Power series (Sect. 10.7)

» Power series definition and examples.
» The radius of convergence.
» The ratio test for power series.

» Term by term derivation and integration.
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Definition
A power series centered at xp is the function y : D C R — R

y(x) = Z cn (x — x0)", cn € R.
n=0

Remarks:

» An equivalent expression for the power series is

y(x) = C0+C1(X—Xo)+C2(X—Xo)2+C3(X—X0)3+"'
o0
> A power series centered at xp = 0 is y(x) = Z cn X", that is,
n=0

y(X):CO+C1X+C2X2+C3X3_|—....

» The domain D = {x € R : y(x) converges.}
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Example

The simplest example is xg =0, ¢, = 1, that is
[oe)
Y0 = 3o =Tk
n=0
For every x € R this is a geometric series.

Geometric series converge iff [x| < 1. and in that case:
1

1+x+x2+x3+--'zﬁ, x| < 1.

We conclude that for |x| < 1 holds

1 2 3 1 _OC n
y(x):::1+x+x +x7- = 1_X—Zox.
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Power series definition and examples

Remark: The power series of a function may not be defined on the
whole domain of the function.

Example

1
The function y(x) = 1 is defined for x € R — {1}.

. The power series
Cy(x)=1/(1-x)

. 1 >~ .

1 :1 X -
/ converges only for |x| < 1.
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n=0
p = 0 iff the following conditions hold:
(a) The series converges absolutely for |x — xg| < p;

(b) The series diverges for |x — xp| > p.

The interval of convergence is the open interval (xo — p, xo + p)
together with the extreme points xg — p and xp + p where the
series converges.

diverges converges absolutely  diverges

‘ ( ‘ )
! C ! 7
Xo X

rho



The ratio test for power series

Example
Determine the radius of convergence and the interval of

oo

. n

convergence of the power series y(x) = E x".
n=0



The ratio test for power series

Example
Determine the radius of convergence and the interval of

oo

. n

convergence of the power series y(x) = E x".
n=0

Solution: The power series y(x) is a geometric series for x € R.



The ratio test for power series

Example
Determine the radius of convergence and the interval of

oo

. n

convergence of the power series y(x) = E x".
n=0

Solution: The power series y(x) is a geometric series for x € R.

Geometric series converge for |x| < 1,



The ratio test for power series

Example
Determine the radius of convergence and the interval of

oo
convergence of the power series y(x) = E x".
n=0

Solution: The power series y(x) is a geometric series for x € R.

Geometric series converge for |x| < 1, and diverge for |x| > 1.



The ratio test for power series

Example
Determine the radius of convergence and the interval of

oo
convergence of the power series y(x) = E x".
n=0

Solution: The power series y(x) is a geometric series for x € R.
Geometric series converge for |x| < 1, and diverge for |x| > 1.

Hence the radius of convergence is p = 1.



The ratio test for power series
Example
Determine the radius of convergence and the interval of

oo
convergence of the power series y(x) = E x".
n=0

Solution: The power series y(x) is a geometric series for x € R.
Geometric series converge for |x| < 1, and diverge for |x| > 1.
Hence the radius of convergence is p = 1.

For the interval of convergence we need to study y(1) and y(—1).



The ratio test for power series

Example
Determine the radius of convergence and the interval of

oo
convergence of the power series y(x) = E x".
n=0

Solution: The power series y(x) is a geometric series for x € R.
Geometric series converge for |x| < 1, and diverge for |x| > 1.
Hence the radius of convergence is p = 1.

For the interval of convergence we need to study y(1) and y(—1).

y()=1+1+1414---,



The ratio test for power series

Example
Determine the radius of convergence and the interval of

oo
convergence of the power series y(x) = E x".
n=0

Solution: The power series y(x) is a geometric series for x € R.
Geometric series converge for |x| < 1, and diverge for |x| > 1.
Hence the radius of convergence is p = 1.

For the interval of convergence we need to study y(1) and y(—1).

y(1)=1+141+1+---, y(-1)=1-141-141—---



The ratio test for power series

Example
Determine the radius of convergence and the interval of

oo
convergence of the power series y(x) = E x".
n=0

Solution: The power series y(x) is a geometric series for x € R.
Geometric series converge for |x| < 1, and diverge for |x| > 1.
Hence the radius of convergence is p = 1.

For the interval of convergence we need to study y(1) and y(—1).
y(1)=1+141+1+---, y(-1)=1-141-141—---

Both series diverge,



The ratio test for power series

Example
Determine the radius of convergence and the interval of

oo
convergence of the power series y(x) = E x".
n=0

Solution: The power series y(x) is a geometric series for x € R.
Geometric series converge for |x| < 1, and diverge for |x| > 1.
Hence the radius of convergence is p = 1.

For the interval of convergence we need to study y(1) and y(—1).
y(1)=1+141+1+---, y(-1)=1-141-141—---

Both series diverge, since their partial sums do not converge.
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Example
Determine the radius of convergence and the interval of

oo
convergence of the power series y(x) = E x".
n=0

Solution: The power series y(x) is a geometric series for x € R.
Geometric series converge for |x| < 1, and diverge for |x| > 1.
Hence the radius of convergence is p = 1.

For the interval of convergence we need to study y(1) and y(—1).
y(1)=1+141+1+---, y(-1)=1-141-141—---

Both series diverge, since their partial sums do not converge.

Then the interval of convergence is | = (—1,1). <
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This means that for x € (—1,1) the power series converges,
and for x € (—o0, —1) U (1, 00) the series diverges.
We need to study the series for x = +1.

> .1 11
x=1= y(l):Z(—l) ;:—(1—§+§—---), converges.
n=1

S U |
x=-1= y(—l):Z(—l) p :1+§+§+-~- , diverges.
n=1

The interval of convergence is | = (—1,1]. <
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» Power series definition and examples.
» The radius of convergence.
» The ratio test for power series.
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The ratio test for power series

Theorem (Ratio test for power series)

o0
Given the power series y(x) = Z cn (x — x0)", introduce the
n=0

number L = lim ‘C"H‘
n—co [cpl

. Then, the following statements hold:
(1) The power series converges in the domain |x — xg|L < 1.
(2) The power series diverges in the domain |x — xg|L > 1.

(3) The power series may or may not converge at |x — xp|L = 1.
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Given the power series y(x) = Z cn (x — x0)", introduce the
n=0

number L = lim ‘C"H‘
n—co [cpl

. Then, the following statements hold:
(1) The power series converges in the domain |x — xg|L < 1.
(2) The power series diverges in the domain |x — xg|L > 1.

(3) The power series may or may not converge at |x — xp|L = 1.

1
Therefore, if L # 0, then p = 7 is the series radius of convergence;

if L =0, then the radius of convergence is p = c0.



The ratio test for power series

Theorem (Ratio test for power series)

o0
Given the power series y(x) = Z cn (x — x0)", introduce the
n=0

number L = lim ‘C"H‘
n—co [cpl

. Then, the following statements hold:
(1) The power series converges in the domain |x — xg|L < 1.
(2) The power series diverges in the domain |x — xg|L > 1.

(3) The power series may or may not converge at |x — xp|L = 1.

1
Therefore, if L # 0, then p = 7 is the series radius of convergence;

if L =0, then the radius of convergence is p = c0.

cor1(x — x0)"
cn(x — x0)"

’Cn—kl‘

Proof:
|l
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The ratio test for power series

Example
o0 Xn
Determine the radius of convergence of y(x) = g

n=0
n

8!7

o0
Solution: Use the ratio test on the series Z ap with a, =
n=0




The ratio test for power series

Example
o0 Xn
Determine the radius of convergence of y(x) = g

n=0
n

8!7

o0
Solution: Use the ratio test on the series Z ap with a, =
n=0

an+1
dn




The ratio test for power series

Example
Xn

[e.9]
Determine the radius of convergence of y(x) = Z &

n=0
o n
Solution: Use the ratio test on the series Z ap with a, = 3
n=0
ant1 Xn+1 8"
= e= s



The ratio test for power series

Example
oo Xn
Determine the radius of convergence of y(x) = —.
8n
n=0
o n
Solution: Use the ratio test on the series Z ap with a, = 3
n=0
ant1 Xn+1H8n _ ’X"‘ ‘X| 8n
a, I18mtllixn| — |xn| 88




The ratio test for power series

Example
oo Xn
Determine the radius of convergence of y(x) = —.
8n
n=0
o n
Solution: Use the ratio test on the series Z ap with a, = |—|.
n=0 8"
any1  |x"L H8" x| |x| 8" X 1
= _— = = | X| —
an 8+l | xn |x"| 88 8




The ratio test for power series

Example
oo Xn
Determine the radius of convergence of y(x) = g
n=0
o n
Solution: Use the ratio test on the series Z ap with a, = |—|.
n=0 8"
any1  |x"L H8" x| |x| 8" X 1 x|
= — | = =|x|= — — asn— .
an 8+l | xn |x"| 88 8 8



The ratio test for power series

Example
oo Xn
Determine the radius of convergence of y(x) = g
n=0
o0 Xn
Solution: Use the ratio test on the series Z ap with a, = |—|.
n=0 8"
an+1 x"1 H8" |x"| x| 8" X 1 |x]
_ 2= =|x|= — —=— asn— oo.
an 8+l | xn |x"| 88 8 8

: . - x"

The ratio test says that the series with coefficients a, = ‘—
n

an+1

converges if lim <1,

n—oo  ap



The ratio test for power series

Example
oo Xn
Determine the radius of convergence of y(x) = g
n=0
o0 Xn
Solution: Use the ratio test on the series Z ap with a, = |—|.
n=0 8"
an+1 x"1 H8" |x"| x| 8" X 1 |x]
_ 2= =|x|= — —=— asn— oo.
an 8+l | xn |x"| 88 8 8

: . - x"
The ratio test says that the series with coefficients a, = ‘—
n

- an+1 . -
converges if lim “X < 1, and diverges if lim
n—oo  a, n—oo a,

an+1

> 1,



The ratio test for power series

Example
oo Xn
Determine the radius of convergence of y(x) = g
n=0
o0 Xn
Solution: Use the ratio test on the series Z ap with a, = |—|.
n=0 8"
an+1 x"1 H8" |x"| x| 8" X 1 |x]
_ 2= =|x|= — —=— asn— oo.
an 8+l | xn |x"| 88 8 8

: . - x"

The ratio test says that the series with coefficients a, = ‘—
n

an+1

a
converges if lim “™ < 1, and diverges if lim > 1,

n—oo  ap n—oo ap

These are a conditions on x,



The ratio test for power series

Example
oo Xn
Determine the radius of convergence of y(x) = g
n=0
o0 Xn
Solution: Use the ratio test on the series Z ap with a, = |—|.
n=0 8"
3n+1 - ’Xn| ‘X| 8" | |
‘8"+1H = e gs X " F I

an+1

. . 1 . . .
converges if lim R 1, and diverges if lim > 1,
n—oo  ap n—oo ap
L. . X . dn+1
These are a conditions on x, since u — lim 2L
8 n—oo a,



The ratio test for power series

Example
oo Xn
Determine the radius of convergence of y(x) = g
n=0
o0 Xn
Solution: Use the ratio test on the series Z ap with a, = |—|.
n=0 8"
3n+1 - ’Xn| ‘X| 8" | |
‘8"+1H = e gs X " F I

an+1

. . 1 . . .
converges if lim R 1, and diverges if lim > 1,
n—oo  ap n—oo ap
L. . X . dn+1
These are a conditions on x, since u — lim 2L
8 n—oo a,

The series converges for |x| < 8



The ratio test for power series

Example
oo Xn
Determine the radius of convergence of y(x) = g
n=0
o0 Xn
Solution: Use the ratio test on the series Z ap with a, = |—|.
n=0 8"
3n+1 - ’Xn| ‘X| 8" | |
‘8"+1H = e gs X " F I

e - 1 . e - an+1
converges if lim R 1, and diverges if lim ntl o 1,
n—oo  an n—oo ap
L. . X . dn+1
These are a conditions on x, since u — lim 2L
8 n—oo a,

The series converges for |x| < 8 and diverges for |x| > 8.



The ratio test for power series

Example
oo Xn
Determine the radius of convergence of y(x) = g
n=0
o0 Xn
Solution: Use the ratio test on the series Z ap with a, = |—|.
n=0 8"
3n+1 - ’Xn| ‘X| 8" | |
‘8"+1H = e gs X " F I

e - 1 . e - an+1
converges if lim R 1, and diverges if lim ntl o 1,
n—oo  an n—oo ap
L. . X . dn+1
These are a conditions on x, since u — lim 2L
8 n—oo a,

The series converges for |x| < 8 and diverges for |x| > 8.

The radius of convergence is p = 8.
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Determine the radius of convergence of y(x) = g
n=0



The ratio test for power series

Example

> on

, . X

Determine the radius of convergence of y(x) = o
n=0

Solution: Recall: The radius of convergence is p = 8



The ratio test for power series

Example
o0
X

Determine the radius of convergence of y(x) = o
n=0
Solution: Recall: The radius of convergence is p = 8

n

This means that for x € (—8,8) the power series converges,



The ratio test for power series

Example
[ee] Xn
Determine the radius of convergence of y(x) = o
n=0

Solution: Recall: The radius of convergence is p = 8

This means that for x € (—8,8) the power series converges,
and for x € (—o0, —8) U (8, 00) the series diverges.



The ratio test for power series

Example

o) n

X
Determine the radius of convergence of y(x) = o

n=0
Solution: Recall: The radius of convergence is p = 8

This means that for x € (—8,8) the power series converges,
and for x € (—o0, —8) U (8, 00) the series diverges.

We need to study the series for x = +£8.

x=8 = y8)= 21_1+1+1



The ratio test for power series

Example

o) n

X
Determine the radius of convergence of y(x) = o

n=0
Solution: Recall: The radius of convergence is p = 8

This means that for x € (—8,8) the power series converges,
and for x € (—o0, —8) U (8, 00) the series diverges.

We need to study the series for x = +£8.

x=8 = y(8)= 21_1+1+1 , diverges.



The ratio test for power series

Example

o) n

X
Determine the radius of convergence of y(x) = o

n=0
Solution: Recall: The radius of convergence is p = 8

This means that for x € (—8,8) the power series converges,
and for x € (—o0, —8) U (8, 00) the series diverges.

We need to study the series for x = +£8.

x=8 = y(8)= 21_1+1+1 , diverges.

o0

x=8 = y(-8)=) (-1)"=1-1+1-1+4---,
n=1



The ratio test for power series

Example

o) n

X
Determine the radius of convergence of y(x) = o

n=0
Solution: Recall: The radius of convergence is p = 8

This means that for x € (—8,8) the power series converges,
and for x € (—o0, —8) U (8, 00) the series diverges.

We need to study the series for x = +£8.

x=8 = y(8)= 21_1+1+1 , diverges.

o0

x=8 = y(—8):Z(—1)”:1—1+1—1+---, diverges.

n=1



The ratio test for power series

Example

o) n

X
Determine the radius of convergence of y(x) = o

n=0
Solution: Recall: The radius of convergence is p = 8

This means that for x € (—8,8) the power series converges,
and for x € (—o0, —8) U (8, 00) the series diverges.

We need to study the series for x = +£8.

x=8 = y(8)= 21_1+1+1 , diverges.

o0

x=8 = y(—8):Z(—1)”:1—1+1—1+---, diverges.

n=1

The interval of convergence is | = (—8,8).
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Term by term derivation and integration

Theorem

If the power series y(x Z ¢n (x — x0)" has radius of

n=0
convergence p > 0, then function y is both differentiable with

derivative
[o.¢]
E ncp (x — xo) (n=1),

n=1

and function y is integrable with primitive

n+1)

L (x — xp)(
[ra= Y B e

where both expressions above converge on (xo — p, xo + p).
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Remarks:
» Power series define functions on domains where the series
converge.

» Given a sequence {c,} and a number xp, the function
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y(x) = Z ¢n (x — x0)" is defined for every x € R where the

n=0
series converges.



Review: Power series define functions

Remarks:
» Power series define functions on domains where the series
converge.

» Given a sequence {c,} and a number xp, the function
o0

y(x) = Z ¢n (x — x0)" is defined for every x € R where the

n=0
series converges.

Example
y oo
: The power series y(x) = Zx”
E y(x)=1/(1-x) n=0
. .
—_— ;
o 11/ X



Review: Power series define functions

Remarks:
» Power series define functions on domains where the series
converge.

» Given a sequence {c,} and a number xp, the function
o0

y(x) = Z ¢n (x — x0)" is defined for every x € R where the

n=0
series converges.

Example
y oo
: The power series y(x) = Zx”
Py (0= 1/(1-x) =0
. ; converges to the function
—_— ; ¢ 1
-1 11 X) =
| / ' P=1



Review: Power series define functions

Remarks:

» Power series define functions on domains where the series
converge.

» Given a sequence {c,} and a number xp, the function
o0
y(x) = Z ¢n (x — x0)" is defined for every x € R where the

n=0
series converges.

Example
y oo
; The power series y(x) = Zx”
Py ()= 1/(1-%) =0
. ; converges to the function
— f L only on th
-+ e x X) = only on the
5 (x) = — only
; domain given by |x| < 1. <



Review: Power series define functions

Theorem (Term by term derivation and integration)

If the power series y(x) = Z ¢n(x — x0)" has radius of
n=0

convergence p > 0, then function y is both differentiable with
derivative

Y(x) =3 ncy (x = x0) ",
n=1

and function y is integrable with primitive
o0
(x — Xo)(n+1)
dx = —_—
/y(x) X Z (n+1) +c,

n=0

where both expressions above converge on (xg — p, X0 + p).
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» Taylor series of a function.

» Taylor polynomials of a function.



Functions define power series

Theorem
If an infinitely differentiable function f : D C R — R has a power
series representation at a € D with convergence radius p > 0,

f(x) = Z cn(x —a)",
n=0

then the series coefficients are given by

_f(")(a)
- oonl

Cn



Functions define power series

Theorem
If an infinitely differentiable function f : D C R — R has a power
series representation at a € D with convergence radius p > 0,

oo
f(x)= Z cn (x —a)",
n=0
then the series coefficients are given by

_ (" (a)

Cnh |
n:

Remark: If we only assume that f is infinitely differentiable,



Functions define power series

Theorem
If an infinitely differentiable function f : D C R — R has a power
series representation at a € D with convergence radius p > 0,

oo
f(x)= Z cn (x —a)",
n=0
then the series coefficients are given by

_ (" (a)

Cnh |
n:

Remark: If we only assume that f is infinitely differentiable, we
can always construct the series

> £(n)
o) =3 @) oy

n=0




Functions define power series

Theorem
If an infinitely differentiable function f : D C R — R has a power
series representation at a € D with convergence radius p > 0,

oo
f(x)= Z cn (x —a)",
n=0
then the series coefficients are given by

_f(")(a)
- oonl

Cn

Remark: If we only assume that f is infinitely differentiable, we
can always construct the series

o0
f(")(a)
yx) =Y (x —a)"
n=0
However, it is not clear whether this series converges at all,




Functions define power series

Theorem
If an infinitely differentiable function f : D C R — R has a power
series representation at a € D with convergence radius p > 0,

oo
f(x)= Z cn (x —a)",
n=0
then the series coefficients are given by

_f(")(a)
- oonl

Cn

Remark: If we only assume that f is infinitely differentiable, we
can always construct the series

o0
£f(n)(a
v =3 T ey
n=0
However, it is not clear whether this series converges at all, and if
it does, whether it satisfies that f(x) = y(x) for x # a.
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Remark: The proof is simple because the assumptions are big.
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we can differentiate on both sides many times,
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'(x) = 2c2 + (3)(2)cs (x — a) + (4)(3) (x — a)* + - --
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Functions define power series
Remark: The proof is simple because the assumptions are big.
Proof: Since the function f has a power series representation,
fX)=a+a(x—a)+a(x—a)y +ax—a)l+---
we can differentiate on both sides many times,

f'(x)=c1+2c(x —a)+3c3(x —a)> +4c (x —a)* +---
'(x) = 2c2 + (3)(2)cs (x — a) + (4)(3) (x — a)* + - --

And evaluating the expressions above at x = a we have

f(a) = o,



Functions define power series
Remark: The proof is simple because the assumptions are big.
Proof: Since the function f has a power series representation,
fX)=a+a(x—a)+a(x—a)y +ax—a)l+---
we can differentiate on both sides many times,

f'(x)=c1+2c(x —a)+3c3(x —a)> +4c (x —a)* +---
'(x) = 2c2 + (3)(2)cs (x — a) + (4)(3) (x — a)* + - --

And evaluating the expressions above at x = a we have

f(a) =c, f'(a)=ci,



Functions define power series
Remark: The proof is simple because the assumptions are big.
Proof: Since the function f has a power series representation,
fX)=a+a(x—a)+a(x—a)y +ax—a)l+---
we can differentiate on both sides many times,

f'(x)=c1+2c(x —a)+3c3(x —a)> +4c (x —a)* +---
'(x) = 2c2 + (3)(2)cs (x — a) + (4)(3) (x — a)* + - --

And evaluating the expressions above at x = a we have

f(a)=c, f'(a)=c1, f"(a)=2c,



Functions define power series
Remark: The proof is simple because the assumptions are big.
Proof: Since the function f has a power series representation,
fX)=a+a(x—a)+a(x—a)y +ax—a)l+---
we can differentiate on both sides many times,

f'(x)=c1+2c(x —a)+3c3(x —a)> +4c (x —a)* +---
'(x) = 2c2 + (3)(2)cs (x — a) + (4)(3) (x — a)* + - --

And evaluating the expressions above at x = a we have
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Functions define power series
Remark: The proof is simple because the assumptions are big.
Proof: Since the function f has a power series representation,
fX)=a+a(x—a)+a(x—a)y +ax—a)l+---
we can differentiate on both sides many times,

f'(x)=c1+2c(x —a)+3c3(x —a)> +4c (x —a)* +---
'(x) = 2c2 + (3)(2)cs (x — a) + (4)(3) (x — a)* + - --

And evaluating the expressions above at x = a we have
f(a)=co, f(a)=ac1, f"(a)=2c, FI(a)=nlcn

f(”)(a)

n!

Therefore, ¢, =
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Taylor series of a function

Remark: The Theorem above suggests the following definition.
Definition

The Taylor series centered at a € D of an infinitely differentiable
function f : D C R — R is given by

% ()5
T =S @) oy
n=0

n:

Remarks:
» Right now we have no idea whether the Taylor series of a
function has a positive radius of convergence.

» And even if the Taylor series has a positive radius of
convergence, we do not know if the series T converges to f.

» The particular case a = 0 is called the Maclaurin series.
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Taylor series of a function

Example

1
Find the Taylor series of the function f(x) = = centered at x = 3.
X

Solution: We need to compute the function derivatives,

1 2
f,(X) = —;, f”(X) = ;,
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Example
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X

Solution: We need to compute the function derivatives,

f’(x) _ _%, f”(X) _ %, f’”(x) _ _(2)(3)

x4



Taylor series of a function

Example

1
Find the Taylor series of the function f(x) = = centered at x = 3.
X

Solution: We need to compute the function derivatives,

f’(x) _ _%, f”(X) _ %, f’”(x) _ _(2)(3)

n!
Xn+1 '

x4

therefore: (" (x) = (—1)"



Taylor series of a function

Example

1
Find the Taylor series of the function f(x) = = centered at x = 3.
X

Solution: We need to compute the function derivatives,

f’(x) _ _%, f”(X) _ %, f/”(X) _ _(2)(3)

x4
|

n! .
therefore: (" (x) = (—1)"W. Evaluating at x = 3,



Taylor series of a function

Example

1
Find the Taylor series of the function f(x) = = centered at x = 3.
X

Solution: We need to compute the function derivatives,
1 2 (2)(3)
! _ " _ " _
f(X)——;7 f(X)—;a f(x) = —

n! .
therefore: (" (x) = (—1)"W. Evaluating at x = 3,

x4

1 1
@=3 =3



Taylor series of a function

Example

1
Find the Taylor series of the function f(x) = = centered at x = 3.
X

Solution: We need to compute the function derivatives,

f’(x) _ _i f”(X) _ %, f/”(X) _ _(2)(3)

x2’
|

n!
therefore: (" (x) = (_l)anJrl Evaluating at x = 3,

x4

1 1 2

f(3) = 3’ f/(3) T3 fﬂ(3) = 33



Taylor series of a function

Example

1
Find the Taylor series of the function f(x) = = centered at x = 3.
X

Solution: We need to compute the function derivatives,

f’(x) _ _i f”(X) _ %, f/”(X) _ _(2)(3)

x2’
|

n!
therefore: (" (x) = (_l)anJrl Evaluating at x = 3,

x4
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Example

1
Find the Taylor series of the function f(x) = = centered at x = 3.
X

Solution: We need to compute the function derivatives,

f’(x) _ _%, f”(X) _ %, f/”(X) _ _(2))(53)
!

n!
therefore: (" (x) = (_l)anJrl Evaluating at x = 3,

bl

1 1 2 n , n!
f(3) = 3’ f/(3) = T3 fﬂ(3) 237 f )(3) =(-1) 3n+1’

FE) _ (1)

nl 30l




Taylor series of a function

Example

1
Find the Taylor series of the function f(x) = = centered at x = 3.
X

Solution: We need to compute the function derivatives,

f’(x) _ _%, f”(X) _ %, f/”(X) _ _(2))(53)
!

n!
therefore: (" (x) = (_l)anJrl Evaluating at x = 3,

bl

nl

f(3) - g’ f/(3) -3 f//(3) 237 f(n)(?’) = (_]‘)nW7

= T =550 3)+§3(x—3)2—-~.



Taylor series of a function

Example

1
Find the Taylor series of the function f(x) = = centered at x = 3.
X

Solution: We need to compute the function derivatives,

f’(x) — _i f”(x) _ %7 f/”(x) _ _(2))(23)

x2’
|

n!
therefore: (" (x) = (_l)anJrl Evaluating at x = 3,

bl

1 1 2 n , nl
fB)=3 FB)=-53 FO=5 F6)=(15
F(M(3)  (-1)" 1 1 1

n!():(3”+)1' T(X):g_?(X—?J)—F?(X—?)y—
We conclude: T (x) = () (x —3)" <
’ 3n+1
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Find the radius of convergence p of the Taylor series T centered at
x = a of the function f(x) = -
. o = (-1)"
Solution: It is simple to see that T(x) = Z (an+1
n=0

(x — a)".
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Example
Find the radius of convergence p of the Taylor series T centered at

x = a of the function f(x) = —.
X

o0
—1)"
Solution: It is simple to see that T(x) = Z (a”+)1 (x —a)".
n=0
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n) gn+l y '

bn+1 - |X _ a|n+1 an—i—l

b, a"2 |x—al"




Taylor series of a function

Example
Find the radius of convergence p of the Taylor series T centered at

x = a of the function f(x) = —.
X

o0
—1)n
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Example
Find the radius of convergence p of the Taylor series T centered at

x = a of the function f(x) = —.
X

o0
—1)"
Solution: It is simple to see that T(x) = Z (a”+)1 (x —a)".
n=0
: (_1)n n
The ratio test on b, = prEs] (x — a)"| says that,
bny1  |x— g™t amtl _ |x — al B |x — a\'

b, a"2 |x—al" a a



Taylor series of a function

Example
Find the radius of convergence p of the Taylor series T centered at
x = a of the function f(x) = -

0 n

Solution: It is simple to see that T(x Z
n=0

n
an+1 X_ a) :

(="

. o _\n
The ratio test on b, = prEs] (x —a)

says that,

bpi1  |x—al"tt antt Ix —al |x—4
_ _ . '

b, a"2 |x—al" a a

x —al
a

bn+1

The condition |im <1,

n—oo

< 1 implies
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Taylor series of a function

Example
Find the radius of convergence p of the Taylor series T centered at

x = a of the function f(x) = —.
X

(=1
Solution: It is simple to see that T(x) = Z (x —a)".

+1
n=0 ar
The ratio test b—(_l)n(—)" that
e ratio test on by = |75~ (x — a)”| says that,
bpi1  |x—al"tt antt Ix —al |x—4
= = — .
b, amt2  |x —al" a a
- . bn+1 . . |X - 3|
The condition |im < 1 implies —— < 1,

n—oo n

that is |x — a| < a.



Taylor series of a function

Example
Find the radius of convergence p of the Taylor series T centered at

x = a of the function f(x) = —.
X

(=1
Solution: It is simple to see that T(x) = Z (x —a)".

+1
n=0 ar
The ratio test b—(_l)n(—)" that
e ratio test on by = |75~ (x — a)”| says that,
bpi1  |x—al"tt antt Ix —al |x—4
= = — .
b, amt2  |x —al" a a
- . bn+1 . . |X - 3|
The condition |im < 1 implies —— < 1,

n—oo n

that is |x — a| < a. We conclude that p = a. <



Taylor Series (Sect. 10.8)

» Review: Power series define functions.
» Functions define power series.
» Taylor series of a function.

» Taylor polynomials of a function.
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n-differentiable function f : D C R — R is given by
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Taylor polynomials of a function

Remark: A truncated Taylor series is called a Taylor polynomial.

Definition
The Taylor polynomial of order n centered at a € D of an
n-differentiable function f : D C R — R is given by

" (k) (4
T =30 T

k=0

Remarks:
» Ti(x) = f(a) + f'(a) (x — a) is the linearization of f.

» The Taylor polynomial is called of order n instead of degree n,
because £("(a) may vanish.

» The Taylor polynomial of order n centered at a = 0 is called
the n+ 1 Maclaurin polynomial.
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Example

Find the first four Maclaurin polynomials of the function
f(x) = .

Solution: Since f("(x) = 3" 3%, and the polynomials are centered
at a = 0, the first 4 Maclaurin polynomials are

To, Ti, T2, Ts.

r(0) o, £"(0)
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Taylor polynomials of a function

Example

Find the first four Maclaurin polynomials of the function
f(x) = .

Solution: Since f("(x) = 3" 3%, and the polynomials are centered
at a = 0, the first 4 Maclaurin polynomials are

To, Ti, T2, Ts.

r(0) o, £"(0)

3
1 3l x>, then

Since T3(x) = f(0) + f'(0) x +

2

3
To(x)=1, Ti(x)=1+3x, Tr(x)=1+3x+ ?X27



Taylor polynomials of a function

Example

Find the first four Maclaurin polynomials of the function
f(x) = .

Solution: Since f("(x) = 3" 3%, and the polynomials are centered
at a = 0, the first 4 Maclaurin polynomials are

To, Ti, T2, Ts.

i £
Since T3(x) = £(0) + £'(0) x + 2(|O) X+ 3(|0) x3, then
32
To(x)=1, Ti(x)=1+3x, Tr(x)=1+3x+ ?X27
32 33
T3(x) = 143x+ 5 x° + = x°. <

2 6
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Example
Find the first seven Maclaurin polynomials of f(x) = cos(x).

Solution: f(x) = cos(x), f'(x) = —sin(x), f”(x) = —cos(x),
f(x) = sin(x), f®)(x) = cos(x),
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Taylor polynomials of a function

Example

Find the first seven Maclaurin polynomials of f(x) = cos(x).
Solution: f(x) = cos(x), f'(x) = —sin(x), f”(x) = —cos(x),
f(x) = sin(x), f*)(x) = cos(x), and then the derivatives repeat,

£(0) = 1,
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Example

Find the first seven Maclaurin polynomials of f(x) = cos(x).
Solution: f(x) = cos(x), f'(x) = —sin(x), f”(x) = —cos(x),
f(x) = sin(x), f*)(x) = cos(x), and then the derivatives repeat,

F0)=1, f(0)=0,
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Example

Find the first seven Maclaurin polynomials of f(x) = cos(x).
Solution: f(x) = cos(x), f'(x) = —sin(x), f”(x) = —cos(x),
f(x) = sin(x), f*)(x) = cos(x), and then the derivatives repeat,

FO)=1, £(0)=0, f"(0)=-1,
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Example

Find the first seven Maclaurin polynomials of f(x) = cos(x).
Solution: f(x) = cos(x), f'(x) = —sin(x), f”(x) = —cos(x),
f(x) = sin(x), f*)(x) = cos(x), and then the derivatives repeat,

F0)=1, f(0)=0, f"(0)=-1, f£"(0)=0,
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Example

Find the first seven Maclaurin polynomials of f(x) = cos(x).
Solution: f(x) = cos(x), f'(x) = —sin(x), f”(x) = —cos(x),
f(x) = sin(x), f*)(x) = cos(x), and then the derivatives repeat,

f0)=1, f(0)=0, f"(0)=-1, f"(0)=0, fH0)=1.
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Example

Find the first seven Maclaurin polynomials of f(x) = cos(x).
Solution: f(x) = cos(x), f'(x) = —sin(x), f”(x) = —cos(x),
f(x) = sin(x), f*)(x) = cos(x), and then the derivatives repeat,
f0)=1, f(0)=0, f"(0)=-1, f"(0)=0, fH0)=1.
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o Xt
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Taylor polynomials of a function

Example

Find the first seven Maclaurin polynomials of f(x) = cos(x).
Solution: f(x) = cos(x), f'(x) = —sin(x), f”(x) = —cos(x),
f(x) = sin(x), f*)(x) = cos(x), and then the derivatives repeat,
fO)=1, f(0)=0, f"(0)=-1, f"(0)=0, fW(0)=1.

f"(0) f(n)(0)
2! X ol

Since T,(x) = f(0) + f'(0) x +

To(x)=1



Taylor polynomials of a function

Example

Find the first seven Maclaurin polynomials of f(x) = cos(x).
Solution: f(x) = cos(x), f'(x) = —sin(x), f”(x) = —cos(x),
f(x) = sin(x), f*)(x) = cos(x), and then the derivatives repeat,
fO)=1, f(0)=0, f"(0)=-1, f"(0)=0, fW(0)=1.

f"(0) f(n)(0)
2! X ol

Since T,(x) = f(0) + f'(0) x +

To(x) =1 = T1(x),



Taylor polynomials of a function

Example

Find the first seven Maclaurin polynomials of f(x) = cos(x).
Solution: f(x) = cos(x), f'(x) = —sin(x), f”(x) = —cos(x),
f(x) = sin(x), f*)(x) = cos(x), and then the derivatives repeat,
fO)=1, f(0)=0, f"(0)=-1, f"(0)=0, fW(0)=1.

f"(0) f(n)(0)
2! X ol

Since T,(x) = f(0) + f'(0) x +

To(x)=1=Ti(x), Ta(x)=1-"—



Taylor polynomials of a function

Example
Find the first seven Maclaurin polynomials of f(x) = cos(x).

Solution: f(x) = cos(x), f'(x) = —sin(x), f”(x) = —cos(x),

f(x) = sin(x), f*)(x) = cos(x), and then the derivatives repeat,

fF0)=1, f(0)=0, f"(0)=-1, f"(0)=0, fH(0)=1.

Since T,(x) = f(0) + f'(0) x + f”2(!0) X2t f(r;)!(O) x", then
To(x)=1=Ti(x), Ta(x)=1- X—z = T3(x),



Taylor polynomials of a function

Example
Find the first seven Maclaurin polynomials of f(x) = cos(x).

Solution: f(x) = cos(x), f'(x) = —sin(x), f”(x) = —cos(x),

f(x) = sin(x), f*)(x) = cos(x), and then the derivatives repeat,

fF0)=1, f(0)=0, f"(0)=-1, f"(0)=0, fH(0)=1.

Since T,(x) = f(0) + f'(0) x + f”2(!0) X2t f(r;)!(O) x", then
To(x)=1=Ti(x), Ta(x)=1- X; = T3(x),
x2 x4
T4(X) =1——+ —



Taylor polynomials of a function

Example
Find the first seven Maclaurin polynomials of f(x) = cos(x).

Solution: f(x) = cos(x), f'(x) = —sin(x), f”(x) = —cos(x),

f(x) = sin(x), f*)(x) = cos(x), and then the derivatives repeat,

fF0)=1, f(0)=0, f"(0)=-1, f"(0)=0, fH(0)=1.

Since T,(x) = f(0) + f'(0) x + f”2(!0) X2t f(r;)!(O) x", then
To(x)=1=Ti(x), Ta(x)=1- X; = T3(x),
x2 X
Ta(x)=1- 2+ 5 = Ts(x),



Taylor polynomials of a function

Example

Find the first seven Maclaurin polynomials of f(x) = cos(x).

Solution: f(x) = cos(x), f'(x) = —sin(x), f”(x) = —cos(x),
f(x) = sin(x), f*)(x) = cos(x), and then the derivatives repeat,
f(0)=1, f(0)=0, f"(0)=-1,

f7(0) =0, f*(0)=1.

"
Since T,(x) = f(0) + f'(0) x + f2(IO) X244 f(r;)I(O) x", then
2
To(x)=1=Ti(x), Ta(x)=1- 5 = T3(x),
2 4 2 4 6
T4(x)—1—%+%— Ts(x), Te(x)=1-~ 4+ %
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Remark: The Taylor polynomial order n centered at any point
x = a of a polynomial degree n, say P,, is the same polynomial.
That is, Th(x) = Pn(x).

Example
Find the T, centered at x = a of f(x)=x>+x+1.

Solution: Since f/(x) = 2x + 1 and f"(x) = 2, then
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Remark: The Taylor polynomial order n centered at any point
x = a of a polynomial degree n, say P,, is the same polynomial.
That is, Th(x) = Pn(x).

Example
Find the T, centered at x = a of f(x)=x>+x+1.

Solution: Since f/(x) = 2x + 1 and f"(x) = 2, then
flay=a’+a+1, f(a)=2a+1, f"(a)=2.



Taylor polynomials of a function

Remark: The Taylor polynomial order n centered at any point
x = a of a polynomial degree n, say P,, is the same polynomial.
That is, Th(x) = Pn(x).

Example
Find the T, centered at x = a of f(x)=x>+x+1.

Solution: Since f/(x) = 2x + 1 and f"(x) = 2, then
flay=a’+a+1, f(a)=2a+1, f"(a)=2.

Since Ta(x) = f(a) + f'(a) (x — a) + "(a) (x — a)?,




Taylor polynomials of a function

Remark: The Taylor polynomial order n centered at any point
x = a of a polynomial degree n, say P,, is the same polynomial.
That is, Th(x) = Pn(x).

Example

Find the T, centered at x = a of f(x)=x>+x+1.

Solution: Since f/(x) = 2x + 1 and f"(x) = 2, then
flay=a’+a+1, f(a)=2a+1, f"(a)=2.
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Taylor polynomials of a function

Remark: The Taylor polynomial order n centered at any point
x = a of a polynomial degree n, say P,, is the same polynomial.
That is, Th(x) = Pn(x).

Example

Find the T, centered at x = a of f(x)=x>+x+1.

Solution: Since f/(x) = 2x + 1 and f"(x) = 2, then
flay=a’+a+1, f(a)=2a+1, f"(a)=2.

f‘l/(a)

o (x — a)?, then

Since Ta(x) = f(a) + f'(a) (x — a) +
T2(><):(32+a+1)+(2a+1)(x—a)+%(x—a)2

To(x) = (a° +a+1) + (2ax — 22> + x — a) + (x> — 2ax + a°).



Taylor polynomials of a function

Remark: The Taylor polynomial order n centered at any point
x = a of a polynomial degree n, say P,, is the same polynomial.
That is, Th(x) = Pn(x).

Example

Find the T, centered at x = a of f(x)=x>+x+1.

Solution: Since f/(x) = 2x + 1 and f"(x) = 2, then
flay=a’+a+1, f(a)=2a+1, f"(a)=2.

f‘l/(a)

o (x — a)?, then

Since Ta(x) = f(a) + f'(a) (x — a) +
T2(><):(32+a+1)+(2a+1)(x—a)+%(x—a)2
To(x) = (a° +a+1) + (2ax — 22> + x — a) + (x> — 2ax + a°).

Hence Ta(x) =1+ x + x°. <



Convergence of Taylor Series (Sect. 10.9)

» Review: Taylor series and polynomials.
» The Taylor Theorem.
» Using the Taylor series.

» Estimating the remainder.
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Review: Taylor series and polynomials

Definition
The Taylor series and Taylor polynomial order n centered at a € D
of a differentiable function f : D C R — R are given by
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Review: Taylor series and polynomials

Definition
The Taylor series and Taylor polynomial order n centered at a € D
of a differentiable function f : D C R — R are given by

X (k) n (k)
109=3 D o 1= e
k=0

Remarks:
» The Taylor series may or may not converge.
» T1(x) = f(a) + f'(a) (x — a) is the linearization of f.
» The Taylor polynomial is called of order n instead of degree n,
because £(")(a) may vanish.

» The particular case a = 0 is called the Maclaurin series and
the n+ 1 Maclaurin polynomial, respectively.



Convergence of Taylor Series (Sect. 10.9)

» Review: Taylor series and polynomials.
» The Taylor Theorem.
» Using the Taylor series.

» Estimating the remainder.
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The Taylor Theorem

Remark: The Taylor polynomial and Taylor series are obtained
from a generalization of the Mean Value Theorem: If
f : [a, b] — R is differentiable, then there exits ¢ € (a, b) such that

OV =H@) _ pey o f(b) = Fa) + F(c) (b - a)
(b—a)
Theorem (Taylor's Theorem)

If f : [a, b] — R is (n+ 1)-times continuously differentiable, then
there there exists ¢ € (a, b) such that

f(a)

f(b) = f(a) + f'(a) (b — a) + (b—a)?+--
. f(r:!(a) (b2t m (b— a)™L,
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The Taylor Theorem

Remark: The Taylor Theorem is usually applied for a fixed point a,
while the point b = x is used as an independent variable:

f(")(a)
n!

f(x)=f(a) +f(a) (x —a) + - + (x —a)" + Ra(x)

where the remainder function R, is given by

f(n+1) (c(x))

Rolx) = =5 1)

(x —a)"™,  with ¢ (a,x).

Remark: The point ¢ € (a, x) also depends on x.

Remark: We can use the Taylor polynomial to write that

f(x) = Ta(x) + Ra(x).
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The Taylor Theorem

Corollary

Let f : D — R be infinitely differentiable with Taylor polynomials
T, and remainders R, that is, for n > 1 holds

f(x) = Ta(x) + Ra(x).

If Ro(x) — 0 as n — oo for x € D, then the Taylor series centered
at x = a converges on D to the function values f(x), that is,

s (n) a
Fx)=>_ f l( )(X—a)".
n=0 ’

n

Remark: Without knowing c(x) it is often possible to estimate

A (e(x)

xS a)""™.



Convergence of Taylor Series (Sect. 10.9)

» Review: Taylor series and polynomials.
» The Taylor Theorem.
» Using the Taylor series.

» Estimating the remainder.
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Solution: Since f("(x) = < and a = 0, then f("(0) =1, and

2 3 n
X X X
eX:1+X+?+§+"'+F+Rn(X),
Xn+1

Since f(x) is increasing,

here Rn(x) = ™) _
where R,(x) = e (1)

ec(x) ‘X|n+1 < el |X|n+1

m\e (n+1)|—>0, as n — oQ.

[Rn(x)| =



Using the Taylor series

Example
Show that the Taylor series of f(x) = e* centered at a =10
converges on R.
Solution: Since f("(x) = < and a = 0, then f("(0) =1, and
x> X3 x"
X P — — DY JR—
=1l+x+ o+t t + Rn(x),

Xn+1

(n+ 1)l

c(x) ‘X|n+1 x| |X
e XL <
(n+1)! (n+1)!

Since f(x) is increasing,

where R,(x) = e

|n+1

— 0, as n— oo.

[Rn(x)| =

for every x € R.



Using the Taylor series

Example
Show that the Taylor series of f(x) = e* centered at a =10
converges on R.
Solution: Since f("(x) = < and a = 0, then f("(0) =1, and
x> X3 x"
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=1l+x+ o+t t + Rn(x),
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Since f(x) is increasing,
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Using the Taylor series

Example
Show that the Taylor series of f(x) = e* centered at a =10
converges on R.

Solution: Since f("(x) = < and a = 0, then f("(0) =1, and

x> X3 x"
e =14x+ o 4o Ra(),
n+1
where Ry(x) = e<*) (X+ ok Since f(x) is increasing,
n !
+1 n+1
_ ac(x) ’X|n [x] |X|
|Rn(x)| = e (n+1) < (n+1) — 0, as n— oo
for every x € R. Then e* ix” 1+ +X2+X3+ <
V X . = — = X — — e
Y nl 2 "3l

n=0
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Example

X

Find the Taylor series of f(x) = e centered at a = 0.

o0 n

Solution: We use the Taylor series ¢’ = Z % for y = x?,

n=0

©© x2)n
P :Z(n')

n=0
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Example
Find the Taylor series of f(x) = e

Solution: We use the Taylor series e’ = Z % for y = x

ex2 B i (X2)n B oo X2n
= py =

! n!
n=0 n=0

? centered at a = 0.

o0

n=0
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Example

X

Find the Taylor series of f(x) = e centered at a = 0.

X o n
. . y 2
: y — A —
Solution: We use the Taylor series e’ = g o for y = x*,
n=0
©© 2\n > 2n 4 6
N~ () X 2 XX
D D e D T
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Example

X

Find the Taylor series of f(x) = e centered at a = 0.

X o n
Solution: We use the Taylor series ¢’ = Z Y for y =x2,
n!
n=0
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Example
Find the Taylor series of f(x) = e~

x* centered at a = 0.

Solution: We substitute x? by —(x?) in the example above,

0 2
—x2 (_X
€ o Z n!
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n 4 6
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Find the Taylor series of f(x) = ——% at a=0on (—1,1).

Solution: The straightforward way is to compute the derivatives
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» Estimating the remainder.
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Let f : D — R be infinitely differentiable with Taylor polynomials
T, and remainders R, centered at a € D, that is, for n > 1 holds

f(x) = Th(x) + Ra(x).



Estimating the remainder

Theorem

Let f : D — R be infinitely differentiable with Taylor polynomials
T, and remainders R, centered at a € D, that is, for n > 1 holds

f(x) = Th(x) + Ra(x).
If [F(" D (y)| < M for all y such that |y — a| < |x — a|, then

|x — a1

|Rn(x)] < MW‘



Estimating the remainder

Theorem

Let f : D — R be infinitely differentiable with Taylor polynomials
T, and remainders R, centered at a € D, that is, for n > 1 holds

f(x) = Th(x) + Ra(x).
If |F(+1(y)| < M for all y such that |y — a| < |x — a|, then

|x — a1

Ra(l < M=

Furthermore, if the inequality above holds for every n > 1, then the
Taylor series T(x) converges to f(x).



Estimating the remainder

Example

Estimate the maximum error made in approximating f(x) = e* by
2

To(x) =1+ x+ % over the interval [-2,2].
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