Comparison tests (Sect. 10.4)

- Review: Direct comparison test for integrals.
- Direct comparison test for series.
- Review: Limit comparison test for integrals.
- Limit comparison test for series.
- Few examples.

Comparison tests (Sect. 10.4)

- Review: Direct comparison test for integrals.
- Direct comparison test for series.
- Review: Limit comparison test for integrals.
- Limit comparison test for series.
- Few examples.

Review: Direct comparison test for integrals

Theorem (Direct comparison test)
If $0 \leqslant \int_{a}^{\infty} f(x) d x \leqslant \int_{a}^{\infty} g(x) d x$, then:
(a) $\int_{a}^{\infty} g(x) d x$ converges $\Rightarrow \int_{a}^{\infty} f(x) d x$ converges;
(b) $\int_{a}^{\infty} f(x) d x$ diverges $\Rightarrow \int_{a}^{\infty} g(x) d x$ diverges.

Review: Direct comparison test for integrals

Theorem (Direct comparison test)
If $0 \leqslant \int_{a}^{\infty} f(x) d x \leqslant \int_{a}^{\infty} g(x) d x$, then:
(a) $\int_{a}^{\infty} g(x) d x$ converges $\Rightarrow \int_{a}^{\infty} f(x) d x$ converges;
(b) $\int_{a}^{\infty} f(x) d x$ diverges $\Rightarrow \int_{a}^{\infty} g(x) d x$ diverges

Example
$\int_{0}^{\infty} e^{-x^{2}} d x$ converges,

Review: Direct comparison test for integrals

Theorem (Direct comparison test)
If $0 \leqslant \int_{a}^{\infty} f(x) d x \leqslant \int_{a}^{\infty} g(x) d x$, then:
(a) $\int_{a}^{\infty} g(x) d x$ converges $\Rightarrow \int_{a}^{\infty} f(x) d x$ converges;
(b) $\int_{a}^{\infty} f(x) d x$ diverges $\Rightarrow \int_{a}^{\infty} g(x) d x$ diverges

Example
$\int_{0}^{\infty} e^{-x^{2}} d x$ converges, since $\int_{0}^{\infty} e^{-x^{2}} d x \leqslant \int_{0}^{\infty} e^{-x} d x$.

Review: Direct comparison test for integrals

Theorem (Direct comparison test)
If $0 \leqslant \int_{a}^{\infty} f(x) d x \leqslant \int_{a}^{\infty} g(x) d x$, then:
(a) $\int_{a}^{\infty} g(x) d x$ converges $\Rightarrow \int_{a}^{\infty} f(x) d x$ converges;
(b) $\int_{a}^{\infty} f(x) d x$ diverges $\Rightarrow \int_{a}^{\infty} g(x) d x$ diverges .

Example
$\int_{0}^{\infty} e^{-x^{2}} d x$ converges, since $\int_{0}^{\infty} e^{-x^{2}} d x \leqslant \int_{0}^{\infty} e^{-x} d x$.
$\int_{2}^{\infty} \frac{d x}{\sqrt{x^{2}-1}}$ diverges,

Review: Direct comparison test for integrals

Theorem (Direct comparison test)
If $0 \leqslant \int_{a}^{\infty} f(x) d x \leqslant \int_{a}^{\infty} g(x) d x$, then:
(a) $\int_{a}^{\infty} g(x) d x$ converges $\Rightarrow \int_{a}^{\infty} f(x) d x$ converges;
(b) $\int_{a}^{\infty} f(x) d x$ diverges $\Rightarrow \int_{a}^{\infty} g(x) d x$ diverges .

Example
$\int_{0}^{\infty} e^{-x^{2}} d x$ converges, since $\int_{0}^{\infty} e^{-x^{2}} d x \leqslant \int_{0}^{\infty} e^{-x} d x$.
$\int_{2}^{\infty} \frac{d x}{\sqrt{x^{2}-1}}$ diverges, since $\int_{2}^{\infty} \frac{d x}{x} \leqslant \int_{2}^{\infty} \frac{d x}{\sqrt{x^{2}-1}}$.

Comparison tests (Sect. 10.4)

- Review: Direct comparison test for integrals.
- Direct comparison test for series.
- Review: Limit comparison test for integrals.
- Limit comparison test for series.
- Few examples.

Direct comparison test for series

Theorem
If the sequences satisfy $0 \leqslant a_{n} \leqslant b_{n}$ for all $n \geqslant N$, then
(a) $\sum_{n=1}^{\infty} b_{n}$ converges $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ converges;
(b) $\sum_{n=1}^{\infty} a_{n}$ diverges $\Rightarrow \sum_{n=1}^{\infty} b_{n}$ converges.

Direct comparison test for series

Theorem
If the sequences satisfy $0 \leqslant a_{n} \leqslant b_{n}$ for all $n \geqslant N$, then
(a) $\sum_{n=1}^{\infty} b_{n}$ converges $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ converges;
(b) $\sum_{n=1}^{\infty} a_{n}$ diverges $\Rightarrow \sum_{n=1}^{\infty} b_{n}$ converges.

Example
Determine whether the the series $\sum_{n=2}^{\infty} \frac{n+2}{n^{2}-n}$ converges or not.

Direct comparison test for series

Theorem
If the sequences satisfy $0 \leqslant a_{n} \leqslant b_{n}$ for all $n \geqslant N$, then
(a) $\sum_{n=1}^{\infty} b_{n}$ converges $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ converges;
(b) $\sum_{n=1}^{\infty} a_{n}$ diverges $\Rightarrow \sum_{n=1}^{\infty} b_{n}$ converges.

Example
Determine whether the the series $\sum_{n=2}^{\infty} \frac{n+2}{n^{2}-n}$ converges or not.
Solution: Since $\frac{n+2}{n^{2}-n}>\frac{n}{n^{2}-n}$

Direct comparison test for series

Theorem
If the sequences satisfy $0 \leqslant a_{n} \leqslant b_{n}$ for all $n \geqslant N$, then
(a) $\sum_{n=1}^{\infty} b_{n}$ converges $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ converges;
(b) $\sum_{n=1}^{\infty} a_{n}$ diverges $\Rightarrow \sum_{n=1}^{\infty} b_{n}$ converges.

Example
Determine whether the the series $\sum_{n=2}^{\infty} \frac{n+2}{n^{2}-n}$ converges or not.
Solution: Since $\frac{n+2}{n^{2}-n}>\frac{n}{n^{2}-n}=\frac{1}{n-1}$

Direct comparison test for series

Theorem
If the sequences satisfy $0 \leqslant a_{n} \leqslant b_{n}$ for all $n \geqslant N$, then
(a) $\sum_{n=1}^{\infty} b_{n}$ converges $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ converges;
(b) $\sum_{n=1}^{\infty} a_{n}$ diverges $\Rightarrow \sum_{n=1}^{\infty} b_{n}$ converges.

Example
Determine whether the the series $\sum_{n=2}^{\infty} \frac{n+2}{n^{2}-n}$ converges or not.
Solution: Since $\frac{n+2}{n^{2}-n}>\frac{n}{n^{2}-n}=\frac{1}{n-1}>\frac{1}{n}$,

Direct comparison test for series

Theorem
If the sequences satisfy $0 \leqslant a_{n} \leqslant b_{n}$ for all $n \geqslant N$, then
(a) $\sum_{n=1}^{\infty} b_{n}$ converges $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ converges;
(b) $\sum_{n=1}^{\infty} a_{n}$ diverges $\Rightarrow \sum_{n=1}^{\infty} b_{n}$ converges.

Example
Determine whether the the series $\sum_{n=2}^{\infty} \frac{n+2}{n^{2}-n}$ converges or not.
Solution: Since $\frac{n+2}{n^{2}-n}>\frac{n}{n^{2}-n}=\frac{1}{n-1}>\frac{1}{n}$, we conclude that:

Direct comparison test for series

Theorem
If the sequences satisfy $0 \leqslant a_{n} \leqslant b_{n}$ for all $n \geqslant N$, then
(a) $\sum_{n=1}^{\infty} b_{n}$ converges $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ converges;
(b) $\sum_{n=1}^{\infty} a_{n}$ diverges $\Rightarrow \sum_{n=1}^{\infty} b_{n}$ converges.

Example
Determine whether the the series $\sum_{n=2}^{\infty} \frac{n+2}{n^{2}-n}$ converges or not.
Solution: Since $\frac{n+2}{n^{2}-n}>\frac{n}{n^{2}-n}=\frac{1}{n-1}>\frac{1}{n}$, we conclude that:
$\sum_{n=2}^{\infty} \frac{1}{n}<\sum_{n=2}^{\infty} \frac{n+2}{n^{2}-n}$.

Direct comparison test for series

Theorem
If the sequences satisfy $0 \leqslant a_{n} \leqslant b_{n}$ for all $n \geqslant N$, then
(a) $\sum_{n=1}^{\infty} b_{n}$ converges $\Rightarrow \sum_{n=1}^{\infty} a_{n}$ converges;
(b) $\sum_{n=1}^{\infty} a_{n}$ diverges $\Rightarrow \sum_{n=1}^{\infty} b_{n}$ converges.

Example
Determine whether the the series $\sum_{n=2}^{\infty} \frac{n+2}{n^{2}-n}$ converges or not.
Solution: Since $\frac{n+2}{n^{2}-n}>\frac{n}{n^{2}-n}=\frac{1}{n-1}>\frac{1}{n}$, we conclude that:
$\sum_{n=2}^{\infty} \frac{1}{n}<\sum_{n=2}^{\infty} \frac{n+2}{n^{2}-n}$. Therefore, $\sum_{n=2}^{\infty} \frac{n+2}{n^{2}-n}$ diverges.

Direct comparison test for series

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges or not.

Direct comparison test for series

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges or not.
Solution: For $1 \leqslant n$ holds,

Direct comparison test for series

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges or not.
Solution: For $1 \leqslant n$ holds, $3^{n} \leqslant n 3^{n}$

Direct comparison test for series

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges or not.
Solution: For $1 \leqslant n$ holds, $3^{n} \leqslant n 3^{n} \Rightarrow \frac{1}{n 3^{n}} \leqslant \frac{1}{3^{n}}$.

Direct comparison test for series

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges or not.
Solution: For $1 \leqslant n$ holds, $3^{n} \leqslant n 3^{n} \quad \Rightarrow \quad \frac{1}{n 3^{n}} \leqslant \frac{1}{3^{n}}$.

$$
\sum_{n=1}^{\infty} \frac{1}{n 3^{n}} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^{n}}
$$

Direct comparison test for series

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges or not.
Solution: For $1 \leqslant n$ holds, $3^{n} \leqslant n 3^{n} \quad \Rightarrow \quad \frac{1}{n 3^{n}} \leqslant \frac{1}{3^{n}}$.

$$
\sum_{n=1}^{\infty} \frac{1}{n 3^{n}} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}
$$

Direct comparison test for series

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges or not.
Solution: For $1 \leqslant n$ holds, $3^{n} \leqslant n 3^{n} \quad \Rightarrow \quad \frac{1}{n 3^{n}} \leqslant \frac{1}{3^{n}}$.

$$
\sum_{n=1}^{\infty} \frac{1}{n 3^{n}} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n}-1
$$

Direct comparison test for series

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges or not.
Solution: For $1 \leqslant n$ holds, $3^{n} \leqslant n 3^{n} \quad \Rightarrow \quad \frac{1}{n 3^{n}} \leqslant \frac{1}{3^{n}}$.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n 3^{n}} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n}-1, \\
& \sum_{n=1}^{\infty} \frac{1}{n 3^{n}} \leqslant \frac{1}{\left(1-\frac{1}{3}\right)}-1
\end{aligned}
$$

Direct comparison test for series

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges or not.
Solution: For $1 \leqslant n$ holds, $3^{n} \leqslant n 3^{n} \quad \Rightarrow \quad \frac{1}{n 3^{n}} \leqslant \frac{1}{3^{n}}$.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n 3^{n}} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n}-1, \\
& \sum_{n=1}^{\infty} \frac{1}{n 3^{n}} \leqslant \frac{1}{\left(1-\frac{1}{3}\right)}-1=\frac{1}{\left(\frac{3-1}{3}\right)}-1
\end{aligned}
$$

Direct comparison test for series

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges or not.
Solution: For $1 \leqslant n$ holds, $3^{n} \leqslant n 3^{n} \quad \Rightarrow \quad \frac{1}{n 3^{n}} \leqslant \frac{1}{3^{n}}$.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n 3^{n}} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n}-1, \\
& \sum_{n=1}^{\infty} \frac{1}{n 3^{n}} \leqslant \frac{1}{\left(1-\frac{1}{3}\right)}-1=\frac{1}{\left(\frac{3-1}{3}\right)}-1=\frac{3}{2}-1
\end{aligned}
$$

Direct comparison test for series

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges or not.
Solution: For $1 \leqslant n$ holds, $3^{n} \leqslant n 3^{n} \Rightarrow \frac{1}{n 3^{n}} \leqslant \frac{1}{3^{n}}$.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n 3^{n}} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n}-1, \\
& \sum_{n=1}^{\infty} \frac{1}{n 3^{n}} \leqslant \frac{1}{\left(1-\frac{1}{3}\right)}-1=\frac{1}{\left(\frac{3-1}{3}\right)}-1=\frac{3}{2}-1=\frac{1}{2} .
\end{aligned}
$$

Direct comparison test for series

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges or not.
Solution: For $1 \leqslant n$ holds, $3^{n} \leqslant n 3^{n} \Rightarrow \frac{1}{n 3^{n}} \leqslant \frac{1}{3^{n}}$.

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n 3^{n}} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n}-1, \\
& \sum_{n=1}^{\infty} \frac{1}{n 3^{n}} \leqslant \frac{1}{\left(1-\frac{1}{3}\right)}-1=\frac{1}{\left(\frac{3-1}{3}\right)}-1=\frac{3}{2}-1=\frac{1}{2} .
\end{aligned}
$$

We conclude that $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges.

Comparison tests (Sect. 10.4)

- Review: Direct comparison test for integrals.
- Direct comparison test for series.
- Review: Limit comparison test for integrals.
- Limit comparison test for series.
- Few examples.

Review: Limit comparison test for integrals

Theorem (Limit comparison test)
If positive functions $f, g:[a, \infty) \rightarrow \mathbb{R}$ are continuous and

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L, \quad \text { with } \quad 0<L<\infty,
$$

then either both $\int_{a}^{\infty} f(x) d x, \int_{a}^{\infty} g(x) d x$, converge or diverge.

Review: Limit comparison test for integrals

Theorem (Limit comparison test)
If positive functions $f, g:[a, \infty) \rightarrow \mathbb{R}$ are continuous and

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L, \quad \text { with } \quad 0<L<\infty,
$$

then either both $\int_{a}^{\infty} f(x) d x, \int_{a}^{\infty} g(x) d x$, converge or diverge.
Remark: If the integrals converge, their values may not agree.

Review: Limit comparison test for integrals

Theorem (Limit comparison test)
If positive functions $f, g:[a, \infty) \rightarrow \mathbb{R}$ are continuous and

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L, \quad \text { with } \quad 0<L<\infty,
$$

then either both $\int_{a}^{\infty} f(x) d x, \int_{a}^{\infty} g(x) d x$, converge or diverge.
Remark: If the integrals converge, their values may not agree.
Example
$\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges

Review: Limit comparison test for integrals

Theorem (Limit comparison test)
If positive functions $f, g:[a, \infty) \rightarrow \mathbb{R}$ are continuous and

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L, \quad \text { with } \quad 0<L<\infty,
$$

then either both $\int_{a}^{\infty} f(x) d x, \int_{a}^{\infty} g(x) d x$, converge or diverge.
Remark: If the integrals converge, their values may not agree.
Example
$\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges because $\int_{1}^{\infty} \frac{d x}{x^{3}}$ converges.

Review: Limit comparison test for integrals

Theorem (Limit comparison test)
If positive functions $f, g:[a, \infty) \rightarrow \mathbb{R}$ are continuous and

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L, \quad \text { with } \quad 0<L<\infty,
$$

then either both $\int_{a}^{\infty} f(x) d x, \int_{a}^{\infty} g(x) d x$, converge or diverge.
Remark: If the integrals converge, their values may not agree.
Example
$\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges because $\int_{1}^{\infty} \frac{d x}{x^{3}}$ converges.
$\int_{1}^{\infty} \frac{d x}{\sqrt{x+\sin (x)}}$ diverges

Review: Limit comparison test for integrals

Theorem (Limit comparison test)
If positive functions $f, g:[a, \infty) \rightarrow \mathbb{R}$ are continuous and

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L, \quad \text { with } \quad 0<L<\infty,
$$

then either both $\int_{a}^{\infty} f(x) d x, \int_{a}^{\infty} g(x) d x$, converge or diverge.
Remark: If the integrals converge, their values may not agree.
Example
$\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges because $\int_{1}^{\infty} \frac{d x}{x^{3}}$ converges.
$\int_{1}^{\infty} \frac{d x}{\sqrt{x+\sin (x)}}$ diverges because $\int_{1}^{\infty} \frac{d x}{x^{1 / 2}}$ diverges.

Comparison tests (Sect. 10.4)

- Review: Direct comparison test for integrals.
- Direct comparison test for series.
- Review: Limit comparison test for integrals.
- Limit comparison test for series.
- Few examples.

Limit comparison test for series

Theorem (Limit comparison test)
Assume that $0<a_{n}$, and $0<b_{n}$ for $N \leqslant n$.
(a) If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L>0$, then the infinite series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both converge or both diverge.
(b) If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$, and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(c) If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$, and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Limit comparison test for series

Theorem (Limit comparison test)
Assume that $0<a_{n}$, and $0<b_{n}$ for $N \leqslant n$.
(a) If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L>0$, then the infinite series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both converge or both diverge.
(b) If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$, and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
(c) If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$, and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Remark: If the series converge, their values may not agree.

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}
$$

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}=\frac{\sqrt{n}}{\left(4 n^{2}+7\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}
$$

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}=\frac{\sqrt{n}}{\left(4 n^{2}+7\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{\left(\frac{1}{n^{3 / 2}}\right)}{4+\left(\frac{7}{n^{2}}\right)}
$$

Limit comparison test for series

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}=\frac{\sqrt{n}}{\left(4 n^{2}+7\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{\left(\frac{1}{n^{3 / 2}}\right)}{4+\left(\frac{7}{n^{2}}\right)}
$$

For n large $a_{n}=\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}$ behaves like

Limit comparison test for series

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}=\frac{\sqrt{n}}{\left(4 n^{2}+7\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{\left(\frac{1}{n^{3 / 2}}\right)}{4+\left(\frac{7}{n^{2}}\right)}
$$

For n large $a_{n}=\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}$ behaves like $b_{n}=\frac{1}{4 n^{3 / 2}}$.

Limit comparison test for series

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}=\frac{\sqrt{n}}{\left(4 n^{2}+7\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{\left(\frac{1}{n^{3 / 2}}\right)}{4+\left(\frac{7}{n^{2}}\right)}
$$

For n large $a_{n}=\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}$ behaves like $b_{n}=\frac{1}{4 n^{3 / 2}}$.
We choose $b_{n}=\frac{1}{4 n^{3 / 2}}$ to do the limit comparison test.

Limit comparison test for series

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}=\frac{\sqrt{n}}{\left(4 n^{2}+7\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{\left(\frac{1}{n^{3 / 2}}\right)}{4+\left(\frac{7}{n^{2}}\right)}
$$

For n large $a_{n}=\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}$ behaves like $b_{n}=\frac{1}{4 n^{3 / 2}}$.
We choose $b_{n}=\frac{1}{4 n^{3 / 2}}$ to do the limit comparison test.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\left(\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}\right) 4 n^{3 / 2}
$$

Limit comparison test for series

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}=\frac{\sqrt{n}}{\left(4 n^{2}+7\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{\left(\frac{1}{n^{3 / 2}}\right)}{4+\left(\frac{7}{n^{2}}\right)}
$$

For n large $a_{n}=\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}$ behaves like $b_{n}=\frac{1}{4 n^{3 / 2}}$.
We choose $b_{n}=\frac{1}{4 n^{3 / 2}}$ to do the limit comparison test.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\left(\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}\right) 4 n^{3 / 2}=\lim _{n \rightarrow \infty} \frac{4 n^{2}}{\left(4 n^{2}+7\right)}
$$

Limit comparison test for series

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}=\frac{\sqrt{n}}{\left(4 n^{2}+7\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{\left(\frac{1}{n^{3 / 2}}\right)}{4+\left(\frac{7}{n^{2}}\right)}
$$

For n large $a_{n}=\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}$ behaves like $b_{n}=\frac{1}{4 n^{3 / 2}}$.
We choose $b_{n}=\frac{1}{4 n^{3 / 2}}$ to do the limit comparison test.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\left(\frac{\sqrt{n}}{\left(4 n^{2}+7\right)}\right) 4 n^{3 / 2}=\lim _{n \rightarrow \infty} \frac{4 n^{2}}{\left(4 n^{2}+7\right)}=1
$$

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ and $\sum_{n=1}^{\infty} \frac{1}{4 n^{3 / 2}}$ both converge or diverge.

Limit comparison test for series

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ and $\sum_{n=1}^{\infty} \frac{1}{4 n^{3 / 2}}$ both converge or diverge.
However, $\sum_{n=1}^{\infty} \frac{1}{4 n^{3 / 2}}$ converges $\Leftrightarrow \int_{1}^{\infty} \frac{d x}{4 x^{3 / 2}}$ converges.

Limit comparison test for series

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ and $\sum_{n=1}^{\infty} \frac{1}{4 n^{3 / 2}}$ both converge or diverge.
However, $\sum_{n=1}^{\infty} \frac{1}{4 n^{3 / 2}}$ converges $\Leftrightarrow \int_{1}^{\infty} \frac{d x}{4 x^{3 / 2}}$ converges.
But: $\int_{1}^{\infty} \frac{d x}{4 x^{3 / 2}}$

Limit comparison test for series

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ and $\sum_{n=1}^{\infty} \frac{1}{4 n^{3 / 2}}$ both converge or diverge.
However, $\sum_{n=1}^{\infty} \frac{1}{4 n^{3 / 2}}$ converges $\Leftrightarrow \int_{1}^{\infty} \frac{d x}{4 x^{3 / 2}}$ converges.
But: $\int_{1}^{\infty} \frac{d x}{4 x^{3 / 2}}=\left.\frac{1}{4}(-2) x^{-1 / 2}\right|_{1} ^{\infty}$

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ and $\sum_{n=1}^{\infty} \frac{1}{4 n^{3 / 2}}$ both converge or diverge.
However, $\sum_{n=1}^{\infty} \frac{1}{4 n^{3 / 2}}$ converges $\Leftrightarrow \int_{1}^{\infty} \frac{d x}{4 x^{3 / 2}}$ converges.
But: $\int_{1}^{\infty} \frac{d x}{4 x^{3 / 2}}=\left.\frac{1}{4}(-2) x^{-1 / 2}\right|_{1} ^{\infty}=\frac{1}{2}$.

Limit comparison test for series

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ and $\sum_{n=1}^{\infty} \frac{1}{4 n^{3 / 2}}$ both converge or diverge.
However, $\sum_{n=1}^{\infty} \frac{1}{4 n^{3 / 2}}$ converges $\Leftrightarrow \int_{1}^{\infty} \frac{d x}{4 x^{3 / 2}}$ converges.
But: $\int_{1}^{\infty} \frac{d x}{4 x^{3 / 2}}=\left.\frac{1}{4}(-2) x^{-1 / 2}\right|_{1} ^{\infty}=\frac{1}{2}$.
Then, the integral test says that $\sum_{n=1}^{\infty} \frac{1}{4 n^{3 / 2}}$ converges.

Limit comparison test for series

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges or not.
Solution: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ and $\sum_{n=1}^{\infty} \frac{1}{4 n^{3 / 2}}$ both converge or diverge.
However, $\sum_{n=1}^{\infty} \frac{1}{4 n^{3 / 2}}$ converges $\Leftrightarrow \int_{1}^{\infty} \frac{d x}{4 x^{3 / 2}}$ converges.
But: $\int_{1}^{\infty} \frac{d x}{4 x^{3 / 2}}=\left.\frac{1}{4}(-2) x^{-1 / 2}\right|_{1} ^{\infty}=\frac{1}{2}$.
Then, the integral test says that $\sum_{n=1}^{\infty} \frac{1}{4 n^{3 / 2}}$ converges.
The limit test for series says that $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4 n^{2}+7}$ converges.

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}+n}=\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}}
$$

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}+n}=\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}} \quad \text { and } \quad \frac{3^{2 n}}{2^{n}}=\frac{3^{2 n}}{(\sqrt{2})^{2 n}}
$$

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}+n}=\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}} \quad \text { and } \quad \frac{3^{2 n}}{2^{n}}=\frac{3^{2 n}}{(\sqrt{2})^{2 n}}=\left(\frac{3}{\sqrt{2}}\right)^{2 n}
$$

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}+n}=\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}} \quad \text { and } \quad \frac{3^{2 n}}{2^{n}}=\frac{3^{2 n}}{(\sqrt{2})^{2 n}}=\left(\frac{3}{\sqrt{2}}\right)^{2 n}
$$

For n large $a_{n}=\frac{3^{2 n}}{\left(2^{n}+n\right)}$ behaves like

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}+n}=\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}} \quad \text { and } \quad \frac{3^{2 n}}{2^{n}}=\frac{3^{2 n}}{(\sqrt{2})^{2 n}}=\left(\frac{3}{\sqrt{2}}\right)^{2 n}
$$

For n large $a_{n}=\frac{3^{2 n}}{\left(2^{n}+n\right)}$ behaves like $b_{n}=\left(\frac{3}{\sqrt{2}}\right)^{2 n}$.

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}+n}=\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}} \quad \text { and } \quad \frac{3^{2 n}}{2^{n}}=\frac{3^{2 n}}{(\sqrt{2})^{2 n}}=\left(\frac{3}{\sqrt{2}}\right)^{2 n}
$$

For n large $a_{n}=\frac{3^{2 n}}{\left(2^{n}+n\right)}$ behaves like $b_{n}=\left(\frac{3}{\sqrt{2}}\right)^{2 n}$.
We choose $b_{n}=\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ to do the limit comparison test,

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}+n}=\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}} \quad \text { and } \quad \frac{3^{2 n}}{2^{n}}=\frac{3^{2 n}}{(\sqrt{2})^{2 n}}=\left(\frac{3}{\sqrt{2}}\right)^{2 n}
$$

For n large $a_{n}=\frac{3^{2 n}}{\left(2^{n}+n\right)}$ behaves like $b_{n}=\left(\frac{3}{\sqrt{2}}\right)^{2 n}$.
We choose $b_{n}=\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ to do the limit comparison test, hence
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: We compute the behavior of the series terms for n large:

$$
\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}+n}=\lim _{n \rightarrow \infty} \frac{3^{2 n}}{2^{n}} \quad \text { and } \quad \frac{3^{2 n}}{2^{n}}=\frac{3^{2 n}}{(\sqrt{2})^{2 n}}=\left(\frac{3}{\sqrt{2}}\right)^{2 n}
$$

For n large $a_{n}=\frac{3^{2 n}}{\left(2^{n}+n\right)}$ behaves like $b_{n}=\left(\frac{3}{\sqrt{2}}\right)^{2 n}$.
We choose $b_{n}=\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ to do the limit comparison test, hence
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$ and both $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ converge or diverge.

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: Both $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$, and $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ converge or diverge.

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: Both $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$, and $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ converge or diverge.
Since $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ is a geometric series

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: Both $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$, and $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ converge or diverge.
Since $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ is a geometric series with ratio $r=\frac{3}{\sqrt{2}}$

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: Both $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$, and $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ converge or diverge.
Since $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ is a geometric series with ratio $r=\frac{3}{\sqrt{2}}>1$,

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: Both $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$, and $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ converge or diverge.
Since $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ is a geometric series with ratio $r=\frac{3}{\sqrt{2}}>1$,
the series $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: Both $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$, and $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ converge or diverge.
Since $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ is a geometric series with ratio $r=\frac{3}{\sqrt{2}}>1$,
the series $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ diverges.

Limit comparison test for series

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ converges or not.
Solution: Both $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$, and $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ converge or diverge.
Since $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ is a geometric series with ratio $r=\frac{3}{\sqrt{2}}>1$,
the series $\sum_{n=1}^{\infty}\left(\frac{3}{\sqrt{2}}\right)^{2 n}$ diverges.
We conclude that $\sum_{n=1}^{\infty} \frac{3^{2 n}}{2^{n}+n}$ diverges.

Comparison tests (Sect. 10.4)

- Review: Direct comparison test for integrals.
- Direct comparison test for series.
- Review: Limit comparison test for integrals.
- Limit comparison test for series.
- Few examples.

Few examples

Example

(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}}$.

Few examples

Example
(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}}$. DGC

Few examples

Example
(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}} . \quad$ DGC $\frac{\sin ^{2}(n)}{6^{n}} \leqslant\left(\frac{1}{6}\right)^{n}$;

Few examples

Example

(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}} . \quad$ DGC $\frac{\sin ^{2}(n)}{6^{n}} \leqslant\left(\frac{1}{6}\right)^{n} ; \sum_{n=1}^{\infty}\left(\frac{1}{6}\right)^{n}$ converges.

Few examples

Example

(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}}$. DGC $\frac{\sin ^{2}(n)}{6^{n}} \leqslant\left(\frac{1}{6}\right)^{n} ; \sum_{n=1}^{\infty}\left(\frac{1}{6}\right)^{n}$ converges.
(2) $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$.

Few examples

Example

(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}}$.

DGC $\frac{\sin ^{2}(n)}{6^{n}} \leqslant\left(\frac{1}{6}\right)^{n} ; \sum_{n=1}^{\infty}\left(\frac{1}{6}\right)^{n}$ converges.
(2) $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$. ID

Few examples

Example

(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}}$.

DGC $\frac{\sin ^{2}(n)}{6^{n}} \leqslant\left(\frac{1}{6}\right)^{n} ; \sum_{n=1}^{\infty}\left(\frac{1}{6}\right)^{n}$ converges.
(2) $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$. ID $\int_{3}^{\infty} \frac{d x}{x \ln (x)}$

Few examples

Example

(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}} . \quad$ DGC $\frac{\sin ^{2}(n)}{6^{n}} \leqslant\left(\frac{1}{6}\right)^{n} ; \sum_{n=1}^{\infty}\left(\frac{1}{6}\right)^{n}$ converges.
(2) $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$. ID $\int_{3}^{\infty} \frac{d x}{x \ln (x)}=\int_{\ln (3)}^{\infty} \frac{d u}{u}$;

Few examples

Example

(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}}$.

DGC $\frac{\sin ^{2}(n)}{6^{n}} \leqslant\left(\frac{1}{6}\right)^{n} ; \sum_{n=1}^{\infty}\left(\frac{1}{6}\right)^{n}$ converges.
(2) $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$.

ID $\int_{3}^{\infty} \frac{d x}{x \ln (x)}=\int_{\ln (3)}^{\infty} \frac{d u}{u} ; \quad u=\ln (x)$.

Few examples

Example

(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}} . \quad$ DGC $\frac{\sin ^{2}(n)}{6^{n}} \leqslant\left(\frac{1}{6}\right)^{n} ; \sum_{n=1}^{\infty}\left(\frac{1}{6}\right)^{n}$ converges.
(2) $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$. ID $\int_{3}^{\infty} \frac{d x}{x \ln (x)}=\int_{\ln (3)}^{\infty} \frac{d u}{u} ; \quad u=\ln (x)$.

Since $a_{n}=f(n)$

Few examples

Example

(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}} . \quad$ DGC $\frac{\sin ^{2}(n)}{6^{n}} \leqslant\left(\frac{1}{6}\right)^{n} ; \sum_{n=1}^{\infty}\left(\frac{1}{6}\right)^{n}$ converges.
(2) $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$. ID $\int_{3}^{\infty} \frac{d x}{x \ln (x)}=\int_{\ln (3)}^{\infty} \frac{d u}{u} ; \quad u=\ln (x)$.

Since $a_{n}=f(n)$ and $\int_{3}^{\infty} f(x) d x=\int_{\ln (3)}^{\infty} \frac{d u}{u}$ diverges.

Few examples

Example

(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}} . \quad$ DGC $\frac{\sin ^{2}(n)}{6^{n}} \leqslant\left(\frac{1}{6}\right)^{n} ; \sum_{n=1}^{\infty}\left(\frac{1}{6}\right)^{n}$ converges.
(2) $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$. ID $\int_{3}^{\infty} \frac{d x}{x \ln (x)}=\int_{\ln (3)}^{\infty} \frac{d u}{u} ; u=\ln (x)$.

Since $a_{n}=f(n)$ and $\int_{3}^{\infty} f(x) d x=\int_{\ln (3)}^{\infty} \frac{d u}{u}$ diverges.
(3) $\sum_{n=1}^{\infty} \frac{n+5^{n}}{n^{2} 5^{n}}$.

Few examples

Example

(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}} . \quad$ DGC $\frac{\sin ^{2}(n)}{6^{n}} \leqslant\left(\frac{1}{6}\right)^{n} ; \sum_{n=1}^{\infty}\left(\frac{1}{6}\right)^{n}$ converges.
(2) $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$. ID $\int_{3}^{\infty} \frac{d x}{x \ln (x)}=\int_{\ln (3)}^{\infty} \frac{d u}{u} ; u=\ln (x)$.

Since $a_{n}=f(n)$ and $\int_{3}^{\infty} f(x) d x=\int_{\ln (3)}^{\infty} \frac{d u}{u}$ diverges.
(3) $\sum_{n=1}^{\infty} \frac{n+5^{n}}{n^{2} 5^{n}}$. LIC

Few examples

Example

(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}}$. DGC $\frac{\sin ^{2}(n)}{6^{n}} \leqslant\left(\frac{1}{6}\right)^{n} ; \sum_{n=1}^{\infty}\left(\frac{1}{6}\right)^{n}$ converges.
(2) $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$. ID $\int_{3}^{\infty} \frac{d x}{x \ln (x)}=\int_{\ln (3)}^{\infty} \frac{d u}{u} ; u=\ln (x)$.

Since $a_{n}=f(n)$ and $\int_{3}^{\infty} f(x) d x=\int_{\ln (3)}^{\infty} \frac{d u}{u}$ diverges.
(3) $\sum_{n=1}^{\infty} \frac{n+5^{n}}{n^{2} 5^{n}}$. LIC $\frac{n+5^{n}}{n^{2} 5^{n}} \rightarrow \frac{5^{n}}{n^{2} 5^{n}}=\frac{1}{n^{2}}$;

Few examples

Example

(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}}$. DGC $\frac{\sin ^{2}(n)}{6^{n}} \leqslant\left(\frac{1}{6}\right)^{n} ; \sum_{n=1}^{\infty}\left(\frac{1}{6}\right)^{n}$ converges.
(2) $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$. ID $\int_{3}^{\infty} \frac{d x}{x \ln (x)}=\int_{\ln (3)}^{\infty} \frac{d u}{u} ; u=\ln (x)$.

Since $a_{n}=f(n)$ and $\int_{3}^{\infty} f(x) d x=\int_{\ln (3)}^{\infty} \frac{d u}{u}$ diverges.
(3) $\sum_{n=1}^{\infty} \frac{n+5^{n}}{n^{2} 5^{n}}$. LIC $\frac{n+5^{n}}{n^{2} 5^{n}} \rightarrow \frac{5^{n}}{n^{2} 5^{n}}=\frac{1}{n^{2}}$;
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges,

Few examples

Example

(1) $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{6^{n}}$. DGC $\frac{\sin ^{2}(n)}{6^{n}} \leqslant\left(\frac{1}{6}\right)^{n} ; \sum_{n=1}^{\infty}\left(\frac{1}{6}\right)^{n}$ converges.
(2) $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$. ID $\int_{3}^{\infty} \frac{d x}{x \ln (x)}=\int_{\ln (3)}^{\infty} \frac{d u}{u} ; u=\ln (x)$.

Since $a_{n}=f(n)$ and $\int_{3}^{\infty} f(x) d x=\int_{\ln (3)}^{\infty} \frac{d u}{u}$ diverges.
(3) $\sum_{n=1}^{\infty} \frac{n+5^{n}}{n^{2} 5^{n}}$. LIC $\frac{n+5^{n}}{n^{2} 5^{n}} \rightarrow \frac{5^{n}}{n^{2} 5^{n}}=\frac{1}{n^{2}}$;
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, since $\int_{1}^{\infty} \frac{d x}{x^{2}}$ converges.

Ratio test (Sect. 10.5)

- The ratio test.
- Using the ratio test.
- Few more examples.
- Comment: The root test.

The ratio test

Remark: The ratio test is a way to determine whether a series converges or not.

The ratio test

Remark: The ratio test is a way to determine whether a series converges or not.

Theorem
Let $\left\{a_{n}\right\}$ be a positive sequence with $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho$ exists.
(a) If $\rho<1$, the series $\sum a_{n}$ converges.
(b) If $\rho>1$, the series $\sum a_{n}$ diverges.
(c) If $\rho=1$, the test is inconclusive.

The ratio test

Remark: The ratio test is a way to determine whether a series converges or not.

Theorem
Let $\left\{a_{n}\right\}$ be a positive sequence with $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho$ exists.
(a) If $\rho<1$, the series $\sum a_{n}$ converges.
(b) If $\rho>1$, the series $\sum a_{n}$ diverges.
(c) If $\rho=1$, the test is inconclusive.

Remark: The ratio test compares the series $\sum a_{n}$ with an appropriate geometric series $\sum r^{n}$.

The ratio test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is

The ratio test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing.

The ratio test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.

The ratio test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho$

The ratio test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho<1$,

The ratio test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$,

The ratio test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\frac{a_{n+1}}{a_{n}}<\rho+\epsilon
$$

The ratio test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\frac{a_{n+1}}{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N .
$$

The ratio test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\frac{a_{n+1}}{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N .
$$

$$
\frac{a_{N+n}}{a_{N}}
$$

The ratio test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\frac{a_{n+1}}{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N
$$

$$
\frac{a_{N+n}}{a_{N}}=\frac{a_{N+1}}{a_{N}} \frac{a_{N+2}}{a_{N+1}} \cdots \frac{a_{N+n}}{a_{N+n-1}}
$$

The ratio test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\frac{a_{n+1}}{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N
$$

$$
\frac{a_{N+n}}{a_{N}}=\frac{a_{N+1}}{a_{N}} \frac{a_{N+2}}{a_{N+1}} \cdots \frac{a_{N+n}}{a_{N+n-1}} \leqslant r^{n}
$$

The ratio test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\frac{a_{n+1}}{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N
$$

$$
\frac{a_{N+n}}{a_{N}}=\frac{a_{N+1}}{a_{N}} \frac{a_{N+2}}{a_{N+1}} \cdots \frac{a_{N+n}}{a_{N+n-1}} \leqslant r^{n} \quad \Rightarrow \quad a_{N+n} \leqslant a_{N} r^{n} .
$$

The ratio test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\frac{a_{n+1}}{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N .
$$

$$
\begin{aligned}
& \frac{a_{N+n}}{a_{N}}=\frac{a_{N+1}}{a_{N}} \frac{a_{N+2}}{a_{N+1}} \cdots \frac{a_{N+n}}{a_{N+n-1}} \leqslant r^{n} \Rightarrow a_{N+n} \leqslant a_{N} r^{n} \\
& \quad \sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{N-1} a_{n}+\sum_{n=0}^{\infty} a_{N+n}
\end{aligned}
$$

The ratio test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\frac{a_{n+1}}{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N
$$

$$
\begin{gathered}
\frac{a_{N+n}}{a_{N}}=\frac{a_{N+1}}{a_{N}} \frac{a_{N+2}}{a_{N+1}} \cdots \frac{a_{N+n}}{a_{N+n-1}} \leqslant r^{n} \Rightarrow a_{N+n} \leqslant a_{N} r^{n} . \\
\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{N-1} a_{n}+\sum_{n=0}^{\infty} a_{N+n} \leqslant \sum_{n=0}^{N-1} a_{n}+a_{N} \sum_{n=0}^{\infty} r^{n}
\end{gathered}
$$

The ratio test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\frac{a_{n+1}}{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N .
$$

$$
\frac{a_{N+n}}{a_{N}}=\frac{a_{N+1}}{a_{N}} \frac{a_{N+2}}{a_{N+1}} \cdots \frac{a_{N+n}}{a_{N+n-1}} \leqslant r^{n} \quad \Rightarrow \quad a_{N+n} \leqslant a_{N} r^{n}
$$

$$
\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{N-1} a_{n}+\sum_{n=0}^{\infty} a_{N+n} \leqslant \sum_{n=0}^{N-1} a_{n}+a_{N} \sum_{n=0}^{\infty} r^{n}
$$

So $\sum_{n=0}^{\infty} a_{n} \leqslant \sum_{n=0}^{N-1} a_{n}+\frac{a_{N}}{1-r}$ is bounded.
A non-decreasing, bounded above, series converges.

The ratio test

$$
\text { Proof: Case (b): Since } \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1
$$

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N
$$

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots .
$$

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots .
$$

Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$.

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots .
$$

Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$. The series $\sum a_{n}$ diverges.

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots .
$$

Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$. The series $\sum a_{n}$ diverges.
Case (c): $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$.

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots .
$$

Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$. The series $\sum a_{n}$ diverges.
Case (c): $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$. Examples:

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots .
$$

Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$. The series $\sum a_{n}$ diverges.
Case (c): $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$. Examples:

$$
\sum_{i=1}^{\infty} \frac{1}{n_{1}^{\prime}}
$$

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots .
$$

Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$. The series $\sum a_{n}$ diverges.
Case (c): $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$. Examples:

$$
\sum_{n=1}^{\infty} \frac{1}{n}, \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)}
$$

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots .
$$

Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$. The series $\sum a_{n}$ diverges.
Case (c): $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$. Examples:

$$
\sum_{n=1}^{\infty} \frac{1}{n}, \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)}=\lim _{n \rightarrow \infty} \frac{n}{n+1}
$$

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots .
$$

Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$. The series $\sum a_{n}$ diverges.
Case (c): $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$. Examples:

$$
\sum_{n=1}^{\infty} \frac{1}{n}, \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
$$

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots .
$$

Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$. The series $\sum a_{n}$ diverges.
Case (c): $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$. Examples:

$$
\sum_{n=1}^{\infty} \frac{1}{n}, \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1, \quad \text { diverges. }
$$

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots .
$$

Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$. The series $\sum a_{n}$ diverges.
Case (c): $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$. Examples:

$$
\begin{aligned}
& \quad \sum_{n=1}^{\infty} \frac{1}{n}, \text { and } \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1, \quad \text { diverges. } \\
& \sum_{n=1}^{\infty} \frac{1}{n^{2}}
\end{aligned}
$$

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots .
$$

Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$. The series $\sum a_{n}$ diverges.
Case (c): $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$. Examples:

$$
\begin{aligned}
& \quad \sum_{n=1}^{\infty} \frac{1}{n}, \text { and } \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1, \quad \text { diverges. } \\
& \sum_{n=1}^{\infty} \frac{1}{n^{2}}, \text { and } \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{(n+1)^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}
\end{aligned}
$$

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots
$$

Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$. The series $\sum a_{n}$ diverges.
Case (c): $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$. Examples:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n}, \text { and } \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1, \quad \text { diverges. } \\
& \sum_{n=1}^{\infty} \frac{1}{n^{2}}, \text { and } \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{(n+1)^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}
\end{aligned}
$$

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots .
$$

Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$. The series $\sum a_{n}$ diverges.
Case (c): $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$. Examples:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n}, \text { and } \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1, \quad \text { diverges. } \\
& \sum_{n=1}^{\infty} \frac{1}{n^{2}}, \text { and } \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{(n+1)^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=1,
\end{aligned}
$$

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots .
$$

Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$. The series $\sum a_{n}$ diverges.
Case (c): $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$. Examples:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n}, \quad \text { and } \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1, \quad \text { diverges. } \\
& \sum_{n=1}^{\infty} \frac{1}{n^{2}}, \text { and } \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{(n+1)^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=1, \quad \text { converges. }
\end{aligned}
$$

The ratio test

Proof: Case (b): Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\rho>1$, there exists N large,

$$
\frac{a_{n+1}}{a_{n}}>1, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{N}<a_{N+1}<a_{N+2}<\cdots
$$

Hence, $\lim _{n \rightarrow \infty} a_{n} \neq 0$. The series $\sum a_{n}$ diverges.
Case (c): $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$. Examples:

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1}{n}, \quad \text { and } \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1, \quad \text { diverges. } \\
\sum_{n=1}^{\infty} \frac{1}{n^{2}}, \quad \text { and } \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{(n+1)^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=1, \quad \text { converges. }
\end{gathered}
$$

The test in inconclusive.

Ratio test (Sect. 10.5)

- The ratio test.
- Using the ratio test.
- Few more examples.
- Comment: The root test.

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges or not.

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges or not.

Solution: We use the ratio test,

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{2^{n}}{n!}>0$.

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{2^{n}}{n!}>0$. We compute

$$
\frac{a_{n+1}}{a_{n}}
$$

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{2^{n}}{n!}>0$. We compute

$$
\frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}}{(n+1)!} \frac{n!}{2^{n}}
$$

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{2^{n}}{n!}>0$. We compute

$$
\frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}}{(n+1)!} \frac{n!}{2^{n}}=\frac{2^{n} 2}{(n+1) n!} \frac{n!}{2^{n}}
$$

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{2^{n}}{n!}>0$. We compute

$$
\frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}}{(n+1)!} \frac{n!}{2^{n}}=\frac{2^{n} 2}{(n+1) n!} \frac{n!}{2^{n}}=\frac{2}{(n+1)}
$$

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{2^{n}}{n!}>0$. We compute

$$
\frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}}{(n+1)!} \frac{n!}{2^{n}}=\frac{2^{n} 2}{(n+1) n!} \frac{n!}{2^{n}}=\frac{2}{(n+1)} .
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{2^{n}}{n!}>0$. We compute

$$
\frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}}{(n+1)!} \frac{n!}{2^{n}}=\frac{2^{n} 2}{(n+1) n!} \frac{n!}{2^{n}}=\frac{2}{(n+1)} .
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{2}{(n+1)}$

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{2^{n}}{n!}>0$. We compute

$$
\frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}}{(n+1)!} \frac{n!}{2^{n}}=\frac{2^{n} 2}{(n+1) n!} \frac{n!}{2^{n}}=\frac{2}{(n+1)} .
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{2}{(n+1)}=0$.

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{2^{n}}{n!}>0$. We compute

$$
\frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}}{(n+1)!} \frac{n!}{2^{n}}=\frac{2^{n} 2}{(n+1) n!} \frac{n!}{2^{n}}=\frac{2}{(n+1)}
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{2}{(n+1)}=0$.
Since $\rho=0$

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{2^{n}}{n!}>0$. We compute

$$
\frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}}{(n+1)!} \frac{n!}{2^{n}}=\frac{2^{n} 2}{(n+1) n!} \frac{n!}{2^{n}}=\frac{2}{(n+1)}
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{2}{(n+1)}=0$.
Since $\rho=0<1$,

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{2^{n}}{n!}>0$. We compute

$$
\frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}}{(n+1)!} \frac{n!}{2^{n}}=\frac{2^{n} 2}{(n+1) n!} \frac{n!}{2^{n}}=\frac{2}{(n+1)}
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{2}{(n+1)}=0$.
Since $\rho=0<1$, the series converges.

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$ converges or not.

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$ converges or not.
Solution: We use the ratio test,

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{(n-1)!}{(n+1)^{2}}>0$.

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{(n-1)!}{(n+1)^{2}}>0$. Then,

$$
\frac{a_{n+1}}{a_{n}}
$$

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{(n-1)!}{(n+1)^{2}}>0$. Then,

$$
\frac{a_{n+1}}{a_{n}}=\frac{n!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}
$$

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{(n-1)!}{(n+1)^{2}}>0$. Then,

$$
\frac{a_{n+1}}{a_{n}}=\frac{n!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n-1)!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}
$$

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{(n-1)!}{(n+1)^{2}}>0$. Then,

$$
\frac{a_{n+1}}{a_{n}}=\frac{n!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n-1)!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n+1)^{2}}{(n+2)^{2}}
$$

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{(n-1)!}{(n+1)^{2}}>0$. Then,

$$
\begin{gathered}
\frac{a_{n+1}}{a_{n}}=\frac{n!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n-1)!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n+1)^{2}}{(n+2)^{2}} \\
\frac{a_{n+1}}{a_{n}}=\frac{n^{3}+2 n^{2}+n}{n^{2}+4 n+4}
\end{gathered}
$$

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{(n-1)!}{(n+1)^{2}}>0$. Then,

$$
\begin{gathered}
\frac{a_{n+1}}{a_{n}}=\frac{n!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n-1)!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n+1)^{2}}{(n+2)^{2}} \\
\frac{a_{n+1}}{a_{n}}=\frac{n^{3}+2 n^{2}+n}{n^{2}+4 n+4}=\frac{n+2+\frac{1}{n}}{1+\frac{4}{n}+\frac{4}{n^{2}}}
\end{gathered}
$$

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{(n-1)!}{(n+1)^{2}}>0$. Then,

$$
\begin{gathered}
\frac{a_{n+1}}{a_{n}}=\frac{n!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n-1)!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n+1)^{2}}{(n+2)^{2}} \\
\frac{a_{n+1}}{a_{n}}=\frac{n^{3}+2 n^{2}+n}{n^{2}+4 n+4}=\frac{n+2+\frac{1}{n}}{1+\frac{4}{n}+\frac{4}{n^{2}}}
\end{gathered}
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{(n-1)!}{(n+1)^{2}}>0$. Then,

$$
\begin{gathered}
\frac{a_{n+1}}{a_{n}}=\frac{n!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n-1)!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n+1)^{2}}{(n+2)^{2}} \\
\frac{a_{n+1}}{a_{n}}=\frac{n^{3}+2 n^{2}+n}{n^{2}+4 n+4}=\frac{n+2+\frac{1}{n}}{1+\frac{4}{n}+\frac{4}{n^{2}}}
\end{gathered}
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} n$

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{(n-1)!}{(n+1)^{2}}>0$. Then,

$$
\begin{gathered}
\frac{a_{n+1}}{a_{n}}=\frac{n!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n-1)!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n+1)^{2}}{(n+2)^{2}} \\
\frac{a_{n+1}}{a_{n}}=\frac{n^{3}+2 n^{2}+n}{n^{2}+4 n+4}=\frac{n+2+\frac{1}{n}}{1+\frac{4}{n}+\frac{4}{n^{2}}}
\end{gathered}
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} n=\infty$.

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{(n-1)!}{(n+1)^{2}}>0$. Then,

$$
\begin{gathered}
\frac{a_{n+1}}{a_{n}}=\frac{n!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n-1)!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n+1)^{2}}{(n+2)^{2}} \\
\frac{a_{n+1}}{a_{n}}=\frac{n^{3}+2 n^{2}+n}{n^{2}+4 n+4}=\frac{n+2+\frac{1}{n}}{1+\frac{4}{n}+\frac{4}{n^{2}}}
\end{gathered}
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} n=\infty$.
Since $\rho=\infty$

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{(n-1)!}{(n+1)^{2}}>0$. Then,

$$
\begin{gathered}
\frac{a_{n+1}}{a_{n}}=\frac{n!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n-1)!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n+1)^{2}}{(n+2)^{2}} \\
\frac{a_{n+1}}{a_{n}}=\frac{n^{3}+2 n^{2}+n}{n^{2}+4 n+4}=\frac{n+2+\frac{1}{n}}{1+\frac{4}{n}+\frac{4}{n^{2}}}
\end{gathered}
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} n=\infty$.
Since $\rho=\infty>1$,

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^{2}}$ converges or not.
Solution: We use the ratio test, since $a_{n}=\frac{(n-1)!}{(n+1)^{2}}>0$. Then,

$$
\begin{gathered}
\frac{a_{n+1}}{a_{n}}=\frac{n!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n-1)!}{(n+2)^{2}} \frac{(n+1)^{2}}{(n-1)!}=\frac{n(n+1)^{2}}{(n+2)^{2}} \\
\frac{a_{n+1}}{a_{n}}=\frac{n^{3}+2 n^{2}+n}{n^{2}+4 n+4}=\frac{n+2+\frac{1}{n}}{1+\frac{4}{n}+\frac{4}{n^{2}}}
\end{gathered}
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} n=\infty$.
Since $\rho=\infty>1$, the series diverges.

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ converges or not.

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ converges or not.
Solution: We start with the ratio test,

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (n)}{n} \geqslant 0$.

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (n)}{n} \geqslant 0$. Then,

$$
\frac{a_{n+1}}{a_{n}}
$$

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (n)}{n} \geqslant 0$. Then,

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln (n+1)}{(n+1)} \frac{n}{\ln (n)}
$$

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (n)}{n} \geqslant 0$. Then,

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln (n+1)}{(n+1)} \frac{n}{\ln (n)}=\frac{n}{(n+1)} \frac{\ln (n+1)}{\ln (n)}
$$

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (n)}{n} \geqslant 0$. Then,

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln (n+1)}{(n+1)} \frac{n}{\ln (n)}=\frac{n}{(n+1)} \frac{\ln (n+1)}{\ln (n)} \rightarrow 1
$$

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (n)}{n} \geqslant 0$. Then,

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln (n+1)}{(n+1)} \frac{n}{\ln (n)}=\frac{n}{(n+1)} \frac{\ln (n+1)}{\ln (n)} \rightarrow 1
$$

Since $\rho=1$,

Using the ratio test

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (n)}{n} \geqslant 0$. Then,

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln (n+1)}{(n+1)} \frac{n}{\ln (n)}=\frac{n}{(n+1)} \frac{\ln (n+1)}{\ln (n)} \rightarrow 1
$$

Since $\rho=1$, the ratio test is inconclusive.

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (n)}{n} \geqslant 0$. Then,

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln (n+1)}{(n+1)} \frac{n}{\ln (n)}=\frac{n}{(n+1)} \frac{\ln (n+1)}{\ln (n)} \rightarrow 1
$$

Since $\rho=1$, the ratio test is inconclusive.
Direct comparison test: $a_{n}=\frac{\ln (n)}{n}$

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (n)}{n} \geqslant 0$. Then,

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln (n+1)}{(n+1)} \frac{n}{\ln (n)}=\frac{n}{(n+1)} \frac{\ln (n+1)}{\ln (n)} \rightarrow 1
$$

Since $\rho=1$, the ratio test is inconclusive.
Direct comparison test: $a_{n}=\frac{\ln (n)}{n} \geqslant \frac{1}{n}$

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (n)}{n} \geqslant 0$. Then,

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln (n+1)}{(n+1)} \frac{n}{\ln (n)}=\frac{n}{(n+1)} \frac{\ln (n+1)}{\ln (n)} \rightarrow 1
$$

Since $\rho=1$, the ratio test is inconclusive.
Direct comparison test: $a_{n}=\frac{\ln (n)}{n} \geqslant \frac{1}{n}$ implies that

$$
\sum \frac{\ln (n)}{n} \geqslant \sum \frac{1}{n}
$$

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (n)}{n} \geqslant 0$. Then,

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln (n+1)}{(n+1)} \frac{n}{\ln (n)}=\frac{n}{(n+1)} \frac{\ln (n+1)}{\ln (n)} \rightarrow 1
$$

Since $\rho=1$, the ratio test is inconclusive.
Direct comparison test: $a_{n}=\frac{\ln (n)}{n} \geqslant \frac{1}{n}$ implies that

$$
\sum \frac{\ln (n)}{n} \geqslant \sum \frac{1}{n}, \quad \text { which diverges. }
$$

Using the ratio test

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (n)}{n} \geqslant 0$. Then,

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln (n+1)}{(n+1)} \frac{n}{\ln (n)}=\frac{n}{(n+1)} \frac{\ln (n+1)}{\ln (n)} \rightarrow 1
$$

Since $\rho=1$, the ratio test is inconclusive.
Direct comparison test: $a_{n}=\frac{\ln (n)}{n} \geqslant \frac{1}{n}$ implies that

$$
\sum \frac{\ln (n)}{n} \geqslant \sum \frac{1}{n}, \quad \text { which diverges. }
$$

Therefore, the series diverges.

Ratio test (Sect. 10.5)

- The ratio test.
- Using the ratio test.
- Few more examples.
- Comment: The root test.

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test,

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (7 n)}{n^{3}} \geqslant 0$.

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (7 n)}{n^{3}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}
$$

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (7 n)}{n^{3}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln [7(n+1)]}{(n+1)^{3}} \frac{n^{3}}{\ln (7 n)}
$$

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (7 n)}{n^{3}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln [7(n+1)]}{(n+1)^{3}} \frac{n^{3}}{\ln (7 n)}=\left(\frac{n}{n+1}\right)^{3} \frac{\ln (7 n+7)}{\ln (7 n)}
$$

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (7 n)}{n^{3}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln [7(n+1)]}{(n+1)^{3}} \frac{n^{3}}{\ln (7 n)}=\left(\frac{n}{n+1}\right)^{3} \frac{\ln (7 n+7)}{\ln (7 n)} \rightarrow 1
$$

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (7 n)}{n^{3}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln [7(n+1)]}{(n+1)^{3}} \frac{n^{3}}{\ln (7 n)}=\left(\frac{n}{n+1}\right)^{3} \frac{\ln (7 n+7)}{\ln (7 n)} \rightarrow 1
$$

Since $\rho=1$,

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (7 n)}{n^{3}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln [7(n+1)]}{(n+1)^{3}} \frac{n^{3}}{\ln (7 n)}=\left(\frac{n}{n+1}\right)^{3} \frac{\ln (7 n+7)}{\ln (7 n)} \rightarrow 1
$$

Since $\rho=1$, the ratio test is inconclusive.

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (7 n)}{n^{3}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln [7(n+1)]}{(n+1)^{3}} \frac{n^{3}}{\ln (7 n)}=\left(\frac{n}{n+1}\right)^{3} \frac{\ln (7 n+7)}{\ln (7 n)} \rightarrow 1
$$

Since $\rho=1$, the ratio test is inconclusive.
Direct comparison test:

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (7 n)}{n^{3}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln [7(n+1)]}{(n+1)^{3}} \frac{n^{3}}{\ln (7 n)}=\left(\frac{n}{n+1}\right)^{3} \frac{\ln (7 n+7)}{\ln (7 n)} \rightarrow 1
$$

Since $\rho=1$, the ratio test is inconclusive.
Direct comparison test: Since $\ln (7 n)<7 n$,

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (7 n)}{n^{3}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln [7(n+1)]}{(n+1)^{3}} \frac{n^{3}}{\ln (7 n)}=\left(\frac{n}{n+1}\right)^{3} \frac{\ln (7 n+7)}{\ln (7 n)} \rightarrow 1
$$

Since $\rho=1$, the ratio test is inconclusive.
Direct comparison test: Since $\ln (7 n)<7 n$, then
$a_{n}=\frac{\ln (7 n)}{n^{3}}$

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (7 n)}{n^{3}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln [7(n+1)]}{(n+1)^{3}} \frac{n^{3}}{\ln (7 n)}=\left(\frac{n}{n+1}\right)^{3} \frac{\ln (7 n+7)}{\ln (7 n)} \rightarrow 1
$$

Since $\rho=1$, the ratio test is inconclusive.
Direct comparison test: Since $\ln (7 n)<7 n$, then
$a_{n}=\frac{\ln (7 n)}{n^{3}} \leqslant \frac{7 n}{n^{3}}$

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (7 n)}{n^{3}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln [7(n+1)]}{(n+1)^{3}} \frac{n^{3}}{\ln (7 n)}=\left(\frac{n}{n+1}\right)^{3} \frac{\ln (7 n+7)}{\ln (7 n)} \rightarrow 1
$$

Since $\rho=1$, the ratio test is inconclusive.
Direct comparison test: Since $\ln (7 n)<7 n$, then
$a_{n}=\frac{\ln (7 n)}{n^{3}} \leqslant \frac{7 n}{n^{3}}=\frac{7}{n^{2}}$.

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (7 n)}{n^{3}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln [7(n+1)]}{(n+1)^{3}} \frac{n^{3}}{\ln (7 n)}=\left(\frac{n}{n+1}\right)^{3} \frac{\ln (7 n+7)}{\ln (7 n)} \rightarrow 1
$$

Since $\rho=1$, the ratio test is inconclusive.
Direct comparison test: Since $\ln (7 n)<7 n$, then
$a_{n}=\frac{\ln (7 n)}{n^{3}} \leqslant \frac{7 n}{n^{3}}=\frac{7}{n^{2}}$. Hence $\sum \frac{\ln (7 n)}{n^{3}} \leqslant \sum \frac{7}{n^{2}}$,

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (7 n)}{n^{3}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln [7(n+1)]}{(n+1)^{3}} \frac{n^{3}}{\ln (7 n)}=\left(\frac{n}{n+1}\right)^{3} \frac{\ln (7 n+7)}{\ln (7 n)} \rightarrow 1
$$

Since $\rho=1$, the ratio test is inconclusive.
Direct comparison test: Since $\ln (7 n)<7 n$, then
$a_{n}=\frac{\ln (7 n)}{n^{3}} \leqslant \frac{7 n}{n^{3}}=\frac{7}{n^{2}}$. Hence $\sum \frac{\ln (7 n)}{n^{3}} \leqslant \sum \frac{7}{n^{2}}$,
which converges.

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln (7 n)}{n^{3}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{\ln (7 n)}{n^{3}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{\ln [7(n+1)]}{(n+1)^{3}} \frac{n^{3}}{\ln (7 n)}=\left(\frac{n}{n+1}\right)^{3} \frac{\ln (7 n+7)}{\ln (7 n)} \rightarrow 1
$$

Since $\rho=1$, the ratio test is inconclusive.
Direct comparison test: Since $\ln (7 n)<7 n$, then
$a_{n}=\frac{\ln (7 n)}{n^{3}} \leqslant \frac{7 n}{n^{3}}=\frac{7}{n^{2}}$. Hence $\sum \frac{\ln (7 n)}{n^{3}} \leqslant \sum \frac{7}{n^{2}}$,
which converges. Therefore, the series converges.

Few more examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{5 n \ln (n)}{6^{n}}$ converges or not.

Few more examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{5 n \ln (n)}{6^{n}}$ converges or not.

Solution: We start with the ratio test,

Few more examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{5 n \ln (n)}{6^{n}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{5 n \ln (n)}{6^{n}} \geqslant 0$.

Few more examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{5 n \ln (n)}{6^{n}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{5 n \ln (n)}{6^{n}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}
$$

Few more examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{5 n \ln (n)}{6^{n}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{5 n \ln (n)}{6^{n}} \geqslant 0$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{5(n+1) \ln [(n+1)]}{6^{(n+1)}} \frac{6^{n}}{5 n \ln (n)}
$$

Few more examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{5 n \ln (n)}{6^{n}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{5 n \ln (n)}{6^{n}} \geqslant 0$.

$$
\begin{aligned}
& \frac{a_{n+1}}{a_{n}}=\frac{5(n+1) \ln [(n+1)]}{6^{(n+1)}} \frac{6^{n}}{5 n \ln (n)} \\
& \frac{a_{n+1}}{a_{n}}=\frac{1}{6}\left(\frac{n+1}{n}\right) \frac{\ln (n+1)}{\ln (n)}
\end{aligned}
$$

Few more examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{5 n \ln (n)}{6^{n}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{5 n \ln (n)}{6^{n}} \geqslant 0$.

$$
\begin{aligned}
& \frac{a_{n+1}}{a_{n}}=\frac{5(n+1) \ln [(n+1)]}{6^{(n+1)}} \frac{6^{n}}{5 n \ln (n)} \\
& \frac{a_{n+1}}{a_{n}}=\frac{1}{6}\left(\frac{n+1}{n}\right) \frac{\ln (n+1)}{\ln (n)} \rightarrow \frac{1}{6}
\end{aligned}
$$

Few more examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{5 n \ln (n)}{6^{n}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{5 n \ln (n)}{6^{n}} \geqslant 0$.

$$
\begin{aligned}
& \frac{a_{n+1}}{a_{n}}=\frac{5(n+1) \ln [(n+1)]}{6^{(n+1)}} \frac{6^{n}}{5 n \ln (n)} \\
& \frac{a_{n+1}}{a_{n}}=\frac{1}{6}\left(\frac{n+1}{n}\right) \frac{\ln (n+1)}{\ln (n)} \rightarrow \frac{1}{6}
\end{aligned}
$$

Since $\rho=\frac{1}{6}<1$,

Few more examples

Example
Determine whether the series $\sum_{n=1}^{\infty} \frac{5 n \ln (n)}{6^{n}}$ converges or not.
Solution: We start with the ratio test, since $a_{n}=\frac{5 n \ln (n)}{6^{n}} \geqslant 0$.

$$
\begin{aligned}
& \frac{a_{n+1}}{a_{n}}=\frac{5(n+1) \ln [(n+1)]}{6^{(n+1)}} \frac{6^{n}}{5 n \ln (n)} \\
& \frac{a_{n+1}}{a_{n}}=\frac{1}{6}\left(\frac{n+1}{n}\right) \frac{\ln (n+1)}{\ln (n)} \rightarrow \frac{1}{6}
\end{aligned}
$$

Since $\rho=\frac{1}{6}<1$, the ratio test says that the series converges.

Ratio test (Sect. 10.5)

- The ratio test.
- Using the ratio test.
- Few more examples.
- Comment: The root test.

Comment: The root test

Theorem
Let $\left\{a_{n}\right\}$ be a positive sequence with $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho$ exists.
(a) If $\rho<1$, the series $\sum a_{n}$ converges.
(b) If $\rho>1$, the series $\sum a_{n}$ diverges.
(c) If $\rho=1$, the test is inconclusive.

Comment: The root test

Theorem
Let $\left\{a_{n}\right\}$ be a positive sequence with $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho$ exists.
(a) If $\rho<1$, the series $\sum a_{n}$ converges.
(b) If $\rho>1$, the series $\sum a_{n}$ diverges.
(c) If $\rho=1$, the test is inconclusive.

Remark: The root test also compares the series $\sum a_{n}$ with an appropriate geometric series $\sum r^{n}$.

Comment: The root test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is

Comment: The root test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing.

Comment: The root test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.

Comment: The root test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho$

Comment: The root test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.

Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho<1$,

Comment: The root test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$,

Comment: The root test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\sqrt[n]{a_{n}}<\rho+\epsilon
$$

Comment: The root test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\sqrt[n]{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N
$$

Comment: The root test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\sqrt[n]{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{n} \leqslant r^{n}
$$

Comment: The root test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\begin{aligned}
& \sqrt[n]{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{n} \leqslant r^{n} \\
& \sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{N-1} a_{n}+\sum_{n=N}^{\infty} a_{n}
\end{aligned}
$$

Comment: The root test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\begin{gathered}
\sqrt[n]{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{n} \leqslant r^{n} \\
\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{N-1} a_{n}+\sum_{n=N}^{\infty} a_{n} \leqslant \sum_{n=0}^{N-1} a_{n}+\sum_{n=N}^{\infty} r^{n}
\end{gathered}
$$

Comment: The root test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.

Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\begin{gathered}
\sqrt[n]{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{n} \leqslant r^{n} \\
\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{N-1} a_{n}+\sum_{n=N}^{\infty} a_{n} \leqslant \sum_{n=0}^{N-1} a_{n}+\sum_{n=N}^{\infty} r^{n} \\
\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{N-1} a_{n}-\sum_{n=0}^{N-1} r^{n}+\sum_{n=0}^{\infty} r^{n}=\sum_{n=0}^{N-1}\left(a_{n}-r^{n}\right)+\frac{1}{1-r}
\end{gathered}
$$

Comment: The root test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\begin{gathered}
\sqrt[n]{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{n} \leqslant r^{n} \\
\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{N-1} a_{n}+\sum_{n=N}^{\infty} a_{n} \leqslant \sum_{n=0}^{N-1} a_{n}+\sum_{n=N}^{\infty} r^{n} \\
\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{N-1} a_{n}-\sum_{n=0}^{N-1} r^{n}+\sum_{n=0}^{\infty} r^{n}=\sum_{n=0}^{N-1}\left(a_{n}-r^{n}\right)+\frac{1}{1-r}
\end{gathered}
$$

So $\sum a_{n}$ is bounded.

Comment: The root test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\begin{gathered}
\sqrt[n]{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{n} \leqslant r^{n} . \\
\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{N-1} a_{n}+\sum_{n=N}^{\infty} a_{n} \leqslant \sum_{n=0}^{N-1} a_{n}+\sum_{n=N}^{\infty} r^{n} \\
\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{N-1} a_{n}-\sum_{n=0}^{N-1} r^{n}+\sum_{n=0}^{\infty} r^{n}=\sum_{n=0}^{N-1}\left(a_{n}-r^{n}\right)+\frac{1}{1-r} .
\end{gathered}
$$

So $\sum a_{n}$ is bounded. A non-decreasing, bounded above, series converges.

Comment: The root test

Proof: Case (a): Since $a_{n} \geqslant 0$, the series $\sum a_{n}$ is non-decreasing. We now show that $\sum a_{n}$ is bounded above.
Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\rho<1$, then for any $\epsilon>0$, small enough such that $\rho+\epsilon=r<1$, there exists N large with

$$
\begin{gathered}
\sqrt[n]{a_{n}}<\rho+\epsilon=r, \quad \text { for } n \geqslant N, \quad \Rightarrow \quad a_{n} \leqslant r^{n} . \\
\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{N-1} a_{n}+\sum_{n=N}^{\infty} a_{n} \leqslant \sum_{n=0}^{N-1} a_{n}+\sum_{n=N}^{\infty} r^{n} \\
\sum_{n=0}^{\infty} a_{n}=\sum_{n=0}^{N-1} a_{n}-\sum_{n=0}^{N-1} r^{n}+\sum_{n=0}^{\infty} r^{n}=\sum_{n=0}^{N-1}\left(a_{n}-r^{n}\right)+\frac{1}{1-r} .
\end{gathered}
$$

So $\sum a_{n}$ is bounded. A non-decreasing, bounded above, series converges. The proofs for (b), (c) are similar to ratio test.

Alternating series and absolute convergence (Sect. 10.6)

- Alternating series.
- Absolute and conditional convergence.
- Absolute convergence test.
- Few examples.

Alternating series

Definition

An infinite series $\sum a_{n}$ is an alternating series iff holds either

$$
a_{n}=(-1)^{n}\left|a_{n}\right| \quad \text { or } \quad a_{n}=(-1)^{n+1}\left|a_{n}\right|
$$

Alternating series

Definition

An infinite series $\sum a_{n}$ is an alternating series iff holds either

$$
a_{n}=(-1)^{n}\left|a_{n}\right| \quad \text { or } \quad a_{n}=(-1)^{n+1}\left|a_{n}\right|
$$

Example

- The alternating harmonic series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

Alternating series

Definition
An infinite series $\sum a_{n}$ is an alternating series iff holds either

$$
a_{n}=(-1)^{n}\left|a_{n}\right| \quad \text { or } \quad a_{n}=(-1)^{n+1}\left|a_{n}\right|
$$

Example

- The alternating harmonic series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

- The following series is an alternating series,

$$
\sum_{n=1}^{\infty} \frac{\cos (n \pi) n^{2}}{(n+1)!}
$$

Alternating series

Definition
An infinite series $\sum a_{n}$ is an alternating series iff holds either

$$
a_{n}=(-1)^{n}\left|a_{n}\right| \quad \text { or } \quad a_{n}=(-1)^{n+1}\left|a_{n}\right| .
$$

Example

- The alternating harmonic series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

- The following series is an alternating series,

$$
\sum_{n=1}^{\infty} \frac{\cos (n \pi) n^{2}}{(n+1)!}=\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{(n+1)!}
$$

Alternating series

Definition
An infinite series $\sum a_{n}$ is an alternating series iff holds either

$$
a_{n}=(-1)^{n}\left|a_{n}\right| \quad \text { or } \quad a_{n}=(-1)^{n+1}\left|a_{n}\right| .
$$

Example

- The alternating harmonic series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

- The following series is an alternating series,

$$
\sum_{n=1}^{\infty} \frac{\cos (n \pi) n^{2}}{(n+1)!}=\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{(n+1)!}=-\frac{1}{2}+\frac{4}{6}-\frac{9}{24}+\cdots
$$

Alternating series

Theorem (Leibniz's test)
If the sequence $\left\{a_{n}\right\}$ satisfies: $0<a_{n}$, and $a_{n+1} \leqslant a_{n}$, and $a_{n} \rightarrow 0$, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.

Alternating series

Theorem (Leibniz's test)
If the sequence $\left\{a_{n}\right\}$ satisfies: $0<a_{n}$, and $a_{n+1} \leqslant a_{n}$, and $a_{n} \rightarrow 0$, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.

Proof: Write down the partial sum $s_{2 n}$ as follows

$$
\begin{aligned}
s_{2 n} & =a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\cdots+s_{2 n-1}-s_{2 n} \\
& =\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\cdots+\left(s_{2 n-1}-s_{2 n}\right) \\
& =a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)-\cdots-\left(s_{2 n-2}-s_{2 n-1}\right)-s_{2 n} .
\end{aligned}
$$

Alternating series

Theorem (Leibniz's test)
If the sequence $\left\{a_{n}\right\}$ satisfies: $0<a_{n}$, and $a_{n+1} \leqslant a_{n}$, and $a_{n} \rightarrow 0$, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.

Proof: Write down the partial sum $s_{2 n}$ as follows

$$
\begin{aligned}
s_{2 n} & =a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\cdots+s_{2 n-1}-s_{2 n} \\
& =\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\cdots+\left(s_{2 n-1}-s_{2 n}\right) \\
& =a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)-\cdots-\left(s_{2 n-2}-s_{2 n-1}\right)-s_{2 n}
\end{aligned}
$$

The second expression implies $s_{2 n} \leqslant s_{2(n+1)}$.

Alternating series

Theorem (Leibniz's test)
If the sequence $\left\{a_{n}\right\}$ satisfies: $0<a_{n}$, and $a_{n+1} \leqslant a_{n}$, and $a_{n} \rightarrow 0$, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.

Proof: Write down the partial sum $s_{2 n}$ as follows

$$
\begin{aligned}
s_{2 n} & =a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\cdots+s_{2 n-1}-s_{2 n} \\
& =\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\cdots+\left(s_{2 n-1}-s_{2 n}\right) \\
& =a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)-\cdots-\left(s_{2 n-2}-s_{2 n-1}\right)-s_{2 n}
\end{aligned}
$$

The second expression implies $s_{2 n} \leqslant s_{2(n+1)}$.
The third expression says that $s_{2 n}$ is bounded above.

Alternating series

Theorem (Leibniz's test)
If the sequence $\left\{a_{n}\right\}$ satisfies: $0<a_{n}$, and $a_{n+1} \leqslant a_{n}$, and $a_{n} \rightarrow 0$, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.

Proof: Write down the partial sum $s_{2 n}$ as follows

$$
\begin{aligned}
s_{2 n} & =a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\cdots+s_{2 n-1}-s_{2 n} \\
& =\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\cdots+\left(s_{2 n-1}-s_{2 n}\right) \\
& =a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)-\cdots-\left(s_{2 n-2}-s_{2 n-1}\right)-s_{2 n}
\end{aligned}
$$

The second expression implies $s_{2 n} \leqslant s_{2(n+1)}$.
The third expression says that $s_{2 n}$ is bounded above.
Therefore converges, $s_{2 n} \rightarrow L$.

Alternating series

Theorem (Leibniz's test)
If the sequence $\left\{a_{n}\right\}$ satisfies: $0<a_{n}$, and $a_{n+1} \leqslant a_{n}$, and $a_{n} \rightarrow 0$, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.

Proof: Write down the partial sum $s_{2 n}$ as follows

$$
\begin{aligned}
s_{2 n} & =a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\cdots+s_{2 n-1}-s_{2 n} \\
& =\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\cdots+\left(s_{2 n-1}-s_{2 n}\right) \\
& =a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)-\cdots-\left(s_{2 n-2}-s_{2 n-1}\right)-s_{2 n}
\end{aligned}
$$

The second expression implies $s_{2 n} \leqslant s_{2(n+1)}$.
The third expression says that $s_{2 n}$ is bounded above.
Therefore converges, $s_{2 n} \rightarrow L$.
Since $s_{2 n+1}=s_{2 n}+a_{2 n+1}$,

Alternating series

Theorem (Leibniz's test)
If the sequence $\left\{a_{n}\right\}$ satisfies: $0<a_{n}$, and $a_{n+1} \leqslant a_{n}$, and $a_{n} \rightarrow 0$, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.

Proof: Write down the partial sum $s_{2 n}$ as follows

$$
\begin{aligned}
s_{2 n} & =a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\cdots+s_{2 n-1}-s_{2 n} \\
& =\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\cdots+\left(s_{2 n-1}-s_{2 n}\right) \\
& =a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)-\cdots-\left(s_{2 n-2}-s_{2 n-1}\right)-s_{2 n}
\end{aligned}
$$

The second expression implies $s_{2 n} \leqslant s_{2(n+1)}$.
The third expression says that $s_{2 n}$ is bounded above.
Therefore converges, $s_{2 n} \rightarrow L$.
Since $s_{2 n+1}=s_{2 n}+a_{2 n+1}$, and $a_{n} \rightarrow 0$,

Alternating series

Theorem (Leibniz's test)
If the sequence $\left\{a_{n}\right\}$ satisfies: $0<a_{n}$, and $a_{n+1} \leqslant a_{n}$, and $a_{n} \rightarrow 0$, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.

Proof: Write down the partial sum $s_{2 n}$ as follows

$$
\begin{aligned}
s_{2 n} & =a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\cdots+s_{2 n-1}-s_{2 n} \\
& =\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\cdots+\left(s_{2 n-1}-s_{2 n}\right) \\
& =a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)-\cdots-\left(s_{2 n-2}-s_{2 n-1}\right)-s_{2 n}
\end{aligned}
$$

The second expression implies $s_{2 n} \leqslant s_{2(n+1)}$.
The third expression says that $s_{2 n}$ is bounded above.
Therefore converges, $s_{2 n} \rightarrow L$.
Since $s_{2 n+1}=s_{2 n}+a_{2 n+1}$, and $a_{n} \rightarrow 0$, then $s_{2 n+1} \rightarrow L+0=L$.

Alternating series

Theorem (Leibniz's test)
If the sequence $\left\{a_{n}\right\}$ satisfies: $0<a_{n}$, and $a_{n+1} \leqslant a_{n}$, and $a_{n} \rightarrow 0$, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.

Proof: Write down the partial sum $s_{2 n}$ as follows

$$
\begin{aligned}
s_{2 n} & =a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\cdots+s_{2 n-1}-s_{2 n} \\
& =\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\cdots+\left(s_{2 n-1}-s_{2 n}\right) \\
& =a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)-\cdots-\left(s_{2 n-2}-s_{2 n-1}\right)-s_{2 n} .
\end{aligned}
$$

The second expression implies $s_{2 n} \leqslant s_{2(n+1)}$.
The third expression says that $s_{2 n}$ is bounded above.
Therefore converges, $s_{2 n} \rightarrow L$.
Since $s_{2 n+1}=s_{2 n}+a_{2 n+1}$, and $a_{n} \rightarrow 0$, then $s_{2 n+1} \rightarrow L+0=L$.
We conclude that $\sum(-1)^{n+1} a_{n}$ converges. \square

Alternating series

Example

Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. converges.

Alternating series

Example

Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. converges.
Solution: Introduce the sequence $a_{n}=\frac{(-1)^{n+1}}{n}$.

Alternating series

Example
Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. converges.
Solution: Introduce the sequence $a_{n}=\frac{(-1)^{n+1}}{n}$.
The sequence $\left\{a_{n}\right\}$ satisfies the hypothesis in the Leibniz test:

Alternating series

Example
Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. converges.
Solution: Introduce the sequence $a_{n}=\frac{(-1)^{n+1}}{n}$.
The sequence $\left\{a_{n}\right\}$ satisfies the hypothesis in the Leibniz test:

- $\left|a_{n}\right|>0 ;$

Alternating series

Example
Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. converges.
Solution: Introduce the sequence $a_{n}=\frac{(-1)^{n+1}}{n}$.
The sequence $\left\{a_{n}\right\}$ satisfies the hypothesis in the Leibniz test:

- $\left|a_{n}\right|>0$;
$-\left|a_{n+1}\right|<\left|a_{n}\right| ;$

Alternating series

Example
Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. converges.
Solution: Introduce the sequence $a_{n}=\frac{(-1)^{n+1}}{n}$.
The sequence $\left\{a_{n}\right\}$ satisfies the hypothesis in the Leibniz test:

- $\left|a_{n}\right|>0 ;$
$-\left|a_{n+1}\right|<\left|a_{n}\right| ;$
$-\left|a_{n}\right| \rightarrow 0$.

Alternating series

Example
Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. converges.
Solution: Introduce the sequence $a_{n}=\frac{(-1)^{n+1}}{n}$.
The sequence $\left\{a_{n}\right\}$ satisfies the hypothesis in the Leibniz test:

- $\left|a_{n}\right|>0$;
$-\left|a_{n+1}\right|<\left|a_{n}\right| ;$
$-\left|a_{n}\right| \rightarrow 0$.
We then conclude that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges.

Alternating series and absolute convergence (Sect. 10.6)

- Alternating series.
- Absolute and conditional convergence.
- Absolute convergence test.
- Few examples.

Absolute and conditional convergence

Remarks:

- Several convergence tests apply only to positive series.

Absolute and conditional convergence

Remarks:

- Several convergence tests apply only to positive series.
- Integral test, direct comparison and limit comparison tests, ratio test, do not apply to alternating series.

Absolute and conditional convergence

Remarks:

- Several convergence tests apply only to positive series.
- Integral test, direct comparison and limit comparison tests, ratio test, do not apply to alternating series.
- Given an arbitrary series $\sum a_{n}$, the series $\sum\left|a_{n}\right|$ has non-negative terms.

Absolute and conditional convergence

Remarks:

- Several convergence tests apply only to positive series.
- Integral test, direct comparison and limit comparison tests, ratio test, do not apply to alternating series.
- Given an arbitrary series $\sum a_{n}$, the series $\sum\left|a_{n}\right|$ has non-negative terms.

Definition

- A series $\sum a_{n}$ is absolutely convergent iff the series $\sum\left|a_{n}\right|$ converges.

Absolute and conditional convergence

Remarks:

- Several convergence tests apply only to positive series.
- Integral test, direct comparison and limit comparison tests, ratio test, do not apply to alternating series.
- Given an arbitrary series $\sum a_{n}$, the series $\sum\left|a_{n}\right|$ has non-negative terms.

Definition

- A series $\sum a_{n}$ is absolutely convergent iff the series $\sum\left|a_{n}\right|$ converges.
- A series converges conditionally iff it converges but does not converges absolutely.

Absolute and conditional convergence

Example

- The alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges conditionally.

Absolute and conditional convergence

Example

- The alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges conditionally.

Because the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges and the alternating harmonic series converges.

Absolute and conditional convergence

Example

- The alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges
conditionally.
Because the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges and the
alternating harmonic series converges.
- The geometric series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^{n}}$ converges absolutely.

Absolute and conditional convergence

Example

- The alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges conditionally.
Because the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges and the alternating harmonic series converges.
- The geometric series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^{n}}$ converges absolutely.

Because the geometric series $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converges.

Alternating series and absolute convergence (Sect. 10.6)

- Alternating series.
- Absolute and conditional convergence.
- Absolute convergence test.
- Few examples.

Absolute convergence test

Theorem
If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ converges.

Absolute convergence test

Theorem
If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ converges.
Remark:
The converse is not true.

Absolute convergence test

Theorem
If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ converges.
Remark:
The converse is not true. A series can converge conditionally:

Absolute convergence test

Theorem
If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ converges.
Remark:
The converse is not true. A series can converge conditionally:
$\sum \frac{(-1)^{n+1}}{n}$ converges, but $\sum\left|\frac{(-1)^{n+1}}{n}\right|$ does not converge.

Absolute convergence test

Theorem
If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ converges.
Remark:
The converse is not true. A series can converge conditionally:
$\sum \frac{(-1)^{n+1}}{n}$ converges, but $\sum\left|\frac{(-1)^{n+1}}{n}\right|$ does not converge.
Proof: $-\left|a_{n}\right| \leqslant a_{n} \leqslant\left|a_{n}\right|$

Absolute convergence test

Theorem
If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ converges.
Remark:
The converse is not true. A series can converge conditionally:

$$
\begin{aligned}
& \sum \frac{(-1)^{n+1}}{n} \text { converges, but } \sum\left|\frac{(-1)^{n+1}}{n}\right| \text { does not converge. } \\
& \text { Proof: }-\left|a_{n}\right| \leqslant a_{n} \leqslant\left|a_{n}\right| \Rightarrow 0 \leqslant a_{n}+\left|a_{n}\right| \leqslant 2\left|a_{n}\right|
\end{aligned}
$$

Absolute convergence test

Theorem
If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ converges.
Remark:
The converse is not true. A series can converge conditionally:
$\sum \frac{(-1)^{n+1}}{n}$ converges, but $\sum\left|\frac{(-1)^{n+1}}{n}\right|$ does not converge.
Proof: $-\left|a_{n}\right| \leqslant a_{n} \leqslant\left|a_{n}\right| \quad \Rightarrow \quad 0 \leqslant a_{n}+\left|a_{n}\right| \leqslant 2\left|a_{n}\right|$.
Since $\sum\left|a_{n}\right|$ converges so does $\sum 2\left|a_{n}\right|$.

Absolute convergence test

Theorem
If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ converges.
Remark:
The converse is not true. A series can converge conditionally:
$\sum \frac{(-1)^{n+1}}{n}$ converges, but $\sum\left|\frac{(-1)^{n+1}}{n}\right|$ does not converge.
Proof: $-\left|a_{n}\right| \leqslant a_{n} \leqslant\left|a_{n}\right| \quad \Rightarrow \quad 0 \leqslant a_{n}+\left|a_{n}\right| \leqslant 2\left|a_{n}\right|$.
Since $\sum\left|a_{n}\right|$ converges so does $\sum 2\left|a_{n}\right|$.
Direct comparison test implies $\sum\left(a_{n}+\left|a_{n}\right|\right)$ converges.

Absolute convergence test

Theorem
If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ converges.
Remark:
The converse is not true. A series can converge conditionally:
$\sum \frac{(-1)^{n+1}}{n}$ converges, but $\sum\left|\frac{(-1)^{n+1}}{n}\right|$ does not converge.
Proof: $-\left|a_{n}\right| \leqslant a_{n} \leqslant\left|a_{n}\right| \quad \Rightarrow \quad 0 \leqslant a_{n}+\left|a_{n}\right| \leqslant 2\left|a_{n}\right|$.
Since $\sum\left|a_{n}\right|$ converges so does $\sum 2\left|a_{n}\right|$.
Direct comparison test implies $\sum\left(a_{n}+\left|a_{n}\right|\right)$ converges.

$$
\sum a_{n}=\sum\left(a_{n}+\left|a_{n}\right|\right)-\sum\left|a_{n}\right|
$$

Absolute convergence test

Theorem
If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ converges.
Remark:
The converse is not true. A series can converge conditionally:
$\sum \frac{(-1)^{n+1}}{n}$ converges, but $\sum\left|\frac{(-1)^{n+1}}{n}\right|$ does not converge.
Proof: $-\left|a_{n}\right| \leqslant a_{n} \leqslant\left|a_{n}\right| \quad \Rightarrow \quad 0 \leqslant a_{n}+\left|a_{n}\right| \leqslant 2\left|a_{n}\right|$.
Since $\sum\left|a_{n}\right|$ converges so does $\sum 2\left|a_{n}\right|$.
Direct comparison test implies $\sum\left(a_{n}+\left|a_{n}\right|\right)$ converges.

$$
\sum a_{n}=\sum\left(a_{n}+\left|a_{n}\right|\right)-\sum\left|a_{n}\right|
$$

and both series on the right-hand side converge.

Absolute convergence test

Theorem
If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ converges.
Remark:
The converse is not true. A series can converge conditionally:
$\sum \frac{(-1)^{n+1}}{n}$ converges, but $\sum\left|\frac{(-1)^{n+1}}{n}\right|$ does not converge.
Proof: $-\left|a_{n}\right| \leqslant a_{n} \leqslant\left|a_{n}\right| \quad \Rightarrow \quad 0 \leqslant a_{n}+\left|a_{n}\right| \leqslant 2\left|a_{n}\right|$.
Since $\sum\left|a_{n}\right|$ converges so does $\sum 2\left|a_{n}\right|$.
Direct comparison test implies $\sum\left(a_{n}+\left|a_{n}\right|\right)$ converges.

$$
\sum a_{n}=\sum\left(a_{n}+\left|a_{n}\right|\right)-\sum\left|a_{n}\right|
$$

and both series on the right-hand side converge.
Hence $\sum a_{n}$ converges.

Alternating series and absolute convergence (Sect. 10.6)

- Alternating series.
- Absolute and conditional convergence.
- Absolute convergence test.
- Few examples.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_{n}=\left|(-1)^{n+1} \frac{4 n}{4 n^{6}+5}\right|$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_{n}=\left|(-1)^{n+1} \frac{4 n}{4 n^{6}+5}\right|=\frac{4 n}{4 n^{6}+5}$.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_{n}=\left|(-1)^{n+1} \frac{4 n}{4 n^{6}+5}\right|=\frac{4 n}{4 n^{6}+5}$.

$$
\frac{a_{n+1}}{a_{n}}
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_{n}=\left|(-1)^{n+1} \frac{4 n}{4 n^{6}+5}\right|=\frac{4 n}{4 n^{6}+5}$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{4(n+1)}{\left[4(n+1)^{6}+5\right]} \frac{\left[4 n^{6}+5\right]}{4 n}
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_{n}=\left|(-1)^{n+1} \frac{4 n}{4 n^{6}+5}\right|=\frac{4 n}{4 n^{6}+5}$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{4(n+1)}{\left[4(n+1)^{6}+5\right]} \frac{\left[4 n^{6}+5\right]}{4 n}=\frac{(n+1)}{n}\left[\frac{4 n^{6}+5}{4(n+1)^{6}+5}\right]
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_{n}=\left|(-1)^{n+1} \frac{4 n}{4 n^{6}+5}\right|=\frac{4 n}{4 n^{6}+5}$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{4(n+1)}{\left[4(n+1)^{6}+5\right]} \frac{\left[4 n^{6}+5\right]}{4 n}=\frac{(n+1)}{n}\left[\frac{4 n^{6}+5}{4(n+1)^{6}+5}\right] \rightarrow 1 .
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_{n}=\left|(-1)^{n+1} \frac{4 n}{4 n^{6}+5}\right|=\frac{4 n}{4 n^{6}+5}$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{4(n+1)}{\left[4(n+1)^{6}+5\right]} \frac{\left[4 n^{6}+5\right]}{4 n}=\frac{(n+1)}{n}\left[\frac{4 n^{6}+5}{4(n+1)^{6}+5}\right] \rightarrow 1 .
$$

Ratio test inconclusive.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_{n}=\left|(-1)^{n+1} \frac{4 n}{4 n^{6}+5}\right|=\frac{4 n}{4 n^{6}+5}$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{4(n+1)}{\left[4(n+1)^{6}+5\right]} \frac{\left[4 n^{6}+5\right]}{4 n}=\frac{(n+1)}{n}\left[\frac{4 n^{6}+5}{4(n+1)^{6}+5}\right] \rightarrow 1 .
$$

Ratio test inconclusive. Direct comparison test:

$$
4 n^{6}<4 n^{6}+5
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_{n}=\left|(-1)^{n+1} \frac{4 n}{4 n^{6}+5}\right|=\frac{4 n}{4 n^{6}+5}$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{4(n+1)}{\left[4(n+1)^{6}+5\right]} \frac{\left[4 n^{6}+5\right]}{4 n}=\frac{(n+1)}{n}\left[\frac{4 n^{6}+5}{4(n+1)^{6}+5}\right] \rightarrow 1 .
$$

Ratio test inconclusive. Direct comparison test:

$$
4 n^{6}<4 n^{6}+5 \Rightarrow \frac{1}{4 n^{6}+5}<\frac{1}{4 n^{6}}
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_{n}=\left|(-1)^{n+1} \frac{4 n}{4 n^{6}+5}\right|=\frac{4 n}{4 n^{6}+5}$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{4(n+1)}{\left[4(n+1)^{6}+5\right]} \frac{\left[4 n^{6}+5\right]}{4 n}=\frac{(n+1)}{n}\left[\frac{4 n^{6}+5}{4(n+1)^{6}+5}\right] \rightarrow 1 .
$$

Ratio test inconclusive. Direct comparison test:

$$
4 n^{6}<4 n^{6}+5 \Rightarrow \frac{1}{4 n^{6}+5}<\frac{1}{4 n^{6}} \Rightarrow \frac{4 n}{4 n^{6}+5}<\frac{1}{n^{5}} .
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_{n}=\left|(-1)^{n+1} \frac{4 n}{4 n^{6}+5}\right|=\frac{4 n}{4 n^{6}+5}$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{4(n+1)}{\left[4(n+1)^{6}+5\right]} \frac{\left[4 n^{6}+5\right]}{4 n}=\frac{(n+1)}{n}\left[\frac{4 n^{6}+5}{4(n+1)^{6}+5}\right] \rightarrow 1 .
$$

Ratio test inconclusive. Direct comparison test:

$$
4 n^{6}<4 n^{6}+5 \Rightarrow \frac{1}{4 n^{6}+5}<\frac{1}{4 n^{6}} \Rightarrow \frac{4 n}{4 n^{6}+5}<\frac{1}{n^{5}}
$$

$\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ converges,

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_{n}=\left|(-1)^{n+1} \frac{4 n}{4 n^{6}+5}\right|=\frac{4 n}{4 n^{6}+5}$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{4(n+1)}{\left[4(n+1)^{6}+5\right]} \frac{\left[4 n^{6}+5\right]}{4 n}=\frac{(n+1)}{n}\left[\frac{4 n^{6}+5}{4(n+1)^{6}+5}\right] \rightarrow 1 .
$$

Ratio test inconclusive. Direct comparison test:

$$
4 n^{6}<4 n^{6}+5 \Rightarrow \frac{1}{4 n^{6}+5}<\frac{1}{4 n^{6}} \Rightarrow \frac{4 n}{4 n^{6}+5}<\frac{1}{n^{5}}
$$

$\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ converges, (IT),

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4 n}{4 n^{6}+5}$ converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_{n}=\left|(-1)^{n+1} \frac{4 n}{4 n^{6}+5}\right|=\frac{4 n}{4 n^{6}+5}$.

$$
\frac{a_{n+1}}{a_{n}}=\frac{4(n+1)}{\left[4(n+1)^{6}+5\right]} \frac{\left[4 n^{6}+5\right]}{4 n}=\frac{(n+1)}{n}\left[\frac{4 n^{6}+5}{4(n+1)^{6}+5}\right] \rightarrow 1 .
$$

Ratio test inconclusive. Direct comparison test:

$$
4 n^{6}<4 n^{6}+5 \Rightarrow \frac{1}{4 n^{6}+5}<\frac{1}{4 n^{6}} \Rightarrow \frac{4 n}{4 n^{6}+5}<\frac{1}{n^{5}}
$$

$\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ converges, (IT), so the series converges absolutely.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: The series diverges absolutely,

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: The series diverges absolutely, since

$$
\left|a_{n}\right|=\left|\frac{(-1)^{n+1}}{\ln (n)}\right|=\frac{1}{\ln (n)},
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: The series diverges absolutely, since

$$
\left|a_{n}\right|=\left|\frac{(-1)^{n+1}}{\ln (n)}\right|=\frac{1}{\ln (n)},
$$

and $\ln (n)<n$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: The series diverges absolutely, since

$$
\left|a_{n}\right|=\left|\frac{(-1)^{n+1}}{\ln (n)}\right|=\frac{1}{\ln (n)},
$$

and $\ln (n)<n$ implies $\frac{1}{n}<\frac{1}{\ln (n)}$.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: The series diverges absolutely, since

$$
\left|a_{n}\right|=\left|\frac{(-1)^{n+1}}{\ln (n)}\right|=\frac{1}{\ln (n)},
$$

and $\ln (n)<n$ implies $\frac{1}{n}<\frac{1}{\ln (n)}$.
Since the harmonic series diverges,

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: The series diverges absolutely, since

$$
\left|a_{n}\right|=\left|\frac{(-1)^{n+1}}{\ln (n)}\right|=\frac{1}{\ln (n)},
$$

and $\ln (n)<n$ implies $\frac{1}{n}<\frac{1}{\ln (n)}$.
Since the harmonic series diverges, then $\sum_{n=1}^{\infty} \frac{1}{\ln (n)}$ diverges;

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: The series diverges absolutely, since

$$
\left|a_{n}\right|=\left|\frac{(-1)^{n+1}}{\ln (n)}\right|=\frac{1}{\ln (n)},
$$

and $\ln (n)<n$ implies $\frac{1}{n}<\frac{1}{\ln (n)}$.
Since the harmonic series diverges, then $\sum_{n=1}^{\infty} \frac{1}{\ln (n)}$ diverges; therefore, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ diverges absolutely.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely,
conditionally, or does not converge at all.
Solution: Recall: The series diverges absolutely.
We now try the Leibniz test

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely,
conditionally, or does not converge at all.
Solution: Recall: The series diverges absolutely.
We now try the Leibniz test (the alternating series test)

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely,
conditionally, or does not converge at all.
Solution: Recall: The series diverges absolutely.
We now try the Leibniz test (the alternating series test)

$$
\left|a_{n}\right|=\frac{1}{\ln (n)}>0
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.
We now try the Leibniz test (the alternating series test)

$$
\left|a_{n}\right|=\frac{1}{\ln (n)}>0, \quad\left|a_{n}\right|=\frac{1}{\ln (n)} \rightarrow 0
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.
We now try the Leibniz test (the alternating series test)

$$
\left|a_{n}\right|=\frac{1}{\ln (n)}>0, \quad\left|a_{n}\right|=\frac{1}{\ln (n)} \rightarrow 0
$$

Furthermore, the inequality $\ln (n)<\ln (n+1)$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.
We now try the Leibniz test (the alternating series test)

$$
\left|a_{n}\right|=\frac{1}{\ln (n)}>0, \quad\left|a_{n}\right|=\frac{1}{\ln (n)} \rightarrow 0
$$

Furthermore, the inequality $\ln (n)<\ln (n+1)$ implies

$$
\left|a_{n+1}\right|=\frac{1}{\ln (n+1)}
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.
We now try the Leibniz test (the alternating series test)

$$
\left|a_{n}\right|=\frac{1}{\ln (n)}>0, \quad\left|a_{n}\right|=\frac{1}{\ln (n)} \rightarrow 0
$$

Furthermore, the inequality $\ln (n)<\ln (n+1)$ implies

$$
\left|a_{n+1}\right|=\frac{1}{\ln (n+1)}<\frac{1}{\ln (n)}
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.
We now try the Leibniz test (the alternating series test)

$$
\left|a_{n}\right|=\frac{1}{\ln (n)}>0, \quad\left|a_{n}\right|=\frac{1}{\ln (n)} \rightarrow 0
$$

Furthermore, the inequality $\ln (n)<\ln (n+1)$ implies

$$
\left|a_{n+1}\right|=\frac{1}{\ln (n+1)}<\frac{1}{\ln (n)}=\left|a_{n}\right| .
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.
We now try the Leibniz test (the alternating series test)

$$
\left|a_{n}\right|=\frac{1}{\ln (n)}>0, \quad\left|a_{n}\right|=\frac{1}{\ln (n)} \rightarrow 0
$$

Furthermore, the inequality $\ln (n)<\ln (n+1)$ implies

$$
\left|a_{n+1}\right|=\frac{1}{\ln (n+1)}<\frac{1}{\ln (n)}=\left|a_{n}\right|
$$

Hence, the Leibniz test implies that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.
We now try the Leibniz test (the alternating series test)

$$
\left|a_{n}\right|=\frac{1}{\ln (n)}>0, \quad\left|a_{n}\right|=\frac{1}{\ln (n)} \rightarrow 0
$$

Furthermore, the inequality $\ln (n)<\ln (n+1)$ implies

$$
\left|a_{n+1}\right|=\frac{1}{\ln (n+1)}<\frac{1}{\ln (n)}=\left|a_{n}\right| .
$$

Hence, the Leibniz test implies that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln (n)}$ converges.
Hence, the series converges conditionally.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-100)^{n}}{n!}$ converges absolutely, conditionally, or does not converge at all.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-100)^{n}}{n!}$ converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $\left|a_{n}\right|=\left|\frac{(-100)^{n}}{n!}\right|$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-100)^{n}}{n!}$ converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $\left|a_{n}\right|=\left|\frac{(-100)^{n}}{n!}\right|=\frac{100^{n}}{n!}$.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-100)^{n}}{n!}$ converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $\left|a_{n}\right|=\left|\frac{(-100)^{n}}{n!}\right|=\frac{100^{n}}{n!}$.
Let us check the ratio test:

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-100)^{n}}{n!}$ converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $\left|a_{n}\right|=\left|\frac{(-100)^{n}}{n!}\right|=\frac{100^{n}}{n!}$.
Let us check the ratio test:

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{100^{n+1}}{(n+1)!} \frac{n!}{100^{n}}
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-100)^{n}}{n!}$ converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $\left|a_{n}\right|=\left|\frac{(-100)^{n}}{n!}\right|=\frac{100^{n}}{n!}$.
Let us check the ratio test:

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{100^{n+1}}{(n+1)!} \frac{n!}{100^{n}}=\frac{100\left(100^{n}\right)}{(n+1) n!} \frac{n!}{100^{n}}
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-100)^{n}}{n!}$ converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $\left|a_{n}\right|=\left|\frac{(-100)^{n}}{n!}\right|=\frac{100^{n}}{n!}$.
Let us check the ratio test:

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{100^{n+1}}{(n+1)!} \frac{n!}{100^{n}}=\frac{100\left(100^{n}\right)}{(n+1) n!} \frac{n!}{100^{n}}=\frac{100}{(n+1)}
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-100)^{n}}{n!}$ converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $\left|a_{n}\right|=\left|\frac{(-100)^{n}}{n!}\right|=\frac{100^{n}}{n!}$.
Let us check the ratio test:

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{100^{n+1}}{(n+1)!} \frac{n!}{100^{n}}=\frac{100\left(100^{n}\right)}{(n+1) n!} \frac{n!}{100^{n}}=\frac{100}{(n+1)} \rightarrow 0
$$

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-100)^{n}}{n!}$ converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $\left|a_{n}\right|=\left|\frac{(-100)^{n}}{n!}\right|=\frac{100^{n}}{n!}$.
Let us check the ratio test:

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{100^{n+1}}{(n+1)!} \frac{n!}{100^{n}}=\frac{100\left(100^{n}\right)}{(n+1) n!} \frac{n!}{100^{n}}=\frac{100}{(n+1)} \rightarrow 0
$$

The ratio test implies $\sum_{n=1}^{\infty} \frac{(-100)^{n}}{n!}$ coverges absolutely.

Few examples

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{(-100)^{n}}{n!}$ converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $\left|a_{n}\right|=\left|\frac{(-100)^{n}}{n!}\right|=\frac{100^{n}}{n!}$.
Let us check the ratio test:

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{100^{n+1}}{(n+1)!} \frac{n!}{100^{n}}=\frac{100\left(100^{n}\right)}{(n+1) n!} \frac{n!}{100^{n}}=\frac{100}{(n+1)} \rightarrow 0
$$

The ratio test implies $\sum_{n=1}^{\infty} \frac{(-100)^{n}}{n!}$ coverges absolutely.
Therefore, the series converges.

