Comparison tests (Sect. 10.4)

- Review: Direct comparison test for integrals.
- Direct comparison test for series.
- ▶ Review: Limit comparison test for integrals.

- Limit comparison test for series.
- Few examples.

Comparison tests (Sect. 10.4)

Review: Direct comparison test for integrals.

- Direct comparison test for series.
- Review: Limit comparison test for integrals.
- Limit comparison test for series.
- Few examples.

Theorem (Direct comparison test)
If
$$0 \leq \int_{a}^{\infty} f(x) dx \leq \int_{a}^{\infty} g(x) dx$$
, then:
(a) $\int_{a}^{\infty} g(x) dx$ converges $\Rightarrow \int_{a}^{\infty} f(x) dx$ converges;
(b) $\int_{a}^{\infty} f(x) dx$ diverges $\Rightarrow \int_{a}^{\infty} g(x) dx$ diverges.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Theorem (Direct comparison test)
If
$$0 \leq \int_{a}^{\infty} f(x) dx \leq \int_{a}^{\infty} g(x) dx$$
, then:
(a) $\int_{a}^{\infty} g(x) dx$ converges $\Rightarrow \int_{a}^{\infty} f(x) dx$ converges;
(b) $\int_{a}^{\infty} f(x) dx$ diverges $\Rightarrow \int_{a}^{\infty} g(x) dx$ diverges.

$$\int_0^\infty e^{-x^2} \, dx \, \text{ converges,}$$

Theorem (Direct comparison test)
If
$$0 \leq \int_{a}^{\infty} f(x) dx \leq \int_{a}^{\infty} g(x) dx$$
, then:
(a) $\int_{a}^{\infty} g(x) dx$ converges $\Rightarrow \int_{a}^{\infty} f(x) dx$ converges;
(b) $\int_{a}^{\infty} f(x) dx$ diverges $\Rightarrow \int_{a}^{\infty} g(x) dx$ diverges.

Example

$$\int_0^\infty e^{-x^2} dx \text{ converges, since } \int_0^\infty e^{-x^2} dx \leqslant \int_0^\infty e^{-x} dx.$$

Theorem (Direct comparison test)
If
$$0 \leq \int_{a}^{\infty} f(x) dx \leq \int_{a}^{\infty} g(x) dx$$
, then:
(a) $\int_{a}^{\infty} g(x) dx$ converges $\Rightarrow \int_{a}^{\infty} f(x) dx$ converges;
(b) $\int_{a}^{\infty} f(x) dx$ diverges $\Rightarrow \int_{a}^{\infty} g(x) dx$ diverges.

Example

$$\int_{0}^{\infty} e^{-x^{2}} dx \text{ converges, since } \int_{0}^{\infty} e^{-x^{2}} dx \leqslant \int_{0}^{\infty} e^{-x} dx.$$
$$\int_{2}^{\infty} \frac{dx}{\sqrt{x^{2} - 1}} \text{ diverges,}$$

(日) (日) (日) (日) (日) (日) (日)

Theorem (Direct comparison test)
If
$$0 \leq \int_{a}^{\infty} f(x) dx \leq \int_{a}^{\infty} g(x) dx$$
, then:
(a) $\int_{a}^{\infty} g(x) dx$ converges $\Rightarrow \int_{a}^{\infty} f(x) dx$ converges;
(b) $\int_{a}^{\infty} f(x) dx$ diverges $\Rightarrow \int_{a}^{\infty} g(x) dx$ diverges.

Example

$$\int_{0}^{\infty} e^{-x^{2}} dx \text{ converges, since } \int_{0}^{\infty} e^{-x^{2}} dx \leqslant \int_{0}^{\infty} e^{-x} dx.$$
$$\int_{2}^{\infty} \frac{dx}{\sqrt{x^{2}-1}} \text{ diverges, since } \int_{2}^{\infty} \frac{dx}{x} \leqslant \int_{2}^{\infty} \frac{dx}{\sqrt{x^{2}-1}}. \qquad \vartriangleleft$$

Comparison tests (Sect. 10.4)

- Review: Direct comparison test for integrals.
- Direct comparison test for series.
- Review: Limit comparison test for integrals.

- Limit comparison test for series.
- Few examples.

Theorem

If the sequences satisfy $0 \leq a_n \leq b_n$ for all $n \geq N$, then

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

If the sequences satisfy $0 \leq a_n \leq b_n$ for all $n \geq N$, then

Example

Determine whether the the series $\sum_{n=2}^{\infty} \frac{n+2}{n^2-n}$ converges or not.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

If the sequences satisfy $0 \leq a_n \leq b_n$ for all $n \geq N$, then

Example

Determine whether the the series $\sum_{n=2}^{\infty} \frac{n+2}{n^2-n}$ converges or not. Solution: Since $\frac{n+2}{n^2-n} > \frac{n}{n^2-n}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

If the sequences satisfy $0 \leq a_n \leq b_n$ for all $n \geq N$, then

(a)
$$\sum_{n=1}^{\infty} b_n$$
 converges $\Rightarrow \sum_{n=1}^{\infty} a_n$ converges;
(b) $\sum_{n=1}^{\infty} a_n$ diverges $\Rightarrow \sum_{n=1}^{\infty} b_n$ converges.

Example

Determine whether the the series $\sum_{n=2}^{\infty} \frac{n+2}{n^2-n}$ converges or not. Solution: Since $\frac{n+2}{n^2-n} > \frac{n}{n^2-n} = \frac{1}{n-1}$

Theorem

If the sequences satisfy $0 \leq a_n \leq b_n$ for all $n \geq N$, then

Example

Determine whether the the series $\sum_{n=2}^{\infty} \frac{n+2}{n^2-n}$ converges or not. Solution: Since $\frac{n+2}{n^2-n} > \frac{n}{n^2-n} = \frac{1}{n-1} > \frac{1}{n}$,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

If the sequences satisfy $0 \leq a_n \leq b_n$ for all $n \geq N$, then

Example

Determine whether the the series $\sum_{n=2}^{\infty} \frac{n+2}{n^2-n}$ converges or not. Solution: Since $\frac{n+2}{n^2-n} > \frac{n}{n^2-n} = \frac{1}{n-1} > \frac{1}{n}$, we conclude that:

Theorem

If the sequences satisfy $0 \leq a_n \leq b_n$ for all $n \geq N$, then

Example

Determine whether the the series $\sum_{n=2}^{\infty} \frac{n+2}{n^2-n}$ converges or not. Solution: Since $\frac{n+2}{n^2-n} > \frac{n}{n^2-n} = \frac{1}{n-1} > \frac{1}{n}$, we conclude that: $\sum_{n=2}^{\infty} \frac{1}{n} < \sum_{n=2}^{\infty} \frac{n+2}{n^2-n}$.

Theorem

If the sequences satisfy $0 \leq a_n \leq b_n$ for all $n \geq N$, then

Example

Determine whether the the series $\sum_{n=2}^{\infty} \frac{n+2}{n^2-n}$ converges or not. Solution: Since $\frac{n+2}{n^2-n} > \frac{n}{n^2-n} = \frac{1}{n-1} > \frac{1}{n}$, we conclude that: $\sum_{n=2}^{\infty} \frac{1}{n} < \sum_{n=2}^{\infty} \frac{n+2}{n^2-n}$. Therefore, $\sum_{n=2}^{\infty} \frac{n+2}{n^2-n}$ diverges.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^n}$ converges or not.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^n}$ converges or not.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Solution: For $1 \leq n$ holds,

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^n}$ converges or not.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Solution: For $1 \leq n$ holds, $3^n \leq n 3^n$

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^n}$ converges or not.

Solution: For $1 \leq n$ holds, $3^n \leq n 3^n \Rightarrow \frac{1}{n 3^n} \leq \frac{1}{3^n}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^n}$ converges or not.

Solution: For $1 \leq n$ holds, $3^n \leq n 3^n \Rightarrow \frac{1}{n 3^n} \leq \frac{1}{3^n}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\sum_{n=1}^{\infty} \frac{1}{n \, 3^n} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^n}$$

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^n}$ converges or not.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: For $1 \leq n$ holds, $3^n \leq n 3^n \Rightarrow \frac{1}{n 3^n} \leq \frac{1}{3^n}$.

$$\sum_{n=1}^{\infty} \frac{1}{n \, 3^n} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^n} = \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$$

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^n}$ converges or not.

Solution: For $1 \leq n$ holds, $3^n \leq n 3^n \Rightarrow \frac{1}{n 3^n} \leq \frac{1}{3^n}$.

$$\sum_{n=1}^{\infty} \frac{1}{n \, 3^n} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^n} = \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n = \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n - 1,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^n}$ converges or not.

Solution: For $1 \leq n$ holds, $3^n \leq n 3^n \Rightarrow \frac{1}{n 3^n} \leq \frac{1}{3^n}$.

$$\sum_{n=1}^{\infty} \frac{1}{n \, 3^n} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^n} = \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n = \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n - 1,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\sum_{n=1}^{\infty} \frac{1}{n \, 3^n} \leqslant \frac{1}{\left(1-\frac{1}{3}\right)} - 1$$

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^n}$ converges or not.

Solution: For $1 \leq n$ holds, $3^n \leq n 3^n \Rightarrow \frac{1}{n 3^n} \leq \frac{1}{3^n}$.

$$\sum_{n=1}^{\infty} \frac{1}{n \, 3^n} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^n} = \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n = \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n - 1,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\sum_{n=1}^{\infty} \frac{1}{n \, 3^n} \leqslant \frac{1}{\left(1 - \frac{1}{3}\right)} - 1 = \frac{1}{\left(\frac{3-1}{3}\right)} - 1$

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^n}$ converges or not.

Solution: For $1 \leq n$ holds, $3^n \leq n 3^n \Rightarrow \frac{1}{n 3^n} \leq \frac{1}{3^n}$.

$$\sum_{n=1}^{\infty} \frac{1}{n \, 3^n} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^n} = \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n = \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n - 1,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\sum_{n=1}^{\infty} \frac{1}{n \, 3^n} \leqslant \frac{1}{\left(1 - \frac{1}{3}\right)} - 1 = \frac{1}{\left(\frac{3-1}{3}\right)} - 1 = \frac{3}{2} - 1$

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^n}$ converges or not.

Solution: For $1 \leq n$ holds, $3^n \leq n 3^n \Rightarrow \frac{1}{n 3^n} \leq \frac{1}{3^n}$.

$$\sum_{n=1}^{\infty} \frac{1}{n \, 3^n} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^n} = \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n = \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n - 1,$$

 $\sum_{n=1}^{\infty} \frac{1}{n \, 3^n} \leqslant \frac{1}{\left(1 - \frac{1}{3}\right)} - 1 = \frac{1}{\left(\frac{3-1}{3}\right)} - 1 = \frac{3}{2} - 1 = \frac{1}{2}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Determine whether the the series $\sum_{n=1}^{\infty} \frac{1}{n 3^n}$ converges or not.

Solution: For $1 \leq n$ holds, $3^n \leq n 3^n \Rightarrow \frac{1}{n 3^n} \leq \frac{1}{3^n}$.

$$\sum_{n=1}^{\infty} \frac{1}{n \, 3^n} \leqslant \sum_{n=1}^{\infty} \frac{1}{3^n} = \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n = \sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n - 1,$$

$$\sum_{n=1}^{\infty} \frac{1}{n \, 3^n} \leqslant \frac{1}{\left(1 - \frac{1}{3}\right)} - 1 = \frac{1}{\left(\frac{3-1}{3}\right)} - 1 = \frac{3}{2} - 1 = \frac{1}{2}.$$

We conclude that $\sum_{n=1}^{\infty} \frac{1}{n \, 3^n}$ converges.

 \triangleleft

Comparison tests (Sect. 10.4)

- Review: Direct comparison test for integrals.
- Direct comparison test for series.
- ► Review: Limit comparison test for integrals.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Limit comparison test for series.
- Few examples.

Theorem (Limit comparison test) If positive functions $f, g : [a, \infty) \to \mathbb{R}$ are continuous and $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L, \quad with \quad 0 < L < \infty,$ then either both $\int_{a}^{\infty} f(x) dx, \quad \int_{a}^{\infty} g(x) dx$, converge or diverge.

Theorem (Limit comparison test) If positive functions $f, g : [a, \infty) \to \mathbb{R}$ are continuous and $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L, \quad \text{with} \quad 0 < L < \infty,$

then either both
$$\int_{a}^{\infty} f(x) dx$$
, $\int_{a}^{\infty} g(x) dx$, converge or diverge.

Remark: If the integrals converge, their values may not agree.

・ロト・日本・モート モー うへで

Theorem (Limit comparison test) If positive functions $f, g : [a, \infty) \to \mathbb{R}$ are continuous and f(x)

$$\lim_{x\to\infty}\frac{r(x)}{g(x)}=L,\quad \text{with}\quad 0< L<\infty,$$

then either both $\int_{a}^{\infty} f(x) dx$, $\int_{a}^{\infty} g(x) dx$, converge or diverge.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: If the integrals converge, their values may not agree.

Example

 $\int_1^\infty \frac{dx}{\sqrt{x^6+1}} \text{ converges }$

Theorem (Limit comparison test) If positive functions $f, g : [a, \infty) \to \mathbb{R}$ are continuous and

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=L,\quad \text{with}\quad 0< L<\infty,$$

then either both $\int_{a}^{\infty} f(x) dx$, $\int_{a}^{\infty} g(x) dx$, converge or diverge.

Remark: If the integrals converge, their values may not agree.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\int_{1}^{\infty} \frac{dx}{\sqrt{x^{6}+1}} \text{ converges because } \int_{1}^{\infty} \frac{dx}{x^{3}} \text{ converges.}$$

Theorem (Limit comparison test) If positive functions $f, g : [a, \infty) \to \mathbb{R}$ are continuous and $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L, \quad \text{with} \quad 0 < L < \infty,$

then either both
$$\int_{a}^{\infty} f(x) dx$$
, $\int_{a}^{\infty} g(x) dx$, converge or diverge.

Remark: If the integrals converge, their values may **not** agree.

・ロト・日本・モート モー うへで

$$\int_{1}^{\infty} \frac{dx}{\sqrt{x^{6} + 1}} \text{ converges because } \int_{1}^{\infty} \frac{dx}{x^{3}} \text{ converges.}$$
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x + \sin(x)}} \text{ diverges}$$

Theorem (Limit comparison test) If positive functions $f, g : [a, \infty) \to \mathbb{R}$ are continuous and $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L, \quad \text{with} \quad 0 < L < \infty,$

then either both $\int_{a}^{\infty} f(x) dx$, $\int_{a}^{\infty} g(x) dx$, converge or diverge.

Remark: If the integrals converge, their values may not agree.

$$\int_{1}^{\infty} \frac{dx}{\sqrt{x^{6}+1}} \text{ converges because } \int_{1}^{\infty} \frac{dx}{x^{3}} \text{ converges.}$$
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x+\sin(x)}} \text{ diverges because } \int_{1}^{\infty} \frac{dx}{x^{1/2}} \text{ diverges.}$$

Comparison tests (Sect. 10.4)

- Review: Direct comparison test for integrals.
- Direct comparison test for series.
- Review: Limit comparison test for integrals.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Limit comparison test for series.
- Few examples.

Theorem (Limit comparison test) Assume that $0 < a_n$, and $0 < b_n$ for $N \leq n$.

(a) If $\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$, then the infinite series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge or both diverge.

(b) If
$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0$$
, and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
(c) If $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$, and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem (Limit comparison test) Assume that $0 < a_n$, and $0 < b_n$ for $N \leq n$.

(a) If $\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$, then the infinite series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge or both diverge.

(b) If
$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0$$
, and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
(c) If $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$, and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark: If the series converge, their values may **not** agree.

Example

Determine whether the series

es
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$$
 converges or not.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2+7}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

Example

Determine whether the series
$$\sum_{n=1}^{\infty} rac{\sqrt{n}}{4n^2+7}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

 $\frac{\sqrt{n}}{(4n^2+7)}$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2+7}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

$$\frac{\sqrt{n}}{(4n^2+7)} = \frac{\sqrt{n}}{(4n^2+7)} \frac{\left(\frac{1}{n^2}\right)}{\left(\frac{1}{n^2}\right)}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2+7}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

$$\frac{\sqrt{n}}{(4n^2+7)} = \frac{\sqrt{n}}{(4n^2+7)} \, \frac{\left(\frac{1}{n^2}\right)}{\left(\frac{1}{n^2}\right)} = \frac{\left(\frac{1}{n^{3/2}}\right)}{4+\left(\frac{7}{n^2}\right)}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} rac{\sqrt{n}}{4n^2+7}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

$$\frac{\sqrt{n}}{(4n^2+7)} = \frac{\sqrt{n}}{(4n^2+7)} \frac{\left(\frac{1}{n^2}\right)}{\left(\frac{1}{n^2}\right)} = \frac{\left(\frac{1}{n^{3/2}}\right)}{4 + \left(\frac{7}{n^2}\right)}$$

For *n* large $a_n = \frac{\sqrt{n}}{(4n^2+7)}$ behaves like

Example

Determine whether the series
$$\sum_{n=1}^{\infty} rac{\sqrt{n}}{4n^2+7}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

$$\frac{\sqrt{n}}{(4n^2+7)} = \frac{\sqrt{n}}{(4n^2+7)} \frac{\left(\frac{1}{n^2}\right)}{\left(\frac{1}{n^2}\right)} = \frac{\left(\frac{1}{n^{3/2}}\right)}{4+\left(\frac{7}{n^2}\right)}$$

For *n* large $a_n = \frac{\sqrt{n}}{(4n^2+7)}$ behaves like $b_n = \frac{1}{4n^{3/2}}$.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} rac{\sqrt{n}}{4n^2+7}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

$$\frac{\sqrt{n}}{(4n^2+7)} = \frac{\sqrt{n}}{(4n^2+7)} \frac{\left(\frac{1}{n^2}\right)}{\left(\frac{1}{n^2}\right)} = \frac{\left(\frac{1}{n^{3/2}}\right)}{4+\left(\frac{7}{n^2}\right)}$$

For *n* large $a_n = \frac{\sqrt{n}}{(4n^2+7)}$ behaves like $b_n = \frac{1}{4n^{3/2}}$.
We choose $b_n = \frac{1}{4n^{3/2}}$ to do the limit comparison test.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} rac{\sqrt{n}}{4n^2+7}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

$$\frac{\sqrt{n}}{(4n^2+7)} = \frac{\sqrt{n}}{(4n^2+7)} \frac{\left(\frac{1}{n^2}\right)}{\left(\frac{1}{n^2}\right)} = \frac{\left(\frac{1}{n^{3/2}}\right)}{4+\left(\frac{7}{n^2}\right)}$$

For *n* large $a_n = \frac{\sqrt{n}}{(4n^2+7)}$ behaves like $b_n = \frac{1}{4n^{3/2}}$.
We choose $b_n = \frac{1}{4n^{3/2}}$ to do the limit comparison test.
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \left(\frac{\sqrt{n}}{(4n^2+7)}\right) 4n^{3/2}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} rac{\sqrt{n}}{4n^2+7}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

$$\frac{\sqrt{n}}{(4n^2+7)} = \frac{\sqrt{n}}{(4n^2+7)} \frac{\left(\frac{1}{n^2}\right)}{\left(\frac{1}{n^2}\right)} = \frac{\left(\frac{1}{n^{3/2}}\right)}{4+\left(\frac{7}{n^2}\right)}$$

For *n* large $a_n = \frac{\sqrt{n}}{(4n^2+7)}$ behaves like $b_n = \frac{1}{4n^{3/2}}$.
We choose $b_n = \frac{1}{4n^{3/2}}$ to do the limit comparison test.
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \left(\frac{\sqrt{n}}{(4n^2+7)}\right) 4n^{3/2} = \lim_{n \to \infty} \frac{4n^2}{(4n^2+7)}$$

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Example

Determine whether the series
$$\sum_{n=1}^{\infty} rac{\sqrt{n}}{4n^2+7}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

$$\frac{\sqrt{n}}{(4n^2+7)} = \frac{\sqrt{n}}{(4n^2+7)} \frac{\left(\frac{1}{n^2}\right)}{\left(\frac{1}{n^2}\right)} = \frac{\left(\frac{1}{n^{3/2}}\right)}{4 + \left(\frac{7}{n^2}\right)}$$

For *n* large $a_n = \frac{\sqrt{n}}{(4n^2+7)}$ behaves like $b_n = \frac{1}{4n^{3/2}}$.
We choose $b_n = \frac{1}{4n^{3/2}}$ to do the limit comparison test.
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \left(\frac{\sqrt{n}}{(4n^2+7)}\right) 4n^{3/2} = \lim_{n \to \infty} \frac{4n^2}{(4n^2+7)} = 1.$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$$
 converges or not.

Solution:
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$$
 and $\sum_{n=1}^{\infty} \frac{1}{4n^{3/2}}$ both converge or diverge.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$$
 converges or not.
Solution: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$ and $\sum_{n=1}^{\infty} \frac{1}{4n^{3/2}}$ both converge or diverge.

However,
$$\sum_{n=1}^{\infty} \frac{1}{4 n^{3/2}}$$
 converges $\Leftrightarrow \int_{1}^{\infty} \frac{dx}{4 x^{3/2}}$ converges.

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$ converges or not. Solution: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$ and $\sum_{n=1}^{\infty} \frac{1}{4n^{3/2}}$ both converge or diverge. However, $\sum_{n=1}^{\infty} \frac{1}{4n^{3/2}}$ converges $\Leftrightarrow \int_{1}^{\infty} \frac{dx}{4x^{3/2}}$ converges. But: $\int_{1}^{\infty} \frac{dx}{4x^{3/2}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$$
 converges or not.
Solution: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$ and $\sum_{n=1}^{\infty} \frac{1}{4n^{3/2}}$ both converge or diverge.
However, $\sum_{n=1}^{\infty} \frac{1}{4n^{3/2}}$ converges $\Leftrightarrow \int_{1}^{\infty} \frac{dx}{4x^{3/2}}$ converges.
But: $\int_{1}^{\infty} \frac{dx}{4x^{3/2}} = \frac{1}{4}(-2)x^{-1/2}\Big|_{1}^{\infty}$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$$
 converges or not.

 \sim

Solution:
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$$
 and $\sum_{n=1}^{\infty} \frac{1}{4n^{3/2}}$ both converge or diverge.
However, $\sum_{n=1}^{\infty} \frac{1}{4n^{3/2}}$ converges $\Leftrightarrow \int_{1}^{\infty} \frac{dx}{4x^{3/2}}$ converges.
But: $\int_{1}^{\infty} \frac{dx}{4x^{3/2}} = \frac{1}{4}(-2)x^{-1/2}\Big|_{1}^{\infty} = \frac{1}{2}.$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$$
 converges or not.
Solution: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$ and $\sum_{n=1}^{\infty} \frac{1}{4n^{3/2}}$ both converge or diverge.

However, $\sum_{n=1}^{\infty} 4n^2 + 7$ and $\sum_{n=1}^{\infty} 4n^{3/2}$ beth converge of divergent However, $\sum_{n=1}^{\infty} \frac{1}{4n^{3/2}}$ converges $\Leftrightarrow \int_{1}^{\infty} \frac{dx}{4x^{3/2}}$ converges. But: $\int_{1}^{\infty} \frac{dx}{4x^{3/2}} = \frac{1}{4}(-2)x^{-1/2}\Big|_{1}^{\infty} = \frac{1}{2}$. Then, the integral test says that $\sum_{n=1}^{\infty} \frac{1}{4n^{3/2}}$ converges.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$ converges or not. Solution: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$ and $\sum_{n=1}^{\infty} \frac{1}{4n^{3/2}}$ both converge or diverge. However, $\sum_{n=1}^{\infty} \frac{1}{4n^{3/2}}$ converges $\Leftrightarrow \int_{1}^{\infty} \frac{dx}{4x^{3/2}}$ converges. But: $\int_{-\infty}^{\infty} \frac{dx}{4x^{3/2}} = \frac{1}{4} (-2) x^{-1/2} \Big|_{1}^{\infty} = \frac{1}{2}.$ Then, the integral test says that $\sum_{n=1}^\infty \frac{1}{4\,n^{3/2}}\,$ converges. The limit test for series says that $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{4n^2 + 7}$ converges.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

 \triangleleft

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$ converges or not.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

$$\lim_{n\to\infty}\frac{3^{2n}}{2^n+n}=\lim_{n\to\infty}\frac{3^{2n}}{2^n}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

(ロ)、(型)、(E)、(E)、 E、 の(の)

$$\lim_{n \to \infty} \frac{3^{2n}}{2^n + n} = \lim_{n \to \infty} \frac{3^{2n}}{2^n} \text{ and } \frac{3^{2n}}{2^n} = \frac{3^{2n}}{(\sqrt{2})^{2n}}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

$$\lim_{n \to \infty} \frac{3^{2n}}{2^n + n} = \lim_{n \to \infty} \frac{3^{2n}}{2^n} \quad \text{and} \quad \frac{3^{2n}}{2^n} = \frac{3^{2n}}{(\sqrt{2})^{2n}} = \left(\frac{3}{\sqrt{2}}\right)^{2n}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

$$\lim_{n \to \infty} \frac{3^{2n}}{2^n + n} = \lim_{n \to \infty} \frac{3^{2n}}{2^n} \text{ and } \frac{3^{2n}}{2^n} = \frac{3^{2n}}{(\sqrt{2})^{2n}} = \left(\frac{3}{\sqrt{2}}\right)^{2n}$$

For *n* large $a_n = \frac{3^{2n}}{(2^n + n)}$ behaves like

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

$$\lim_{n \to \infty} \frac{3^{2n}}{2^n + n} = \lim_{n \to \infty} \frac{3^{2n}}{2^n} \text{ and } \frac{3^{2n}}{2^n} = \frac{3^{2n}}{(\sqrt{2})^{2n}} = \left(\frac{3}{\sqrt{2}}\right)^{2n}$$

For *n* large $a_n = \frac{3^{2n}}{(2^n + n)}$ behaves like $b_n = \left(\frac{3}{\sqrt{2}}\right)^{2n}$.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

$$\lim_{n \to \infty} \frac{3^{2n}}{2^n + n} = \lim_{n \to \infty} \frac{3^{2n}}{2^n} \quad \text{and} \quad \frac{3^{2n}}{2^n} = \frac{3^{2n}}{(\sqrt{2})^{2n}} = \left(\frac{3}{\sqrt{2}}\right)^{2n}$$

For *n* large $a_n = \frac{3^{2n}}{(2^n + n)}$ behaves like $b_n = \left(\frac{3}{\sqrt{2}}\right)^{2n}$.
We choose $b_n = \left(\frac{3}{\sqrt{2}}\right)^{2n}$ to do the limit comparison test,

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

$$\lim_{n \to \infty} \frac{3^{2n}}{2^n + n} = \lim_{n \to \infty} \frac{3^{2n}}{2^n} \quad \text{and} \quad \frac{3^{2n}}{2^n} = \frac{3^{2n}}{(\sqrt{2})^{2n}} = \left(\frac{3}{\sqrt{2}}\right)^{2n}$$

For *n* large $a_n = \frac{3^{2n}}{(2^n + n)}$ behaves like $b_n = \left(\frac{3}{\sqrt{2}}\right)^{2n}$.
We choose $b_n = \left(\frac{3}{\sqrt{2}}\right)^{2n}$ to do the limit comparison test, hence
$$\lim_{n \to \infty} \frac{a_n}{2^n} = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

 $\lim_{n\to\infty} \frac{1}{b_n} =$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$$
 converges or not.

Solution: We compute the behavior of the series terms for n large:

$$\lim_{n \to \infty} \frac{3^{2n}}{2^n + n} = \lim_{n \to \infty} \frac{3^{2n}}{2^n} \quad \text{and} \quad \frac{3^{2n}}{2^n} = \frac{3^{2n}}{(\sqrt{2})^{2n}} = \left(\frac{3}{\sqrt{2}}\right)^{2n}$$

For *n* large $a_n = \frac{3^{2n}}{(2^n + n)}$ behaves like $b_n = \left(\frac{3}{\sqrt{2}}\right)^{2n}$.
We choose $b_n = \left(\frac{3}{\sqrt{2}}\right)^{2n}$ to do the limit comparison test, hence

$$\lim_{n\to\infty}\frac{a_n}{b_n}=1 \text{ and both } \sum_{n=1}^{\infty}a_n, \sum_{n=1}^{\infty}b_n \text{ converge or diverge.}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$$
 converges or not.
Solution: Both $\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$, and $\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$ converge or diverge.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$ converges or not. Solution: Both $\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$, and $\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$ converge or diverge. Since $\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$ is a geometric series

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$ converges or not. Solution: Both $\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$, and $\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$ converge or diverge.

Since
$$\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$$
 is a geometric series with ratio $r = \frac{3}{\sqrt{2}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$ converges or not.

Solution: Both
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$$
, and $\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$ converge or diverge.

Since
$$\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$$
 is a geometric series with ratio $r = \frac{3}{\sqrt{2}} > 1$,

・ロト・日本・モート モー うへで

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$ converges or not.

Solution: Both
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$$
, and $\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$ converge or diverge.

Since
$$\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$$
 is a geometric series with ratio $r = \frac{3}{\sqrt{2}} > 1$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the series $\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$ converges or not.

Solution: Both
$$\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$$
, and $\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$ converge or diverge.

Since
$$\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$$
 is a geometric series with ratio $r = \frac{3}{\sqrt{2}} > 1$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the series $\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$ diverges.

Limit comparison test for series

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$ converges or not. Solution: Both $\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$, and $\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$ converge or diverge. Since $\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$ is a geometric series with ratio $r = \frac{3}{\sqrt{2}} > 1$, the series $\sum_{n=1}^{\infty} \left(\frac{3}{\sqrt{2}}\right)^{2n}$ diverges. We conclude that $\sum_{n=1}^{\infty} \frac{3^{2n}}{2^n + n}$ diverges. \triangleleft

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Comparison tests (Sect. 10.4)

- Review: Direct comparison test for integrals.
- Direct comparison test for series.
- Review: Limit comparison test for integrals.

- Limit comparison test for series.
- ► Few examples.

Example

(1)
$$\sum_{n=1}^{\infty} \frac{\sin^2(n)}{6^n}.$$

Example

(1)
$$\sum_{n=1}^{\infty} \frac{\sin^2(n)}{6^n}$$
. DGC

Example

(1)
$$\sum_{n=1}^{\infty} \frac{\sin^2(n)}{6^n}$$
. DGC $\frac{\sin^2(n)}{6^n} \leq \left(\frac{1}{6}\right)^n$;

Example

(1)
$$\sum_{n=1}^{\infty} \frac{\sin^2(n)}{6^n}$$
. DGC $\frac{\sin^2(n)}{6^n} \leq \left(\frac{1}{6}\right)^n$; $\sum_{n=1}^{\infty} \left(\frac{1}{6}\right)^n$ converges.

Example

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへの

Example

(1)
$$\sum_{n=1}^{\infty} \frac{\sin^2(n)}{6^n}$$
. DGC $\frac{\sin^2(n)}{6^n} \leq \left(\frac{1}{6}\right)^n$; $\sum_{n=1}^{\infty} \left(\frac{1}{6}\right)^n$ converges.

(2)
$$\sum_{n=3}^{\infty} \frac{1}{n \ln(n)}$$
. ID

Example

Example

Example

Example

Since
$$a_n = f(n)$$

Example

Example

Example

(3)
$$\sum_{n=1}^{\infty} \frac{n+5^n}{n^2 5^n}$$
. LIC

Example

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ratio test (Sect. 10.5)

- The ratio test.
- Using the ratio test.
- Few more examples.
- Comment: The root test.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark: The ratio test is a way to determine whether a series converges or not.

Remark: The ratio test is a way to determine whether a series converges or not.

Theorem Let $\{a_n\}$ be a positive sequence with $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho$ exists. (a) If $\rho < 1$, the series $\sum a_n$ converges. (b) If $\rho > 1$, the series $\sum a_n$ diverges. (c) If $\rho = 1$, the test is inconclusive.

Remark: The ratio test is a way to determine whether a series converges or not.

Theorem Let $\{a_n\}$ be a positive sequence with $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho$ exists. (a) If $\rho < 1$, the series $\sum a_n$ converges. (b) If $\rho > 1$, the series $\sum a_n$ diverges. (c) If $\rho = 1$, the test is inconclusive.

Remark: The ratio test compares the series $\sum a_n$ with an appropriate geometric series $\sum r^n$.

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is

<□ > < @ > < E > < E > E のQ @

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Since
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho$$

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

```
Since \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho < 1,
```

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$,

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists N large with

$$\frac{a_{n+1}}{a_n} < \rho + \epsilon$$

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\frac{a_{n+1}}{a_n} < \rho + \epsilon = r, \quad \text{for } n \ge N.$$

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\frac{a_{n+1}}{a_n} < \rho + \epsilon = r, \quad \text{for } n \geqslant N.$$

 $\frac{a_{N+n}}{2}$

 a_N

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\frac{a_{n+1}}{a_n} < \rho + \epsilon = r, \quad \text{for } n \ge N.$$

・ロト・日本・モート モー うへで

$$\frac{a_{N+n}}{a_N} = \frac{a_{N+1}}{a_N} \frac{a_{N+2}}{a_{N+1}} \cdots \frac{a_{N+n}}{a_{N+n-1}}$$

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\frac{a_{n+1}}{a_n} < \rho + \epsilon = r, \quad \text{for } n \ge N.$$

$$\frac{a_{N+n}}{a_N} = \frac{a_{N+1}}{a_N} \frac{a_{N+2}}{a_{N+1}} \cdots \frac{a_{N+n}}{a_{N+n-1}} \leqslant r^n$$

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\frac{a_{n+1}}{a_n} < \rho + \epsilon = r, \quad \text{for } n \ge N.$$

$$\frac{a_{N+n}}{a_N}=\frac{a_{N+1}}{a_N}\frac{a_{N+2}}{a_{N+1}}\cdots\frac{a_{N+n}}{a_{N+n-1}}\leqslant r^n \quad \Rightarrow \quad a_{N+n}\leqslant a_N\,r^n.$$

・ロト・日本・モート モー うへで

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\frac{a_{n+1}}{a_n} < \rho + \epsilon = r, \quad \text{for } n \ge N.$$

$$\frac{a_{N+n}}{a_N} = \frac{a_{N+1}}{a_N} \frac{a_{N+2}}{a_{N+1}} \cdots \frac{a_{N+n}}{a_{N+n-1}} \leqslant r^n \quad \Rightarrow \quad a_{N+n} \leqslant a_N r^n.$$

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{N-1} a_n + \sum_{n=0}^{\infty} a_{N+n}$$

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\frac{a_{n+1}}{a_n} < \rho + \epsilon = r, \quad \text{for } n \ge N.$$

$$\frac{a_{N+n}}{a_N} = \frac{a_{N+1}}{a_N} \frac{a_{N+2}}{a_{N+1}} \cdots \frac{a_{N+n}}{a_{N+n-1}} \leqslant r^n \quad \Rightarrow \quad a_{N+n} \leqslant a_N r^n.$$

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{N-1} a_n + \sum_{n=0}^{\infty} a_{N+n} \leq \sum_{n=0}^{N-1} a_n + a_N \sum_{n=0}^{\infty} r^n$$

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\frac{a_{n+1}}{a_n} < \rho + \epsilon = r, \quad \text{for } n \ge N.$$

$$\frac{a_{N+n}}{a_N}=\frac{a_{N+1}}{a_N}\frac{a_{N+2}}{a_{N+1}}\cdots\frac{a_{N+n}}{a_{N+n-1}}\leqslant r^n \quad \Rightarrow \quad a_{N+n}\leqslant a_N\,r^n.$$

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{N-1} a_n + \sum_{n=0}^{\infty} a_{N+n} \leqslant \sum_{n=0}^{N-1} a_n + a_N \sum_{n=0}^{\infty} r^n$$

So $\sum_{n=0}^{\infty} a_n \leqslant \sum_{n=0}^{N-1} a_n + \frac{a_N}{1-r}$ is bounded.
A non-decreasing, bounded above, series converges.

Proof: Case (b): Since
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho > 1$$
,

(ロ) (個) (主) (主) (三) のへで

Proof: Case (b): Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists *N* large, $\frac{a_{n+1}}{a_n} > 1$, for $n \ge N$,

Proof: Case (b): Since $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists *N* large, $\frac{a_{n+1}}{a_n} > 1$, for $n \ge N$, $\Rightarrow a_N < a_{N+1} < a_{N+2} < \cdots$.

・ロト・日本・モト・モト・モー めんぐ

Proof: Case (b): Since $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists N large, $\frac{a_{n+1}}{a_n} > 1$, for $n \ge N$, $\Rightarrow a_N < a_{N+1} < a_{N+2} < \cdots$. Hence, $\lim_{n \to \infty} a_n \ne 0$.

Proof: Case (b): Since $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists *N* large, $\frac{a_{n+1}}{a_n} > 1$, for $n \ge N$, $\Rightarrow a_N < a_{N+1} < a_{N+2} < \cdots$. Hence, $\lim_{n \to \infty} a_n \ne 0$. The series $\sum a_n$ diverges.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Proof: Case (b): Since $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists *N* large, $\frac{a_{n+1}}{a_n} > 1$, for $n \ge N$, $\Rightarrow a_N < a_{N+1} < a_{N+2} < \cdots$. Hence, $\lim_{n \to \infty} a_n \ne 0$. The series $\sum a_n$ diverges. Case (c): $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$.

Proof: Case (b): Since $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists *N* large, $\frac{a_{n+1}}{a_n} > 1$, for $n \ge N$, $\Rightarrow a_N < a_{N+1} < a_{N+2} < \cdots$. Hence, $\lim_{n \to \infty} a_n \ne 0$. The series $\sum a_n$ diverges. Case (c): $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$. Examples:

Proof: Case (b): Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists N large, $\frac{a_{n+1}}{2} > 1, \quad \text{for } n \geqslant \textit{N}, \quad \Rightarrow \quad \textit{a}_{\textit{N}} < \textit{a}_{\textit{N}+1} < \textit{a}_{\textit{N}+2} < \cdots.$ Hence, $\lim_{n\to\infty} a_n \neq 0$. The series $\sum a_n$ diverges. Case (c): $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$. Examples: $\sum_{n=1}^{\infty} \frac{1}{n},$

Proof: Case (b): Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists *N* large, $\frac{a_{n+1}}{2} > 1, \quad \text{for } n \geqslant \textit{N}, \quad \Rightarrow \quad \textit{a}_{\textit{N}} < \textit{a}_{\textit{N}+1} < \textit{a}_{\textit{N}+2} < \cdots.$ Hence, $\lim_{n\to\infty} a_n \neq 0$. The series $\sum a_n$ diverges. Case (c): $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$. Examples: $\sum_{n=1}^{\infty} \frac{1}{n}, \text{ and } \lim_{n \to \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{2}\right)}$

Proof: Case (b): Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists *N* large, $rac{a_{n+1}}{2} > 1, \quad ext{for } n \geqslant N, \quad \Rightarrow \quad a_{\scriptscriptstyle N} < a_{\scriptscriptstyle N+1} < a_{\scriptscriptstyle N+2} < \cdots.$ Hence, lim $a_n \neq 0$. The series $\sum a_n$ diverges. Case (c): $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$. Examples: $\sum_{n=1}^{\infty} \frac{1}{n}, \text{ and } \lim_{n \to \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)} = \lim_{n \to \infty} \frac{n}{n+1}$

Proof: Case (b): Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists *N* large, $\frac{a_{n+1}}{2} > 1, \quad \text{for } n \geqslant \textit{N}, \quad \Rightarrow \quad \textit{a}_{\textit{N}} < \textit{a}_{\textit{N}+1} < \textit{a}_{\textit{N}+2} < \cdots.$ Hence, lim $a_n \neq 0$. The series $\sum a_n$ diverges. Case (c): $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$. Examples: $\sum_{n=1}^{\infty} \frac{1}{n}, \text{ and } \lim_{n \to \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)} = \lim_{n \to \infty} \frac{n}{n+1} = 1,$

Proof: Case (b): Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists *N* large, $rac{a_{n+1}}{2} > 1, \quad ext{for } n \geqslant N, \quad \Rightarrow \quad a_{\scriptscriptstyle N} < a_{\scriptscriptstyle N+1} < a_{\scriptscriptstyle N+2} < \cdots.$ Hence, lim $a_n \neq 0$. The series $\sum a_n$ diverges. Case (c): $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$. Examples: $\sum_{n \to \infty}^{\infty} \frac{1}{n}, \text{ and } \lim_{n \to \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)} = \lim_{n \to \infty} \frac{n}{n+1} = 1, \text{ diverges.}$

Proof: Case (b): Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists *N* large, $\frac{a_{n+1}}{2} > 1, \quad \text{for } n \geqslant \textit{N}, \quad \Rightarrow \quad \textit{a}_{\textit{N}} < \textit{a}_{\textit{N}+1} < \textit{a}_{\textit{N}+2} < \cdots.$ Hence, lim $a_n \neq 0$. The series $\sum a_n$ diverges. Case (c): $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$. Examples: $\sum_{n=1}^{\infty} \frac{1}{n}, \text{ and } \lim_{n \to \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)} = \lim_{n \to \infty} \frac{n}{n+1} = 1, \text{ diverges.}$ $\sum_{n=1}^{\infty} \frac{1}{n^2},$

Proof: Case (b): Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists *N* large, $rac{a_{n+1}}{2} > 1, \quad ext{for } n \geqslant N, \quad \Rightarrow \quad a_{\scriptscriptstyle N} < a_{\scriptscriptstyle N+1} < a_{\scriptscriptstyle N+2} < \cdots.$ Hence, lim $a_n \neq 0$. The series $\sum a_n$ diverges. Case (c): $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$. Examples: $\sum_{n \to \infty}^{\infty} \frac{1}{n}, \text{ and } \lim_{n \to \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)} = \lim_{n \to \infty} \frac{n}{n+1} = 1, \text{ diverges.}$ $\sum_{n=1}^{\infty} \frac{1}{n^2}, \text{ and } \lim_{n \to \infty} \frac{\left(\frac{1}{(n+1)^2}\right)}{\left(\frac{1}{2}\right)}$

・ロト・西ト・モー・ 一日・ うらく

Proof: Case (b): Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists *N* large, $rac{a_{n+1}}{2} > 1, \quad ext{for } n \geqslant N, \quad \Rightarrow \quad a_{\scriptscriptstyle N} < a_{\scriptscriptstyle N+1} < a_{\scriptscriptstyle N+2} < \cdots.$ Hence, lim $a_n \neq 0$. The series $\sum a_n$ diverges. Case (c): $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$. Examples: $\sum_{n \to \infty}^{\infty} \frac{1}{n}, \text{ and } \lim_{n \to \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{2}\right)} = \lim_{n \to \infty} \frac{n}{n+1} = 1, \text{ diverges.}$ $\sum_{n=1}^{\infty} \frac{1}{n^2}, \text{ and } \lim_{n \to \infty} \frac{\left(\frac{1}{(n+1)^2}\right)}{\left(\frac{1}{2}\right)} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2}$

▲ロト ▲眉 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 ○ の Q (2)

Proof: Case (b): Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists *N* large, $rac{a_{n+1}}{2} > 1, \quad ext{for } n \geqslant N, \quad \Rightarrow \quad a_{\scriptscriptstyle N} < a_{\scriptscriptstyle N+1} < a_{\scriptscriptstyle N+2} < \cdots.$ Hence, lim $a_n \neq 0$. The series $\sum a_n$ diverges. Case (c): $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$. Examples: $\sum_{n \to \infty}^{\infty} \frac{1}{n}, \text{ and } \lim_{n \to \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{2}\right)} = \lim_{n \to \infty} \frac{n}{n+1} = 1, \text{ diverges.}$ $\sum_{n=1}^{\infty} \frac{1}{n^2}, \text{ and } \lim_{n \to \infty} \frac{\left(\frac{1}{(n+1)^2}\right)}{\left(\frac{1}{2}\right)} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1,$

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Proof: Case (b): Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists *N* large, $rac{a_{n+1}}{2} > 1, \quad ext{for } n \geqslant N, \quad \Rightarrow \quad a_{\scriptscriptstyle N} < a_{\scriptscriptstyle N+1} < a_{\scriptscriptstyle N+2} < \cdots.$ Hence, lim $a_n \neq 0$. The series $\sum a_n$ diverges. Case (c): $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$. Examples: $\sum_{n \to \infty}^{\infty} \frac{1}{n}, \text{ and } \lim_{n \to \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{n}\right)} = \lim_{n \to \infty} \frac{n}{n+1} = 1, \text{ diverges.}$ $\sum_{n=1}^{\infty} \frac{1}{n^2}, \text{ and } \lim_{n \to \infty} \frac{\left(\frac{1}{(n+1)^2}\right)}{\left(\frac{1}{2}\right)} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1, \text{ converges.}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Proof: Case (b): Since $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho > 1$, there exists *N* large, $rac{a_{n+1}}{a_{n+1}} > 1, \quad ext{for } n \geqslant N, \quad \Rightarrow \quad a_N < a_{N+1} < a_{N+2} < \cdots.$ Hence, lim $a_n \neq 0$. The series $\sum a_n$ diverges. Case (c): $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$. Examples: $\sum_{n \to \infty}^{\infty} \frac{1}{n}, \text{ and } \lim_{n \to \infty} \frac{\left(\frac{1}{n+1}\right)}{\left(\frac{1}{2}\right)} = \lim_{n \to \infty} \frac{n}{n+1} = 1, \text{ diverges.}$ $\sum_{n=1}^{\infty} \frac{1}{n^2}, \text{ and } \lim_{n \to \infty} \frac{\left(\frac{1}{(n+1)^2}\right)}{\left(\frac{1}{2}\right)} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1, \text{ converges.}$

The test in inconclusive.

Ratio test (Sect. 10.5)

- The ratio test.
- Using the ratio test.
- Few more examples.
- Comment: The root test.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges or not.

(ロ)、(型)、(E)、(E)、 E、 のQの

Example Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges or not.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution: We use the ratio test,

Example Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges or not.

Solution: We use the ratio test, since $a_n = \frac{2^n}{n!} > 0$.

Example Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges or not.

Solution: We use the ratio test, since $a_n = \frac{2^n}{n!} > 0$. We compute

- ロ ト - 4 回 ト - 4 □ - 4

 $\frac{a_{n+1}}{a_n}$

Example Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges or not.

Solution: We use the ratio test, since $a_n = \frac{2^n}{n!} > 0$. We compute

$$\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n}$$

Example Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges or not.

Solution: We use the ratio test, since $a_n = \frac{2^n}{n!} > 0$. We compute

$$\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \frac{2^n 2}{(n+1) n!} \frac{n!}{2^n}$$

Example Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges or not.

Solution: We use the ratio test, since $a_n = \frac{2^n}{n!} > 0$. We compute

$$\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \frac{2^n 2}{(n+1) n!} \frac{n!}{2^n} = \frac{2}{(n+1)}.$$

Example Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges or not.

Solution: We use the ratio test, since $a_n = \frac{2^n}{n!} > 0$. We compute

$$\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \frac{2^n 2}{(n+1) n!} \frac{n!}{2^n} = \frac{2}{(n+1)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Therefore, $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$

Example Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges or not.

Solution: We use the ratio test, since $a_n = \frac{2^n}{n!} > 0$. We compute

$$\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \frac{2^n 2}{(n+1) n!} \frac{n!}{2^n} = \frac{2}{(n+1)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Therefore, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{2}{(n+1)}$

Example Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges or not.

Solution: We use the ratio test, since $a_n = \frac{2^n}{n!} > 0$. We compute

$$\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \frac{2^n 2}{(n+1) n!} \frac{n!}{2^n} = \frac{2}{(n+1)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Therefore, $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{2}{(n+1)} = 0.$

Example Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges or not.

Solution: We use the ratio test, since $a_n = \frac{2^n}{n!} > 0$. We compute

$$\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \frac{2^n 2}{(n+1) n!} \frac{n!}{2^n} = \frac{2}{(n+1)}.$$

Therefore, $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{2}{(n+1)} = 0.$

Since $\rho = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges or not.

Solution: We use the ratio test, since $a_n = \frac{2^n}{n!} > 0$. We compute

$$\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \frac{2^n 2}{(n+1) n!} \frac{n!}{2^n} = \frac{2}{(n+1)}.$$

Therefore, $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{2}{(n+1)} = 0.$

Since $\rho = 0 < 1$,

Example Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ converges or not.

Solution: We use the ratio test, since $a_n = \frac{2^n}{n!} > 0$. We compute

$$\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \frac{2^n 2}{(n+1) n!} \frac{n!}{2^n} = \frac{2}{(n+1)}.$$

Therefore,
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{2}{(n+1)} = 0.$$

Since $\rho = 0 < 1$, the series converges.

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

 \triangleleft

Example

Determine whether the series

ies
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^2}$$
 converges or not.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^2}$$
 converges or not.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Solution: We use the ratio test,

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^2}$$
 converges or not.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Solution: We use the ratio test, since $a_n = \frac{(n-1)!}{(n+1)^2} > 0$.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^2}$$
 converges or not.

Solution: We use the ratio test, since $a_n = \frac{(n-1)!}{(n+1)^2} > 0$. Then,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\frac{a_{n+1}}{a_n}$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^2}$$
 converges or not.

Solution: We use the ratio test, since $a_n = \frac{(n-1)!}{(n+1)^2} > 0$. Then,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\frac{a_{n+1}}{a_n} = \frac{n!}{(n+2)^2} \, \frac{(n+1)^2}{(n-1)!}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^2}$$
 converges or not.

Solution: We use the ratio test, since $a_n = \frac{(n-1)!}{(n+1)^2} > 0$. Then,

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$\frac{a_{n+1}}{a_n} = \frac{n!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n-1)!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^2}$$
 converges or not.

Solution: We use the ratio test, since $a_n = \frac{(n-1)!}{(n+1)^2} > 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{n!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n-1)!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n+1)^2}{(n+2)^2}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^2}$$
 converges or not.

Solution: We use the ratio test, since $a_n = \frac{(n-1)!}{(n+1)^2} > 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{n!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n-1)!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n+1)^2}{(n+2)^2}$$
$$\frac{a_{n+1}}{a_n} = \frac{n^3 + 2n^2 + n}{n^2 + 4n + 4}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^2}$$
 converges or not.

Solution: We use the ratio test, since $a_n = \frac{(n-1)!}{(n+1)^2} > 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{n!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n-1)!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n+1)^2}{(n+2)^2}$$
$$\frac{a_{n+1}}{a_n} = \frac{n^3 + 2n^2 + n}{n^2 + 4n + 4} = \frac{n+2+\frac{1}{n}}{1+\frac{4}{n}+\frac{4}{n^2}}$$

Example

Т

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^2}$$
 converges or not.

Solution: We use the ratio test, since $a_n = \frac{(n-1)!}{(n+1)^2} > 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{n!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n-1)!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n+1)^2}{(n+2)^2}$$
$$\frac{a_{n+1}}{a_n} = \frac{n^3 + 2n^2 + n}{n^2 + 4n + 4} = \frac{n+2+\frac{1}{n}}{1+\frac{4}{n}+\frac{4}{n^2}}$$
herefore,
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} rac{(n-1)!}{(n+1)^2}$$
 converges or not.

Solution: We use the ratio test, since $a_n = \frac{(n-1)!}{(n+1)^2} > 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{n!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n-1)!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n+1)^2}{(n+2)^2}$$
$$\frac{a_{n+1}}{a_n} = \frac{n^3 + 2n^2 + n}{n^2 + 4n + 4} = \frac{n+2+\frac{1}{n}}{1+\frac{4}{n}+\frac{4}{n^2}}$$
Therefore,
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} n$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^2}$$
 converges or not.

Solution: We use the ratio test, since $a_n = \frac{(n-1)!}{(n+1)^2} > 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{n!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n-1)!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n+1)^2}{(n+2)^2}$$
$$\frac{a_{n+1}}{a_n} = \frac{n^3 + 2n^2 + n}{n^2 + 4n + 4} = \frac{n+2+\frac{1}{n}}{1+\frac{4}{n}+\frac{4}{n^2}}$$
Therefore,
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} n = \infty.$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^2}$$
 converges or not.

Solution: We use the ratio test, since $a_n = \frac{(n-1)!}{(n+1)^2} > 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{n!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n-1)!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n+1)^2}{(n+2)^2}$$
$$\frac{a_{n+1}}{a_n} = \frac{n^3 + 2n^2 + n}{n^2 + 4n + 4} = \frac{n+2+\frac{1}{n}}{1+\frac{4}{n}+\frac{4}{n^2}}$$
Therefore,
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} n = \infty.$$

◆□▶ <□▶ < □▶ < □▶ < □▶ = - のへで</p>

Since $\rho = \infty$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} rac{(n-1)!}{(n+1)^2}$$
 converges or not.

Solution: We use the ratio test, since $a_n = \frac{(n-1)!}{(n+1)^2} > 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{n!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n-1)!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n+1)^2}{(n+2)^2}$$
$$\frac{a_{n+1}}{a_n} = \frac{n^3 + 2n^2 + n}{n^2 + 4n + 4} = \frac{n+2+\frac{1}{n}}{1+\frac{4}{n}+\frac{4}{n^2}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Therefore,
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} n = \infty.$$

Since $\rho=\infty>1$,

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+1)^2}$$
 converges or not.

Solution: We use the ratio test, since $a_n = \frac{(n-1)!}{(n+1)^2} > 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{n!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n-1)!}{(n+2)^2} \frac{(n+1)^2}{(n-1)!} = \frac{n(n+1)^2}{(n+2)^2}$$
$$\frac{a_{n+1}}{a_n} = \frac{n^3 + 2n^2 + n}{n^2 + 4n + 4} = \frac{n+2+\frac{1}{n}}{1+\frac{4}{n}+\frac{4}{n^2}}$$

Therefore, $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} n = \infty$.

Since $\rho=\infty>$ 1, the series diverges.

 \triangleleft

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$ converges or not.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$
 converges or not.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Solution: We start with the ratio test,

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$
 converges or not.
Solution: We start with the ratio test, since $a_n = \frac{\ln(n)}{n} \ge 0$.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$
 converges or not.
Solution: We start with the ratio test, since $a_n = \frac{\ln(n)}{n} \ge 0$. Then,

 $\frac{a_{n+1}}{a_n}$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$
 converges or not.
Solution: We start with the ratio test, since $a_n = \frac{\ln(n)}{n} \ge 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{\ln(n+1)}{(n+1)} \frac{n}{\ln(n)}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$
 converges or not.
Solution: We start with the ratio test, since $a_n = \frac{\ln(n)}{n} \ge 0$. Then,

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

$$\frac{a_{n+1}}{a_n} = \frac{\ln(n+1)}{(n+1)} \frac{n}{\ln(n)} = \frac{n}{(n+1)} \frac{\ln(n+1)}{\ln(n)}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$
 converges or not.
Solution: We start with the ratio test, since $a_n = \frac{\ln(n)}{n} \ge 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{\ln(n+1)}{(n+1)} \frac{n}{\ln(n)} = \frac{n}{(n+1)} \frac{\ln(n+1)}{\ln(n)} \to 1$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$
 converges or not.
Solution: We start with the ratio test, since $a_n = \frac{\ln(n)}{n} \ge 0$. Then,
 $\frac{a_{n+1}}{a_n} = \frac{\ln(n+1)}{(n+1)} \frac{n}{\ln(n)} = \frac{n}{(n+1)} \frac{\ln(n+1)}{\ln(n)} \to 1$

Since $\rho = 1$,

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$
 converges or not.
Solution: We start with the ratio test, since $a_n = \frac{\ln(n)}{n} \ge 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{\ln(n+1)}{(n+1)} \frac{n}{\ln(n)} = \frac{n}{(n+1)} \frac{\ln(n+1)}{\ln(n)} \to 1$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Since $\rho = 1$, the ratio test is inconclusive.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$
 converges or not.
Solution: We start with the ratio test, since $a_n = \frac{\ln(n)}{n} \ge 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{\ln(n+1)}{(n+1)} \frac{n}{\ln(n)} = \frac{n}{(n+1)} \frac{\ln(n+1)}{\ln(n)} \to 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Since $\rho = 1$, the ratio test is inconclusive.

Direct comparison test: $a_n = \frac{\ln(n)}{n}$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$
 converges or not.
Solution: We start with the ratio test, since $a_n = \frac{\ln(n)}{n} \ge 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{\ln(n+1)}{(n+1)} \frac{n}{\ln(n)} = \frac{n}{(n+1)} \frac{\ln(n+1)}{\ln(n)} \to 1$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Since $\rho = 1$, the ratio test is inconclusive.

Direct comparison test: $a_n = \frac{\ln(n)}{n} \ge \frac{1}{n}$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$
 converges or not.
Solution: We start with the ratio test, since $a_n = \frac{\ln(n)}{n} \ge 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{\ln(n+1)}{(n+1)} \frac{n}{\ln(n)} = \frac{n}{(n+1)} \frac{\ln(n+1)}{\ln(n)} \to 1$$

・ロト・日本・モート モー うへで

Since $\rho=$ 1, the ratio test is inconclusive.

Direct comparison test: $a_n = \frac{\ln(n)}{n} \ge \frac{1}{n}$ implies that

$$\sum \frac{\ln(n)}{n} \ge \sum \frac{1}{n},$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$
 converges or not.
Solution: We start with the ratio test, since $a_n = \frac{\ln(n)}{n} \ge 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{\ln(n+1)}{(n+1)} \frac{n}{\ln(n)} = \frac{n}{(n+1)} \frac{\ln(n+1)}{\ln(n)} \to 1$$

Since $\rho=$ 1, the ratio test is inconclusive.

Direct comparison test: $a_n = \frac{\ln(n)}{n} \ge \frac{1}{n}$ implies that

$$\sum \frac{\ln(n)}{n} \ge \sum \frac{1}{n}, \text{ which diverges.}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$$
 converges or not.
Solution: We start with the ratio test, since $a_n = \frac{\ln(n)}{n} \ge 0$. Then,

$$\frac{a_{n+1}}{a_n} = \frac{\ln(n+1)}{(n+1)} \frac{n}{\ln(n)} = \frac{n}{(n+1)} \frac{\ln(n+1)}{\ln(n)} \to 1$$

Since $\rho=$ 1, the ratio test is inconclusive.

Direct comparison test: $a_n = \frac{\ln(n)}{n} \ge \frac{1}{n}$ implies that

$$\sum \frac{\ln(n)}{n} \ge \sum \frac{1}{n}$$
, which diverges.

Therefore, the series diverges.

<1

Ratio test (Sect. 10.5)

- The ratio test.
- Using the ratio test.
- Few more examples.
- Comment: The root test.

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$ converges or not.

・ロト・日本・モート モー うへで

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Solution: We start with the ratio test,

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{\ln(7n)}{n^3} \ge 0$.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{\ln(7n)}{n^3} \ge 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

 $\frac{a_{n+1}}{a_n}$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{\ln(7n)}{n^3} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{\ln[7(n+1)]}{(n+1)^3} \frac{n^3}{\ln(7n)}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{\ln(7n)}{n^3} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{\ln[7(n+1)]}{(n+1)^3} \frac{n^3}{\ln(7n)} = \left(\frac{n}{n+1}\right)^3 \frac{\ln(7n+7)}{\ln(7n)}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{\ln(7n)}{n^3} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{\ln[7(n+1)]}{(n+1)^3} \frac{n^3}{\ln(7n)} = \left(\frac{n}{n+1}\right)^3 \frac{\ln(7n+7)}{\ln(7n)} \to 1$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{\ln(7n)}{n^3} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{\ln[7(n+1)]}{(n+1)^3} \frac{n^3}{\ln(7n)} = \left(\frac{n}{n+1}\right)^3 \frac{\ln(7n+7)}{\ln(7n)} \to 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Since $\rho = 1$,

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{\ln(7n)}{n^3} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{\ln[7(n+1)]}{(n+1)^3} \frac{n^3}{\ln(7n)} = \left(\frac{n}{n+1}\right)^3 \frac{\ln(7n+7)}{\ln(7n)} \to 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Since $\rho = 1$, the ratio test is inconclusive.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{\ln(7n)}{n^3} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{\ln[7(n+1)]}{(n+1)^3} \frac{n^3}{\ln(7n)} = \left(\frac{n}{n+1}\right)^3 \frac{\ln(7n+7)}{\ln(7n)} \to 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Since $\rho={\rm 1},$ the ratio test is inconclusive.

Direct comparison test:

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{\ln(7n)}{n^3} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{\ln[7(n+1)]}{(n+1)^3} \frac{n^3}{\ln(7n)} = \left(\frac{n}{n+1}\right)^3 \frac{\ln(7n+7)}{\ln(7n)} \to 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Since $\rho = 1$, the ratio test is inconclusive.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{\ln(7n)}{n^3} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{\ln[7(n+1)]}{(n+1)^3} \frac{n^3}{\ln(7n)} = \left(\frac{n}{n+1}\right)^3 \frac{\ln(7n+7)}{\ln(7n)} \to 1$$

Since $\rho = 1$, the ratio test is inconclusive.

$$a_n = \frac{\ln(7n)}{n^3}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{\ln(7n)}{n^3} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{\ln[7(n+1)]}{(n+1)^3} \frac{n^3}{\ln(7n)} = \left(\frac{n}{n+1}\right)^3 \frac{\ln(7n+7)}{\ln(7n)} \to 1$$

Since $\rho=1,$ the ratio test is inconclusive.

$$a_n = \frac{\ln(7n)}{n^3} \leqslant \frac{7n}{n^3}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{\ln(7n)}{n^3} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{\ln[7(n+1)]}{(n+1)^3} \frac{n^3}{\ln(7n)} = \left(\frac{n}{n+1}\right)^3 \frac{\ln(7n+7)}{\ln(7n)} \to 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Since $\rho=1,$ the ratio test is inconclusive.

$$a_n=\frac{\ln(7n)}{n^3}\leqslant \frac{7n}{n^3}=\frac{7}{n^2}.$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{\ln(7n)}{n^3} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{\ln[7(n+1)]}{(n+1)^3} \frac{n^3}{\ln(7n)} = \left(\frac{n}{n+1}\right)^3 \frac{\ln(7n+7)}{\ln(7n)} \to 1$$

Since $\rho = 1$, the ratio test is inconclusive.

$$a_n = \frac{\ln(7n)}{n^3} \leqslant \frac{7n}{n^3} = \frac{7}{n^2}$$
. Hence $\sum \frac{\ln(7n)}{n^3} \leqslant \sum \frac{7}{n^2}$.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{\ln(7n)}{n^3} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{\ln[7(n+1)]}{(n+1)^3} \frac{n^3}{\ln(7n)} = \left(\frac{n}{n+1}\right)^3 \frac{\ln(7n+7)}{\ln(7n)} \to 1$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Since $\rho=1,$ the ratio test is inconclusive.

Direct comparison test: Since ln(7n) < 7n, then

$$a_n = \frac{\ln(7n)}{n^3} \leqslant \frac{7n}{n^3} = \frac{7}{n^2}$$
. Hence $\sum \frac{\ln(7n)}{n^3} \leqslant \sum \frac{7}{n^2}$.

which converges.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{\ln(7n)}{n^3}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{\ln(7n)}{n^3} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{\ln[7(n+1)]}{(n+1)^3} \frac{n^3}{\ln(7n)} = \left(\frac{n}{n+1}\right)^3 \frac{\ln(7n+7)}{\ln(7n)} \to 1$$

Since $\rho = 1$, the ratio test is inconclusive.

Direct comparison test: Since ln(7n) < 7n, then

$$a_n = \frac{\ln(7n)}{n^3} \leqslant \frac{7n}{n^3} = \frac{7}{n^2}$$
. Hence $\sum \frac{\ln(7n)}{n^3} \leqslant \sum \frac{7}{n^2}$.

which converges. Therefore, the series converges.

<1

Example

Determine whether the series $\sum_{n=1}^{\infty} \frac{5n \ln(n)}{6^n}$ converges or not.

・ロト・日本・モート モー うへで

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{5n \ln(n)}{6^n}$$
 converges or not.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Solution: We start with the ratio test,

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{5n \ln(n)}{6^n}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{5n \ln(n)}{6^n} \ge 0$.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{5n \ln(n)}{6^n}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{5n \ln(n)}{6^n} \ge 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

 $\frac{a_{n+1}}{a_n}$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{5n \ln(n)}{6^n}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{5n \ln(n)}{6^n} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{5(n+1)\ln[(n+1)]}{6^{(n+1)}} \frac{6^n}{5n\ln(n)}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{5n \ln(n)}{6^n}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{5n \ln(n)}{6^n} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{5(n+1)\ln[(n+1)]}{6^{(n+1)}} \frac{6^n}{5n\ln(n)}$$

$$\frac{a_{n+1}}{a_n} = \frac{1}{6} \left(\frac{n+1}{n}\right) \frac{\ln(n+1)}{\ln(n)}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{5n \ln(n)}{6^n}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{5n \ln(n)}{6^n} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{5(n+1)\ln[(n+1)]}{6^{(n+1)}} \frac{6^n}{5n\ln(n)}$$

$$\frac{a_{n+1}}{a_n} = \frac{1}{6} \left(\frac{n+1}{n}\right) \frac{\ln(n+1)}{\ln(n)} \to \frac{1}{6}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{5n \ln(n)}{6^n}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{5n \ln(n)}{6^n} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{5(n+1)\ln[(n+1)]}{6^{(n+1)}} \frac{6^n}{5n\ln(n)}$$

$$\frac{a_{n+1}}{a_n} = \frac{1}{6} \left(\frac{n+1}{n} \right) \frac{\ln(n+1)}{\ln(n)} \to \frac{1}{6}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Since $\rho = \frac{1}{6} < 1$,

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{5n \ln(n)}{6^n}$$
 converges or not.

Solution: We start with the ratio test, since $a_n = \frac{5n \ln(n)}{6^n} \ge 0$.

$$\frac{a_{n+1}}{a_n} = \frac{5(n+1)\ln[(n+1)]}{6^{(n+1)}} \frac{6^n}{5n\ln(n)}$$

$$\frac{a_{n+1}}{a_n} = \frac{1}{6} \left(\frac{n+1}{n}\right) \frac{\ln(n+1)}{\ln(n)} \to \frac{1}{6}$$

Since $ho=rac{1}{6}<1$, the ratio test says that the series converges. \lhd

Ratio test (Sect. 10.5)

- The ratio test.
- Using the ratio test.
- Few more examples.
- Comment: The root test.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(c) If $\rho = 1$, the test is inconclusive.

Theorem Let $\{a_n\}$ be a positive sequence with $\lim_{n\to\infty} \sqrt[n]{a_n} = \rho$ exists. (a) If $\rho < 1$, the series $\sum a_n$ converges. (b) If $\rho > 1$, the series $\sum a_n$ diverges.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem Let $\{a_n\}$ be a positive sequence with $\lim_{n\to\infty} \sqrt[n]{a_n} = \rho$ exists. (a) If $\rho < 1$, the series $\sum a_n$ converges. (b) If $\rho > 1$, the series $\sum a_n$ diverges. (c) If $\rho = 1$, the test is inconclusive.

Remark: The root test also compares the series $\sum a_n$ with an appropriate geometric series $\sum r^n$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is

(ロ)、(型)、(E)、(E)、 E、 の(の)

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing.

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

・ロト・日本・モート モー うへで

Since $\lim_{n \to \infty} \sqrt[n]{a_n} = \rho$

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \sqrt[n]{a_n} = \rho < 1$,

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \sqrt[n]{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$,

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \sqrt[n]{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\sqrt[n]{a_n} < \rho + \epsilon$$

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \sqrt[n]{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\sqrt[n]{a_n} < \rho + \epsilon = r, \quad \text{for } n \geqslant N,$$

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \sqrt[n]{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\sqrt[n]{a_n} < \rho + \epsilon = r$$
, for $n \ge N$, $\Rightarrow a_n \leqslant r^n$.

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \sqrt[n]{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\sqrt[n]{a_n} < \rho + \epsilon = r$$
, for $n \ge N$, $\Rightarrow a_n \le r^n$.

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{N-1} a_n + \sum_{n=N}^{\infty} a_n$$

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \sqrt[n]{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\sqrt[n]{a_n} < \rho + \epsilon = r$$
, for $n \ge N$, $\Rightarrow a_n \le r^n$.

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{N-1} a_n + \sum_{n=N}^{\infty} a_n \leq \sum_{n=0}^{N-1} a_n + \sum_{n=N}^{\infty} r^n$$

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \sqrt[n]{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\sqrt[n]{a_n} < \rho + \epsilon = r$$
, for $n \ge N$, $\Rightarrow a_n \le r^n$.

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{N-1} a_n + \sum_{n=N}^{\infty} a_n \leqslant \sum_{n=0}^{N-1} a_n + \sum_{n=N}^{\infty} r^n$$

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \sqrt[n]{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\sqrt[n]{a_n} < \rho + \epsilon = r$$
, for $n \ge N$, $\Rightarrow a_n \le r^n$.

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{N-1} a_n + \sum_{n=N}^{\infty} a_n \leqslant \sum_{n=0}^{N-1} a_n + \sum_{n=N}^{\infty} r^n$$

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{N-1} a_n - \sum_{n=0}^{N-1} r^n + \sum_{n=0}^{\infty} r^n = \sum_{n=0}^{N-1} (a_n - r^n) + \frac{1}{1-r}.$$

So $\sum a_n$ is bounded.

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \sqrt[n]{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\sqrt[n]{a_n} < \rho + \epsilon = r$$
, for $n \ge N$, $\Rightarrow a_n \leqslant r^n$.

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{N-1} a_n + \sum_{n=N}^{\infty} a_n \leq \sum_{n=0}^{N-1} a_n + \sum_{n=N}^{\infty} r^n$$

 $\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{N-1} a_n - \sum_{n=0}^{N-1} r^n + \sum_{n=0}^{\infty} r^n = \sum_{n=0}^{N-1} (a_n - r^n) + \frac{1}{1-r}.$

So $\sum a_n$ is bounded. A non-decreasing, bounded above, series converges.

Proof: Case (a): Since $a_n \ge 0$, the series $\sum a_n$ is non-decreasing. We now show that $\sum a_n$ is bounded above.

Since $\lim_{n\to\infty} \sqrt[n]{a_n} = \rho < 1$, then for any $\epsilon > 0$, small enough such that $\rho + \epsilon = r < 1$, there exists *N* large with

$$\sqrt[n]{a_n} < \rho + \epsilon = r$$
, for $n \ge N$, $\Rightarrow a_n \le r^n$.

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{N-1} a_n + \sum_{n=N}^{\infty} a_n \leqslant \sum_{n=0}^{N-1} a_n + \sum_{n=N}^{\infty} r^n$$

 $\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{N-1} a_n - \sum_{n=0}^{N-1} r^n + \sum_{n=0}^{\infty} r^n = \sum_{n=0}^{N-1} (a_n - r^n) + \frac{1}{1-r}.$

So $\sum a_n$ is bounded. A non-decreasing, bounded above, series converges. The proofs for (b), (c) are similar to ratio test.

Alternating series and absolute convergence (Sect. 10.6)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Alternating series.
- Absolute and conditional convergence.
- Absolute convergence test.
- Few examples.

Definition

An infinite series $\sum a_n$ is an *alternating series* iff holds either

$$a_n = (-1)^n |a_n|$$
 or $a_n = (-1)^{n+1} |a_n|$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Definition

An infinite series $\sum a_n$ is an *alternating series* iff holds either

$$a_n = (-1)^n |a_n|$$
 or $a_n = (-1)^{n+1} |a_n|$.

Example

► The alternating harmonic series:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Definition

An infinite series $\sum a_n$ is an *alternating series* iff holds either

$$a_n = (-1)^n |a_n|$$
 or $a_n = (-1)^{n+1} |a_n|$.

Example

► The alternating harmonic series:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The following series is an alternating series,

$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)n^2}{(n+1)!}$$

Definition

An infinite series $\sum a_n$ is an *alternating series* iff holds either

$$a_n = (-1)^n |a_n|$$
 or $a_n = (-1)^{n+1} |a_n|$.

Example

► The alternating harmonic series:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The following series is an alternating series,

$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)n^2}{(n+1)!} = \sum_{n=1}^{\infty} (-1)^n \, \frac{n^2}{(n+1)!}$$

Definition

An infinite series $\sum a_n$ is an *alternating series* iff holds either

$$a_n = (-1)^n |a_n|$$
 or $a_n = (-1)^{n+1} |a_n|$.

Example

► The alternating harmonic series:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

The following series is an alternating series,

$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)n^2}{(n+1)!} = \sum_{n=1}^{\infty} (-1)^n \frac{n^2}{(n+1)!} = -\frac{1}{2} + \frac{4}{6} - \frac{9}{24} + \cdots$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem (Leibniz's test)

If the sequence $\{a_n\}$ satisfies: $0 < a_n$, and $a_{n+1} \leq a_n$, and $a_n \to 0$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Theorem (Leibniz's test)

If the sequence $\{a_n\}$ satisfies: $0 < a_n$, and $a_{n+1} \leq a_n$, and $a_n \to 0$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Proof: Write down the partial sum s_{2n} as follows

$$s_{2n} = a_1 - a_2 + a_3 - a_4 + a_5 - \dots + s_{2n-1} - s_{2n}$$

= $(a_1 - a_2) + (a_3 - a_4) + \dots + (s_{2n-1} - s_{2n})$
= $a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (s_{2n-2} - s_{2n-1}) - s_{2n}$.

Theorem (Leibniz's test)

If the sequence $\{a_n\}$ satisfies: $0 < a_n$, and $a_{n+1} \leq a_n$, and $a_n \to 0$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Proof: Write down the partial sum s_{2n} as follows

$$s_{2n} = a_1 - a_2 + a_3 - a_4 + a_5 - \dots + s_{2n-1} - s_{2n}$$

= $(a_1 - a_2) + (a_3 - a_4) + \dots + (s_{2n-1} - s_{2n})$
= $a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (s_{2n-2} - s_{2n-1}) - s_{2n}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The second expression implies $s_{2n} \leq s_{2(n+1)}$.

Theorem (Leibniz's test)

If the sequence $\{a_n\}$ satisfies: $0 < a_n$, and $a_{n+1} \leq a_n$, and $a_n \to 0$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Proof: Write down the partial sum s_{2n} as follows

$$s_{2n} = a_1 - a_2 + a_3 - a_4 + a_5 - \dots + s_{2n-1} - s_{2n}$$

= $(a_1 - a_2) + (a_3 - a_4) + \dots + (s_{2n-1} - s_{2n})$
= $a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (s_{2n-2} - s_{2n-1}) - s_{2n}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The second expression implies $s_{2n} \leqslant s_{2(n+1)}$.

The third expression says that s_{2n} is bounded above.

Theorem (Leibniz's test)

If the sequence $\{a_n\}$ satisfies: $0 < a_n$, and $a_{n+1} \leq a_n$, and $a_n \to 0$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Proof: Write down the partial sum s_{2n} as follows

$$s_{2n} = a_1 - a_2 + a_3 - a_4 + a_5 - \dots + s_{2n-1} - s_{2n}$$

= $(a_1 - a_2) + (a_3 - a_4) + \dots + (s_{2n-1} - s_{2n})$
= $a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (s_{2n-2} - s_{2n-1}) - s_{2n}.$

The second expression implies $s_{2n} \leq s_{2(n+1)}$. The third expression says that s_{2n} is bounded above. Therefore converges, $s_{2n} \rightarrow L$.

Theorem (Leibniz's test)

If the sequence $\{a_n\}$ satisfies: $0 < a_n$, and $a_{n+1} \leq a_n$, and $a_n \to 0$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Proof: Write down the partial sum s_{2n} as follows

$$egin{aligned} s_{2n} &= a_1 - a_2 + a_3 - a_4 + a_5 - \dots + s_{2n-1} - s_{2n} \ &= (a_1 - a_2) + (a_3 - a_4) + \dots + (s_{2n-1} - s_{2n}) \ &= a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (s_{2n-2} - s_{2n-1}) - s_{2n}. \end{aligned}$$

The second expression implies $s_{2n} \leq s_{2(n+1)}$. The third expression says that s_{2n} is bounded above. Therefore converges, $s_{2n} \rightarrow L$. Since $s_{2n+1} = s_{2n} + a_{2n+1}$,

Theorem (Leibniz's test)

If the sequence $\{a_n\}$ satisfies: $0 < a_n$, and $a_{n+1} \leq a_n$, and $a_n \to 0$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Proof: Write down the partial sum s_{2n} as follows

$$s_{2n} = a_1 - a_2 + a_3 - a_4 + a_5 - \dots + s_{2n-1} - s_{2n}$$

= $(a_1 - a_2) + (a_3 - a_4) + \dots + (s_{2n-1} - s_{2n})$
= $a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (s_{2n-2} - s_{2n-1}) - s_{2n}.$

The second expression implies $s_{2n} \leq s_{2(n+1)}$. The third expression says that s_{2n} is bounded above. Therefore converges, $s_{2n} \rightarrow L$.

Since $s_{2n+1} = s_{2n} + a_{2n+1}$, and $a_n \rightarrow 0$,

Theorem (Leibniz's test)

If the sequence $\{a_n\}$ satisfies: $0 < a_n$, and $a_{n+1} \leq a_n$, and $a_n \to 0$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Proof: Write down the partial sum s_{2n} as follows

$$egin{aligned} s_{2n} &= a_1 - a_2 + a_3 - a_4 + a_5 - \dots + s_{2n-1} - s_{2n} \ &= (a_1 - a_2) + (a_3 - a_4) + \dots + (s_{2n-1} - s_{2n}) \ &= a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (s_{2n-2} - s_{2n-1}) - s_{2n}. \end{aligned}$$

The second expression implies $s_{2n} \leq s_{2(n+1)}$. The third expression says that s_{2n} is bounded above. Therefore converges, $s_{2n} \rightarrow L$.

Since $s_{2n+1} = s_{2n} + a_{2n+1}$, and $a_n \rightarrow 0$, then $s_{2n+1} \rightarrow L + 0 = L$.

Theorem (Leibniz's test)

If the sequence $\{a_n\}$ satisfies: $0 < a_n$, and $a_{n+1} \leq a_n$, and $a_n \to 0$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Proof: Write down the partial sum s_{2n} as follows

$$s_{2n} = a_1 - a_2 + a_3 - a_4 + a_5 - \dots + s_{2n-1} - s_{2n}$$

= $(a_1 - a_2) + (a_3 - a_4) + \dots + (s_{2n-1} - s_{2n})$
= $a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (s_{2n-2} - s_{2n-1}) - s_{2n}.$

The second expression implies $s_{2n} \leq s_{2(n+1)}$.

The third expression says that s_{2n} is bounded above.

Therefore converges, $s_{2n} \rightarrow L$.

Since $s_{2n+1} = s_{2n} + a_{2n+1}$, and $a_n \to 0$, then $s_{2n+1} \to L + 0 = L$. We conclude that $\sum (-1)^{n+1} a_n$ converges.

Example

Show that the alternating harmonic series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
. converges.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example

Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. converges.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solution: Introduce the sequence $a_n = \frac{(-1)^{n+1}}{n}$.

Example

Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. converges.

Solution: Introduce the sequence $a_n = \frac{(-1)^{n+1}}{n}$.

The sequence $\{a_n\}$ satisfies the hypothesis in the Leibniz test:

Example

Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. converges.

Solution: Introduce the sequence $a_n = \frac{(-1)^{n+1}}{n}$.

The sequence $\{a_n\}$ satisfies the hypothesis in the Leibniz test:

►
$$|a_n| > 0;$$

Example

Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. converges.

Solution: Introduce the sequence $a_n = \frac{(-1)^{n+1}}{n}$.

The sequence $\{a_n\}$ satisfies the hypothesis in the Leibniz test:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► $|a_n| > 0;$
- ► $|a_{n+1}| < |a_n|;$

Example

Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. converges.

Solution: Introduce the sequence $a_n = \frac{(-1)^{n+1}}{n}$.

The sequence $\{a_n\}$ satisfies the hypothesis in the Leibniz test:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- |a_n| > 0;
 |a_{n+1}| < |a_n|;
- ► $|a_n| \rightarrow 0.$

Example

Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. converges.

Solution: Introduce the sequence
$$a_n = \frac{(-1)^{n+1}}{n}$$
.

The sequence $\{a_n\}$ satisfies the hypothesis in the Leibniz test:

►
$$|a_n| > 0;$$

►
$$|a_{n+1}| < |a_n|;$$

►
$$|a_n| \rightarrow 0.$$

We then conclude that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges. \triangleleft

Alternating series and absolute convergence (Sect. 10.6)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Alternating series.
- ► Absolute and conditional convergence.
- Absolute convergence test.
- Few examples.

Remarks:

Several convergence tests apply only to positive series.

Remarks:

- Several convergence tests apply only to positive series.
- Integral test, direct comparison and limit comparison tests, ratio test, do not apply to alternating series.

Remarks:

- Several convergence tests apply only to positive series.
- Integral test, direct comparison and limit comparison tests, ratio test, do not apply to alternating series.

► Given an arbitrary series ∑ a_n, the series ∑ |a_n| has non-negative terms.

Remarks:

- Several convergence tests apply only to positive series.
- Integral test, direct comparison and limit comparison tests, ratio test, do not apply to alternating series.
- ► Given an arbitrary series ∑ a_n, the series ∑ |a_n| has non-negative terms.

Definition

A series ∑ a_n is absolutely convergent iff the series ∑ |a_n| converges.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remarks:

- Several convergence tests apply only to positive series.
- Integral test, direct comparison and limit comparison tests, ratio test, do not apply to alternating series.
- ► Given an arbitrary series ∑ a_n, the series ∑ |a_n| has non-negative terms.

Definition

- A series ∑ a_n is absolutely convergent iff the series ∑ |a_n| converges.
- A series converges conditionally iff it converges but does not converges absolutely.

Example

• The alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges conditionally.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

• The alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges conditionally.

Because the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges and the alternating harmonic series converges.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

► The alternating harmonic series ∑_{n=1}[∞] (-1)ⁿ⁺¹/n converges conditionally.

Because the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges and the

alternating harmonic series converges.

• The geometric series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^n}$$
 converges absolutely.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

► The alternating harmonic series ∑_{n=1}[∞] (-1)ⁿ⁺¹/n converges conditionally.

Because the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges and the

alternating harmonic series converges.

► The geometric series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^n}$ converges absolutely. Because the geometric series $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converges.

Alternating series and absolute convergence (Sect. 10.6)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Alternating series.
- Absolute and conditional convergence.
- Absolute convergence test.
- Few examples.

Theorem If the series $\sum |a_n|$ converges, then the series $\sum a_n$ converges.

Theorem

If the series $\sum |a_n|$ converges, then the series $\sum a_n$ converges.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Remark: The converse is not true.

Theorem

If the series $\sum |a_n|$ converges, then the series $\sum a_n$ converges.

Remark:

The converse is not true. A series can converge conditionally:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Theorem

If the series $\sum |a_n|$ converges, then the series $\sum a_n$ converges.

Remark:

The converse is not true. A series can converge conditionally:

$$\sum rac{(-1)^{n+1}}{n}$$
 converges, but $\sum \left|rac{(-1)^{n+1}}{n}
ight|$ does not converge.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Theorem

If the series $\sum |a_n|$ converges, then the series $\sum a_n$ converges.

Remark:

The converse is not true. A series can converge conditionally:

$$\sum \frac{(-1)^{n+1}}{n} \text{ converges, but } \sum \left| \frac{(-1)^{n+1}}{n} \right| \text{ does not converge.}$$
Proof: $-|a_n| \leq a_n \leq |a_n|$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Theorem

If the series $\sum |a_n|$ converges, then the series $\sum a_n$ converges.

Remark:

The converse is not true. A series can converge conditionally:

$$\sum \frac{(-1)^{n+1}}{n} \text{ converges, but } \sum \left| \frac{(-1)^{n+1}}{n} \right| \text{ does not converge.}$$

Proof: $-|a_n| \leq a_n \leq |a_n| \Rightarrow 0 \leq a_n + |a_n| \leq 2|a_n|.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Theorem

If the series $\sum |a_n|$ converges, then the series $\sum a_n$ converges.

Remark:

The converse is not true. A series can converge conditionally:

 $\sum \frac{(-1)^{n+1}}{n} \text{ converges, but } \sum \left| \frac{(-1)^{n+1}}{n} \right| \text{ does not converge.}$ Proof: $-|a_n| \leq a_n \leq |a_n| \Rightarrow 0 \leq a_n + |a_n| \leq 2|a_n|.$ Since $\sum |a_n|$ converges so does $\sum 2|a_n|.$

Theorem

If the series $\sum |a_n|$ converges, then the series $\sum a_n$ converges.

Remark:

The converse is not true. A series can converge conditionally:

 $\sum \frac{(-1)^{n+1}}{n} \text{ converges, but } \sum \left| \frac{(-1)^{n+1}}{n} \right| \text{ does not converge.}$ Proof: $-|a_n| \leq a_n \leq |a_n| \Rightarrow 0 \leq a_n + |a_n| \leq 2|a_n|.$ Since $\sum |a_n|$ converges so does $\sum 2|a_n|.$ Direct comparison test implies $\sum (a_n + |a_n|)$ converges.

・ロト・日本・モート モー うへで

Theorem

If the series $\sum |a_n|$ converges, then the series $\sum a_n$ converges.

Remark:

The converse is not true. A series can converge conditionally:

 $\sum \frac{(-1)^{n+1}}{n} \text{ converges, but } \sum \left| \frac{(-1)^{n+1}}{n} \right| \text{ does not converge.}$ Proof: $-|a_n| \leq a_n \leq |a_n| \Rightarrow 0 \leq a_n + |a_n| \leq 2|a_n|.$ Since $\sum |a_n|$ converges so does $\sum 2|a_n|.$ Direct comparison test implies $\sum (a_n + |a_n|)$ converges.

$$\sum a_n = \sum (a_n + |a_n|) - \sum |a_n|,$$

・ロト・日本・モート モー うへで

Theorem

If the series $\sum |a_n|$ converges, then the series $\sum a_n$ converges.

Remark:

The converse is not true. A series can converge conditionally:

 $\sum \frac{(-1)^{n+1}}{n} \text{ converges, but } \sum \left| \frac{(-1)^{n+1}}{n} \right| \text{ does not converge.}$ Proof: $-|a_n| \leq a_n \leq |a_n| \Rightarrow 0 \leq a_n + |a_n| \leq 2|a_n|.$ Since $\sum |a_n|$ converges so does $\sum 2|a_n|.$ Direct comparison test implies $\sum (a_n + |a_n|)$ converges.

$$\sum a_n = \sum (a_n + |a_n|) - \sum |a_n|,$$

and both series on the right-hand side converge.

Theorem

If the series $\sum |a_n|$ converges, then the series $\sum a_n$ converges.

Remark:

The converse is not true. A series can converge conditionally:

 $\sum \frac{(-1)^{n+1}}{n} \text{ converges, but } \sum \left| \frac{(-1)^{n+1}}{n} \right| \text{ does not converge.}$ Proof: $-|a_n| \leq a_n \leq |a_n| \Rightarrow 0 \leq a_n + |a_n| \leq 2|a_n|.$ Since $\sum |a_n|$ converges so does $\sum 2|a_n|.$ Direct comparison test implies $\sum (a_n + |a_n|)$ converges.

$$\sum a_n = \sum (a_n + |a_n|) - \sum |a_n|,$$

and both series on the right-hand side converge. Hence $\sum a_n$ converges.

Alternating series and absolute convergence (Sect. 10.6)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Alternating series.
- Absolute and conditional convergence.
- Absolute convergence test.
- ► Few examples.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6+5}$$
 converges

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

absolutely, conditionally, or does not converge at all.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6 + 5}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6+5}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_n = \left| (-1)^{n+1} \frac{4n}{4n^6 + 5} \right|$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6+5}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_n = \left| (-1)^{n+1} \frac{4n}{4n^6 + 5} \right| = \frac{4n}{4n^6 + 5}$.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6+5}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_n = \left| (-1)^{n+1} \frac{4n}{4n^6 + 5} \right| = \frac{4n}{4n^6 + 5}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\frac{a_{n+1}}{a_n}$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6+5}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_n = \left| (-1)^{n+1} \frac{4n}{4n^6 + 5} \right| = \frac{4n}{4n^6 + 5}.$

$$\frac{a_{n+1}}{a_n} = \frac{4(n+1)}{[4(n+1)^6+5]} \frac{[4n^6+5]}{4n}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6+5}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_n = \left| (-1)^{n+1} \frac{4n}{4n^6 + 5} \right| = \frac{4n}{4n^6 + 5}.$

$$\frac{a_{n+1}}{a_n} = \frac{4(n+1)}{[4(n+1)^6 + 5]} \frac{[4n^6 + 5]}{4n} = \frac{(n+1)}{n} \left[\frac{4n^6 + 5}{4(n+1)^6 + 5} \right]$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6+5}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_n = \left| (-1)^{n+1} \frac{4n}{4n^6 + 5} \right| = \frac{4n}{4n^6 + 5}$.

$$\frac{a_{n+1}}{a_n} = \frac{4(n+1)}{[4(n+1)^6+5]} \frac{[4n^6+5]}{4n} = \frac{(n+1)}{n} \left[\frac{4n^6+5}{4(n+1)^6+5}\right] \to 1.$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6+5}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_n = \left| (-1)^{n+1} \frac{4n}{4n^6 + 5} \right| = \frac{4n}{4n^6 + 5}$.

$$\frac{a_{n+1}}{a_n} = \frac{4(n+1)}{[4(n+1)^6+5]} \frac{[4n^6+5]}{4n} = \frac{(n+1)}{n} \left[\frac{4n^6+5}{4(n+1)^6+5}\right] \to 1.$$

Ratio test inconclusive.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6+5}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_n = \left| (-1)^{n+1} \frac{4n}{4n^6 + 5} \right| = \frac{4n}{4n^6 + 5}$.

$$\frac{a_{n+1}}{a_n} = \frac{4(n+1)}{[4(n+1)^6+5]} \frac{[4n^6+5]}{4n} = \frac{(n+1)}{n} \left[\frac{4n^6+5}{4(n+1)^6+5}\right] \to 1.$$

- ロ ト - 4 回 ト - 4 □ - 4

$$4n^6 < 4n^6 + 5$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6+5}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_n = \left| (-1)^{n+1} \frac{4n}{4n^6 + 5} \right| = \frac{4n}{4n^6 + 5}$.

$$\frac{a_{n+1}}{a_n} = \frac{4(n+1)}{[4(n+1)^6+5]} \frac{[4n^6+5]}{4n} = \frac{(n+1)}{n} \left[\frac{4n^6+5}{4(n+1)^6+5}\right] \to 1.$$

$$4n^6 < 4n^6 + 5 \Rightarrow \frac{1}{4n^6 + 5} < \frac{1}{4n^6}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6+5}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_n = \left| (-1)^{n+1} \frac{4n}{4n^6 + 5} \right| = \frac{4n}{4n^6 + 5}$.

$$\frac{a_{n+1}}{a_n} = \frac{4(n+1)}{[4(n+1)^6+5]} \frac{[4n^6+5]}{4n} = \frac{(n+1)}{n} \left[\frac{4n^6+5}{4(n+1)^6+5}\right] \to 1.$$

$$4n^6 < 4n^6 + 5 \Rightarrow \frac{1}{4n^6 + 5} < \frac{1}{4n^6} \Rightarrow \frac{4n}{4n^6 + 5} < \frac{1}{n^5}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6+5}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_n = \left| (-1)^{n+1} \frac{4n}{4n^6 + 5} \right| = \frac{4n}{4n^6 + 5}$.

$$\frac{a_{n+1}}{a_n} = \frac{4(n+1)}{[4(n+1)^6+5]} \frac{[4n^6+5]}{4n} = \frac{(n+1)}{n} \left[\frac{4n^6+5}{4(n+1)^6+5}\right] \to 1.$$

$$4n^{6} < 4n^{6} + 5 \implies \frac{1}{4n^{6} + 5} < \frac{1}{4n^{6}} \implies \frac{4n}{4n^{6} + 5} < \frac{1}{n^{5}}.$$
$$\sum_{n=1}^{\infty} \frac{1}{n^{5}} \text{ converges,}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6+5}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_n = \left| (-1)^{n+1} \frac{4n}{4n^6 + 5} \right| = \frac{4n}{4n^6 + 5}$.

$$\frac{a_{n+1}}{a_n} = \frac{4(n+1)}{[4(n+1)^6+5]} \frac{[4n^6+5]}{4n} = \frac{(n+1)}{n} \left[\frac{4n^6+5}{4(n+1)^6+5}\right] \to 1.$$

$$4n^{6} < 4n^{6} + 5 \Rightarrow \frac{1}{4n^{6} + 5} < \frac{1}{4n^{6}} \Rightarrow \frac{4n}{4n^{6} + 5} < \frac{1}{n^{5}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{5}} \text{ converges, (IT),}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n}{4n^6+5}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We first study absolute convergence. We use the ratio test in the sequence $a_n = \left| (-1)^{n+1} \frac{4n}{4n^6 + 5} \right| = \frac{4n}{4n^6 + 5}$.

$$\frac{a_{n+1}}{a_n} = \frac{4(n+1)}{[4(n+1)^6+5]} \frac{[4n^6+5]}{4n} = \frac{(n+1)}{n} \left[\frac{4n^6+5}{4(n+1)^6+5}\right] \to 1.$$

$$4n^{6} < 4n^{6} + 5 \Rightarrow \frac{1}{4n^{6} + 5} < \frac{1}{4n^{6}} \Rightarrow \frac{4n}{4n^{6} + 5} < \frac{1}{n^{5}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{5}} \text{ converges, (IT), so the series converges absolutely.} \triangleleft$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

conditionally, or does not converge at all.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Solution: The series diverges absolutely,

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: The series diverges absolutely, since

$$|a_n| = \left|\frac{(-1)^{n+1}}{\ln(n)}\right| = \frac{1}{\ln(n)},$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: The series diverges absolutely, since

$$|a_n| = \left|\frac{(-1)^{n+1}}{\ln(n)}\right| = \frac{1}{\ln(n)},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

and ln(n) < n

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Solution: The series diverges absolutely, since

$$|a_n| = \Big|rac{(-1)^{n+1}}{\ln(n)}\Big| = rac{1}{\ln(n)},$$
 and $\ln(n) < n$ implies $rac{1}{n} < rac{1}{\ln(n)}.$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: The series diverges absolutely, since

$$|a_n| = \left|\frac{(-1)^{n+1}}{\ln(n)}\right| = \frac{1}{\ln(n)},$$

and $\ln(n) < n$ implies $\frac{1}{n} < \frac{1}{\ln(n)}.$

Since the harmonic series diverges,

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: The series diverges absolutely, since

$$|a_n| = \left|\frac{(-1)^{n+1}}{\ln(n)}\right| = \frac{1}{\ln(n)},$$

and $\ln(n) < n$ implies $\frac{1}{n} < \frac{1}{\ln(n)}.$
Since the harmonic series diverges, then $\sum_{n=1}^{\infty} \frac{1}{\ln(n)}$ diverges;

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: The series diverges absolutely, since

$$\begin{split} |a_n| &= \Big| \frac{(-1)^{n+1}}{\ln(n)} \Big| = \frac{1}{\ln(n)}, \\ \text{and } \ln(n) < n \text{ implies } \frac{1}{n} < \frac{1}{\ln(n)}. \\ \text{Since the harmonic series diverges, then } \sum_{n=1}^{\infty} \frac{1}{\ln(n)} \text{ diverges;} \\ \text{therefore, the series } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)} \text{ diverges absolutely.} \end{split}$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Solution: Recall: The series diverges absolutely.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Solution: Recall: The series diverges absolutely.

We now try the Leibniz test

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Solution: Recall: The series diverges absolutely.

We now try the Leibniz test (the alternating series test)

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Solution: Recall: The series diverges absolutely.

We now try the Leibniz test (the alternating series test)

$$|a_n|=\frac{1}{\ln(n)}>0,$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.

We now try the Leibniz test (the alternating series test)

$$|a_n| = \frac{1}{\ln(n)} > 0, \quad |a_n| = \frac{1}{\ln(n)} \to 0.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.

We now try the Leibniz test (the alternating series test)

$$|a_n| = \frac{1}{\ln(n)} > 0, \quad |a_n| = \frac{1}{\ln(n)} \to 0.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

Furthermore, the inequality $\ln(n) < \ln(n+1)$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.

We now try the Leibniz test (the alternating series test)

$$|a_n| = \frac{1}{\ln(n)} > 0, \quad |a_n| = \frac{1}{\ln(n)} \to 0.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

Furthermore, the inequality ln(n) < ln(n+1) implies

$$|a_{n+1}| = \frac{1}{\ln(n+1)}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.

We now try the Leibniz test (the alternating series test)

$$|a_n| = \frac{1}{\ln(n)} > 0, \quad |a_n| = \frac{1}{\ln(n)} \to 0.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

Furthermore, the inequality ln(n) < ln(n+1) implies

$$|a_{n+1}| = \frac{1}{\ln(n+1)} < \frac{1}{\ln(n)}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.

We now try the Leibniz test (the alternating series test)

$$|a_n| = rac{1}{\ln(n)} > 0, \quad |a_n| = rac{1}{\ln(n)} \to 0.$$

Furthermore, the inequality ln(n) < ln(n+1) implies

$$|a_{n+1}| = \frac{1}{\ln(n+1)} < \frac{1}{\ln(n)} = |a_n|.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ のへぐ

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.

We now try the Leibniz test (the alternating series test)

$$|a_n| = \frac{1}{\ln(n)} > 0, \quad |a_n| = \frac{1}{\ln(n)} \to 0.$$

Furthermore, the inequality ln(n) < ln(n+1) implies

$$|a_{n+1}| = \frac{1}{\ln(n+1)} < \frac{1}{\ln(n)} = |a_n|.$$

Hence, the Leibniz test implies that
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: Recall: The series diverges absolutely.

We now try the Leibniz test (the alternating series test)

$$|a_n| = \frac{1}{\ln(n)} > 0, \quad |a_n| = \frac{1}{\ln(n)} \to 0.$$

Furthermore, the inequality ln(n) < ln(n+1) implies

$$|a_{n+1}| = \frac{1}{\ln(n+1)} < \frac{1}{\ln(n)} = |a_n|.$$

Hence, the Leibniz test implies that
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n)}$$
 converges.

Hence, the series converges conditionally.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-100)^n}{n!}$$
 converges absolutely, conditionally, or does not converge at all.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-100)^n}{n!}$$
 converges absolutely, conditionally, or does not converge at all.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Solution: We test absolute convergence: $|a_n| = \left|\frac{(-100)^n}{n!}\right|$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-100)^n}{n!}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $|a_n| = \left|\frac{(-100)^n}{n!}\right| = \frac{100^n}{n!}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-100)^n}{n!}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $|a_n| = \left|\frac{(-100)^n}{n!}\right| = \frac{100^n}{n!}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let us check the ratio test:

$$\frac{|a_{n+1}|}{|a_n|}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-100)^n}{n!}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $|a_n| = \left|\frac{(-100)^n}{n!}\right| = \frac{100^n}{n!}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let us check the ratio test:

$$\frac{|a_{n+1}|}{|a_n|} = \frac{100^{n+1}}{(n+1)!} \frac{n!}{100^n}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-100)^n}{n!}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $|a_n| = \left|\frac{(-100)^n}{n!}\right| = \frac{100^n}{n!}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let us check the ratio test:

 $\frac{|a_{n+1}|}{|a_n|} = \frac{100^{n+1}}{(n+1)!} \frac{n!}{100^n} = \frac{100(100^n)}{(n+1) n!} \frac{n!}{100^n}$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-100)^n}{n!}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $|a_n| = \left|\frac{(-100)^n}{n!}\right| = \frac{100^n}{n!}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let us check the ratio test:

$$\frac{|a_{n+1}|}{|a_n|} = \frac{100^{n+1}}{(n+1)!} \frac{n!}{100^n} = \frac{100(100^n)}{(n+1)n!} \frac{n!}{100^n} = \frac{100}{(n+1)}$$

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-100)^n}{n!}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $|a_n| = \left|\frac{(-100)^n}{n!}\right| = \frac{100^n}{n!}$.

Let us check the ratio test:

$$\frac{|a_{n+1}|}{|a_n|} = \frac{100^{n+1}}{(n+1)!} \frac{n!}{100^n} = \frac{100(100^n)}{(n+1) n!} \frac{n!}{100^n} = \frac{100}{(n+1)} \to 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-100)^n}{n!}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $|a_n| = \left|\frac{(-100)^n}{n!}\right| = \frac{100^n}{n!}$.

Let us check the ratio test:

$$\frac{|a_{n+1}|}{|a_n|} = \frac{100^{n+1}}{(n+1)!} \frac{n!}{100^n} = \frac{100(100^n)}{(n+1) n!} \frac{n!}{100^n} = \frac{100}{(n+1)} \to 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The ratio test implies $\sum_{n=1}^{\infty} \frac{(-100)^n}{n!}$ coverges absolutely.

Example

Determine whether the series
$$\sum_{n=1}^{\infty} \frac{(-100)^n}{n!}$$
 converges absolutely, conditionally, or does not converge at all.

Solution: We test absolute convergence: $|a_n| = \left|\frac{(-100)^n}{n!}\right| = \frac{100^n}{n!}$.

Let us check the ratio test:

$$\frac{|a_{n+1}|}{|a_n|} = \frac{100^{n+1}}{(n+1)!} \frac{n!}{100^n} = \frac{100(100^n)}{(n+1)\,n!} \frac{n!}{100^n} = \frac{100}{(n+1)} \to 0.$$

<1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The ratio test implies $\sum_{n=1}^{\infty} \frac{(-100)^n}{n!}$ coverges absolutely.

Therefore, the series converges.