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Review: The Taylor Theorem

Recall: If f : D — R is infinitely differentiable, and a, x € D, then
f(x) = Ta(x) + Rn(x),

where the Taylor polynomial T, and the Remainder function Ry, are

, f(")(a) ;
To(x)=f(a)+f'(a)(x—a)+---+ _ (x —a)",
f(n+1)(C(X)) .
_ o +1 .
Rn(x) = CE] (x—a)"™, with ce€(a,x).
Furthermore, if R,(x) — 0 as n — oo for every x € | C D, then
) > f£(n)(4 .
the Taylor series centered at x = a, T(x) = Z n!( ) (x —a)",
n=0

converges to the function f on the interval /, and f(x) = T(x).
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The binomial function

Definition
The binomial function is a function of the form

fm(x) = (14+x)", m e R.

Example
Find the Taylor polynomial T3 centered at a = 0 of fp,.

Solution: The derivatives of the function f(x) = (1 + x)™ are
FI(x) = m(1+ %)™ F7(x) = m(m = 1)(1+ )2,
FO(x) = m(m —1)(m —2) (1 + x)(m=3),

1 —1)(m -2
T3(x)=1+mx+ m(n;l )x2 + m(m 3)|(m )x3. <




The binomial function

Remark: If m is a positive integer, then the binomial function f,, is
a polynomial,



The binomial function

Remark: If m is a positive integer, then the binomial function f,, is
a polynomial, therefore the Taylor series is the same polynomial,



The binomial function

Remark: If m is a positive integer, then the binomial function f,, is
a polynomial, therefore the Taylor series is the same polynomial,
hence the Taylor series has only the first m + 1 terms non-zero.



The binomial function

Remark: If m is a positive integer, then the binomial function f,, is
a polynomial, therefore the Taylor series is the same polynomial,
hence the Taylor series has only the first m + 1 terms non-zero.

Example
Find the Taylor series of f(x) = (1 + x)2.



The binomial function

Remark: If m is a positive integer, then the binomial function f,, is
a polynomial, therefore the Taylor series is the same polynomial,
hence the Taylor series has only the first m + 1 terms non-zero.

Example
Find the Taylor series of f(x) = (1 + x)2.

Solution: Expanding the the binomial f(x) = (1 + x)?,



The binomial function

Remark: If m is a positive integer, then the binomial function f,, is
a polynomial, therefore the Taylor series is the same polynomial,
hence the Taylor series has only the first m + 1 terms non-zero.

Example
Find the Taylor series of f(x) = (1 + x)2.

Solution: Expanding the the binomial f(x) = (1 + x)?,

f(x) =1+ 2x + x?



The binomial function

Remark: If m is a positive integer, then the binomial function f,, is
a polynomial, therefore the Taylor series is the same polynomial,
hence the Taylor series has only the first m + 1 terms non-zero.

Example
Find the Taylor series of f(x) = (1 + x)2.

Solution: Expanding the the binomial f(x) = (1 + x)?,

h(x)=1+2x+x> = f(x)=2+2x,



The binomial function

Remark: If m is a positive integer, then the binomial function f,, is
a polynomial, therefore the Taylor series is the same polynomial,
hence the Taylor series has only the first m + 1 terms non-zero.

Example
Find the Taylor series of f(x) = (1 + x)2.

Solution: Expanding the the binomial f(x) = (1 + x)?,

h(x)=1+2x+x> = f(x)=2+2x, f'(x)=2.



The binomial function

Remark: If m is a positive integer, then the binomial function f,, is
a polynomial, therefore the Taylor series is the same polynomial,
hence the Taylor series has only the first m + 1 terms non-zero.

Example
Find the Taylor series of f(x) = (1 + x)2.

Solution: Expanding the the binomial f(x) = (1 + x)?,
h(x)=1+2x+x> = f(x)=2+2x, f'(x)=2.

Since all derivatives higher or equal the third vanish,



The binomial function

Remark: If m is a positive integer, then the binomial function f,, is
a polynomial, therefore the Taylor series is the same polynomial,
hence the Taylor series has only the first m + 1 terms non-zero.

Example
Find the Taylor series of f(x) = (1 + x)2.

Solution: Expanding the the binomial f(x) = (1 + x)?,
h(x)=1+2x+x> = f(x)=2+2x, f'(x)=2.
Since all derivatives higher or equal the third vanish,

1
(0)
2

T(x)=1+F(0)x+



The binomial function

Remark: If m is a positive integer, then the binomial function f,, is
a polynomial, therefore the Taylor series is the same polynomial,
hence the Taylor series has only the first m + 1 terms non-zero.

Example
Find the Taylor series of f(x) = (1 + x)2.

Solution: Expanding the the binomial f(x) = (1 + x)?,
h(x)=1+2x+x> = f(x)=2+2x, f'(x)=2.
Since all derivatives higher or equal the third vanish,

iz
f éO) X2 = T(x)=1+2x+x°

T(x)=1+F(0)x+



The binomial function

Remark: If m is a positive integer, then the binomial function f,, is
a polynomial, therefore the Taylor series is the same polynomial,
hence the Taylor series has only the first m + 1 terms non-zero.

Example
Find the Taylor series of f(x) = (1 + x)2.

Solution: Expanding the the binomial f(x) = (1 + x)?,
h(x)=1+2x+x> = f(x)=2+2x, f'(x)=2.
Since all derivatives higher or equal the third vanish,

"
f éO) X2 = T(x)=1+2x+x°

That is, f(x) = T(x). <

T(x)=1+F(0)x+
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The binomial function

Remark: If m is not a positive integer, then the Taylor series of the
binomial function has infinitely many non-zero terms.

Theorem
The Taylor series for the binomial function f,(x) = (1 + x)™, with
m not a positive integer converges for |x| < 1 and is given by

T(x) =1 +n§ (’:) o

-1
with the binomial coefficients (T) =m, <r2n> = m(rr;l) and

<m) m(m—1)-- (m— (n—1))

n n!
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Proof: The n-derivative of the binomial function is
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therefore, the n-Taylor coefficient at a =0 is
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The binomial function

Proof: The n-derivative of the binomial function is
F(x) = m(m — 1) (m — (n 1)) (1 + )"

therefore, the n-Taylor coefficient at a =0 is

F©O)  mm—1)---(m—(n—1)) <m>

n! n! n

Since f(0) = 1, the Taylor series of the binomial function is
T(x)=1+ Z (T) x",
n=1
()|
()]

Therefore, the series converges for |x| < 1.

The ratio test:

‘ m—n‘ X
= |x — |x| as n — oo.
(n+1)
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The binomial function

Example
Find the Taylor series of the binomial function f(x) = (1 + x)/2.

Solution: Compute the binomial coefficients <1/2>: <1{2) = %
n

2

(1/2) _ (é)(é'— ) _ (%)('—é)



The binomial function

Example
Find the Taylor series of the binomial function f(x) = (1 + x)/2.

1/2 1/2 1
Solution: Compute the binomial coefficients < / ): < { ) =5
n

2

/2y _()G-1) _ (3)(=3) _ (=4)
(%)
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Example
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n
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The binomial function

Example
Find the Taylor series of the binomial function f(x) = (1 + x)/2.

1/2 1/2 1
Solution: Compute the binomial coefficients < / >: < { ) =5
n

/2y _()G-1) _()(=3) _(=a) _ 1
(3) -5

2

(1/2> _BG-9G-2)

3
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The binomial function

Example
Find the Taylor series of the binomial function f(x) = (1 + x)/2.

1/2 1/2 1
Solution: Compute the binomial coefficients < / >: < { ) =5
n

/2y _()G-1) _()(=3) _(=a) _ 1
(3) -5

2 2! 2! 2 8’
<1/2> _@GE-1G-2_GFEDE) @)
3 3! 3! 6 16
VIFx=1+ 54X -
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Example
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e obtain: V1 —x = 5~ 8 " 18 :
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Example
Find the Taylor series of the binomial function f(x) = (1 — x)/2.

) } ; x x* X3
Solution: Substitute x by —x in 1+ x =1+ 5" + 6
We obtain: VI x—1_%_ % % 4
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The binomial function

Example
Find the Taylor series of the binomial function f(x) = (1 — x)/2.

2 3

Solution: Substitute x by —x in v1+x=1+ g — x@ + X1—6 —
We obtai 1—x= —X——X2—X—3— 4
n: = —_ oo,
e obtain: /1 — x 5~ 8 " 18

Example
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The binomial function

Example
Find the Taylor series of the binomial function f(x) = (1 — x)/2.

) } ; x x* X3
Solution: Substitute x by —x in 1+ x =1+ 5" + 6
We obtain: /1 x_x_x 4
n: .1
e obtai X 5 3 16

Example
Find the Taylor series of the binomial function f(x) = (1 — x?)1/2.
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Solution: Substitute x by —x? in /1 +x =1+ g Y + 16
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The binomial function

Example
Find the Taylor series of the binomial function f(x) = (1 + x)/3.

Solution: Compute the binomial coefficients <1/3>: <1{3) = %
n

2

(1/3) _ (é)(é'— ) _ (é)('—§)



The binomial function

Example
Find the Taylor series of the binomial function f(x) = (1 + x)/3.

Solution: Compute the binomial coefficients <1,/73>: <1{3> = %

/3y _ (6)G-1) _ (5)(=3) _ (=5)
(2)

2



The binomial function

Example
Find the Taylor series of the binomial function f(x) = (1 + x)/3.

Solution: Compute the binomial coefficients <1/3>: <1{3> = %
n

2

(1/3) _ (é)(é'— ) _(B)(=3) _(=5) _ 1



The binomial function

Example
Find the Taylor series of the binomial function f(x) = (1 + x)/3.

Solution: Compute the binomial coefficients <1,/73>: <1{3> = %

13\ _(6)G-1) _ ()3 _(=5) _ 1
(3)-14

2

<1/3> _(3GE-1VG-2

3



The binomial function

Example
Find the Taylor series of the binomial function f(x) = (1 + x)/3.

Solution: Compute the binomial coefficients <1,/73>: <1{3> = %

13\ _(6)G-1) _ ()3 _(=5) _ 1
(2)

2 2! - 2! 2 9’

<1/3> _(3)6E-196-2 _ ()33
3

3



The binomial function

Example
Find the Taylor series of the binomial function f(x) = (1 + x)/3.

Solution: Compute the binomial coefficients <1,/73>: <1{3> = %

13\ _(6)G-1) _ ()3 _(=5) _ 1
(2)

2 2! - 2! 2 9’

<1/3> _(3)6E-196-2 _6)E3)E3) - (&)
3!

3



The binomial function

Example
Find the Taylor series of the binomial function f(x) = (1 + x)/3.

Solution: Compute the binomial coefficients <1,/73>: <1{3> = %

13\ _(6)G-1) _ ()3 _(=5) _ 1
(2)

2 2! - 2! 2 9’

<1/3> _()6E-196-2 _ G336 s
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The binomial function

Example
Find the Taylor series of the binomial function f(x) = (1 + x)/3.

Solution: Compute the binomial coefficients <1,/73>: <1{3> = %

13\ _(6)G-1) _ ()3 _(=5) _ 1
(2)

2 2! - 2! 2 9’

<1/3> _®E-YG-2 _GEDE) G s
3 3!
2 5

1T+ x — X_ X, 23 ...
ler—lJr3 9+81X . <
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Evaluating non-elementary integrals

Remark: Non-elementary integrals can be evaluated integrating
term by term the integrand Taylor series.

Example
2

1
Approximate the integral / :/ e ™ dx.
0

2 3
X
Solution: Recall the Taylor series e* =1+ x + — —|— 3l + -
Substitute x by —x? in the Taylor series,
x* x®
=1-x+= -+

21 3l



Evaluating non-elementary integrals

Remark: Non-elementary integrals can be evaluated integrating
term by term the integrand Taylor series.

Example
Approximate the integral | = /1 e dx.

0 .
Solution: Recall the Taylor series e* =1+ x + - + 37 +.
Substitute x by —x? in the Taylor series,

X4 X6

e x3 x5 x’
/e K=x=F T anE) " eym T




Evaluating non-elementary integrals

Remark: Non-elementary integrals can be evaluated integrating
term by term the integrand Taylor series.

Example
2

1
Approximate the integral / :/ e ™ dx.
0

2 3
Solution: Recall the Taylor series e* =1+ x + — —|— % + -
Substitute x by —x? in the Taylor series,
x* x®
3 5 7
2 X X X
e X dx=x——+ - +oe
/ 3 (2)(6) 6H(T)
1
> 1 1 1
e dx=1-_+ — + -
/0 3 (2)5)  6BH(T)
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The Euler identity

Remark: The Taylor expansions

0% o
cos(9):1—§+ﬂ—---

Y

sin(6) =6

T



The Euler identity

Remark: The Taylor expansions

2 4 93 05
COS(O) 1 Z' +07— , S|n(0) 0 §+77

imply that
2 93 94 95

.. 0
cos(@)+15m(9)—1+19—§— §—|—7+ i



The Euler identity
Remark: The Taylor expansions

6? 04 93 9>
cos(f) =1— 51 + <o, sin(@) =0 — 3l
imply that
02 6 0* 6
cos(0) +isin(0) =1+4i0 — — — i —-1-7_1_ ...

2! 3! 5!

cos(6) + Fsin(6) = 1+ 0 + (i29!)2 . (i30!)3 N (i:‘gl)4 n (ig!)5 +




The Euler identity
Remark: The Taylor expansions

62 04 93 05
COS(Q) 1-— 2' + — e, S|n(0) 0 — ? + -
imply that
6> 6 0 6
cos(f) +isin(0) =1+i0 — — — i 7-1-74_ ..

2! 3! 51

cos(B) + isin(8) = 1 + 6 + (@0, (0)® (i) (i0)°

21 31 41 51

x2 X3
This and &* —1+X+*+§+



The Euler identity
Remark: The Taylor expansions

62 04 93 05
COS(Q) 1-— 2' + — e, S|n(0) 0 — ? + -
imply that
6> 6 0 6
cos(f) +isin(0) =1+i0 — — — i 7-1-74_ ..

21 EY 51

cos(6) + Fsin(6) = 1+ 0 + (i29!)2 . (i30!)3 N (i:‘gl)4 n (ig!)5 +

2 X3

This and € =1+ x + = + En + -+ suggest the definition:

eie = cos(#) + isin(0).
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Taylor series table

Remark: Table of frequently used Taylor series.

l oo
l_X:Z%Xn:]_—I—X—l-XZ—l-Xs—i-“', x| <1,
n—=
1 oo
_ 1) x"=1— 2_ 3 cee <1,
T x ;)( )" x X+ x5 —x>+ x|
®  on 2 3
x N X _ XX
e —Zn!—1+x+2!+3!+ , x| < o0,
n=0
0 2n+1 3 5
. X x> X
Sm(x):z;)(_l)n(Zn—|—1)!:X_3!+5!_”'7 |X|<OO7
n=
o0 2n 2 4
X X< x
cos(x) = Z(—l)”(2n)! =1- o7 +ﬂ - x| < 0.



Parametrizations of curves on a plane (Sect. 11.1)

» Review: Curves on the plane.
» Parametric equations of a curve.
» Examples of curves on the plane.

» The cycloid.
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Review: Curves on the plane

Remarks:
» Curves on a plane can be described by the set of points (x, y)
solutions of an equation

F(x,y) =0.

» A particular case is the graph of a function y = f(x).
In this case: F(x,y) =y — f(x).

Example

» Circle centered at P = (0, 0) radius r:
oy =2
» Circle centered at P = (xp, yo) radius r:

(x=x0)*+(y —yo)> =r.
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Example

» An ellipse centered at P = (0,0) with radius a and b,

A sphere is the particular case a= b =r.
» A hyperbola with asymptotes y = +x,

x?—y?=1.



Review: Curves on the plane

Example

» An ellipse centered at P = (0,0) with radius a and b,

A sphere is the particular case a= b =r.
» A hyperbola with asymptotes y = +x,

x?—y?=1.

: b
» A hyperbola with asymptotes y = j:; X,

2 2
-4 -1
a b2
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Review: Curves on the plane

Example

» A parabola with minimum at (0, 0),
y =x2.
» A parabola with minimum at (a, b),

y =c(x—a)’+b, c>0.



Review: Curves on the plane

Example

» A parabola with minimum at (0, 0),

y =x2.
» A parabola with minimum at (a, b),
y=c(x—aP+b,  c>0.
» A parabola with maximum at (a, b),

y=—c(x—a)’+b, c>0.
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» Review: Curves on the plane.
» Parametric equations of a curve.
» Examples of curves on the plane.

» The cycloid.
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Parametric equations of a curve

Remarks:

» A curve on a plane can always be thought as the motion of a
particle as function of time.

» Every curve given by F(x,y) = 0 can be described as the set
of points (x(t),y(t)) traveled by a particle for t € [a, b].

Definition
A curve on the plane is given in parametric form iff it is given by
the set of points (x(t),y(t)), where the parameter t € | C R.

Remark: If the interval I is closed, | = [a, b], then (x(a), y(a)) and
(x(b), y(b)) are called the initial and terminal points of the curve.



Parametrizations of curves on a plane (Sect. 11.1)

» Review: Curves on the plane.

» Parametric equations of a curve.

» Examples of curves on the plane.
» The cycloid.
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Example
Describe the curve x(t) = cos(t), y(t) = sin(t), for t € [0, 27].

Solution:

The functions x and y above
satisfy the equation

x(0)]7 + [y (1)) =

cos?(t) + sin?(t)



Examples of curves on the plane

Example
Describe the curve x(t) = cos(t), y(t) = sin(t), for t € [0, 27].

Solution:

The functions x and y above
satisfy the equation

x(0)]7 + [y (1)) =

cos®(t) +sin®(t) = 1.
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Solution:

The functions x and y above

cos®(t) +sin®(t) = 1.
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This is a circle.
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Solution:

The functions x and y above

cos®(t) +sin®(t) = 1.
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Examples of curves on the plane

Example
Describe the curve x(t) = cos(t), y(t) = sin(t), for t € [0, 27].

Solution:
y
The functions x and y above
satisfy the equation
sin (t)
()] + [y(1)]* = :
cos (t) 1 X
cos®(t) +sin®(t) = 1.

This is a circle.

This is the equation of a circle radius r = 1, centered at (0, 0).
The circle is traversed in counterclockwise direction, starting and
ending at (1,0). <
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Solution:

The functions x and y above
satisfy the equation

x(0)]7 + [y (1)) =

sin?(t) + cos®(t)



Examples of curves on the plane

Example
Describe the curve x(t) = sin(t), y(t) = cos(t), for t € [0, 27].

Solution:

The functions x and y above
satisfy the equation

x(0)]7 + [y (1)) =

sin?(t) 4 cos®(t) = 1.



Examples of curves on the plane

Example
Describe the curve x(t) = sin(t), y(t) = cos(t), for t € [0, 27].
Solution:

The functions x and y above
satisfy the equation

x(0)]7 + [y (1)) = :

sin (t)

cos (t) 1 X
sin?(t) 4 cos®(t) = 1.

This is a circle.
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Describe the curve x(t) = sin(t), y(t) = cos(t), for t € [0, 27].
Solution:

The functions x and y above
satisfy the equation

x(0)]7 + [y (1)) = :

sin (t)

cos (t) 1 X
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This is a circle.
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Examples of curves on the plane

Example
Describe the curve x(t) = sin(t), y(t) = cos(t), for t € [0, 27].

Solution:
y
The functions x and y above
satisfy the equation
sin (t)
()] + [y(1)]* = :
cos (t) 1 X
sin?(t) 4 cos®(t) = 1.

This is a circle.

This is the equation of a circle radius r = 1, centered at (0, 0).
The circle is traversed in clockwise direction, starting and ending
at (0,1). <
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Solution:
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Solution:

The functions x and y above
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Examples of curves on the plane

Example
Describe the curve x(t) = 3cos(t), y(t) = 3sin(t), for
t €[0,7/2].

Solution:
y

The functions x and y above
satisfy the equation

) 3sin(t)

(6] + [y(1)] = :' 14
\ 3 cos (1) B 3 X
32 cos?(t) + 3?sin?(t) = 32.

This is a portion of a circle.

This is the equation of a 1/4 circle radius r = 3, centered at (0,0).
The circle is traversed in counterclockwise direction, starting at
(3,0) and ending at (0, 3). <
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Solution:

The functions x and y above
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The functions x and y above
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Describe the curve x(t) = 3 cos(2t), y(t) = 3sin(2t), for
t €[0,7/2].

Solution:

The functions x and y above
satisfy the equation

x(0))7 + [y (1)) =

32 cos?(2t) 4 3%sin(2t) = 32



Examples of curves on the plane

Example
Describe the curve x(t) = 3 cos(2t), y(t) = 3sin(2t), for
t €[0,7/2].

Solution:
y
The functions x and y above

satisfy the equation /f
3sin(t)
(6] + [y(1)] = : :

@
3 cos (1) B 3 X

32 cos?(2t) 4 3%sin(2t) = 32
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Describe the curve x(t) = 3 cos(2t), y(t) = 3sin(2t), for
t €[0,7/2].

Solution:
y
The functions x and y above

satisfy the equation /f
3sin(t)
(6] + [y(1)] = : :

@
3 cos (1) B 3 X

32 cos?(2t) 4 3%sin(2t) = 32

This is a portion of a circle.

This is the equation of a 1/2 circle radius r = 3, centered at (0,0).



Examples of curves on the plane

Example
Describe the curve x(t) = 3 cos(2t), y(t) = 3sin(2t), for
t €[0,7/2].

Solution:
y

The functions x and y above

satisfy the equation /f
3sin(t)
(6] + [y(1)] = : :

@
3 cos (1) B 3 X

32 cos?(2t) 4 3%sin(2t) = 32

This is a portion of a circle.

This is the equation of a 1/2 circle radius r = 3, centered at (0,0).
The circle is traversed in counterclockwise direction, starting at
(3,0) and ending at (—3,0). <
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Describe the curve x(t) = 3cos(t), y(t) = sin(t), for t € [0, 27].
Solution:

The functions x and y
above satisfy the equation
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32
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cos®(t) + sin?(t)



Examples of curves on the plane
Example
Describe the curve x(t) = 3cos(t), y(t) = sin(t), for t € [0, 27].
Solution:

The functions x and y
above satisfy the equation

x(1))?
32

+ () =

cos?(t) +sin®(t) = 1.
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Example
Describe the curve x(t) = 3cos(t), y(t) = sin(t), for t € [0, 27].

Solution:
The functions x and y y
above satisfy the equation T
1
X t 2 /’_ t sin(t
[ 22)] + [y(t)]2 _ ®
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cos?(t) +sin®(t) = 1.

This is an ellipse.

This is the equation of an ellipse with x-radius 3 and y-radius 1,
centered at (0,0).



Examples of curves on the plane
Example
Describe the curve x(t) = 3cos(t), y(t) = sin(t), for t € [0, 27].
Solution:

The functions x and y yT
above satisfy the equation

x(1))?
32

t sin(t)

1
\\_3;05(07/3 §

+ () =

cos?(t) +sin®(t) = 1.

This is an ellipse.

This is the equation of an ellipse with x-radius 3 and y-radius 1,
centered at (0,0). The ellipse is traversed in counterclockwise
direction, starting and ending at (3,0).
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Examples of curves on the plane

Example
Describe the curve x(t) = cosh(t), y(t) = sinh(t), for t € [0, c0).

Solution:

The functions x and y
above satisfy the equation

x(O)] — y () =

cosh?(t) — sinh?(t)



Examples of curves on the plane

Example
Describe the curve x(t) = cosh(t), y(t) = sinh(t), for t € [0, c0).

Solution:

The functions x and y
above satisfy the equation

x(O)] — y () =

cosh?(t) — sinh?(t) = 1.
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Example
Describe the curve x(t) = cosh(t), y(t) = sinh(t), for t € [0, c0).

Solution:
The functions x and y ' y
above satisfy the equation RN X0
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Examples of curves on the plane

Example
Describe the curve x(t) = cosh(t), y(t) = sinh(t), for t € [0, c0).
Solution:

The functions x and y y
above satisfy the equation N x(®)

x(O)] — y () = \ y(®)

cosh?(t) — sinh?(t) = 1. ‘ .

This is a portion of a p N
hyperbola.

This is the equation of a hyperbola with asymptotes y = +x.
The hyperbola portion starts at (1,0). N
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Example

Describe the curve x(t) = —sec(t), y(t) = tan(t), for
te[0,7/2).

Solution:

Recall: tan?(t) + 1 = sec?(t).

Therefore,

x(0)7 = y(1)]* =
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Solution:
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Therefore,
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Solution:
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Examples of curves on the plane

Example
Describe the curve x(t) = —sec(t), y(t) = tan(t), for
te[0,7/2).
Solution: ,
Recall: tan?(t) + 1 = sec?(t).
Therefore, X() ,
) ) vy
(&) ~ () = VO
sec?(t) — tan?(t) = 1. g N

This is a portion of a hyperbola.

This is the equation of a hyperbola with asymptotes y = +x.
The hyperbola portion starts at (—1,0).
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Example
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Solution:
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Example
Describe the curve x(t) = t2, y(t) = t+ 1, for t € (—00, 00).

Solution:

Since t = y — 1, then

X = (y—l)z.



Examples of curves on the plane

Example
2

Describe the curve x(t) = t*,

Solution:

Since t = y — 1, then

X = (y—l)z.

This is a parabola.

y(t)=t+1, for t € (—o0,00).

<

x=(y-1)°
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This is a parabola. 1

This is the equation of a parabola opening to the right.
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Solution: -
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Examples of curves on the plane

Example
Describe the curve x(t) = t2, y(t) = t+ 1, for t € (—00, 00).

] v x=¢-1°
Solution: -

Since t = y — 1, then

X = (y—l)z.

This is a parabola. 1

This is the equation of a parabola opening to the right.
Passing through (1,0) (for t = —1), then (0,1) (for t = 0),



Examples of curves on the plane

Example
Describe the curve x(t) = t2, y(t) = t+ 1, for t € (—00, 00).

] v x=¢-1°
Solution: -

Since t = y — 1, then

X = (y—l)z.

This is a parabola. 1

This is the equation of a parabola opening to the right.
Passing through (1,0) (for t = —1), then (0,1) (for t = 0),
and then (1,2) (for t = 1).
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» The cycloid.
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Definition
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Definition
A cycloid with parameter a > 0 is the curve given by
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The cycloid

Definition
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» The point (x(t), y(t)) belongs to a moving circle.

» The cycloid played an important role in designing precise
pendulum clocks, needed for navigation in the 17th century.
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Review: Parametric curves on the plane

Definition
A curve on the plane is given in parametric form iff it is given by
the set of points (x(t),y(t)), where the parameter t € | C R.

Example
Describe the curve x(t) = cosh(t), y(t) = sinh(t), for t € [0, c0).

Solution: y
2 2 D
[x(0)]" = y(1)]° = x(t)
cosh?(t) — sinh?(t) = 1. K y(®
This is a portion of a hyperbola ," 1‘\\ X
with asymptotes y = +x, - &y
starting at (1,0). < Bz
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The slope of tangent lines to curves

Definition

A curve defined by the parametric function values (x(t), y(t)), for
t € | C R, is differentiable iff each function x and y is
differentiable on the interval /.

Theorem

Assume that the curve defined by the graph of the function

y = f(x), for x € (a, b), can be described by the parametric
function values (x(t), y(t)), for t € | C R. If this parametric curve
is differentiable and x'(t) # 0 for t € I, then holds
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Proof: Express y(t) = f(x(t)), then
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The slope of tangent lines to curves

df dy/dt
Remark: The formula o Edijdt; provides an alternative way

to find the slope of the line tangent to the graph of the function f.

y' =f(xo)




The slope of tangent lines to curves

Example
Find the slope of the tangent lines to a circle radius r at (0, 0).



The slope of tangent lines to curves

Example
Find the slope of the tangent lines to a circle radius r at (0, 0).

Solution: The equation of the circle is x* + y? = r.



The slope of tangent lines to curves

Example
Find the slope of the tangent lines to a circle radius r at (0, 0).

Solution: The equation of the circle is x% + y? = r2.

One possible set of parametric equations are:

x(t) = r cos(nt), y(t) = r sin(nt), n>1.



The slope of tangent lines to curves

Example
Find the slope of the tangent lines to a circle radius r at (0, 0).

Solution: The equation of the circle is x* + y? = r.

One possible set of parametric equations are:

WV
=

x(t) = r cos(nt), y(t) = r sin(nt), n
The derivatives of the parametric functions are

x'(t) = —nr sin(nt), y'(t) = nr cos(nt).



The slope of tangent lines to curves

Example
Find the slope of the tangent lines to a circle radius r at (0, 0).

Solution: The equation of the circle is x* + y? = r.
One possible set of parametric equations are:
x(t) = r cos(nt), y(t) = r sin(nt), n>1.
The derivatives of the parametric functions are
x'(t) = —nr sin(nt), y'(t) = nr cos(nt).

The slope of the tangent lines to the circle at xp = cos(ntp) is

y'(to)
x'(to)

Y (%) =



The slope of tangent lines to curves

Example
Find the slope of the tangent lines to a circle radius r at (0, 0).

Solution: The equation of the circle is x* + y? = r.
One possible set of parametric equations are:
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Example
Find the slope of the tangent lines to a circle radius r at (0, 0).

Solution: The equation of the circle is x* + y? = r.
One possible set of parametric equations are:
x(t) = r cos(nt), y(t) = r sin(nt), n>1.
The derivatives of the parametric functions are
x'(t) = —nr sin(nt), y'(t) = nr cos(nt).

The slope of the tangent lines to the circle at xp = cos(ntp) is

y'(to) _ —nr cos(nto) , B 1
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The slope of tangent lines to curves

Example
Find the slope of the tangent lines to a circle radius r at (0, 0).
Solution: The equation of the circle is x* + y? = r.
One possible set of parametric equations are:
x(t) = r cos(nt), y(t) = r sin(nt), n>1.
The derivatives of the parametric functions are
x'(t) = —nr sin(nt), y'(t) = nr cos(nt).

The slope of the tangent lines to the circle at xp = cos(ntp) is

/
, y'(to)  —nr cos(ntp) , 1
= = = -
v () x'(to) nr sin(nto) v'(x) tan(ntp)
Remark: In the first quadrant holds y'(xp) = T <

1-— (X0)2
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Definition

The length or arc length of a curve in
the plane or in space is the limit of the
polygonal line length, as the polygonal

line approximates the original curve.

Theorem
The arc-length of a continuously differentiable curve (x(t), y( y))
for t € [a, b] is the number

b
L= / \/[x’(t)]2 + (1)) dt.




The arc-length of a curve

Idea of the Proof: The curve length is
the limit of the polygonal line length, as
the polygonal line approximates the
original curve.




The arc-length of a curve

Idea of the Proof: The curve length is
the limit of the polygonal line length, as
the polygonal line approximates the
original curve.

N-1
Lv= Z \/(Axk)2 + (AYk)2 {a=to,t1,--- ,ty—1, ty = b},
n=0




The arc-length of a curve

Idea of the Proof: The curve length is
the limit of the polygonal line length, as
the polygonal line approximates the
original curve.

N-1
Lv= Z \/(Axk)2 + (AYk)2 {a=to,t1,--- ,ty—1, ty = b},
n=0

N—-1 5
b= SV )2 + () At
n=0



The arc-length of a curve

Idea of the Proof: The curve length is
the limit of the polygonal line length, as
the polygonal line approximates the
original curve.

N-1
Lv= Z \/(Axk)2 + (AYk)2 {a=to,t1,--- ,ty—1, ty = b},
n=0

N—-1
b= SV )2 + () At
n=0

b
Ly V== / VIO + [y/(8)] de.
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The arc-length of a curve
Example
Find the length of the curve (rcos(t), rsin(t)), for r > 0 and
t € [n/4,37/4]. (Quarter of a circle.)

Solution: Compute the derivatives (—rsin(t), rcos(t)). The length
of the curve is given by the formula

L= /;:/4 \/[—rsin(t)]2 + [rcos(t)]2 dt

3r/4

L= /37F/4 \/r2 [ sin( [cos(t)r) dt = /77/4 rdt.

Hence, L = 5 (The length of quarter circle of radius r.) <
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The arc-length of a curve

Example
Find the length of the spiral (tcos(t), tsin(t)), for t € [0, to).

Solution: The derivative of the parametric curve is
(X'(t),y'(t)) = ([~tsin(t) + cos(t)], [t cos(t) + sin(t)]),
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We obtain (x’)? + (y')?> = t> + 1. The curve length is given by
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The arc-length of a curve

Example
Find the length of the spiral (tcos(t), tsin(t)), for t € [0, to).

Solution: The derivative of the parametric curve is
(X'(t),y'(t)) = ([~tsin(t) + cos(t)], [t cos(t) + sin(t)]),

(X')? + (') = [t?sin®(t) + cos?(t) — 2t sin(t) cos(t)]
+ [t? cos?(t) + sin®(t) + 2t sin(t) cos(t)]

We obtain (x’)? + (y')?> = t> + 1. The curve length is given by

t

L(to) /\/l—l—tZdt [ 1—|—t2+f|n(t+ 1—|—t2)”00
_ b > 1 2

We conclude that L(to)—E 1+t0+§|n(to+ 1+). <
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The arc-length function and differential
Remark: The previous example suggests to introduce the length
function of a curve.

Definition
The arc-length function of a continuously differentiable curve given
by (x(t),y(t)) for t € [to, t1] is given by

L(t) = /tt \/[X’(T)]2 + [y/(T)]sz.

Remarks:

(a) The value L(t) of the length function is the length along the
curve (x(t),y(t)) from to to t.

(b) If the curve is the position of a moving particle as function of
time, then the value L(t) is the distance traveled by the
particle from the time tg to t.
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The arc-length function and differential

Remark: The arc-length differential is the differential of the
arc-length function, that is,

dL =/ [e(0) + [y/(8)] dt.
This is a useful notation.

Example
Find the length of x(t) = (2t +1)3/2/3, y(t) = t+t for t € [0, 1].

Solution: We first compute the length differential,

13 2 2
dL =[5 22t +1)M22| + [1+21]



The arc-length function and differential

Remark: The arc-length differential is the differential of the
arc-length function, that is,

dL =/ [e(0) + [y/(8)] dt.
This is a useful notation.

Example
Find the length of x(t) = (2t +1)3/2/3, y(t) = t+t for t € [0, 1].

Solution: We first compute the length differential,

1 2
dL = 5§(2t+1)1/22] + (14267 = (204 1) + 1+ 4t + 412



The arc-length function and differential

Remark: The arc-length differential is the differential of the
arc-length function, that is,

dL =/ [e(0) + [y/(8)] dt.
This is a useful notation.

Example
Find the length of x(t) = (2t +1)3/2/3, y(t) = t+t for t € [0, 1].

Solution: We first compute the length differential,

2
dL = E g(2t+1)1/22] + (14267 = (204 1) + 1+ 4t + 412

1
L:/ (4t% + 6t +2) dt
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The arc-length function and differential

Remark: The arc-length differential is the differential of the
arc-length function, that is,

dL =/ [e(0) + [y/(8)] dt.
This is a useful notation.

Example
Find the length of x(t) = (2t +1)3/2/3, y(t) = t+t for t € [0, 1].

Solution: We first compute the length differential,

2
dL = E g(2t+1)1/22] + (14267 = (204 1) + 1+ 4t + 412

1 4¢3 1 19
L= 42 + 6t +2)dt = (— + 31> + 2t ‘ == g
/0( +6t+2) (3 + + )0 3



