
Power series (Sect. 10.7)

I Power series definition and examples.

I The radius of convergence.

I The ratio test for power series.

I Term by term derivation and integration.



Power series definition and examples

Definition
A power series centered at x0 is the function y : D ⊂ R → R

y(x) =
∞∑

n=0

cn (x − x0)
n, cn ∈ R.

Remarks:

I An equivalent expression for the power series is

y(x) = c0 + c1 (x − x0) + c2 (x − x0)
2 + c3 (x − x0)

3 + · · · .

I A power series centered at x0 = 0 is y(x) =
∞∑

n=0

cn xn, that is,

y(x) = c0 + c1 x + c2 x2 + c3 x3 + · · · .

I The domain D = {x ∈ R : y(x) converges.}
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Power series definition and examples

Example

The simplest example is x0 = 0, cn = 1,

that is

y(x) =
∞∑

n=0

xn = 1 + x + x2 + x3 + · · · .

For every x ∈ R this is a geometric series.

Geometric series converge iff |x | < 1. and in that case:

1 + x + x2 + x3 + · · · = 1

1− x
, |x | < 1.

We conclude that for |x | < 1 holds

y(x) =
1

1− x
= 1 + x + x2 + x3 · · · ⇒ 1

1− x
=

∞∑
n=0

xn. C
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Power series definition and examples

Remark:

Another examples of power series y(x) =
∞∑

n=0

cn (x − x0)
n.

Example

I x0 = 0, cn =
1

n!
, that is,

∞∑
n=0

xn

n!
= 1 + x +

x2

2!
+ · · · .

I x0 = 1,
∞∑

n=0

(x − 1)n

n!
= 1 + (x − 1) +

(x − 1)2

2!
+ · · · .

I x = 0, cn =
(−1)n

(2n + 1)!
, that is, y(x) =

∞∑
n=0

(−1)n

(2n + 1)!
x (2n+1),

y(x) = x − x3

3!
+

x5

5!
− x7

7!
+ · · · .
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Power series definition and examples

Remark: The power series of a function may not be defined on the
whole domain of the function.

Example

The function y(x) =
1

1− x
is defined for x ∈ R− {1}.

1

1

)

y

x

y ( x ) =  1 / ( 1 − x )

(
−1

The power series

y(x) =
1

1− x
=

∞∑
n=0

xn

converges only for |x | < 1.

C
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Power series (Sect. 10.7)

I Power series definition and examples.

I The radius of convergence.

I The ratio test for power series.

I Term by term derivation and integration.



The radius of convergence.

Definition

The power series y(x) =
∞∑

n=0

an (x − x0)
n has radius of convergence

ρ > 0 iff the following conditions hold:

(a) The series converges absolutely for |x − x0| < ρ;

(b) The series diverges for |x − x0| > ρ.

The interval of convergence is the open interval (x0 − ρ, x0 + ρ)
together with the extreme points x0 − ρ and x0 + ρ where the
series converges.

diverges

( )
x

diverges

0

rho

x

converges absolutely
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The ratio test for power series

Example

Determine the radius of convergence and the interval of

convergence of the power series y(x) =
∞∑

n=0

xn.

Solution: The power series y(x) is a geometric series for x ∈ R.

Geometric series converge for |x | < 1, and diverge for |x | > 1.

Hence the radius of convergence is ρ = 1.

For the interval of convergence we need to study y(1) and y(−1).

y(1) = 1 + 1 + 1 + 1 + · · · , y(−1) = 1− 1 + 1− 1 + 1− · · ·

Both series diverge, since their partial sums do not converge.

Then the interval of convergence is I = (−1, 1). C
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y(1) = 1 + 1 + 1 + 1 + · · · , y(−1) = 1− 1 + 1− 1 + 1− · · ·

Both series diverge, since their partial sums do not converge.

Then the interval of convergence is I = (−1, 1). C
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n=0
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∣∣∣. Denoting an =
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∣∣∣, then
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an
=

∣∣∣ xn+1

(n + 1)!

∣∣∣∣∣∣ n!

xn

∣∣∣ =
|xn| |x |
|xn|

n!

(n + 1)!
=

|x |
(n + 1)

→ 0

as n →∞, for all x ∈ R. The radius of convergence ρ = ∞. C

Remark: The interval of convergence is I = R.
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Power series (Sect. 10.7)

I Power series definition and examples.

I The radius of convergence.

I The ratio test for power series.

I Term by term derivation and integration.



The ratio test for power series

Theorem (Ratio test for power series)

Given the power series y(x) =
∞∑

n=0

cn (x − x0)
n, introduce the

number L = lim
n→∞

|cn+1|
|cn|

. Then, the following statements hold:

(1) The power series converges in the domain |x − x0|L < 1.

(2) The power series diverges in the domain |x − x0|L > 1.

(3) The power series may or may not converge at |x − x0|L = 1.

Therefore, if L 6= 0, then ρ =
1

L
is the series radius of convergence;

if L = 0, then the radius of convergence is ρ = ∞.

Proof:
∣∣∣cn+1(x − x0)

n+1

cn(x − x0)n

∣∣∣ = |x − x0|
|cn+1|
|cn|

→ |x − x0|L.
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The ratio test for power series

Example

Determine the radius of convergence of y(x) =
∞∑

n=0

xn

8n
.

Solution: Use the ratio test on the series
∞∑

n=0

an with an =
∣∣∣xn

8n

∣∣∣.
an+1

an
=

∣∣∣xn+1

8n+1

∣∣∣∣∣∣8n

xn

∣∣∣ =
|xn| |x |
|xn|

8n

8n 8
= |x | 1

8
→ |x |

8
as n →∞.

The ratio test says that the series with coefficients an =
∣∣∣xn

n

∣∣∣
converges if lim

n→∞

an+1

an
< 1, and diverges if lim

n→∞

an+1

an
> 1,

These are a conditions on x , since
|x |
8

= lim
n→∞

an+1

an
.

The series converges for |x | < 8 and diverges for |x | > 8.

The radius of convergence is ρ = 8. C
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The ratio test for power series

Example

Determine the radius of convergence of y(x) =
∞∑

n=0

xn

8n
.

Solution: Recall: The radius of convergence is ρ = 8

This means that for x ∈ (−8, 8) the power series converges,
and for x ∈ (−∞,−8) ∪ (8,∞) the series diverges.

We need to study the series for x = ±8.

x = 8 ⇒ y(8) =
∞∑

n=1

1 = 1 + 1 + 1 · · · , diverges.

x = 8 ⇒ y(−8) =
∞∑

n=1

(−1)n = 1− 1 + 1− 1 + · · · , diverges.

The interval of convergence is I = (−8, 8). C
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Power series (Sect. 10.7)

I Power series definition and examples.

I The radius of convergence.

I The ratio test for power series.

I Term by term derivation and integration.



Term by term derivation and integration

Theorem

If the power series y(x) =
∞∑

n=0

cn (x − x0)
n has radius of

convergence ρ > 0, then function y is both differentiable with
derivative

y ′(x) =
∞∑

n=1

ncn (x − x0)
(n−1),

and function y is integrable with primitive∫
y(x) dx =

∞∑
n=0

(x − x0)
(n+1)

(n + 1)
+ c ,

where both expressions above converge on (x0 − ρ, x0 + ρ).



Taylor Series (Sect. 10.8)

I Review: Power series define functions.

I Functions define power series.

I Taylor series of a function.

I Taylor polynomials of a function.



Review: Power series define functions

Remarks:

I Power series define functions on domains where the series
converge.

I Given a sequence {cn} and a number x0, the function

y(x) =
∞∑

n=0

cn (x − x0)
n is defined for every x ∈ R where the

series converges.

Example

1

1

)

y

x

y ( x ) =  1 / ( 1 − x )

(
−1

The power series y(x) =
∞∑

n=0

xn

converges to the function

f (x) =
1

1− x
only on the

domain given by |x | < 1. C
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Review: Power series define functions

Theorem (Term by term derivation and integration)

If the power series y(x) =
∞∑

n=0

cn (x − x0)
n has radius of

convergence ρ > 0, then function y is both differentiable with
derivative

y ′(x) =
∞∑

n=1

ncn (x − x0)
(n−1),

and function y is integrable with primitive∫
y(x) dx =
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n=0

(x − x0)
(n+1)

(n + 1)
+ c ,

where both expressions above converge on (x0 − ρ, x0 + ρ).



Taylor Series (Sect. 10.8)

I Review: Power series define functions.

I Functions define power series.

I Taylor series of a function.

I Taylor polynomials of a function.



Functions define power series

Theorem
If an infinitely differentiable function f : D ⊂ R → R has a power
series representation at a ∈ D with convergence radius ρ > 0,

f (x) =
∞∑

n=0

cn (x − a)n,

then the series coefficients are given by

cn =
f (n)(a)

n!
.

Remark: If we only assume that f is infinitely differentiable, we
can always construct the series

y(x) =
∞∑

n=0

f (n)(a)

n!
(x − a)n.

However, it is not clear whether this series converges at all, and if
it does, whether it satisfies that f (x) = y(x) for x 6= a.
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Functions define power series

Remark: The proof is simple because the assumptions are big.

Proof: Since the function f has a power series representation,

f (x) = c0 + c1 (x − a) + c2 (x − a)2 + c3 (x − a)3 + · · ·

we can differentiate on both sides many times,

f ′(x) = c1 + 2c2 (x − a) + 3c3 (x − a)2 + 4c4 (x − a)3 + · · ·
f ′′(x) = 2c2 + (3)(2)c3 (x − a) + (4)(3) (x − a)2 + · · ·

And evaluating the expressions above at x = a we have

f (a) = c0, f ′(a) = c1, f ′′(a) = 2c2, f (n)(a) = n! cn.

Therefore, cn =
f (n)(a)

n!
.
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Taylor Series (Sect. 10.8)

I Review: Power series define functions.

I Functions define power series.

I Taylor series of a function.

I Taylor polynomials of a function.



Taylor series of a function

Remark: The Theorem above suggests the following definition.

Definition
The Taylor series centered at a ∈ D of an infinitely differentiable
function f : D ⊂ R → R is given by

T (x) =
∞∑

n=0

f (n)(a)

n!
(x − a)n.

Remarks:

I Right now we have no idea whether the Taylor series of a
function has a positive radius of convergence.

I And even if the Taylor series has a positive radius of
convergence, we do not know if the series T converges to f .

I The particular case a = 0 is called the Maclaurin series.
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Taylor series of a function

Example

Find the Taylor series of the function f (x) =
1

x
centered at x = 3.

Solution: We need to compute the function derivatives,

f ′(x) = − 1

x2
, f ′′(x) =

2

x3
, f ′′′(x) = −(2)(3)

x4
,

therefore: f (n)(x) = (−1)n
n!

xn+1
. Evaluating at x = 3,

f (3) =
1

3
, f ′(3) = − 1

32
, f ′′(3) =

2

33
, f (n)(3) = (−1)n

n!

3n+1
,

f (n)(3)

n!
=

(−1)n

3n+1
, T (x) =

1

3
− 1

32
(x − 3) +

1

33
(x − 3)2 − · · · .

We conclude: T (x) =
∞∑

n=0

(−1)n

3n+1
(x − 3)n. C
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Taylor series of a function

Example

Find the radius of convergence ρ of the Taylor series T centered at

x = a of the function f (x) =
1

x
.

Solution: It is simple to see that T (x) =
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n=0

(−1)n

an+1
(x − a)n.

The ratio test on bn =
∣∣∣(−1)n

an+1
(x − a)n

∣∣∣ says that,

bn+1

bn
=
|x − a|n+1

an+2

an+1

|x − a|n
=
|x − a|

a
→ |x − a|

a
.

The condition lim
n→∞

bn+1

bn
< 1 implies

|x − a|
a

< 1,

that is |x − a| < a. We conclude that ρ = a. C
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Taylor Series (Sect. 10.8)

I Review: Power series define functions.

I Functions define power series.

I Taylor series of a function.

I Taylor polynomials of a function.



Taylor polynomials of a function

Remark: A truncated Taylor series is called a Taylor polynomial.

Definition
The Taylor polynomial of order n centered at a ∈ D of an
n-differentiable function f : D ⊂ R → R is given by

Tn(x) =
n∑

k=0

f (k)(a)

k!
(x − a)k .

Remarks:

I T1(x) = f (a) + f ′(a) (x − a) is the linearization of f .

I The Taylor polynomial is called of order n instead of degree n,
because f (n)(a) may vanish.

I The Taylor polynomial of order n centered at a = 0 is called
the n + 1 Maclaurin polynomial.
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Taylor polynomials of a function

Example

Find the first four Maclaurin polynomials of the function
f (x) = e3x .

Solution: Since f (n)(x) = 3n e3x , and the polynomials are centered
at a = 0, the first 4 Maclaurin polynomials are

T0, T1, T2, T3.

Since T3(x) = f (0) + f ′(0) x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3, then

T0(x) = 1, T1(x) = 1 + 3x , T2(x) = 1 + 3x +
32

2
x2,

T3(x) = 1 + 3x +
32

2
x2 +

33

6
x3. C
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f ′′′(x) = sin(x), f (4)(x) = cos(x), and then the derivatives repeat,

f (0) = 1, f ′(0) = 0, f ′′(0) = −1, f ′′′(0) = 0, f (4)(0) = 1.

Since Tn(x) = f (0) + f ′(0) x +
f ′′(0)
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xn, then
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Taylor polynomials of a function

Remark: The Taylor polynomial order n centered at any point
x = a of a polynomial degree n, say Pn, is the same polynomial.

That is, Tn(x) = Pn(x).

Example

Find the T2 centered at x = a of f (x) = x2 + x + 1.

Solution: Since f ′(x) = 2x + 1 and f ′′(x) = 2, then

f (a) = a2 + a + 1, f ′(a) = 2a + 1, f ′′(a) = 2.

Since T2(x) = f (a) + f ′(a) (x − a) +
f ′′(a)

2!
(x − a)2, then

T2(x) = (a2 + a + 1) + (2a + 1) (x − a) +
2

2
(x − a)2

T2(x) = (a2 + a + 1) + (2ax − 2a2 + x − a) + (x2 − 2ax + a2).

Hence T2(x) = 1 + x + x2. C
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Convergence of Taylor Series (Sect. 10.9)

I Review: Taylor series and polynomials.

I The Taylor Theorem.

I Using the Taylor series.

I Estimating the remainder.



Review: Taylor series and polynomials

Definition
The Taylor series and Taylor polynomial order n centered at a ∈ D
of a differentiable function f : D ⊂ R → R are given by

T (x) =
∞∑

k=0

f (k)(a)

k!
(x − a)k , Tn(x) =

n∑
k=0

f (k)(a)

k!
(x − a)k .

Remarks:

I The Taylor series may or may not converge.

I T1(x) = f (a) + f ′(a) (x − a) is the linearization of f .

I The Taylor polynomial is called of order n instead of degree n,
because f (n)(a) may vanish.

I The particular case a = 0 is called the Maclaurin series and
the n + 1 Maclaurin polynomial, respectively.
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Convergence of Taylor Series (Sect. 10.9)

I Review: Taylor series and polynomials.

I The Taylor Theorem.

I Using the Taylor series.

I Estimating the remainder.



The Taylor Theorem

Remark: The Taylor polynomial and Taylor series are obtained
from a generalization of the Mean Value Theorem:

If
f : [a, b] → R is differentiable, then there exits c ∈ (a, b) such that

f (b)− f (a)

(b − a)
= f ′(c) ⇔ f (b) = f (a) + f ′(c) (b − a).

Theorem (Taylor’s Theorem)

If f : [a, b] → R is (n + 1)-times continuously differentiable, then
there there exists c ∈ (a, b) such that

f (b) = f (a) + f ′(a) (b − a) +
f ′′(a)

2
(b − a)2 + · · ·

+
f (n)(a)

n!
(b − a)n +

f (n+1)(c)

(n + 1)!
(b − a)n+1.
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The Taylor Theorem

Remark: The Taylor Theorem is usually applied for a fixed point a,

while the point b = x is used as an independent variable:

f (x) = f (a) + f ′(a) (x − a) + · · ·+ f (n)(a)

n!
(x − a)n + Rn(x)

where the remainder function Rn is given by

Rn(x) =
f (n+1)

(
c(x)

)
(n + 1)!

(x − a)n+1, with c ∈ (a, x).

Remark: The point c ∈ (a, x) also depends on x .

Remark: We can use the Taylor polynomial to write that

f (x) = Tn(x) + Rn(x).
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The Taylor Theorem

Corollary

Let f : D → R be infinitely differentiable with Taylor polynomials
Tn and remainders Rn, that is, for n > 1 holds

f (x) = Tn(x) + Rn(x).

If Rn(x) → 0 as n →∞ for x ∈ D, then the Taylor series centered
at x = a converges on D to the function values f (x), that is,

f (x) =
∞∑

n=0

f (n)(a)

n!
(x − a)n.

Remark: Without knowing c(x) it is often possible to estimate

Rn(x) =
f (n+1)

(
c(x)

)
(n + 1)!

(x − a)n+1.
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Convergence of Taylor Series (Sect. 10.9)

I Review: Taylor series and polynomials.

I The Taylor Theorem.

I Using the Taylor series.

I Estimating the remainder.



Using the Taylor series

Example

Show that the Taylor series of f (x) = ex centered at a = 0
converges on R.

Solution: Since f (n)(x) = ex and a = 0, then f (n)(0) = 1, and

ex = 1 + x +
x2

2
+

x3

3!
+ · · ·+ xn

n!
+ Rn(x),

where Rn(x) = ec(x) xn+1

(n + 1)!
. Since f (x) is increasing,

|Rn(x)| = ec(x) |x |n+1

(n + 1)!
6 e |x |

|x |n+1

(n + 1)!
→ 0, as n →∞.

for every x ∈ R. Then ex =
∞∑

n=0

xn

n!
= 1 + x +

x2

2
+

x3

3!
+ · · · . C
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for y = x2,

ex2
=

∞∑
n=0

(x2)n
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x4
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+

x6
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+ · · · . C

Example

Find the Taylor series of f (x) = e−x2
centered at a = 0.

Solution: We substitute x2 by −(x2) in the example above,

e−x2
=

∞∑
n=0

(−x2)n

n!
=

∞∑
n=0

(−1)n
x2n

n!
= 1− x2 +

x4

2
− x6

3!
+ · · · .
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Using the Taylor series

Example

Find the Taylor series of f (x) =
3x2

(1− x)3
at a = 0 on (−1, 1).

Solution: The straightforward way is to compute the derivatives
f (n)(x). A simpler ways is to realize that

f (x) = 3x2
[ 1

(1− x)3

]
= 3x2 1

2

[ 1

(1− x)2

]′
=

3

2
x2

[ 1

(1− x)

]′′
Recall that for |x | < 1 holds

1

1− x
=

∞∑
n=0

xn. Hence,

f (x) =
3

2
x2

[ ∞∑
n=0

xn
]′′

=
3

2
x2

∞∑
n=2

n(n−1)xn−2 =
3

2

∞∑
n=2

n(n−1)xn.

We conclude: f (x) =
3

2

[
2x2 + (3)(2)x3 + (4)(3)x4 + · · ·

]
. C
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y ′′′(x) = sin(x), y (4)(x) = cos(x), and then the derivatives repeat,

y(0) = 1, y ′(0) = 0, y ′′(0) = −1, y ′′′(0) = 0, y (4)(0) = 1.

Then, cos(x) = 1− x2

2
+
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Convergence of Taylor Series (Sect. 10.9)

I Review: Taylor series and polynomials.

I The Taylor Theorem.

I Using the Taylor series.

I Estimating the remainder.



Estimating the remainder

Theorem
Let f : D → R be infinitely differentiable with Taylor polynomials
Tn and remainders Rn centered at a ∈ D, that is, for n > 1 holds

f (x) = Tn(x) + Rn(x).

If |f (n+1)(y)| 6 M for all y such that |y − a| 6 |x − a|, then

|Rn(x)| 6 M
|x − a|n+1

(n + 1)!
.

Furthermore, if the inequality above holds for every n > 1, then the
Taylor series T (x) converges to f (x).
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Estimating the remainder

Example

Estimate the maximum error made in approximating f (x) = ex by

T2(x) = 1 + x +
x2

2
over the interval [−2, 2].

Solution: We use the formula |Rn(x)| 6 M
|x − a|n+1

(n + 1)!
, for a = 0,

where M satisfies |f (n+1)(y)| 6 M, for |y | 6 |2− 0| = 2.

Since f (x) = ex , and n = 2, and f (3)(x) = ex , then

|f (3)(y)| 6 e2 = M for |y − 0| 6 |2− 0| = 2.

Therefore, the smallest bound for R2 in [−2, 2] is

|R2(x)| 6 e2 |x |3

3!
6 e2 2

6
⇒ |R2(x)| 6 e2

3
. C
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