
Binomial functions and Taylor series (Sect. 10.10)

I Review: The Taylor Theorem.

I The binomial function.

I Evaluating non-elementary integrals.

I The Euler identity.

I Taylor series table.



Review: The Taylor Theorem

Recall: If f : D → R is infinitely differentiable, and a, x ∈ D, then

f (x) = Tn(x) + Rn(x),

where the Taylor polynomial Tn and the Remainder function Rn are

Tn(x) = f (a) + f ′(a) (x − a) + · · ·+ f (n)(a)

n!
(x − a)n,

Rn(x) =
f (n+1)

(
c(x)

)
(n + 1)!

(x − a)n+1, with c ∈ (a, x).

Furthermore, if Rn(x) → 0 as n →∞ for every x ∈ I ⊂ D, then

the Taylor series centered at x = a, T (x) =
∞∑

n=0

f (n)(a)

n!
(x − a)n,

converges to the function f on the interval I , and f (x) = T (x).
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The binomial function

Definition
The binomial function is a function of the form

fm(x) = (1 + x)m, m ∈ R.

Example

Find the Taylor polynomial T3 centered at a = 0 of fm.

Solution: The derivatives of the function f (x) = (1 + x)m are

f ′(x) = m(1 + x)(m−1), f ′′(x) = m(m − 1)(1 + x)(m−2),

f (3)(x) = m(m − 1)(m − 2) (1 + x)(m−3).

T3(x) = 1 + m x +
m(m − 1)

2!
x2 +

m(m − 1)(m − 2)

3!
x3. C



The binomial function

Definition
The binomial function is a function of the form

fm(x) = (1 + x)m, m ∈ R.

Example

Find the Taylor polynomial T3 centered at a = 0 of fm.

Solution: The derivatives of the function f (x) = (1 + x)m are

f ′(x) = m(1 + x)(m−1), f ′′(x) = m(m − 1)(1 + x)(m−2),

f (3)(x) = m(m − 1)(m − 2) (1 + x)(m−3).

T3(x) = 1 + m x +
m(m − 1)

2!
x2 +

m(m − 1)(m − 2)

3!
x3. C



The binomial function

Definition
The binomial function is a function of the form

fm(x) = (1 + x)m, m ∈ R.

Example

Find the Taylor polynomial T3 centered at a = 0 of fm.

Solution: The derivatives of the function f (x) = (1 + x)m are

f ′(x) = m(1 + x)(m−1), f ′′(x) = m(m − 1)(1 + x)(m−2),

f (3)(x) = m(m − 1)(m − 2) (1 + x)(m−3).

T3(x) = 1 + m x +
m(m − 1)

2!
x2 +

m(m − 1)(m − 2)

3!
x3. C



The binomial function

Definition
The binomial function is a function of the form

fm(x) = (1 + x)m, m ∈ R.

Example

Find the Taylor polynomial T3 centered at a = 0 of fm.

Solution: The derivatives of the function f (x) = (1 + x)m are

f ′(x) = m(1 + x)(m−1),

f ′′(x) = m(m − 1)(1 + x)(m−2),

f (3)(x) = m(m − 1)(m − 2) (1 + x)(m−3).

T3(x) = 1 + m x +
m(m − 1)

2!
x2 +

m(m − 1)(m − 2)

3!
x3. C



The binomial function

Definition
The binomial function is a function of the form

fm(x) = (1 + x)m, m ∈ R.

Example

Find the Taylor polynomial T3 centered at a = 0 of fm.

Solution: The derivatives of the function f (x) = (1 + x)m are

f ′(x) = m(1 + x)(m−1), f ′′(x) = m(m − 1)(1 + x)(m−2),

f (3)(x) = m(m − 1)(m − 2) (1 + x)(m−3).

T3(x) = 1 + m x +
m(m − 1)

2!
x2 +

m(m − 1)(m − 2)

3!
x3. C



The binomial function

Definition
The binomial function is a function of the form

fm(x) = (1 + x)m, m ∈ R.

Example

Find the Taylor polynomial T3 centered at a = 0 of fm.

Solution: The derivatives of the function f (x) = (1 + x)m are

f ′(x) = m(1 + x)(m−1), f ′′(x) = m(m − 1)(1 + x)(m−2),

f (3)(x) = m(m − 1)(m − 2) (1 + x)(m−3).

T3(x) = 1 + m x +
m(m − 1)

2!
x2 +

m(m − 1)(m − 2)

3!
x3. C



The binomial function

Definition
The binomial function is a function of the form

fm(x) = (1 + x)m, m ∈ R.

Example

Find the Taylor polynomial T3 centered at a = 0 of fm.

Solution: The derivatives of the function f (x) = (1 + x)m are

f ′(x) = m(1 + x)(m−1), f ′′(x) = m(m − 1)(1 + x)(m−2),

f (3)(x) = m(m − 1)(m − 2) (1 + x)(m−3).

T3(x) = 1 + m x +
m(m − 1)

2!
x2 +

m(m − 1)(m − 2)

3!
x3. C



The binomial function

Remark: If m is a positive integer, then the binomial function fm is
a polynomial,

therefore the Taylor series is the same polynomial,
hence the Taylor series has only the first m + 1 terms non-zero.

Example

Find the Taylor series of f2(x) = (1 + x)2.

Solution: Expanding the the binomial f2(x) = (1 + x)2,

f2(x) = 1 + 2x + x2 ⇒ f ′(x) = 2 + 2x , f ′′(x) = 2.

Since all derivatives higher or equal the third vanish,

T (x) = 1 + f ′(0) x +
f ′′(0)

2
x2 ⇒ T (x) = 1 + 2x + x2.

That is, f2(x) = T (x). C
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The binomial function

Remark: If m is not a positive integer, then the Taylor series of the
binomial function has infinitely many non-zero terms.

Theorem
The Taylor series for the binomial function fm(x) = (1 + x)m, with
m not a positive integer converges for |x | < 1 and is given by

T (x) = 1 +
∞∑

n=1

(
m

n

)
xn,

with the binomial coefficients

(
m

1

)
= m,

(
m

2

)
=

m(m − 1)

2!
, and

(
m

n

)
=

m(m − 1) · · ·
(
m − (n − 1)

)
n!

.
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The binomial function

Proof: The n-derivative of the binomial function is

f (n)(x) = m(m − 1) · · · (m − (n − 1)) (1 + x)(m−n),

therefore, the n-Taylor coefficient at a = 0 is

f (n)(0)

n!
=

m(m − 1) · · · (m − (n − 1))

n!
=

(
m

n

)
.

Since f (0) = 1, the Taylor series of the binomial function is

T (x) = 1 +
∞∑

n=1

(
m

n

)
xn,

The ratio test:

∣∣xn+1
( m
n+1

)∣∣∣∣xn
(m

n

)∣∣ =
∣∣∣x m − n

(n + 1)

∣∣∣ → |x | as n →∞.

Therefore, the series converges for |x | < 1.
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The binomial function

Example

Find the Taylor series of the binomial function f (x) = (1 + x)1/2.

Solution: Compute the binomial coefficients

(
1/2

n

)
:

(
1/2

1

)
=

1

2
,

(
1/2

2

)
=

(
1
2

)(
1
2 − 1

)
2!

=

(
1
2

)(
−1

2

)
2!

=

(
−1

4

)
2

= −1

8
,

(
1/2

3

)
=

(
1
2

)(
1
2 − 1

)(
1
2 − 2

)
3!

=

(
1
2

)(
−1

2

)(
−3

2

)
3!

=

(
3
8

)
6

=
1

16
.

√
1 + x = 1 +

x

2
− x2

8
+

x3

16
− · · · . C
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Binomial functions and Taylor series (Sect. 10.10)

I Review: The Taylor Theorem.

I The binomial function.

I Evaluating non-elementary integrals.

I The Euler identity.

I Taylor series table.



Evaluating non-elementary integrals

Remark: Non-elementary integrals can be evaluated integrating
term by term the integrand Taylor series.

Example

Approximate the integral I =

∫ 1

0
e−x2

dx .

Solution: Recall the Taylor series ex = 1 + x +
x2

2!
+

x3

3!
+ · · · .

Substitute x by −x2 in the Taylor series,

e−x2
= 1− x2 +

x4

2!
− x6

3!
+ · · · .∫

e−x2
dx = x − x3

3
+

x5

(2!)(5)
− x7

(3!)(7)
+ · · · .∫ 1

0
e−x2

dx = 1− 1

3
+

1

(2!)(5)
− 1

(3!)(7)
+ · · · . C
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Binomial functions and Taylor series (Sect. 10.10)

I Review: The Taylor Theorem.

I The binomial function.

I Evaluating non-elementary integrals.

I The Euler identity.
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The Euler identity

Remark: The Taylor expansions

cos(θ) = 1− θ2

2!
+

θ4

4!
− · · · , sin(θ) = θ − θ3

3!
+

θ5

5!
− · · · ,

imply that

cos(θ) + i sin(θ) = 1 + iθ − θ2

2!
− i

θ3

3!
+

θ4

4!
+ i

θ5

5!
− · · · ,

cos(θ) + i sin(θ) = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ · · · ,

This and ex = 1 + x +
x2

2!
+

x3

3!
+ · · · suggest the definition:

e iθ = cos(θ) + i sin(θ).
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Taylor series table

Remark: Table of frequently used Taylor series.

1

1− x
=

∞∑
n=0

xn = 1 + x + x2 + x3 + · · · , |x | < 1,

1

1 + x
=

∞∑
n=0

(−1)n xn = 1− x + x2 − x3 + · · · , |x | < 1,

ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · , |x | < ∞,

sin(x) =
∞∑

n=0

(−1)n
x2n+1

(2n + 1)!
= x − x3

3!
+

x5

5!
− · · · , |x | < ∞,

cos(x) =
∞∑

n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+

x4

4!
− · · · , |x | < ∞.



Parametrizations of curves on a plane (Sect. 11.1)

I Review: Curves on the plane.

I Parametric equations of a curve.

I Examples of curves on the plane.

I The cycloid.



Review: Curves on the plane

Remarks:
I Curves on a plane can be described by the set of points (x , y)

solutions of an equation

F (x , y) = 0.

I A particular case is the graph of a function y = f (x).
In this case: F (x , y) = y − f (x).

Example

I Circle centered at P = (0, 0) radius r :

x2 + y2 = r2.

I Circle centered at P = (x0, y0) radius r :

(x − x0)
2 + (y − y0)

2 = r2.
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Review: Curves on the plane

Example

I An ellipse centered at P = (0, 0) with radius a and b,

x2

a2
+

y2

b2
= 1.

A sphere is the particular case a = b = r .

I A hyperbola with asymptotes y = ±x ,

x2 − y2 = 1.

I A hyperbola with asymptotes y = ±b

a
x ,

x2

a2
− y2

b2
= 1.
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Review: Curves on the plane

Example

I A parabola with minimum at (0, 0),

y = x2.

I A parabola with minimum at (a, b),

y = c (x − a)2 + b, c > 0.

I A parabola with maximum at (a, b),

y = −c (x − a)2 + b, c > 0.



Review: Curves on the plane

Example

I A parabola with minimum at (0, 0),

y = x2.

I A parabola with minimum at (a, b),

y = c (x − a)2 + b, c > 0.

I A parabola with maximum at (a, b),

y = −c (x − a)2 + b, c > 0.



Review: Curves on the plane

Example

I A parabola with minimum at (0, 0),

y = x2.

I A parabola with minimum at (a, b),

y = c (x − a)2 + b, c > 0.

I A parabola with maximum at (a, b),

y = −c (x − a)2 + b, c > 0.



Parametrizations of curves on a plane (Sect. 11.1)

I Review: Curves on the plane.

I Parametric equations of a curve.

I Examples of curves on the plane.

I The cycloid.



Parametric equations of a curve

Remarks:

I A curve on a plane can always be thought as the motion of a
particle as function of time.

I Every curve given by F (x , y) = 0 can be described as the set
of points

(
x(t), y(t)

)
traveled by a particle for t ∈ [a, b].

Definition
A curve on the plane is given in parametric form iff it is given by
the set of points

(
x(t), y(t)

)
, where the parameter t ∈ I ⊂ R.

Remark: If the interval I is closed, I = [a, b], then (x(a), y(a)) and
(x(b), y(b)) are called the initial and terminal points of the curve.
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Examples of curves on the plane

Example

Describe the curve x(t) = cos(t), y(t) = sin(t), for t ∈ [0, 2π].

Solution:

The functions x and y above
satisfy the equation

[x(t)]2 + [y(t)]2 =

cos2(t) + sin2(t) = 1.

This is a circle.

(t)

y

x1

t

cos (t)

sin

This is the equation of a circle radius r = 1, centered at (0, 0).
The circle is traversed in counterclockwise direction, starting and
ending at (1, 0). C
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Describe the curve x(t) = cosh(t), y(t) = sinh(t), for t ∈ [0,∞).

Solution:

The functions x and y
above satisfy the equation

[x(t)]2 − [y(t)]2 =

cosh2(t)− sinh2(t) = 1.

This is a portion of a
hyperbola.

y(t)

y

x1

x(t)

This is the equation of a hyperbola with asymptotes y = ±x .
The hyperbola portion starts at (1, 0). C
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Examples of curves on the plane

Example

Describe the curve x(t) = t2, y(t) = t + 1, for t ∈ (−∞,∞).

Solution:

Since t = y − 1, then

x = (y − 1)2.

This is a parabola. x

y x = (y − 1)
2

1

1

This is the equation of a parabola opening to the right.
Passing through (1, 0) (for t = −1), then (0, 1) (for t = 0),
and then (1, 2) (for t = 1). C
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Parametrizations of curves on a plane (Sect. 11.1)

I Review: Curves on the plane.

I Parametric equations of a curve.

I Examples of curves on the plane.

I The cycloid.



The cycloid

Definition
A cycloid with parameter a > 0 is the curve given by

x(t) = a(t − sin(t)), y(t) = a(1− cos(t)), t ∈ R.

Remark: From the equation of the cycloid we see that

x(t)− at = a sin(t), y(t)− a = a cos(t).

Therefore, [x(t)− at]2 + [y(t)− a]2 = a2.

Remarks:

I This is not the equation of a circle.

I The point (x(t), y(t)) belongs to a moving circle.

I The cycloid played an important role in designing precise
pendulum clocks, needed for navigation in the 17th century.
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Arc-length of a curve on the plane (Sect. 11.2)

I Review: Parametric curves on the plane.

I The slope of tangent lines to curves.

I The arc-length of a curve.

I The arc-length function and differential.



Review: Parametric curves on the plane

Definition
A curve on the plane is given in parametric form iff it is given by
the set of points

(
x(t), y(t)

)
, where the parameter t ∈ I ⊂ R.

Example

Describe the curve x(t) = cosh(t), y(t) = sinh(t), for t ∈ [0,∞).

Solution:

[x(t)]2 − [y(t)]2 =

cosh2(t)− sinh2(t) = 1.

This is a portion of a hyperbola
with asymptotes y = ±x ,
starting at (1, 0). C

y(t)

y

x1

x(t)
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Arc-length of a curve on the plane (Sect. 11.2)

I Review: Parametric curves on the plane.

I The slope of tangent lines to curves.

I The arc-length of a curve.

I The arc-length function and differential.



The slope of tangent lines to curves

Definition
A curve defined by the parametric function values

(
x(t), y(t)

)
, for

t ∈ I ⊂ R, is differentiable iff each function x and y is
differentiable on the interval I .

Theorem
Assume that the curve defined by the graph of the function
y = f (x), for x ∈ (a, b), can be described by the parametric
function values

(
x(t), y(t)

)
, for t ∈ I ⊂ R. If this parametric curve

is differentiable and x ′(t) 6= 0 for t ∈ I , then holds

df

dx
=

(dy/dt)

(dx/dt)
.

Proof: Express y(t) = f (x(t)), then

dy

dt
=

df

dx

dx

dt
⇒ df

dx
=

(dy/dt)

(dx/dt)
.
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The slope of tangent lines to curves

Remark: The formula
df

dx
=

(dy/dt)

(dx/dt)
provides an alternative way

to find the slope of the line tangent to the graph of the function f .

0

x

y

x

y = f(x)f(x  )0

0

y’ = f’(x  )



The slope of tangent lines to curves

Example

Find the slope of the tangent lines to a circle radius r at (0, 0).
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The derivatives of the parametric functions are

x ′(t) = −nr sin(nt), y ′(t) = nr cos(nt).

The slope of the tangent lines to the circle at x0 = cos(nt0) is

y ′(x0) =
y ′(t0)

x ′(t0)
=
−nr cos(nt0)

nr sin(nt0)
⇒ y ′(x0) = − 1

tan(nt0)
.

Remark: In the first quadrant holds y ′(x0) =
−x0√

1− (x0)2
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Arc-length of a curve on the plane (Sect. 11.2)

I Review: Parametric curves on the plane.

I The slope of tangent lines to curves.

I The arc-length of a curve.

I The arc-length function and differential.



The arc-length of a curve

Definition
The length or arc length of a curve in
the plane or in space is the limit of the
polygonal line length, as the polygonal
line approximates the original curve.
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Theorem
The arc-length of a continuously differentiable curve

(
x(t), y(y)

)
,

for t ∈ [a, b] is the number

L =

∫ b

a

√[
x ′(t)

]2
+

[
y ′(t)

]2
dt.
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The arc-length of a curve

Idea of the Proof: The curve length is
the limit of the polygonal line length, as
the polygonal line approximates the
original curve.
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The arc-length of a curve

Example

Find the length of the curve
(
r cos(t), r sin(t)

)
, for r > 0 and

t ∈ [π/4, 3π/4]. (Quarter of a circle.)

Solution: Compute the derivatives
(
−r sin(t), r cos(t)

)
. The length

of the curve is given by the formula

L =

∫ 3π/4

π/4

√[
−r sin(t)

]2
+

[
r cos(t)

]2
dt

L =

∫ 3π/4

π/4

√
r2

([
− sin(t)

]2
+

[
cos(t)

]2)
dt =

∫ 3π/4

π/4
r dt.

Hence, L =
π

2
r . (The length of quarter circle of radius r .) C
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The arc-length of a curve

Example

Find the length of the spiral
(
t cos(t), t sin(t)

)
, for t ∈ [0, t0].

Solution: The derivative of the parametric curve is(
x ′(t), y ′(t)

)
=

([
−t sin(t) + cos(t)

]
,
[
t cos(t) + sin(t)

])
,

(x ′)2 + (y ′)2 =
[
t2 sin2(t) + cos2(t)− 2t sin(t) cos(t)

]
+

[
t2 cos2(t) + sin2(t) + 2t sin(t) cos(t)

]
We obtain (x ′)2 + (y ′)2 = t2 + 1. The curve length is given by

L(t0) =
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√
1 + t2 dt =
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√
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2
ln
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t +

√
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.

We conclude that L(t0) =
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0
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t0
2

√
1 + t2

0 +
1

2
ln

(
t0 +

√
1 + t2

0

)
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Arc-length of a curve on the plane (Sect. 11.2)

I Review: Parametric curves on the plane.

I The slope of tangent lines to curves.

I The arc-length of a curve.

I The arc-length function and differential.



The arc-length function and differential

Remark: The previous example suggests to introduce the length
function of a curve.

Definition
The arc-length function of a continuously differentiable curve given
by

(
x(t), y(t)

)
for t ∈ [t0, t1] is given by

L(t) =

∫ t

t0

√[
x ′(τ)

]2
+

[
y ′(τ)

]2
dτ.

Remarks:

(a) The value L(t) of the length function is the length along the
curve

(
x(t), y(t)

)
from t0 to t.

(b) If the curve is the position of a moving particle as function of
time, then the value L(t) is the distance traveled by the
particle from the time t0 to t.
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The arc-length function and differential

Remark: The arc-length differential is the differential of the
arc-length function,

that is,

dL =

√[
x ′(t)

]2
+

[
y ′(t)

]2
dt.

This is a useful notation.

Example

Find the length of x(t) = (2t +1)3/2/3, y(t) = t + t2 for t ∈ [0, 1].

Solution: We first compute the length differential,

dL =
[1

3

3

2
(2t + 1)1/2 2

]2
+

[
1 + 2t

]2
= (2t + 1) + 1 + 4t + 4t2

L =

∫ 1

0
(4t2 + 6t + 2) dt =

(4t3

3
+ 3 t2 + 2t

)∣∣∣1
0

=
19

3
. C
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