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Review: Direct comparison test for integrals

Theorem (Direct comparison test)

If 0 6
∫ ∞

a
f (x) dx 6

∫ ∞

a
g(x) dx, then:

(a)

∫ ∞

a
g(x) dx converges ⇒

∫ ∞

a
f (x) dx converges;

(b)

∫ ∞

a
f (x) dx diverges ⇒

∫ ∞

a
g(x) dx diverges.

Example∫ ∞

0
e−x2

dx converges, since

∫ ∞

0
e−x2

dx 6
∫ ∞

0
e−x dx .∫ ∞

2

dx√
x2 − 1

diverges, since

∫ ∞

2

dx

x
6

∫ ∞

2

dx√
x2 − 1

. C
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Direct comparison test for series

Theorem
If the sequences satisfy 0 6 an 6 bn for all n > N, then

(a)
∞∑

n=1

bn converges ⇒
∞∑

n=1

an converges;

(b)
∞∑

n=1

an diverges ⇒
∞∑

n=1

bn converges.

Example

Determine whether the the series
∞∑

n=2

n + 2

n2 − n
converges or not.

Solution: Since
n + 2

n2 − n
>

n

n2 − n
=

1

n − 1
>

1

n
, we conclude that:

∞∑
n=2

1

n
<

∞∑
n=2

n + 2

n2 − n
. Therefore,

∞∑
n=2

n + 2

n2 − n
diverges. C
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Direct comparison test for series

Example

Determine whether the the series
∞∑

n=1

1

n 3n
converges or not.

Solution: For 1 6 n holds, 3n 6 n 3n ⇒ 1

n 3n
6

1

3n
.

∞∑
n=1

1

n 3n
6
∞∑

n=1

1

3n
=
∞∑

n=1

(1

3

)n
=
∞∑

n=0

(1

3

)n
− 1,

∞∑
n=1

1

n 3n
6

1(
1− 1

3

) − 1 =
1(

3−1
3

) − 1 =
3

2
− 1 =

1

2
.

We conclude that
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n=1

1

n 3n
converges. C
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Review: Limit comparison test for integrals

Theorem (Limit comparison test)

If positive functions f , g : [a,∞) → R are continuous and

lim
x→∞

f (x)

g(x)
= L, with 0 < L < ∞,

then either both

∫ ∞

a
f (x) dx,

∫ ∞

a
g(x) dx, converge or diverge.

Remark: If the integrals converge, their values may not agree.

Example∫ ∞

1

dx√
x6 + 1

converges because

∫ ∞

1

dx

x3
converges.∫ ∞

1

dx√
x + sin(x)

diverges because

∫ ∞

1

dx

x1/2
diverges.
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diverges because
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1
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Comparison tests (Sect. 10.4)

I Review: Direct comparison test for integrals.

I Direct comparison test for series.

I Review: Limit comparison test for integrals.

I Limit comparison test for series.

I Few examples.



Limit comparison test for series

Theorem (Limit comparison test)

Assume that 0 < an, and 0 < bn for N 6 n.

(a) If lim
n→∞

an

bn
= L > 0, then the infinite series

∞∑
n=1

an and
∞∑

n=1

bn

both converge or both diverge.

(b) If lim
n→∞

an

bn
= 0, and

∞∑
n=1

bn converges, then
∞∑

n=1

an converges.

(c) If lim
n→∞

an

bn
= ∞, and

∞∑
n=1

bn diverges, then
∞∑

n=1

an diverges.

Remark: If the series converge, their values may not agree.
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Limit comparison test for series

Example

Determine whether the series
∞∑

n=1

√
n

4n2 + 7
converges or not.

Solution: We compute the behavior of the series terms for n large:
√

n

(4n2 + 7)
=

√
n

(4n2 + 7)

(
1
n2

)(
1
n2

) =

(
1

n3/2

)
4 +

(
7
n2

)
For n large an =

√
n

(4n2 + 7)
behaves like bn =

1

4 n3/2
.

We choose bn =
1

4 n3/2
to do the limit comparison test.

lim
n→∞

an

bn
=

( √
n

(4n2 + 7)

)
4n3/2 = lim

n→∞

4n2

(4n2 + 7)
= 1.
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Limit comparison test for series

Example

Determine whether the series
∞∑

n=1

√
n

4n2 + 7
converges or not.

Solution:
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n=1

√
n

4n2 + 7
and
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n=1

1

4 n3/2
both converge or diverge.

However,
∞∑

n=1

1

4 n3/2
converges ⇔

∫ ∞

1

dx

4 x3/2
converges.

But:

∫ ∞

1

dx

4 x3/2
=

1

4
(−2) x−1/2

∣∣∣∞
1

=
1

2
.

Then, the integral test says that
∞∑

n=1

1

4 n3/2
converges.

The limit test for series says that
∞∑

n=1

√
n

4n2 + 7
converges. C
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Limit comparison test for series

Example

Determine whether the series
∞∑

n=1

32n

2n + n
converges or not.

Solution: We compute the behavior of the series terms for n large:

lim
n→∞

32n

2n + n
= lim

n→∞

32n

2n
and

32n

2n
=

32n

(
√

2)2n
=

( 3√
2

)2n

For n large an =
32n

(2n + n)
behaves like bn =

( 3√
2

)2n
.

We choose bn =
( 3√

2

)2n
to do the limit comparison test, hence

lim
n→∞

an

bn
= 1 and both

∞∑
n=1

an,
∞∑

n=1

bn converge or diverge.
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Comparison tests (Sect. 10.4)

I Review: Direct comparison test for integrals.

I Direct comparison test for series.

I Review: Limit comparison test for integrals.

I Limit comparison test for series.

I Few examples.



Few examples

Example

(1)
∞∑

n=1

sin2(n)

6n
.

DGC
sin2(n)

6n
6

(1

6

)n
;
∞∑

n=1

(1

6

)n
converges.

(2)
∞∑

n=3

1

n ln(n)
. ID

∫ ∞

3

dx

x ln(x)
=

∫ ∞

ln(3)

du

u
; u = ln(x).

Since an = f (n) and

∫ ∞

3
f (x) dx =

∫ ∞

ln(3)

du

u
diverges.

(3)
∞∑

n=1

n + 5n

n25n
. LIC

n + 5n

n25n
→ 5n

n25n
=

1

n2
;

∞∑
n=1

1

n2
converges, since

∫ ∞

1

dx

x2
converges. C
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Ratio test (Sect. 10.5)

I The ratio test.

I Using the ratio test.

I Few more examples.

I Comment: The root test.



The ratio test

Remark: The ratio test is a way to determine whether a series
converges or not.

Theorem
Let {an} be a positive sequence with lim

n→∞

an+1

an
= ρ exists.

(a) If ρ < 1, the series
∑

an converges.

(b) If ρ > 1, the series
∑

an diverges.

(c) If ρ = 1, the test is inconclusive.

Remark: The ratio test compares the series
∑

an with an
appropriate geometric series

∑
rn.
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The ratio test

Proof: Case (a): Since an > 0, the series
∑

an is

non-decreasing.
We now show that

∑
an is bounded above.

Since lim
n→∞

an+1

an
= ρ < 1, then for any ε > 0, small enough such

that ρ + ε = r < 1, there exists N large with
an+1

an
< ρ + ε = r , for n > N.

aN+n

aN

=
aN+1

aN

aN+2

aN+1
· · · aN+n

aN+n−1
6 rn ⇒ aN+n 6 aN rn.

∞∑
n=0

an =
N−1∑
n=0

an +
∞∑

n=0

aN+n 6
N−1∑
n=0

an + aN

∞∑
n=0

rn

So
∞∑

n=0

an 6
N−1∑
n=0

an +
aN

1− r
is bounded.

A non-decreasing, bounded above, series converges.
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I The ratio test.

I Using the ratio test.

I Few more examples.

I Comment: The root test.
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Few more examples

Example
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∞∑

n=1
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n3
converges or not.
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ln(7n)

n3
> 0.

an+1

an
=

ln[7(n + 1)]

(n + 1)3
n3

ln(7n)
=

( n

n + 1

)3 ln(7n + 7)

ln(7n)
→ 1

Since ρ = 1, the ratio test is inconclusive.

Direct comparison test: Since ln(7n) < 7n, then

an =
ln(7n)

n3
6

7n

n3
=

7

n2
. Hence

∑ ln(7n)

n3
6

∑ 7

n2
,

which converges. Therefore, the series converges. C
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Ratio test (Sect. 10.5)

I The ratio test.

I Using the ratio test.

I Few more examples.

I Comment: The root test.



Comment: The root test

Theorem
Let {an} be a positive sequence with lim

n→∞
n
√

an = ρ exists.

(a) If ρ < 1, the series
∑

an converges.

(b) If ρ > 1, the series
∑

an diverges.

(c) If ρ = 1, the test is inconclusive.

Remark: The root test also compares the series
∑

an with an
appropriate geometric series

∑
rn.
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Comment: The root test

Proof: Case (a): Since an > 0, the series
∑

an is

non-decreasing.
We now show that

∑
an is bounded above.

Since lim
n→∞

n
√

an = ρ < 1, then for any ε > 0, small enough such

that ρ + ε = r < 1, there exists N large with

n
√

an < ρ + ε = r , for n > N, ⇒ an 6 rn.

∞∑
n=0

an =
N−1∑
n=0

an +
∞∑

n=N

an 6
N−1∑
n=0

an +
∞∑

n=N

rn

∞∑
n=0

an =
N−1∑
n=0

an −
N−1∑
n=0

rn +
∞∑

n=0

rn =
N−1∑
n=0

(an − rn) +
1

1− r
.

So
∑

an is bounded. A non-decreasing, bounded above, series
converges. The proofs for (b), (c) are similar to ratio test.
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Alternating series and absolute convergence (Sect. 10.6)

I Alternating series.

I Absolute and conditional convergence.

I Absolute convergence test.

I Few examples.



Alternating series

Definition
An infinite series

∑
an is an alternating series iff holds either

an = (−1)n |an| or an = (−1)n+1 |an|.

Example

I The alternating harmonic series:

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · .

I The following series is an alternating series,

∞∑
n=1

cos(nπ)n2

(n + 1)!
=
∞∑

n=1

(−1)n
n2

(n + 1)!
= −1

2
+

4

6
− 9

24
+ · · · .
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Alternating series

Theorem (Leibniz’s test)

If the sequence {an} satisfies: 0 < an, and an+1 6 an, and an → 0,
then the alternating series

∑∞
n=1(−1)n+1an converges.

Proof: Write down the partial sum s2n as follows

s2n = a1 − a2 + a3 − a4 + a5 − · · ·+ s2n−1 − s2n

= (a1 − a2) + (a3 − a4) + · · ·+ (s2n−1 − s2n)

= a1 − (a2 − a3)− (a4 − a5)− · · · − (s2n−2 − s2n−1)− s2n.

The second expression implies s2n 6 s2(n+1).

The third expression says that s2n is bounded above.

Therefore converges, s2n → L.

Since s2n+1 = s2n + a2n+1, and an → 0, then s2n+1 → L + 0 = L.

We conclude that
∑

(−1)n+1an converges.
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Alternating series

Example

Show that the alternating harmonic series
∞∑

n=1

(−1)n+1

n
. converges.

Solution: Introduce the sequence an =
(−1)n+1

n
.

The sequence {an} satisfies the hypothesis in the Leibniz test:

I |an| > 0;

I |an+1| < |an|;

I |an| → 0.

We then conclude that
∞∑

n=1

(−1)n+1

n
converges. C
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Alternating series and absolute convergence (Sect. 10.6)

I Alternating series.

I Absolute and conditional convergence.

I Absolute convergence test.

I Few examples.



Absolute and conditional convergence

Remarks:

I Several convergence tests apply only to positive series.

I Integral test, direct comparison and limit comparison tests,
ratio test, do not apply to alternating series.

I Given an arbitrary series
∑

an, the series
∑
|an| has

non-negative terms.

Definition

I A series
∑

an is absolutely convergent iff the series
∑
|an|

converges.

I A series converges conditionally iff it converges but does not
converges absolutely.
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Absolute and conditional convergence

Example

I The alternating harmonic series
∞∑

n=1

(−1)n+1

n
converges

conditionally.

Because the harmonic series
∞∑

n=1

1

n
diverges and the

alternating harmonic series converges.

I The geometric series
∞∑

n=1

(−1)n+1

2n
converges absolutely.

Because the geometric series
∞∑

n=1

1

2n
converges.
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Alternating series and absolute convergence (Sect. 10.6)

I Alternating series.

I Absolute and conditional convergence.

I Absolute convergence test.

I Few examples.



Absolute convergence test

Theorem
If the series

∑
|an| converges, then the series

∑
an converges.

Remark:
The converse is not true. A series can converge conditionally:∑ (−1)n+1

n
converges, but

∑∣∣∣(−1)n+1

n

∣∣∣ does not converge.

Proof: −|an| 6 an 6 |an| ⇒ 0 6 an + |an| 6 2|an|.

Since
∑
|an| converges so does

∑
2|an|.

Direct comparison test implies
∑

(an + |an|) converges.∑
an =

∑
(an + |an|)−

∑
|an|,

and both series on the right-hand side converge.

Hence
∑

an converges.
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Alternating series and absolute convergence (Sect. 10.6)

I Alternating series.

I Absolute and conditional convergence.

I Absolute convergence test.

I Few examples.



Few examples

Example

Determine whether the series
∞∑

n=1

(−1)n+1 4n

4n6 + 5
converges

absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio

test in the sequence an =
∣∣∣(−1)n+1 4n

4n6 + 5

∣∣∣ =
4n

4n6 + 5
.

an+1

an
=

4(n + 1)

[4(n + 1)6 + 5]

[4n6 + 5]

4n
=

(n + 1)

n

[ 4n6 + 5

4(n + 1)6 + 5

]
→ 1.

Ratio test inconclusive. Direct comparison test:

4n6 < 4n6 + 5 ⇒ 1

4n6 + 5
<

1

4n6
⇒ 4n

4n6 + 5
<

1

n5
.

∞∑
n=1

1

n5
converges, (IT), so the series converges absolutely. C
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∣∣∣(−1)n+1 4n

4n6 + 5

∣∣∣ =
4n

4n6 + 5
.

an+1

an
=

4(n + 1)

[4(n + 1)6 + 5]

[4n6 + 5]

4n
=

(n + 1)

n

[ 4n6 + 5

4(n + 1)6 + 5

]
→ 1.

Ratio test inconclusive. Direct comparison test:

4n6 < 4n6 + 5 ⇒ 1

4n6 + 5
<

1

4n6
⇒ 4n

4n6 + 5
<

1

n5
.

∞∑
n=1

1

n5
converges, (IT), so the series converges absolutely. C
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Example

Determine whether the series
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n=1

(−1)n+1

ln(n)
converges absolutely,

conditionally, or does not converge at all.

Solution: The series diverges absolutely, since

|an| =
∣∣∣(−1)n+1

ln(n)

∣∣∣ =
1

ln(n)
,

and ln(n) < n implies
1

n
<

1

ln(n)
.

Since the harmonic series diverges, then
∞∑

n=1

1

ln(n)
diverges;

therefore, the series
∞∑

n=1

(−1)n+1

ln(n)
diverges absolutely.
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