polynomial,

The binomial function

Remark: If m is a positive integer, then the binomial function f_{m} is a polynomial, therefore the Taylor series is the same polynomial,

The binomial function

Remark: If m is a positive integer, then the binomial function f_{m} is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first $m+1$ terms non-zero.

The binomial function

Remark: If m is a positive integer, then the binomial function f_{m} is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first $m+1$ terms non-zero.

Example
Find the Taylor series of $f_{2}(x)=(1+x)^{2}$.

The binomial function

Remark: If m is a positive integer, then the binomial function f_{m} is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first $m+1$ terms non-zero.

Example
Find the Taylor series of $f_{2}(x)=(1+x)^{2}$.
Solution: Expanding the the binomial $f_{2}(x)=(1+x)^{2}$,

The binomial function

Remark: If m is a positive integer, then the binomial function f_{m} is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first $m+1$ terms non-zero.

Example
Find the Taylor series of $f_{2}(x)=(1+x)^{2}$.
Solution: Expanding the the binomial $f_{2}(x)=(1+x)^{2}$,

$$
f_{2}(x)=1+2 x+x^{2}
$$

The binomial function

Remark: If m is a positive integer, then the binomial function f_{m} is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first $m+1$ terms non-zero.

Example
Find the Taylor series of $f_{2}(x)=(1+x)^{2}$.
Solution: Expanding the the binomial $f_{2}(x)=(1+x)^{2}$,

$$
f_{2}(x)=1+2 x+x^{2} \quad \Rightarrow \quad f^{\prime}(x)=2+2 x
$$

The binomial function

Remark: If m is a positive integer, then the binomial function f_{m} is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first $m+1$ terms non-zero.

Example
Find the Taylor series of $f_{2}(x)=(1+x)^{2}$.
Solution: Expanding the the binomial $f_{2}(x)=(1+x)^{2}$,

$$
f_{2}(x)=1+2 x+x^{2} \quad \Rightarrow \quad f^{\prime}(x)=2+2 x, \quad f^{\prime \prime}(x)=2
$$

The binomial function

Remark: If m is a positive integer, then the binomial function f_{m} is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first $m+1$ terms non-zero.

Example
Find the Taylor series of $f_{2}(x)=(1+x)^{2}$.
Solution: Expanding the the binomial $f_{2}(x)=(1+x)^{2}$,

$$
f_{2}(x)=1+2 x+x^{2} \quad \Rightarrow \quad f^{\prime}(x)=2+2 x, \quad f^{\prime \prime}(x)=2
$$

Since all derivatives higher or equal the third vanish,

The binomial function

Remark: If m is a positive integer, then the binomial function f_{m} is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first $m+1$ terms non-zero.

Example
Find the Taylor series of $f_{2}(x)=(1+x)^{2}$.
Solution: Expanding the the binomial $f_{2}(x)=(1+x)^{2}$,

$$
f_{2}(x)=1+2 x+x^{2} \quad \Rightarrow \quad f^{\prime}(x)=2+2 x, \quad f^{\prime \prime}(x)=2
$$

Since all derivatives higher or equal the third vanish,

$$
T(x)=1+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}
$$

The binomial function

Remark: If m is a positive integer, then the binomial function f_{m} is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first $m+1$ terms non-zero.

Example
Find the Taylor series of $f_{2}(x)=(1+x)^{2}$.
Solution: Expanding the the binomial $f_{2}(x)=(1+x)^{2}$,

$$
f_{2}(x)=1+2 x+x^{2} \quad \Rightarrow \quad f^{\prime}(x)=2+2 x, \quad f^{\prime \prime}(x)=2
$$

Since all derivatives higher or equal the third vanish,

$$
T(x)=1+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2} \quad \Rightarrow \quad T(x)=1+2 x+x^{2}
$$

The binomial function

Remark: If m is a positive integer, then the binomial function f_{m} is a polynomial, therefore the Taylor series is the same polynomial, hence the Taylor series has only the first $m+1$ terms non-zero.

Example
Find the Taylor series of $f_{2}(x)=(1+x)^{2}$.
Solution: Expanding the the binomial $f_{2}(x)=(1+x)^{2}$,

$$
f_{2}(x)=1+2 x+x^{2} \quad \Rightarrow \quad f^{\prime}(x)=2+2 x, \quad f^{\prime \prime}(x)=2
$$

Since all derivatives higher or equal the third vanish,

$$
T(x)=1+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2} \quad \Rightarrow \quad T(x)=1+2 x+x^{2}
$$

That is, $f_{2}(x)=T(x)$.

The binomial function

Remark: If m is not a positive integer, then the Taylor series of the binomial function has infinitely many non-zero terms.

The binomial function

Remark: If m is not a positive integer, then the Taylor series of the binomial function has infinitely many non-zero terms.

Theorem

The Taylor series for the binomial function $f_{m}(x)=(1+x)^{m}$, with m not a positive integer converges for $|x|<1$ and is given by

$$
T(x)=1+\sum_{n=1}^{\infty}\binom{m}{n} x^{n}
$$

with the binomial coefficients $\binom{m}{1}=m,\binom{m}{2}=\frac{m(m-1)}{2!}$, and

$$
\binom{m}{n}=\frac{m(m-1) \cdots(m-(n-1))}{n!}
$$

The binomial function

Proof: The n-derivative of the binomial function is

$$
f^{(n)}(x)=m(m-1) \cdots(m-(n-1))(1+x)^{(m-n)}
$$

The binomial function

Proof: The n-derivative of the binomial function is

$$
f^{(n)}(x)=m(m-1) \cdots(m-(n-1))(1+x)^{(m-n)}
$$

therefore, the n-Taylor coefficient at $a=0$ is

$$
\frac{f^{(n)}(0)}{n!}=\frac{m(m-1) \cdots(m-(n-1))}{n!}
$$

The binomial function

Proof: The n-derivative of the binomial function is

$$
f^{(n)}(x)=m(m-1) \cdots(m-(n-1))(1+x)^{(m-n)}
$$

therefore, the n-Taylor coefficient at $a=0$ is

$$
\frac{f^{(n)}(0)}{n!}=\frac{m(m-1) \cdots(m-(n-1))}{n!}=\binom{m}{n} .
$$

The binomial function

Proof: The n-derivative of the binomial function is

$$
f^{(n)}(x)=m(m-1) \cdots(m-(n-1))(1+x)^{(m-n)}
$$

therefore, the n-Taylor coefficient at $a=0$ is

$$
\frac{f^{(n)}(0)}{n!}=\frac{m(m-1) \cdots(m-(n-1))}{n!}=\binom{m}{n} .
$$

Since $f(0)=1$,

The binomial function

Proof: The n-derivative of the binomial function is

$$
f^{(n)}(x)=m(m-1) \cdots(m-(n-1))(1+x)^{(m-n)}
$$

therefore, the n-Taylor coefficient at $a=0$ is

$$
\frac{f^{(n)}(0)}{n!}=\frac{m(m-1) \cdots(m-(n-1))}{n!}=\binom{m}{n} .
$$

Since $f(0)=1$, the Taylor series of the binomial function is

$$
T(x)=1+\sum_{n=1}^{\infty}\binom{m}{n} x^{n}
$$

The binomial function

Proof: The n-derivative of the binomial function is

$$
f^{(n)}(x)=m(m-1) \cdots(m-(n-1))(1+x)^{(m-n)}
$$

therefore, the n-Taylor coefficient at $a=0$ is

$$
\frac{f^{(n)}(0)}{n!}=\frac{m(m-1) \cdots(m-(n-1))}{n!}=\binom{m}{n} .
$$

Since $f(0)=1$, the Taylor series of the binomial function is

$$
T(x)=1+\sum_{n=1}^{\infty}\binom{m}{n} x^{n},
$$

The ratio test: $\frac{\left|x^{n+1}\binom{m}{n+1}\right|}{\left|x^{n}\binom{m}{n}\right|}$

The binomial function

Proof: The n-derivative of the binomial function is

$$
f^{(n)}(x)=m(m-1) \cdots(m-(n-1))(1+x)^{(m-n)}
$$

therefore, the n-Taylor coefficient at $a=0$ is

$$
\frac{f^{(n)}(0)}{n!}=\frac{m(m-1) \cdots(m-(n-1))}{n!}=\binom{m}{n} .
$$

Since $f(0)=1$, the Taylor series of the binomial function is

$$
T(x)=1+\sum_{n=1}^{\infty}\binom{m}{n} x^{n}
$$

The ratio test: $\frac{\left|x^{n+1}\binom{m}{n+1}\right|}{\left|x^{n}\binom{m}{n}\right|}=\left|x \frac{m-n}{(n+1)}\right| \rightarrow|x|$ as $n \rightarrow \infty$.

The binomial function

Proof: The n-derivative of the binomial function is

$$
f^{(n)}(x)=m(m-1) \cdots(m-(n-1))(1+x)^{(m-n)}
$$

therefore, the n-Taylor coefficient at $a=0$ is

$$
\frac{f^{(n)}(0)}{n!}=\frac{m(m-1) \cdots(m-(n-1))}{n!}=\binom{m}{n} .
$$

Since $f(0)=1$, the Taylor series of the binomial function is

$$
T(x)=1+\sum_{n=1}^{\infty}\binom{m}{n} x^{n}
$$

The ratio test: $\frac{\left|x^{n+1}\binom{m}{n+1}\right|}{\left|x^{n}\binom{m}{n}\right|}=\left|x \frac{m-n}{(n+1)}\right| \rightarrow|x|$ as $n \rightarrow \infty$.
Therefore, the series converges for $|x|<1$.

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 2}$.

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 2}$.
Solution: Compute the binomial coefficients $\binom{1 / 2}{n}$:

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 2}$.
Solution: Compute the binomial coefficients $\binom{1 / 2}{n}:\binom{1 / 2}{1}=\frac{1}{2}$,

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 2}$.
Solution: Compute the binomial coefficients $\binom{1 / 2}{n}:\binom{1 / 2}{1}=\frac{1}{2}$,

$$
\binom{1 / 2}{2}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)}{2!}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 2}$.
Solution: Compute the binomial coefficients $\binom{1 / 2}{n}:\binom{1 / 2}{1}=\frac{1}{2}$,

$$
\binom{1 / 2}{2}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)}{2!}=\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 2}$.
Solution: Compute the binomial coefficients $\binom{1 / 2}{n}:\binom{1 / 2}{1}=\frac{1}{2}$,

$$
\binom{1 / 2}{2}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)}{2!}=\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}=\frac{\left(-\frac{1}{4}\right)}{2}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 2}$.
Solution: Compute the binomial coefficients $\binom{1 / 2}{n}:\binom{1 / 2}{1}=\frac{1}{2}$,

$$
\binom{1 / 2}{2}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)}{2!}=\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}=\frac{\left(-\frac{1}{4}\right)}{2}=-\frac{1}{8}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 2}$.
Solution: Compute the binomial coefficients $\binom{1 / 2}{n}:\binom{1 / 2}{1}=\frac{1}{2}$,

$$
\begin{aligned}
& \binom{1 / 2}{2}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)}{2!}=\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}=\frac{\left(-\frac{1}{4}\right)}{2}=-\frac{1}{8} \\
& \binom{1 / 2}{3}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!}
\end{aligned}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 2}$.
Solution: Compute the binomial coefficients $\binom{1 / 2}{n}:\binom{1 / 2}{1}=\frac{1}{2}$,

$$
\begin{gathered}
\binom{1 / 2}{2}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)}{2!}=\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}=\frac{\left(-\frac{1}{4}\right)}{2}=-\frac{1}{8} \\
\binom{1 / 2}{3}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!}=\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}
\end{gathered}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 2}$.
Solution: Compute the binomial coefficients $\binom{1 / 2}{n}:\binom{1 / 2}{1}=\frac{1}{2}$,

$$
\begin{gathered}
\binom{1 / 2}{2}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)}{2!}=\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}=\frac{\left(-\frac{1}{4}\right)}{2}=-\frac{1}{8} \\
\binom{1 / 2}{3}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!}=\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}=\frac{\left(\frac{3}{8}\right)}{6}
\end{gathered}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 2}$.
Solution: Compute the binomial coefficients $\binom{1 / 2}{n}:\binom{1 / 2}{1}=\frac{1}{2}$,

$$
\begin{gathered}
\binom{1 / 2}{2}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)}{2!}=\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}=\frac{\left(-\frac{1}{4}\right)}{2}=-\frac{1}{8}, \\
\binom{1 / 2}{3}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!}=\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}=\frac{\left(\frac{3}{8}\right)}{6}=\frac{1}{16} .
\end{gathered}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 2}$.
Solution: Compute the binomial coefficients $\binom{1 / 2}{n}:\binom{1 / 2}{1}=\frac{1}{2}$,

$$
\begin{gather*}
\binom{1 / 2}{2}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)}{2!}=\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}=\frac{\left(-\frac{1}{4}\right)}{2}=-\frac{1}{8} \\
\binom{1 / 2}{3}=\frac{\left(\frac{1}{2}\right)\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!}=\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}=\frac{\left(\frac{3}{8}\right)}{6}=\frac{1}{16} . \\
\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\cdots
\end{gather*}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1-x)^{1 / 2}$.

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1-x)^{1 / 2}$.
Solution: Substitute x by $-x$ in $\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\cdots$.

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1-x)^{1 / 2}$.
Solution: Substitute x by $-x$ in $\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\cdots$.
We obtain: $\quad \sqrt{1-x}=1-\frac{x}{2}-\frac{x^{2}}{8}-\frac{x^{3}}{16}-\cdots$.

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1-x)^{1 / 2}$.
Solution: Substitute x by $-x$ in $\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\cdots$.
We obtain: $\quad \sqrt{1-x}=1-\frac{x}{2}-\frac{x^{2}}{8}-\frac{x^{3}}{16}-\cdots$.
Example
Find the Taylor series of the binomial function $f(x)=\left(1-x^{2}\right)^{1 / 2}$.

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1-x)^{1 / 2}$.
Solution: Substitute x by $-x$ in $\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\cdots$.
We obtain: $\sqrt{1-x}=1-\frac{x}{2}-\frac{x^{2}}{8}-\frac{x^{3}}{16}-\cdots$.
Example
Find the Taylor series of the binomial function $f(x)=\left(1-x^{2}\right)^{1 / 2}$.
Solution: Substitute x by $-x^{2}$ in $\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\cdots$.

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1-x)^{1 / 2}$.
Solution: Substitute x by $-x$ in $\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\cdots$.
We obtain: $\sqrt{1-x}=1-\frac{x}{2}-\frac{x^{2}}{8}-\frac{x^{3}}{16}-\cdots$.
Example
Find the Taylor series of the binomial function $f(x)=\left(1-x^{2}\right)^{1 / 2}$.
Solution: Substitute x by $-x^{2}$ in $\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\cdots$.
We obtain: $\quad \sqrt{1-x^{2}}=1-\frac{x^{2}}{2}-\frac{x^{4}}{8}-\frac{x^{6}}{16}-\cdots$.

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 3}$.

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 3}$.
Solution: Compute the binomial coefficients $\binom{1 / 3}{n}$:

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 3}$.
Solution: Compute the binomial coefficients $\binom{1 / 3}{n}:\binom{1 / 3}{1}=\frac{1}{3}$,

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 3}$.
Solution: Compute the binomial coefficients $\binom{1 / 3}{n}:\binom{1 / 3}{1}=\frac{1}{3}$,

$$
\binom{1 / 3}{2}=\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)}{2!}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 3}$.
Solution: Compute the binomial coefficients $\binom{1 / 3}{n}:\binom{1 / 3}{1}=\frac{1}{3}$,

$$
\binom{1 / 3}{2}=\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)}{2!}=\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 3}$.
Solution: Compute the binomial coefficients $\binom{1 / 3}{n}:\binom{1 / 3}{1}=\frac{1}{3}$,

$$
\binom{1 / 3}{2}=\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)}{2!}=\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}=\frac{\left(-\frac{2}{9}\right)}{2}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 3}$.
Solution: Compute the binomial coefficients $\binom{1 / 3}{n}:\binom{1 / 3}{1}=\frac{1}{3}$,

$$
\binom{1 / 3}{2}=\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)}{2!}=\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}=\frac{\left(-\frac{2}{9}\right)}{2}=-\frac{1}{9},
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 3}$.
Solution: Compute the binomial coefficients $\binom{1 / 3}{n}:\binom{1 / 3}{1}=\frac{1}{3}$,

$$
\begin{aligned}
& \quad\binom{1 / 3}{2}=\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)}{2!}=\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}=\frac{\left(-\frac{2}{9}\right)}{2}=-\frac{1}{9}, \\
& \binom{1 / 3}{3}=\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)}{3!}
\end{aligned}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 3}$.
Solution: Compute the binomial coefficients $\binom{1 / 3}{n}:\binom{1 / 3}{1}=\frac{1}{3}$,

$$
\begin{gathered}
\binom{1 / 3}{2}=\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)}{2!}=\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}=\frac{\left(-\frac{2}{9}\right)}{2}=-\frac{1}{9} \\
\binom{1 / 3}{3}=\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)}{3!}=\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}
\end{gathered}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 3}$.
Solution: Compute the binomial coefficients $\binom{1 / 3}{n}:\binom{1 / 3}{1}=\frac{1}{3}$,

$$
\begin{gathered}
\binom{1 / 3}{2}=\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)}{2!}=\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}=\frac{\left(-\frac{2}{9}\right)}{2}=-\frac{1}{9} \\
\binom{1 / 3}{3}=\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)}{3!}=\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}=\frac{\left(\frac{10}{27}\right)}{6}
\end{gathered}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 3}$.
Solution: Compute the binomial coefficients $\binom{1 / 3}{n}:\binom{1 / 3}{1}=\frac{1}{3}$,

$$
\begin{gathered}
\binom{1 / 3}{2}=\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)}{2!}=\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}=\frac{\left(-\frac{2}{9}\right)}{2}=-\frac{1}{9}, \\
\binom{1 / 3}{3}=\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)}{3!}=\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}=\frac{\left(\frac{10}{27}\right)}{6}=\frac{5}{81} .
\end{gathered}
$$

The binomial function

Example

Find the Taylor series of the binomial function $f(x)=(1+x)^{1 / 3}$.
Solution: Compute the binomial coefficients $\binom{1 / 3}{n}:\binom{1 / 3}{1}=\frac{1}{3}$,

$$
\begin{gathered}
\binom{1 / 3}{2}=\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)}{2!}=\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}=\frac{\left(-\frac{2}{9}\right)}{2}=-\frac{1}{9} \\
\binom{1 / 3}{3}=\frac{\left(\frac{1}{3}\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{3}-2\right)}{3!}=\frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}=\frac{\left(\frac{10}{27}\right)}{6}=\frac{5}{81} \\
\sqrt[3]{1+x}=1+\frac{x}{3}-\frac{x^{2}}{9}+\frac{5}{81} x^{3}-\cdots
\end{gathered}
$$

Binomial functions and Taylor series (Sect. 10.10)

- Review: The Taylor Theorem.
- The binomial function.
- Evaluating non-elementary integrals.
- The Euler identity.
- Taylor series table.

Evaluating non-elementary integrals

Remark: Non-elementary integrals can be evaluated integrating term by term the integrand Taylor series.

Evaluating non-elementary integrals

Remark: Non-elementary integrals can be evaluated integrating term by term the integrand Taylor series.

Example
Approximate the integral $I=\int_{0}^{1} e^{-x^{2}} d x$.

Evaluating non-elementary integrals

Remark: Non-elementary integrals can be evaluated integrating term by term the integrand Taylor series.

Example
Approximate the integral $I=\int_{0}^{1} e^{-x^{2}} d x$.
Solution: Recall the Taylor series $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$.

Evaluating non-elementary integrals

Remark: Non-elementary integrals can be evaluated integrating term by term the integrand Taylor series.

Example
Approximate the integral $I=\int_{0}^{1} e^{-x^{2}} d x$.
Solution: Recall the Taylor series $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$. Substitute x by $-x^{2}$ in the Taylor series,

Evaluating non-elementary integrals

Remark: Non-elementary integrals can be evaluated integrating term by term the integrand Taylor series.

Example
Approximate the integral $I=\int_{0}^{1} e^{-x^{2}} d x$.
Solution: Recall the Taylor series $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$.
Substitute x by $-x^{2}$ in the Taylor series,

$$
e^{-x^{2}}=1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\cdots
$$

Evaluating non-elementary integrals

Remark: Non-elementary integrals can be evaluated integrating term by term the integrand Taylor series.

Example
Approximate the integral $I=\int_{0}^{1} e^{-x^{2}} d x$.
Solution: Recall the Taylor series $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$.
Substitute x by $-x^{2}$ in the Taylor series,

$$
\begin{aligned}
e^{-x^{2}} & =1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\cdots \\
\int e^{-x^{2}} d x & =x-\frac{x^{3}}{3}+\frac{x^{5}}{(2!)(5)}-\frac{x^{7}}{(3!)(7)}+\cdots
\end{aligned}
$$

Evaluating non-elementary integrals

Remark: Non-elementary integrals can be evaluated integrating term by term the integrand Taylor series.

Example
Approximate the integral $I=\int_{0}^{1} e^{-x^{2}} d x$.
Solution: Recall the Taylor series $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$. Substitute x by $-x^{2}$ in the Taylor series,

$$
\begin{gather*}
e^{-x^{2}}=1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\cdots \\
\int e^{-x^{2}} d x=x-\frac{x^{3}}{3}+\frac{x^{5}}{(2!)(5)}-\frac{x^{7}}{(3!)(7)}+\cdots \\
\int_{0}^{1} e^{-x^{2}} d x=1-\frac{1}{3}+\frac{1}{(2!)(5)}-\frac{1}{(3!)(7)}+\cdots .
\end{gather*}
$$

Binomial functions and Taylor series (Sect. 10.10)

- Review: The Taylor Theorem.
- The binomial function.
- Evaluating non-elementary integrals.
- The Euler identity.
- Taylor series table.

The Euler identity

Remark: The Taylor expansions

$$
\cos (\theta)=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots, \quad \sin (\theta)=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots,
$$

The Euler identity

Remark: The Taylor expansions

$$
\cos (\theta)=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots, \quad \sin (\theta)=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots,
$$

imply that

$$
\cos (\theta)+i \sin (\theta)=1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\cdots,
$$

The Euler identity

Remark: The Taylor expansions

$$
\cos (\theta)=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots, \quad \sin (\theta)=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots,
$$

imply that

$$
\begin{gathered}
\cos (\theta)+i \sin (\theta)=1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\cdots, \\
\cos (\theta)+i \sin (\theta)=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\cdots,
\end{gathered}
$$

The Euler identity

Remark: The Taylor expansions

$$
\cos (\theta)=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots, \quad \sin (\theta)=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots,
$$

imply that

$$
\begin{gathered}
\cos (\theta)+i \sin (\theta)=1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\cdots, \\
\cos (\theta)+i \sin (\theta)=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\cdots,
\end{gathered}
$$

This and $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$

The Euler identity

Remark: The Taylor expansions

$$
\cos (\theta)=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots, \quad \sin (\theta)=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots,
$$

imply that

$$
\begin{gathered}
\cos (\theta)+i \sin (\theta)=1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\cdots \\
\cos (\theta)+i \sin (\theta)=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\cdots,
\end{gathered}
$$

This and $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ suggest the definition:

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

Binomial functions and Taylor series (Sect. 10.10)

- Review: The Taylor Theorem.
- The binomial function.
- Evaluating non-elementary integrals.
- The Euler identity.
- Taylor series table.

Taylor series table

Remark: Table of frequently used Taylor series.

$$
\begin{array}{rlrl}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots, & & |x|<1, \\
\frac{1}{1+x} & =\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+\cdots, & & |x|<1, \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots, & & |x|<\infty, \\
\sin (x) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots, & |x|<\infty, \\
\cos (x) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots, & |x|<\infty .
\end{array}
$$

Parametrizations of curves on a plane (Sect. 11.1)

- Review: Curves on the plane.
- Parametric equations of a curve.
- Examples of curves on the plane.
- The cycloid.

Review: Curves on the plane

Remarks:

- Curves on a plane can be described by the set of points (x, y) solutions of an equation

$$
F(x, y)=0
$$

Review: Curves on the plane

Remarks:

- Curves on a plane can be described by the set of points (x, y) solutions of an equation

$$
F(x, y)=0
$$

- A particular case is the graph of a function $y=f(x)$.

Review: Curves on the plane

Remarks:

- Curves on a plane can be described by the set of points (x, y) solutions of an equation

$$
F(x, y)=0
$$

- A particular case is the graph of a function $y=f(x)$. In this case: $F(x, y)=y-f(x)$.

Review: Curves on the plane

Remarks:

- Curves on a plane can be described by the set of points (x, y) solutions of an equation

$$
F(x, y)=0
$$

- A particular case is the graph of a function $y=f(x)$. In this case: $F(x, y)=y-f(x)$.

Example

- Circle centered at $P=(0,0)$ radius r :

$$
x^{2}+y^{2}=r^{2} .
$$

Review: Curves on the plane

Remarks:

- Curves on a plane can be described by the set of points (x, y) solutions of an equation

$$
F(x, y)=0
$$

- A particular case is the graph of a function $y=f(x)$. In this case: $F(x, y)=y-f(x)$.

Example

- Circle centered at $P=(0,0)$ radius r :

$$
x^{2}+y^{2}=r^{2}
$$

- Circle centered at $P=\left(x_{0}, y_{0}\right)$ radius r :

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2} .
$$

Review: Curves on the plane

Example

- An ellipse centered at $P=(0,0)$ with radius a and b,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Review: Curves on the plane

Example

- An ellipse centered at $P=(0,0)$ with radius a and b,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

A sphere is the particular case $a=b=r$.

Review: Curves on the plane

Example

- An ellipse centered at $P=(0,0)$ with radius a and b,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

A sphere is the particular case $a=b=r$.

- A hyperbola with asymptotes $y= \pm x$,

$$
x^{2}-y^{2}=1
$$

Review: Curves on the plane

Example

- An ellipse centered at $P=(0,0)$ with radius a and b,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

A sphere is the particular case $a=b=r$.

- A hyperbola with asymptotes $y= \pm x$,

$$
x^{2}-y^{2}=1
$$

- A hyperbola with asymptotes $y= \pm \frac{b}{a} x$,

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

Review: Curves on the plane

Example

- A parabola with minimum at $(0,0)$,

$$
y=x^{2}
$$

Review: Curves on the plane

Example

- A parabola with minimum at $(0,0)$,

$$
y=x^{2}
$$

- A parabola with minimum at (a, b),

$$
y=c(x-a)^{2}+b, \quad c>0
$$

Review: Curves on the plane

Example

- A parabola with minimum at $(0,0)$,

$$
y=x^{2}
$$

- A parabola with minimum at (a, b),

$$
y=c(x-a)^{2}+b, \quad c>0
$$

- A parabola with maximum at (a, b),

$$
y=-c(x-a)^{2}+b, \quad c>0 .
$$

Parametrizations of curves on a plane (Sect. 11.1)

- Review: Curves on the plane.
- Parametric equations of a curve.
- Examples of curves on the plane.
- The cycloid.

Parametric equations of a curve

Remarks:

- A curve on a plane can always be thought as the motion of a particle as function of time.

Parametric equations of a curve

Remarks:

- A curve on a plane can always be thought as the motion of a particle as function of time.
- Every curve given by $F(x, y)=0$ can be described as the set of points $(x(t), y(t))$ traveled by a particle for $t \in[a, b]$.

Parametric equations of a curve

Remarks:

- A curve on a plane can always be thought as the motion of a particle as function of time.
- Every curve given by $F(x, y)=0$ can be described as the set of points $(x(t), y(t))$ traveled by a particle for $t \in[a, b]$.

Definition

A curve on the plane is given in parametric form iff it is given by the set of points $(x(t), y(t))$, where the parameter $t \in I \subset \mathbb{R}$.

Parametric equations of a curve

Remarks:

- A curve on a plane can always be thought as the motion of a particle as function of time.
- Every curve given by $F(x, y)=0$ can be described as the set of points $(x(t), y(t))$ traveled by a particle for $t \in[a, b]$.

Definition

A curve on the plane is given in parametric form iff it is given by the set of points $(x(t), y(t))$, where the parameter $t \in I \subset \mathbb{R}$.

Remark: If the interval I is closed, $I=[a, b]$, then $(x(a), y(a))$ and $(x(b), y(b))$ are called the initial and terminal points of the curve.

Parametrizations of curves on a plane (Sect. 11.1)

- Review: Curves on the plane.
- Parametric equations of a curve.
- Examples of curves on the plane.
- The cycloid.

Examples of curves on the plane

Example
Describe the curve $x(t)=\cos (t), y(t)=\sin (t)$, for $t \in[0,2 \pi]$.

Examples of curves on the plane

Example
Describe the curve $x(t)=\cos (t), y(t)=\sin (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

Examples of curves on the plane

Example
Describe the curve $x(t)=\cos (t), y(t)=\sin (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
[x(t)]^{2}+[y(t)]^{2}=
$$

Examples of curves on the plane

Example
Describe the curve $x(t)=\cos (t), y(t)=\sin (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
\cos ^{2}(t)+\sin ^{2}(t)
\end{gathered}
$$

Examples of curves on the plane

Example
Describe the curve $x(t)=\cos (t), y(t)=\sin (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
\cos ^{2}(t)+\sin ^{2}(t)=1
\end{gathered}
$$

Examples of curves on the plane

Example
Describe the curve $x(t)=\cos (t), y(t)=\sin (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
\cos ^{2}(t)+\sin ^{2}(t)=1
\end{gathered}
$$

This is a circle.

Examples of curves on the plane

Example
Describe the curve $x(t)=\cos (t), y(t)=\sin (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
\cos ^{2}(t)+\sin ^{2}(t)=1
\end{gathered}
$$

This is a circle.

This is the equation of a circle radius $r=1$, centered at $(0,0)$.

Examples of curves on the plane

Example
Describe the curve $x(t)=\cos (t), y(t)=\sin (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
\cos ^{2}(t)+\sin ^{2}(t)=1
\end{gathered}
$$

This is a circle.

This is the equation of a circle radius $r=1$, centered at $(0,0)$. The circle is traversed in counterclockwise direction, starting and ending at $(1,0)$.

Examples of curves on the plane

Example
Describe the curve $x(t)=\sin (t), y(t)=\cos (t)$, for $t \in[0,2 \pi]$.

Examples of curves on the plane

Example
Describe the curve $x(t)=\sin (t), y(t)=\cos (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

Examples of curves on the plane

Example
Describe the curve $x(t)=\sin (t), y(t)=\cos (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
[x(t)]^{2}+[y(t)]^{2}=
$$

Examples of curves on the plane

Example
Describe the curve $x(t)=\sin (t), y(t)=\cos (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
\sin ^{2}(t)+\cos ^{2}(t)
\end{gathered}
$$

Examples of curves on the plane

Example
Describe the curve $x(t)=\sin (t), y(t)=\cos (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
\sin ^{2}(t)+\cos ^{2}(t)=1
\end{gathered}
$$

Examples of curves on the plane

Example
Describe the curve $x(t)=\sin (t), y(t)=\cos (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
\sin ^{2}(t)+\cos ^{2}(t)=1
\end{gathered}
$$

This is a circle.

Examples of curves on the plane

Example
Describe the curve $x(t)=\sin (t), y(t)=\cos (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
\sin ^{2}(t)+\cos ^{2}(t)=1
\end{gathered}
$$

This is a circle.

This is the equation of a circle radius $r=1$, centered at $(0,0)$.

Examples of curves on the plane

Example
Describe the curve $x(t)=\sin (t), y(t)=\cos (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
\sin ^{2}(t)+\cos ^{2}(t)=1
\end{gathered}
$$

This is a circle.

This is the equation of a circle radius $r=1$, centered at $(0,0)$. The circle is traversed in clockwise direction, starting and ending at $(0,1)$.

Examples of curves on the plane

Example
Describe the curve $x(t)=3 \cos (t), \quad y(t)=3 \sin (t)$, for $t \in[0, \pi / 2]$.

Examples of curves on the plane

Example
Describe the curve $x(t)=3 \cos (t), \quad y(t)=3 \sin (t)$, for $t \in[0, \pi / 2]$.

Solution:
The functions x and y above satisfy the equation

Examples of curves on the plane

Example
Describe the curve $x(t)=3 \cos (t), \quad y(t)=3 \sin (t)$, for $t \in[0, \pi / 2]$.

Solution:
The functions x and y above satisfy the equation

$$
[x(t)]^{2}+[y(t)]^{2}=
$$

Examples of curves on the plane

Example
Describe the curve $x(t)=3 \cos (t), \quad y(t)=3 \sin (t)$, for $t \in[0, \pi / 2]$.

Solution:
The functions x and y above satisfy the equation

$$
\begin{array}{r}
{[x(t)]^{2}+[y(t)]^{2}=} \\
3^{2} \cos ^{2}(t)+3^{2} \sin ^{2}(t)
\end{array}
$$

Examples of curves on the plane

Example
Describe the curve $x(t)=3 \cos (t), \quad y(t)=3 \sin (t)$, for $t \in[0, \pi / 2]$.

Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
3^{2} \cos ^{2}(t)+3^{2} \sin ^{2}(t)=3^{2}
\end{gathered}
$$

Examples of curves on the plane

Example

Describe the curve $x(t)=3 \cos (t), \quad y(t)=3 \sin (t)$, for $t \in[0, \pi / 2]$.

Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
3^{2} \cos ^{2}(t)+3^{2} \sin ^{2}(t)=3^{2}
\end{gathered}
$$

This is a portion of a circle.

Examples of curves on the plane

Example

Describe the curve $x(t)=3 \cos (t), \quad y(t)=3 \sin (t)$, for $t \in[0, \pi / 2]$.

Solution:

The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
3^{2} \cos ^{2}(t)+3^{2} \sin ^{2}(t)=3^{2}
\end{gathered}
$$

This is a portion of a circle.

This is the equation of a $1 / 4$ circle radius $r=3$, centered at $(0,0)$.

Examples of curves on the plane

Example

Describe the curve $x(t)=3 \cos (t), \quad y(t)=3 \sin (t)$, for $t \in[0, \pi / 2]$.

Solution:

The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
3^{2} \cos ^{2}(t)+3^{2} \sin ^{2}(t)=3^{2}
\end{gathered}
$$

This is a portion of a circle.

This is the equation of a $1 / 4$ circle radius $r=3$, centered at $(0,0)$. The circle is traversed in counterclockwise direction, starting at $(3,0)$ and ending at $(0,3)$.

Examples of curves on the plane

Example
Describe the curve $x(t)=3 \cos (2 t), \quad y(t)=3 \sin (2 t)$, for $t \in[0, \pi / 2]$.

Examples of curves on the plane

Example
Describe the curve $x(t)=3 \cos (2 t), \quad y(t)=3 \sin (2 t)$, for $t \in[0, \pi / 2]$.

Solution:
The functions x and y above satisfy the equation

Examples of curves on the plane

Example
Describe the curve $x(t)=3 \cos (2 t), \quad y(t)=3 \sin (2 t)$, for $t \in[0, \pi / 2]$.

Solution:
The functions x and y above satisfy the equation

$$
[x(t)]^{2}+[y(t)]^{2}=
$$

Examples of curves on the plane

Example

Describe the curve $x(t)=3 \cos (2 t), \quad y(t)=3 \sin (2 t)$, for $t \in[0, \pi / 2]$.

Solution:
The functions x and y above satisfy the equation

$$
\begin{array}{r}
{[x(t)]^{2}+[y(t)]^{2}=} \\
3^{2} \cos ^{2}(2 t)+3^{2} \sin ^{2}(2 t)
\end{array}
$$

Examples of curves on the plane

Example

Describe the curve $x(t)=3 \cos (2 t), \quad y(t)=3 \sin (2 t)$, for $t \in[0, \pi / 2]$.

Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
3^{2} \cos ^{2}(2 t)+3^{2} \sin ^{2}(2 t)=3^{2}
\end{gathered}
$$

Examples of curves on the plane

Example

Describe the curve $x(t)=3 \cos (2 t), \quad y(t)=3 \sin (2 t)$, for $t \in[0, \pi / 2]$.

Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
3^{2} \cos ^{2}(2 t)+3^{2} \sin ^{2}(2 t)=3^{2}
\end{gathered}
$$

This is a portion of a circle.

Examples of curves on the plane

Example

Describe the curve $x(t)=3 \cos (2 t), \quad y(t)=3 \sin (2 t)$, for $t \in[0, \pi / 2]$.

Solution:

The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
3^{2} \cos ^{2}(2 t)+3^{2} \sin ^{2}(2 t)=3^{2}
\end{gathered}
$$

This is a portion of a circle.

This is the equation of a $1 / 2$ circle radius $r=3$, centered at $(0,0)$.

Examples of curves on the plane

Example

Describe the curve $x(t)=3 \cos (2 t), \quad y(t)=3 \sin (2 t)$, for $t \in[0, \pi / 2]$.

Solution:

The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}+[y(t)]^{2}=} \\
3^{2} \cos ^{2}(2 t)+3^{2} \sin ^{2}(2 t)=3^{2}
\end{gathered}
$$

This is a portion of a circle.

This is the equation of a $1 / 2$ circle radius $r=3$, centered at $(0,0)$. The circle is traversed in counterclockwise direction, starting at $(3,0)$ and ending at $(-3,0)$.

Examples of curves on the plane

Example
Describe the curve $x(t)=3 \cos (t), \quad y(t)=\sin (t)$, for $t \in[0,2 \pi]$.

Examples of curves on the plane

Example
Describe the curve $x(t)=3 \cos (t), \quad y(t)=\sin (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

Examples of curves on the plane

Example
Describe the curve $x(t)=3 \cos (t), \quad y(t)=\sin (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\frac{[x(t)]^{2}}{3^{2}}+[y(t)]^{2}=
$$

Examples of curves on the plane

Example
Describe the curve $x(t)=3 \cos (t), \quad y(t)=\sin (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
\frac{[x(t)]^{2}}{3^{2}}+[y(t)]^{2}= \\
\cos ^{2}(t)+\sin ^{2}(t)
\end{gathered}
$$

Examples of curves on the plane

Example
Describe the curve $x(t)=3 \cos (t), \quad y(t)=\sin (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
\frac{[x(t)]^{2}}{3^{2}}+[y(t)]^{2}= \\
\cos ^{2}(t)+\sin ^{2}(t)=1
\end{gathered}
$$

Examples of curves on the plane

Example
Describe the curve $x(t)=3 \cos (t), \quad y(t)=\sin (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
\frac{[x(t)]^{2}}{3^{2}}+[y(t)]^{2}= \\
\cos ^{2}(t)+\sin ^{2}(t)=1
\end{gathered}
$$

This is an ellipse.

Examples of curves on the plane

Example

Describe the curve $x(t)=3 \cos (t), \quad y(t)=\sin (t)$, for $t \in[0,2 \pi]$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
\frac{[x(t)]^{2}}{3^{2}}+[y(t)]^{2}= \\
\cos ^{2}(t)+\sin ^{2}(t)=1
\end{gathered}
$$

This is an ellipse.
This is the equation of an ellipse with x-radius 3 and y-radius 1 , centered at $(0,0)$.

Examples of curves on the plane

Example
Describe the curve $x(t)=3 \cos (t), \quad y(t)=\sin (t)$, for $t \in[0,2 \pi]$.

Solution:

The functions x and y above satisfy the equation

$$
\begin{gathered}
\frac{[x(t)]^{2}}{3^{2}}+[y(t)]^{2}= \\
\cos ^{2}(t)+\sin ^{2}(t)=1
\end{gathered}
$$

This is an ellipse.
This is the equation of an ellipse with x-radius 3 and y-radius 1 , centered at $(0,0)$. The ellipse is traversed in counterclockwise direction, starting and ending at $(3,0)$.

Examples of curves on the plane

Example
Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.

Examples of curves on the plane

Example
Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.
Solution:
The functions x and y above satisfy the equation

Examples of curves on the plane

Example
Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.
Solution:
The functions x and y above satisfy the equation

$$
[x(t)]^{2}-[y(t)]^{2}=
$$

Examples of curves on the plane

Example
Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\cosh ^{2}(t)-\sinh ^{2}(t)
\end{gathered}
$$

Examples of curves on the plane

Example
Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\cosh ^{2}(t)-\sinh ^{2}(t)=1
\end{gathered}
$$

Examples of curves on the plane

Example
Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.
Solution:
The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\cosh ^{2}(t)-\sinh ^{2}(t)=1
\end{gathered}
$$

This is a portion of a hyperbola.

Examples of curves on the plane

Example

Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.

Solution:

The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\cosh ^{2}(t)-\sinh ^{2}(t)=1
\end{gathered}
$$

This is a portion of a hyperbola.

This is the equation of a hyperbola with asymptotes $y= \pm x$.

Examples of curves on the plane

Example

Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.

Solution:

The functions x and y above satisfy the equation

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\cosh ^{2}(t)-\sinh ^{2}(t)=1
\end{gathered}
$$

This is a portion of a hyperbola.

This is the equation of a hyperbola with asymptotes $y= \pm x$. The hyperbola portion starts at $(1,0)$.

Examples of curves on the plane

Example

Describe the curve $x(t)=-\sec (t), \quad y(t)=\tan (t)$, for $t \in[0, \pi / 2)$.

Examples of curves on the plane

Example

Describe the curve $x(t)=-\sec (t), \quad y(t)=\tan (t)$, for $t \in[0, \pi / 2)$.

Solution:
Recall: $\tan ^{2}(t)+1=\sec ^{2}(t)$.

Examples of curves on the plane

Example

Describe the curve $x(t)=-\sec (t), \quad y(t)=\tan (t)$, for $t \in[0, \pi / 2)$.

Solution:
Recall: $\tan ^{2}(t)+1=\sec ^{2}(t)$.
Therefore,

$$
[x(t)]^{2}-[y(t)]^{2}=
$$

Examples of curves on the plane

Example

Describe the curve $x(t)=-\sec (t), \quad y(t)=\tan (t)$, for $t \in[0, \pi / 2)$.

Solution:
Recall: $\tan ^{2}(t)+1=\sec ^{2}(t)$.
Therefore,

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\sec ^{2}(t)-\tan ^{2}(t)
\end{gathered}
$$

Examples of curves on the plane

Example

Describe the curve $x(t)=-\sec (t), \quad y(t)=\tan (t)$, for $t \in[0, \pi / 2)$.

Solution:
Recall: $\tan ^{2}(t)+1=\sec ^{2}(t)$.
Therefore,

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\sec ^{2}(t)-\tan ^{2}(t)=1
\end{gathered}
$$

Examples of curves on the plane

Example

Describe the curve $x(t)=-\sec (t), \quad y(t)=\tan (t)$, for $t \in[0, \pi / 2)$.

Solution:
Recall: $\tan ^{2}(t)+1=\sec ^{2}(t)$. Therefore,

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\sec ^{2}(t)-\tan ^{2}(t)=1
\end{gathered}
$$

This is a portion of a hyperbola.

Examples of curves on the plane

Example

Describe the curve $x(t)=-\sec (t), \quad y(t)=\tan (t)$, for $t \in[0, \pi / 2)$.

Solution:
Recall: $\tan ^{2}(t)+1=\sec ^{2}(t)$. Therefore,

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\sec ^{2}(t)-\tan ^{2}(t)=1
\end{gathered}
$$

This is a portion of a hyperbola.

This is the equation of a hyperbola with asymptotes $y= \pm x$.

Examples of curves on the plane

Example

Describe the curve $x(t)=-\sec (t), \quad y(t)=\tan (t)$, for $t \in[0, \pi / 2)$.

Solution:
Recall: $\tan ^{2}(t)+1=\sec ^{2}(t)$. Therefore,

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\sec ^{2}(t)-\tan ^{2}(t)=1
\end{gathered}
$$

This is a portion of a hyperbola.

This is the equation of a hyperbola with asymptotes $y= \pm x$. The hyperbola portion starts at $(-1,0)$.

Examples of curves on the plane

Example
Describe the curve $x(t)=t^{2}, \quad y(t)=t+1$, for $t \in(-\infty, \infty)$.

Examples of curves on the plane

Example
Describe the curve $x(t)=t^{2}, \quad y(t)=t+1$, for $t \in(-\infty, \infty)$.

Solution:
Since $t=y-1$,

Examples of curves on the plane

Example
Describe the curve $x(t)=t^{2}, \quad y(t)=t+1$, for $t \in(-\infty, \infty)$.

Solution:
Since $t=y-1$, then

$$
x=(y-1)^{2} .
$$

Examples of curves on the plane

Example
Describe the curve $x(t)=t^{2}, \quad y(t)=t+1$, for $t \in(-\infty, \infty)$.

Solution:
Since $t=y-1$, then

$$
x=(y-1)^{2} .
$$

This is a parabola.

Examples of curves on the plane

Example

Describe the curve $x(t)=t^{2}, \quad y(t)=t+1$, for $t \in(-\infty, \infty)$.

Solution:
Since $t=y-1$, then

$$
x=(y-1)^{2} .
$$

This is a parabola.

This is the equation of a parabola opening to the right.

Examples of curves on the plane

Example

Describe the curve $x(t)=t^{2}, \quad y(t)=t+1$, for $t \in(-\infty, \infty)$.

Solution:
Since $t=y-1$, then

$$
x=(y-1)^{2} .
$$

This is a parabola.

This is the equation of a parabola opening to the right. Passing through $(1,0)$ (for $t=-1)$,

Examples of curves on the plane

Example

Describe the curve $x(t)=t^{2}, \quad y(t)=t+1$, for $t \in(-\infty, \infty)$.

Solution:
Since $t=y-1$, then

$$
x=(y-1)^{2} .
$$

This is a parabola.

This is the equation of a parabola opening to the right. Passing through $(1,0)($ for $t=-1)$, then $(0,1)($ for $t=0)$,

Examples of curves on the plane

Example

Describe the curve $x(t)=t^{2}, \quad y(t)=t+1$, for $t \in(-\infty, \infty)$.

Solution:
Since $t=y-1$, then

$$
x=(y-1)^{2} .
$$

This is a parabola.

This is the equation of a parabola opening to the right. Passing through $(1,0)($ for $t=-1)$, then $(0,1)($ for $t=0)$, and then $(1,2)($ for $t=1)$.

Parametrizations of curves on a plane (Sect. 11.1)

- Review: Curves on the plane.
- Parametric equations of a curve.
- Examples of curves on the plane.
- The cycloid.

The cycloid

Definition

A cycloid with parameter $a>0$ is the curve given by

$$
x(t)=a(t-\sin (t)), \quad y(t)=a(1-\cos (t)), \quad t \in \mathbb{R}
$$

The cycloid

Definition

A cycloid with parameter $a>0$ is the curve given by

$$
x(t)=a(t-\sin (t)), \quad y(t)=a(1-\cos (t)), \quad t \in \mathbb{R}
$$

Remark: From the equation of the cycloid we see that

$$
x(t)-a t=a \sin (t)
$$

The cycloid

Definition

A cycloid with parameter $a>0$ is the curve given by

$$
x(t)=a(t-\sin (t)), \quad y(t)=a(1-\cos (t)), \quad t \in \mathbb{R}
$$

Remark: From the equation of the cycloid we see that

$$
x(t)-a t=a \sin (t), \quad y(t)-a=a \cos (t) .
$$

The cycloid

Definition

A cycloid with parameter $a>0$ is the curve given by

$$
x(t)=a(t-\sin (t)), \quad y(t)=a(1-\cos (t)), \quad t \in \mathbb{R}
$$

Remark: From the equation of the cycloid we see that

$$
x(t)-a t=a \sin (t), \quad y(t)-a=a \cos (t)
$$

Therefore, $\quad[x(t)-a t]^{2}+[y(t)-a]^{2}=a^{2}$.

The cycloid

Definition

A cycloid with parameter $a>0$ is the curve given by

$$
x(t)=a(t-\sin (t)), \quad y(t)=a(1-\cos (t)), \quad t \in \mathbb{R}
$$

Remark: From the equation of the cycloid we see that

$$
x(t)-a t=a \sin (t), \quad y(t)-a=a \cos (t)
$$

Therefore, $\quad[x(t)-a t]^{2}+[y(t)-a]^{2}=a^{2}$.
Remarks:

- This is not the equation of a circle.

The cycloid

Definition

A cycloid with parameter $a>0$ is the curve given by

$$
x(t)=a(t-\sin (t)), \quad y(t)=a(1-\cos (t)), \quad t \in \mathbb{R}
$$

Remark: From the equation of the cycloid we see that

$$
x(t)-a t=a \sin (t), \quad y(t)-a=a \cos (t)
$$

Therefore, $\quad[x(t)-a t]^{2}+[y(t)-a]^{2}=a^{2}$.
Remarks:

- This is not the equation of a circle.
- The point $(x(t), y(t))$ belongs to a moving circle.

The cycloid

Definition

A cycloid with parameter $a>0$ is the curve given by

$$
x(t)=a(t-\sin (t)), \quad y(t)=a(1-\cos (t)), \quad t \in \mathbb{R}
$$

Remark: From the equation of the cycloid we see that

$$
x(t)-a t=a \sin (t), \quad y(t)-a=a \cos (t)
$$

Therefore, $\quad[x(t)-a t]^{2}+[y(t)-a]^{2}=a^{2}$.
Remarks:

- This is not the equation of a circle.
- The point $(x(t), y(t))$ belongs to a moving circle.
- The cycloid played an important role in designing precise pendulum clocks, needed for navigation in the 17th century.

Arc-length of a curve on the plane (Sect. 11.2)

- Review: Parametric curves on the plane.
- The slope of tangent lines to curves.
- The arc-length of a curve.
- The arc-length function and differential.

Review: Parametric curves on the plane

Definition
A curve on the plane is given in parametric form iff it is given by the set of points $(x(t), y(t))$, where the parameter $t \in I \subset \mathbb{R}$.

Review: Parametric curves on the plane

Definition
A curve on the plane is given in parametric form iff it is given by the set of points $(x(t), y(t))$, where the parameter $t \in I \subset \mathbb{R}$.

Example
Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.

Review: Parametric curves on the plane

Definition
A curve on the plane is given in parametric form iff it is given by the set of points $(x(t), y(t))$, where the parameter $t \in I \subset \mathbb{R}$.

Example
Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.
Solution:

$$
[x(t)]^{2}-[y(t)]^{2}=
$$

Review: Parametric curves on the plane

Definition
A curve on the plane is given in parametric form iff it is given by the set of points $(x(t), y(t))$, where the parameter $t \in I \subset \mathbb{R}$.

Example
Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.
Solution:

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\cosh ^{2}(t)-\sinh ^{2}(t)
\end{gathered}
$$

Review: Parametric curves on the plane

Definition
A curve on the plane is given in parametric form iff it is given by the set of points $(x(t), y(t))$, where the parameter $t \in I \subset \mathbb{R}$.

Example
Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.
Solution:

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\cosh ^{2}(t)-\sinh ^{2}(t)=1
\end{gathered}
$$

Review: Parametric curves on the plane

Definition
A curve on the plane is given in parametric form iff it is given by the set of points $(x(t), y(t))$, where the parameter $t \in I \subset \mathbb{R}$.

Example
Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.
Solution:

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\cosh ^{2}(t)-\sinh ^{2}(t)=1
\end{gathered}
$$

This is a portion of a hyperbola

Review: Parametric curves on the plane

Definition
A curve on the plane is given in parametric form iff it is given by the set of points $(x(t), y(t))$, where the parameter $t \in I \subset \mathbb{R}$.

Example
Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.
Solution:

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\cosh ^{2}(t)-\sinh ^{2}(t)=1
\end{gathered}
$$

This is a portion of a hyperbola with asymptotes $y= \pm x$,

Review: Parametric curves on the plane

Definition

A curve on the plane is given in parametric form iff it is given by the set of points $(x(t), y(t))$, where the parameter $t \in I \subset \mathbb{R}$.

Example
Describe the curve $x(t)=\cosh (t), y(t)=\sinh (t)$, for $t \in[0, \infty)$.
Solution:

$$
\begin{gathered}
{[x(t)]^{2}-[y(t)]^{2}=} \\
\cosh ^{2}(t)-\sinh ^{2}(t)=1
\end{gathered}
$$

This is a portion of a hyperbola with asymptotes $y= \pm x$, starting at $(1,0)$.

Review: Parametric curves on the plane

Definition
A cycloid with parameter $a>0$ is the curve given by

$$
x(t)=a(t-\sin (t)), \quad y(t)=a(1-\cos (t)), \quad t \in \mathbb{R}
$$

Review: Parametric curves on the plane

Definition

A cycloid with parameter $a>0$ is the curve given by

$$
x(t)=a(t-\sin (t)), \quad y(t)=a(1-\cos (t)), \quad t \in \mathbb{R}
$$

Remark: From the equation of the cycloid we see that

$$
x(t)-a t=a \sin (t)
$$

Review: Parametric curves on the plane

Definition

A cycloid with parameter $a>0$ is the curve given by

$$
x(t)=a(t-\sin (t)), \quad y(t)=a(1-\cos (t)), \quad t \in \mathbb{R}
$$

Remark: From the equation of the cycloid we see that

$$
x(t)-a t=a \sin (t), \quad y(t)-a=a \cos (t) .
$$

Review: Parametric curves on the plane

Definition

A cycloid with parameter $a>0$ is the curve given by

$$
x(t)=a(t-\sin (t)), \quad y(t)=a(1-\cos (t)), \quad t \in \mathbb{R}
$$

Remark: From the equation of the cycloid we see that

$$
x(t)-a t=a \sin (t), \quad y(t)-a=a \cos (t)
$$

Therefore, $\quad[x(t)-a t]^{2}+[y(t)-a]^{2}=a^{2}$.

Review: Parametric curves on the plane

Definition

A cycloid with parameter $a>0$ is the curve given by

$$
x(t)=a(t-\sin (t)), \quad y(t)=a(1-\cos (t)), \quad t \in \mathbb{R}
$$

Remark: From the equation of the cycloid we see that

$$
x(t)-a t=a \sin (t), \quad y(t)-a=a \cos (t)
$$

Therefore, $\quad[x(t)-a t]^{2}+[y(t)-a]^{2}=a^{2}$.
Remarks:

- This is not the equation of a circle.

Review: Parametric curves on the plane

Definition

A cycloid with parameter $a>0$ is the curve given by

$$
x(t)=a(t-\sin (t)), \quad y(t)=a(1-\cos (t)), \quad t \in \mathbb{R}
$$

Remark: From the equation of the cycloid we see that

$$
x(t)-a t=a \sin (t), \quad y(t)-a=a \cos (t)
$$

Therefore, $\quad[x(t)-a t]^{2}+[y(t)-a]^{2}=a^{2}$.
Remarks:

- This is not the equation of a circle.
- The point $(x(t), y(t))$ belongs to a moving circle.

Review: Parametric curves on the plane

Definition

A cycloid with parameter $a>0$ is the curve given by

$$
x(t)=a(t-\sin (t)), \quad y(t)=a(1-\cos (t)), \quad t \in \mathbb{R}
$$

Remark: From the equation of the cycloid we see that

$$
x(t)-a t=a \sin (t), \quad y(t)-a=a \cos (t)
$$

Therefore, $\quad[x(t)-a t]^{2}+[y(t)-a]^{2}=a^{2}$.
Remarks:

- This is not the equation of a circle.
- The point $(x(t), y(t))$ belongs to a moving circle.
- The cycloid played an important role in designing precise pendulum clocks, needed for navigation in the 17 th century.

Arc-length of a curve on the plane (Sect. 11.2)

- Review: Parametric curves on the plane.
- The slope of tangent lines to curves.
- The arc-length of a curve.
- The arc-length function and differential.

The slope of tangent lines to curves

Definition
A curve defined by the parametric function values $(x(t), y(t))$, for $t \in I \subset \mathbb{R}$, is differentiable iff each function x and y is differentiable on the interval I.

The slope of tangent lines to curves

Definition

A curve defined by the parametric function values $(x(t), y(t))$, for $t \in I \subset \mathbb{R}$, is differentiable iff each function x and y is differentiable on the interval I.

Theorem
Assume that the curve defined by the graph of the function $y=f(x)$, for $x \in(a, b)$, can be described by the parametric function values $(x(t), y(t))$, for $t \in I \subset \mathbb{R}$.

The slope of tangent lines to curves

Definition

A curve defined by the parametric function values $(x(t), y(t))$, for $t \in I \subset \mathbb{R}$, is differentiable iff each function x and y is differentiable on the interval I.

Theorem

Assume that the curve defined by the graph of the function $y=f(x)$, for $x \in(a, b)$, can be described by the parametric function values $(x(t), y(t))$, for $t \in I \subset \mathbb{R}$. If this parametric curve is differentiable and $x^{\prime}(t) \neq 0$ for $t \in I$, then holds

$$
\frac{d f}{d x}=\frac{(d y / d t)}{(d x / d t)}
$$

The slope of tangent lines to curves

Definition

A curve defined by the parametric function values $(x(t), y(t))$, for $t \in I \subset \mathbb{R}$, is differentiable iff each function x and y is differentiable on the interval I.

Theorem

Assume that the curve defined by the graph of the function $y=f(x)$, for $x \in(a, b)$, can be described by the parametric function values $(x(t), y(t))$, for $t \in I \subset \mathbb{R}$. If this parametric curve is differentiable and $x^{\prime}(t) \neq 0$ for $t \in I$, then holds

$$
\frac{d f}{d x}=\frac{(d y / d t)}{(d x / d t)}
$$

Proof: Express $y(t)=f(x(t))$,

The slope of tangent lines to curves

Definition

A curve defined by the parametric function values $(x(t), y(t))$, for $t \in I \subset \mathbb{R}$, is differentiable iff each function x and y is differentiable on the interval I.

Theorem
Assume that the curve defined by the graph of the function $y=f(x)$, for $x \in(a, b)$, can be described by the parametric function values $(x(t), y(t))$, for $t \in I \subset \mathbb{R}$. If this parametric curve is differentiable and $x^{\prime}(t) \neq 0$ for $t \in I$, then holds

$$
\frac{d f}{d x}=\frac{(d y / d t)}{(d x / d t)}
$$

Proof: Express $y(t)=f(x(t))$, then

$$
\frac{d y}{d t}=\frac{d f}{d x} \frac{d x}{d t}
$$

The slope of tangent lines to curves

Definition

A curve defined by the parametric function values $(x(t), y(t))$, for $t \in I \subset \mathbb{R}$, is differentiable iff each function x and y is differentiable on the interval I.

Theorem
Assume that the curve defined by the graph of the function $y=f(x)$, for $x \in(a, b)$, can be described by the parametric function values $(x(t), y(t))$, for $t \in I \subset \mathbb{R}$. If this parametric curve is differentiable and $x^{\prime}(t) \neq 0$ for $t \in I$, then holds

$$
\frac{d f}{d x}=\frac{(d y / d t)}{(d x / d t)}
$$

Proof: Express $y(t)=f(x(t))$, then

$$
\frac{d y}{d t}=\frac{d f}{d x} \frac{d x}{d t} \Rightarrow \frac{d f}{d x}=\frac{(d y / d t)}{(d x / d t)}
$$

The slope of tangent lines to curves

Remark: The formula $\frac{d f}{d x}=\frac{(d y / d t)}{(d x / d t)}$ provides an alternative way to find the slope of the line tangent to the graph of the function f.

The slope of tangent lines to curves

Example

Find the slope of the tangent lines to a circle radius r at $(0,0)$.

The slope of tangent lines to curves

Example

Find the slope of the tangent lines to a circle radius r at $(0,0)$.
Solution: The equation of the circle is $x^{2}+y^{2}=r^{2}$.

The slope of tangent lines to curves

Example

Find the slope of the tangent lines to a circle radius r at $(0,0)$.
Solution: The equation of the circle is $x^{2}+y^{2}=r^{2}$.
One possible set of parametric equations are:

$$
x(t)=r \cos (n t), \quad y(t)=r \sin (n t), \quad n \geqslant 1
$$

The slope of tangent lines to curves

Example

Find the slope of the tangent lines to a circle radius r at $(0,0)$.
Solution: The equation of the circle is $x^{2}+y^{2}=r^{2}$.
One possible set of parametric equations are:

$$
x(t)=r \cos (n t), \quad y(t)=r \sin (n t), \quad n \geqslant 1
$$

The derivatives of the parametric functions are

$$
x^{\prime}(t)=-n r \sin (n t), \quad y^{\prime}(t)=n r \cos (n t)
$$

The slope of tangent lines to curves

Example

Find the slope of the tangent lines to a circle radius r at $(0,0)$.
Solution: The equation of the circle is $x^{2}+y^{2}=r^{2}$.
One possible set of parametric equations are:

$$
x(t)=r \cos (n t), \quad y(t)=r \sin (n t), \quad n \geqslant 1 .
$$

The derivatives of the parametric functions are

$$
x^{\prime}(t)=-n r \sin (n t), \quad y^{\prime}(t)=n r \cos (n t) .
$$

The slope of the tangent lines to the circle at $x_{0}=\cos \left(n t_{0}\right)$ is

$$
y^{\prime}\left(x_{0}\right)=\frac{y^{\prime}\left(t_{0}\right)}{x^{\prime}\left(t_{0}\right)}
$$

The slope of tangent lines to curves

Example

Find the slope of the tangent lines to a circle radius r at $(0,0)$.
Solution: The equation of the circle is $x^{2}+y^{2}=r^{2}$.
One possible set of parametric equations are:

$$
x(t)=r \cos (n t), \quad y(t)=r \sin (n t), \quad n \geqslant 1 .
$$

The derivatives of the parametric functions are

$$
x^{\prime}(t)=-n r \sin (n t), \quad y^{\prime}(t)=n r \cos (n t) .
$$

The slope of the tangent lines to the circle at $x_{0}=\cos \left(n t_{0}\right)$ is

$$
y^{\prime}\left(x_{0}\right)=\frac{y^{\prime}\left(t_{0}\right)}{x^{\prime}\left(t_{0}\right)}=\frac{-n r \cos \left(n t_{0}\right)}{n r \sin \left(n t_{0}\right)}
$$

The slope of tangent lines to curves

Example

Find the slope of the tangent lines to a circle radius r at $(0,0)$.
Solution: The equation of the circle is $x^{2}+y^{2}=r^{2}$.
One possible set of parametric equations are:

$$
x(t)=r \cos (n t), \quad y(t)=r \sin (n t), \quad n \geqslant 1 .
$$

The derivatives of the parametric functions are

$$
x^{\prime}(t)=-n r \sin (n t), \quad y^{\prime}(t)=n r \cos (n t) .
$$

The slope of the tangent lines to the circle at $x_{0}=\cos \left(n t_{0}\right)$ is

$$
y^{\prime}\left(x_{0}\right)=\frac{y^{\prime}\left(t_{0}\right)}{x^{\prime}\left(t_{0}\right)}=\frac{-n r \cos \left(n t_{0}\right)}{n r \sin \left(n t_{0}\right)} \quad \Rightarrow \quad y^{\prime}\left(x_{0}\right)=-\frac{1}{\tan \left(n t_{0}\right)} .
$$

The slope of tangent lines to curves

Example

Find the slope of the tangent lines to a circle radius r at $(0,0)$.
Solution: The equation of the circle is $x^{2}+y^{2}=r^{2}$.
One possible set of parametric equations are:

$$
x(t)=r \cos (n t), \quad y(t)=r \sin (n t), \quad n \geqslant 1 .
$$

The derivatives of the parametric functions are

$$
x^{\prime}(t)=-n r \sin (n t), \quad y^{\prime}(t)=n r \cos (n t) .
$$

The slope of the tangent lines to the circle at $x_{0}=\cos \left(n t_{0}\right)$ is

$$
y^{\prime}\left(x_{0}\right)=\frac{y^{\prime}\left(t_{0}\right)}{x^{\prime}\left(t_{0}\right)}=\frac{-n r \cos \left(n t_{0}\right)}{n r \sin \left(n t_{0}\right)} \quad \Rightarrow \quad y^{\prime}\left(x_{0}\right)=-\frac{1}{\tan \left(n t_{0}\right)} .
$$

Remark: In the first quadrant holds $y^{\prime}\left(x_{0}\right)=\frac{-x_{0}}{\sqrt{1-\left(x_{0}\right)^{2}}}$.

Arc-length of a curve on the plane (Sect. 11.2)

- Review: Parametric curves on the plane.
- The slope of tangent lines to curves.
- The arc-length of a curve.
- The arc-length function and differential.

The arc-length of a curve

Definition

The length or arc length of a curve in the plane or in space is the limit of the polygonal line length, as the polygonal line approximates the original curve.

The arc-length of a curve

Definition

The length or arc length of a curve in the plane or in space is the limit of the polygonal line length, as the polygonal line approximates the original curve.

Theorem
The arc-length of a continuously differentiable curve $(x(t), y(y))$, for $t \in[a, b]$ is the number

$$
L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

The arc-length of a curve

Idea of the Proof: The curve length is the limit of the polygonal line length, as the polygonal line approximates the original curve.

The arc-length of a curve

Idea of the Proof: The curve length is the limit of the polygonal line length, as the polygonal line approximates the original curve.

$$
L_{N}=\sum_{n=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}
$$

$$
\left\{a=t_{0}, t_{1}, \cdots, t_{N-1}, t_{N}=b\right\}
$$

The arc-length of a curve

Idea of the Proof: The curve length is the limit of the polygonal line length, as the polygonal line approximates the original curve.

$$
\begin{gathered}
L_{N}=\sum_{n=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}} \quad\left\{a=t_{0}, t_{1}, \cdots, t_{N-1}, t_{N}=b\right\} \\
L_{N} \simeq \sum_{n=0}^{N-1} \sqrt{\left[x^{\prime}\left(t_{k}^{*}\right)\right]^{2}+\left[y^{\prime}\left(t_{k}^{*}\right)\right]^{2}} \Delta t_{k}
\end{gathered}
$$

The arc-length of a curve

Idea of the Proof: The curve length is the limit of the polygonal line length, as the polygonal line approximates the original curve.

$$
\begin{gathered}
L_{N}=\sum_{n=0}^{N-1} \sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}} \quad\left\{a=t_{0}, t_{1}, \cdots, t_{N-1}, t_{N}=b\right\} \\
L_{N} \simeq \sum_{n=0}^{N-1} \sqrt{\left[x^{\prime}\left(t_{k}^{*}\right)\right]^{2}+\left[y^{\prime}\left(t_{k}^{*}\right)\right]^{2}} \Delta t_{k} \\
L_{N} \xrightarrow{N \rightarrow \infty} L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
\end{gathered}
$$

The arc-length of a curve

Example

Find the length of the curve $(r \cos (t), r \sin (t))$, for $r>0$ and $t \in[\pi / 4,3 \pi / 4]$. (Quarter of a circle.)

The arc-length of a curve

Example

Find the length of the curve $(r \cos (t), r \sin (t))$, for $r>0$ and $t \in[\pi / 4,3 \pi / 4]$. (Quarter of a circle.)

Solution: Compute the derivatives

The arc-length of a curve

Example

Find the length of the curve $(r \cos (t), r \sin (t))$, for $r>0$ and $t \in[\pi / 4,3 \pi / 4]$. (Quarter of a circle.)

Solution: Compute the derivatives $(-r \sin (t), r \cos (t))$.

The arc-length of a curve

Example

Find the length of the curve $(r \cos (t), r \sin (t))$, for $r>0$ and $t \in[\pi / 4,3 \pi / 4]$. (Quarter of a circle.)

Solution: Compute the derivatives $(-r \sin (t), r \cos (t))$. The length of the curve is given by the formula

$$
L=\int_{\pi / 4}^{3 \pi / 4} \sqrt{[-r \sin (t)]^{2}+[r \cos (t)]^{2}} d t
$$

The arc-length of a curve

Example

Find the length of the curve $(r \cos (t), r \sin (t))$, for $r>0$ and $t \in[\pi / 4,3 \pi / 4]$. (Quarter of a circle.)

Solution: Compute the derivatives $(-r \sin (t), r \cos (t))$. The length of the curve is given by the formula

$$
\begin{gathered}
L=\int_{\pi / 4}^{3 \pi / 4} \sqrt{[-r \sin (t)]^{2}+[r \cos (t)]^{2}} d t \\
L=\int_{\pi / 4}^{3 \pi / 4} \sqrt{r^{2}\left([-\sin (t)]^{2}+[\cos (t)]^{2}\right)} d t
\end{gathered}
$$

The arc-length of a curve

Example

Find the length of the curve $(r \cos (t), r \sin (t))$, for $r>0$ and $t \in[\pi / 4,3 \pi / 4]$. (Quarter of a circle.)

Solution: Compute the derivatives $(-r \sin (t), r \cos (t))$. The length of the curve is given by the formula

$$
\begin{gathered}
L=\int_{\pi / 4}^{3 \pi / 4} \sqrt{[-r \sin (t)]^{2}+[r \cos (t)]^{2}} d t \\
L=\int_{\pi / 4}^{3 \pi / 4} \sqrt{r^{2}\left([-\sin (t)]^{2}+[\cos (t)]^{2}\right)} d t=\int_{\pi / 4}^{3 \pi / 4} r d t
\end{gathered}
$$

The arc-length of a curve

Example

Find the length of the curve $(r \cos (t), r \sin (t))$, for $r>0$ and $t \in[\pi / 4,3 \pi / 4]$. (Quarter of a circle.)

Solution: Compute the derivatives $(-r \sin (t), r \cos (t))$. The length of the curve is given by the formula

$$
\begin{gathered}
L=\int_{\pi / 4}^{3 \pi / 4} \sqrt{[-r \sin (t)]^{2}+[r \cos (t)]^{2}} d t \\
L=\int_{\pi / 4}^{3 \pi / 4} \sqrt{r^{2}\left([-\sin (t)]^{2}+[\cos (t)]^{2}\right)} d t=\int_{\pi / 4}^{3 \pi / 4} r d t
\end{gathered}
$$

Hence, $L=\frac{\pi}{2} r$.

The arc-length of a curve

Example

Find the length of the curve $(r \cos (t), r \sin (t))$, for $r>0$ and $t \in[\pi / 4,3 \pi / 4]$. (Quarter of a circle.)

Solution: Compute the derivatives $(-r \sin (t), r \cos (t))$. The length of the curve is given by the formula

$$
\begin{gathered}
L=\int_{\pi / 4}^{3 \pi / 4} \sqrt{[-r \sin (t)]^{2}+[r \cos (t)]^{2}} d t \\
L=\int_{\pi / 4}^{3 \pi / 4} \sqrt{r^{2}\left([-\sin (t)]^{2}+[\cos (t)]^{2}\right)} d t=\int_{\pi / 4}^{3 \pi / 4} r d t
\end{gathered}
$$

Hence, $L=\frac{\pi}{2} r$. (The length of quarter circle of radius r.)

The arc-length of a curve

Example

Find the length of the spiral $(t \cos (t), t \sin (t))$, for $t \in\left[0, t_{0}\right]$.

The arc-length of a curve

Example

Find the length of the spiral $(t \cos (t), t \sin (t))$, for $t \in\left[0, t_{0}\right]$.
Solution: The derivative of the parametric curve is

$$
\left(x^{\prime}(t), y^{\prime}(t)\right)
$$

The arc-length of a curve

Example

Find the length of the spiral $(t \cos (t), t \sin (t))$, for $t \in\left[0, t_{0}\right]$.
Solution: The derivative of the parametric curve is

$$
\left(x^{\prime}(t), y^{\prime}(t)\right)=([-t \sin (t)+\cos (t)],
$$

The arc-length of a curve

Example

Find the length of the spiral $(t \cos (t), t \sin (t))$, for $t \in\left[0, t_{0}\right]$.
Solution: The derivative of the parametric curve is

$$
\left(x^{\prime}(t), y^{\prime}(t)\right)=([-t \sin (t)+\cos (t)],[t \cos (t)+\sin (t)])
$$

The arc-length of a curve

Example

Find the length of the spiral $(t \cos (t), t \sin (t))$, for $t \in\left[0, t_{0}\right]$.
Solution: The derivative of the parametric curve is

$$
\begin{aligned}
\left(x^{\prime}(t), y^{\prime}(t)\right) & =([-t \sin (t)+\cos (t)],[t \cos (t)+\sin (t)]) \\
\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2} & =\left[t^{2} \sin ^{2}(t)+\cos ^{2}(t)-2 t \sin (t) \cos (t)\right] \\
& +\left[t^{2} \cos ^{2}(t)+\sin ^{2}(t)+2 t \sin (t) \cos (t)\right]
\end{aligned}
$$

The arc-length of a curve

Example

Find the length of the spiral $(t \cos (t), t \sin (t))$, for $t \in\left[0, t_{0}\right]$.
Solution: The derivative of the parametric curve is

$$
\begin{aligned}
\left(x^{\prime}(t), y^{\prime}(t)\right) & =([-t \sin (t)+\cos (t)],[t \cos (t)+\sin (t)]) \\
\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2} & =\left[t^{2} \sin ^{2}(t)+\cos ^{2}(t)-2 t \sin (t) \cos (t)\right] \\
& +\left[t^{2} \cos ^{2}(t)+\sin ^{2}(t)+2 t \sin (t) \cos (t)\right]
\end{aligned}
$$

We obtain $\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=t^{2}+1$.

The arc-length of a curve

Example

Find the length of the spiral $(t \cos (t), t \sin (t))$, for $t \in\left[0, t_{0}\right]$.
Solution: The derivative of the parametric curve is

$$
\begin{aligned}
\left(x^{\prime}(t), y^{\prime}(t)\right) & =([-t \sin (t)+\cos (t)],[t \cos (t)+\sin (t)]), \\
\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2} & =\left[t^{2} \sin ^{2}(t)+\cos ^{2}(t)-2 t \sin (t) \cos (t)\right] \\
& +\left[t^{2} \cos ^{2}(t)+\sin ^{2}(t)+2 t \sin (t) \cos (t)\right]
\end{aligned}
$$

We obtain $\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=t^{2}+1$. The curve length is given by

$$
L\left(t_{0}\right)=\int_{0}^{t_{0}} \sqrt{1+t^{2}} d t
$$

The arc-length of a curve

Example

Find the length of the spiral $(t \cos (t), t \sin (t))$, for $t \in\left[0, t_{0}\right]$.
Solution: The derivative of the parametric curve is

$$
\begin{aligned}
\left(x^{\prime}(t), y^{\prime}(t)\right) & =([-t \sin (t)+\cos (t)],[t \cos (t)+\sin (t)]), \\
\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2} & =\left[t^{2} \sin ^{2}(t)+\cos ^{2}(t)-2 t \sin (t) \cos (t)\right] \\
& +\left[t^{2} \cos ^{2}(t)+\sin ^{2}(t)+2 t \sin (t) \cos (t)\right]
\end{aligned}
$$

We obtain $\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=t^{2}+1$. The curve length is given by

$$
L\left(t_{0}\right)=\int_{0}^{t_{0}} \sqrt{1+t^{2}} d t=\left.\left[\frac{t}{2} \sqrt{1+t^{2}}+\frac{1}{2} \ln \left(t+\sqrt{1+t^{2}}\right)\right]\right|_{0} ^{t_{0}} .
$$

The arc-length of a curve

Example

Find the length of the spiral $(t \cos (t), t \sin (t))$, for $t \in\left[0, t_{0}\right]$.
Solution: The derivative of the parametric curve is

$$
\begin{aligned}
\left(x^{\prime}(t), y^{\prime}(t)\right) & =([-t \sin (t)+\cos (t)],[t \cos (t)+\sin (t)]), \\
\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2} & =\left[t^{2} \sin ^{2}(t)+\cos ^{2}(t)-2 t \sin (t) \cos (t)\right] \\
& +\left[t^{2} \cos ^{2}(t)+\sin ^{2}(t)+2 t \sin (t) \cos (t)\right]
\end{aligned}
$$

We obtain $\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=t^{2}+1$. The curve length is given by

$$
L\left(t_{0}\right)=\int_{0}^{t_{0}} \sqrt{1+t^{2}} d t=\left.\left[\frac{t}{2} \sqrt{1+t^{2}}+\frac{1}{2} \ln \left(t+\sqrt{1+t^{2}}\right)\right]\right|_{0} ^{t_{0}} .
$$

We conclude that $L\left(t_{0}\right)=\frac{t_{0}}{2} \sqrt{1+t_{0}^{2}}+\frac{1}{2} \ln \left(t_{0}+\sqrt{1+t_{0}^{2}}\right)$.

Arc-length of a curve on the plane (Sect. 11.2)

- Review: Parametric curves on the plane.
- The slope of tangent lines to curves.
- The arc-length of a curve.
- The arc-length function and differential.

The arc-length function and differential

Remark: The previous example suggests to introduce the length function of a curve.

The arc-length function and differential

Remark: The previous example suggests to introduce the length function of a curve.

Definition
The arc-length function of a continuously differentiable curve given by $(x(t), y(t))$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
L(t)=\int_{t_{0}}^{t} \sqrt{\left[x^{\prime}(\tau)\right]^{2}+\left[y^{\prime}(\tau)\right]^{2}} d \tau
$$

The arc-length function and differential

Remark: The previous example suggests to introduce the length function of a curve.

Definition

The arc-length function of a continuously differentiable curve given by $(x(t), y(t))$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
L(t)=\int_{t_{0}}^{t} \sqrt{\left[x^{\prime}(\tau)\right]^{2}+\left[y^{\prime}(\tau)\right]^{2}} d \tau
$$

Remarks:
(a) The value $L(t)$ of the length function is the length along the curve $(x(t), y(t))$ from t_{0} to t.

The arc-length function and differential

Remark: The previous example suggests to introduce the length function of a curve.

Definition

The arc-length function of a continuously differentiable curve given by $(x(t), y(t))$ for $t \in\left[t_{0}, t_{1}\right]$ is given by

$$
L(t)=\int_{t_{0}}^{t} \sqrt{\left[x^{\prime}(\tau)\right]^{2}+\left[y^{\prime}(\tau)\right]^{2}} d \tau
$$

Remarks:
(a) The value $L(t)$ of the length function is the length along the curve $(x(t), y(t))$ from t_{0} to t.
(b) If the curve is the position of a moving particle as function of time, then the value $L(t)$ is the distance traveled by the particle from the time t_{0} to t.

The arc-length function and differential

Remark: The arc-length differential is the differential of the arc-length function,

The arc-length function and differential

Remark: The arc-length differential is the differential of the arc-length function, that is,

$$
d L=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

The arc-length function and differential

Remark: The arc-length differential is the differential of the arc-length function, that is,

$$
d L=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

This is a useful notation.

The arc-length function and differential

Remark: The arc-length differential is the differential of the arc-length function, that is,

$$
d L=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

This is a useful notation.

Example

Find the length of $x(t)=(2 t+1)^{3 / 2} / 3, y(t)=t+t^{2}$ for $t \in[0,1]$.

The arc-length function and differential

Remark: The arc-length differential is the differential of the arc-length function, that is,

$$
d L=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

This is a useful notation.

Example

Find the length of $x(t)=(2 t+1)^{3 / 2} / 3, y(t)=t+t^{2}$ for $t \in[0,1]$.
Solution: We first compute the length differential,

$$
d L=\left[\frac{1}{3} \frac{3}{2}(2 t+1)^{1 / 2} 2\right]^{2}+[1+2 t]^{2}
$$

The arc-length function and differential

Remark: The arc-length differential is the differential of the arc-length function, that is,

$$
d L=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

This is a useful notation.

Example

Find the length of $x(t)=(2 t+1)^{3 / 2} / 3, y(t)=t+t^{2}$ for $t \in[0,1]$.
Solution: We first compute the length differential,

$$
d L=\left[\frac{1}{3} \frac{3}{2}(2 t+1)^{1 / 2} 2\right]^{2}+[1+2 t]^{2}=(2 t+1)+1+4 t+4 t^{2}
$$

The arc-length function and differential

Remark: The arc-length differential is the differential of the arc-length function, that is,

$$
d L=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

This is a useful notation.

Example

Find the length of $x(t)=(2 t+1)^{3 / 2} / 3, y(t)=t+t^{2}$ for $t \in[0,1]$.
Solution: We first compute the length differential,

$$
\begin{aligned}
d L= & {\left[\frac{1}{3} \frac{3}{2}(2 t+1)^{1 / 2} 2\right]^{2}+[1+2 t]^{2}=(2 t+1)+1+4 t+4 t^{2} } \\
& L=\int_{0}^{1}\left(4 t^{2}+6 t+2\right) d t
\end{aligned}
$$

The arc-length function and differential

Remark: The arc-length differential is the differential of the arc-length function, that is,

$$
d L=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

This is a useful notation.

Example

Find the length of $x(t)=(2 t+1)^{3 / 2} / 3, y(t)=t+t^{2}$ for $t \in[0,1]$.
Solution: We first compute the length differential,

$$
\begin{gathered}
d L=\left[\frac{1}{3} \frac{3}{2}(2 t+1)^{1 / 2} 2\right]^{2}+[1+2 t]^{2}=(2 t+1)+1+4 t+4 t^{2} \\
L=\int_{0}^{1}\left(4 t^{2}+6 t+2\right) d t=\left.\left(\frac{4 t^{3}}{3}+3 t^{2}+2 t\right)\right|_{0} ^{1}=\frac{19}{3}
\end{gathered}
$$

