Review for Exam 3.

5 or 6 problems.
No multiple choice questions.
No notes, no books, no calculators.

Problems similar to homeworks.
Exam covers: 8.3, 8.4, 7.5, 8.7, 10.1.
» Trigonometric substitutions (8.3).

> Integration using partial fractions (8.4).
» L'Hopital’s rule (7.5).
>
>
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Improper integrals (8.7).
Infinite sequences (10.1).

v

Section not covered:
> Integration using tables (8.5).
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Trigonometric substitutions (8.3)

Recall: From Sect. 8.2: /sec(@) df = In(sec(f) + tan(8)) + c.

Example
Evaluate / e dx Express you result in terms of the
valu = | ————. Express you result in term

Ve +9

variable x.



Trigonometric substitutions (8.3)

Recall: From Sect. 8.2: /sec(@) df = In(sec(f) + tan(8)) + c.

Example
e* dx .
Evaluate | = [ —————. Express you result in terms of the
2x
) vex49
variable x.

Solution: First substitution,



Trigonometric substitutions (8.3)

Recall: From Sect. 8.2: /sec(@) df = In(sec(f) + tan(8)) + c.

Example
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Evaluate | = [ —————. Express you result in terms of the
2x
) vex49
variable x.

Solution: First substitution, y = e*,



Trigonometric substitutions (8.3)

Recall: From Sect. 8.2: /sec(@) df = In(sec(f) + tan(8)) + c.

Example
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2x
) vex49
variable x.

Solution: First substitution, y = €%, then dy = e~ dx,



Trigonometric substitutions (8.3)
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Trigonometric substitutions (8.3)

Recall: From Sect. 8.2: /sec(@) df = In(sec(f) + tan(8)) + c.

Example
e* dx .
Evaluate | = [ —————. Express you result in terms of the
2x
) vex49
variable x.

Solution: First substitution, y = €%, then dy = X dx, y > 0,

/—/dy
VY2 +9



Trigonometric substitutions (8.3)

Recall: From Sect. 8.2: /sec(@) df = In(sec(f) + tan(8)) + c.

Example
e* dx .
Evaluate | = [ —————. Express you result in terms of the
2x
) vex49
variable x.

Solution: First substitution, y = €%, then dy = X dx, y > 0,

Second subs.:

/—/dy
VY2 +9



Trigonometric substitutions (8.3)

Recall: From Sect. 8.2: /sec(@) df = In(sec(f) + tan(8)) + c.

Example
e* dx .
Evaluate | = [ —————. Express you result in terms of the
2x
) vex49
variable x.

Solution: First substitution, y = €%, then dy = X dx, y > 0,

y = 3tan(6),
Second subs.: dy = 3 sec?(f) db,

dy
[
/Vy2+9 0 (0,7/2).



Trigonometric substitutions (8.3)

Recall: From Sect. 8.2: /sec(@) df = In(sec(f) + tan(8)) + c.

Example
e* dx .
Evaluate | = [ —————. Express you result in terms of the
2x
) vex49
variable x.

Solution: First substitution, y = €%, then dy = X dx, y > 0,

J y = 3tan(6),
Yy
| = / ——=———. Second subs.: dy = 3 sec?(f) db,
Vy?+9
yot 0 (0,7/2).

I—/ 3sec?(0) df
B 9tan?(6) + 9



Trigonometric substitutions (8.3)

Recall: From Sect. 8.2: /sec(@) df = In(sec(f) + tan(8)) + c.

Example
e* dx .
Evaluate | = [ —————. Express you result in terms of the
2x
) vex49
variable x.

Solution: First substitution, y = €%, then dy = X dx, y > 0,

J y = 3tan(6),
| = / \/2)/79 Second subs.: dy = 3 sec?(f) db,
yot 0 (0,7/2).
3sec 3sec?() do

\/9tan )+9 N 3y/tan?(f) + 1



Trigonometric substitutions (8.3)

Recall: From Sect. 8.2: /sec(@) df = In(sec(f) + tan(8)) + c.

Example
e* dx .
Evaluate | = [ —————. Express you result in terms of the
2x
) vex49
variable x.

Solution: First substitution, y = €%, then dy = X dx, y > 0,

J y = 3tan(6),
| = / \/2)/79 Second subs.: dy = 3 sec?(f) db,
yor 0 (0,7/2).
3sec 3sec?() do sec?(0) do

\/9tan )+9 B 3y/tan?(f) + 1 N | sec(8)]



Trigonometric substitutions (8.3)

Example
Evaluate / e ¢ It in t f th
valuate | = | ————. Express you result in terms of the
g DXPressy
variable x.
sec(0) df

: X _ : m
Solution: So: I—/ sec(d)] e* =y =3tan(f); 6 ¢ (0,2).



Trigonometric substitutions (8.3)

Example
Evaluate | = i Express you result in terms of the
) Vet
variable x.
sec?() do T
lution: So: | = | ————; e“=y =23tan(0); 0 — .
Solution: So / sec(d)] e* =y =3tan(f); 6 ¢ (0,2)

| = /sec(ﬁ) df



Trigonometric substitutions (8.3)

Example
Evaluate | = i Express you result in terms of the
) Vet
variable x.
sec?() d T
lution: So: | = | ————; e“=y =23tan(0); 0 — .
Solution: So / sec(d)] e* =y =3tan(f); 6 ¢ (0,2)

| = /sec(H) df = In(sec(d) + tan(8)) + ¢



Trigonometric substitutions (8.3)

Example
Evaluate / e dx Express you result in terms of the
valu = | —.
Ve +9
variable x.
sec?() d T
F A . — Xy — -0 )
Solution: So: [ /| T e* =y =3tan(f); 6 ¢ (O, 2)

| = /sec(@) df = In(sec(d) + tan(8)) + ¢

X

Recall, tan(f) = %,



Trigonometric substitutions (8.3)

Example
Evaluate / e dx Express you result in terms of the
valu = | —.
Ve +9
variable x.
sec?() d T
F A . — Xy — -0 )
Solution: So: [ /| T e* =y =3tan(f); 6 ¢ (O, 2)

| = /sec(@) df = In(sec(d) + tan(8)) + ¢

Recall, tan(f) = %, hence sec(f) = /tan2(0) + 1



Trigonometric substitutions (8.3)

Example
Evaluate / e dx Express you result in terms of the
valu = | —.
Ve +9
variable x.
sec?() d T
F A . — Xy — -0 )
Solution: So: [ /| T e* =y =3tan(f); 6 ¢ (O, 2)

| = /sec(@) df = In(sec(d) + tan(8)) + ¢

X 2x
Recall, tan(f) = %, hence sec(f) = y/tan?() + 1 = 4/ % + 1



Trigonometric substitutions (8.3)

Example
Evaluate / e dx Express you result in terms of the
valu = | —.
Ve +9
variable x.
sec?() d T
F A . — Xy — -0 )
Solution: So: [ /| T e* =y =3tan(f); 6 ¢ (O, 2)

| = /sec(@) df = In(sec(d) + tan(8)) + ¢

X 2x
Recall, tan(f) = %, hence sec(f) = y/tan?() + 1 = 4/ % + 1

We conclude that,

I:In(ex+% e2x+9>+c. 4
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Integration using partial fractions (8.4).
L'Hépital's rule (7.5).

Improper integrals (8.7).
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Integration using partial fractions (8.4)

Recall: If the polynomial in the numerator has larger degree than
the polynomial in the denominator, then do the long division first.
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Example
Evaluate | = / ﬂ dx.
(x2—x—6)
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Integration using partial fractions (8.4)

Recall: If the polynomial in the numerator has larger degree than
the polynomial in the denominator, then do the long division first.

Example
Evaluate | = / ((X_2) dx.

x? —x—6)

Solution: We find the roots of the denominator, x2 — x — 6 = 0,



Integration using partial fractions (8.4)

Recall: If the polynomial in the numerator has larger degree than
the polynomial in the denominator, then do the long division first.

Example
Evaluate | = / ((X_2) dx.

x? —x—6)
Solution: We find the roots of the denominator, x2 — x — 6 = 0,

1(1j:\/1+24)

X4 =

N



Integration using partial fractions (8.4)

Recall: If the polynomial in the numerator has larger degree than
the polynomial in the denominator, then do the long division first.

Example
Evaluate | = / ((X_2) dx.

x? —x—6)

Solution: We find the roots of the denominator, x2 — x — 6 = 0,

(1i\/1+2) (1i5)

N \



Integration using partial fractions (8.4)

Recall: If the polynomial in the numerator has larger degree than
the polynomial in the denominator, then do the long division first.

Example
Evaluate | = / ((X_2) dx.

x? —x—6)

Solution: We find the roots of the denominator, x2 — x — 6 = 0,

L1+ Vit o) = (1i5) = {X+i3’

N \



Integration using partial fractions (8.4)

Recall: If the polynomial in the numerator has larger degree than
the polynomial in the denominator, then do the long division first.

Example
Evaluate | = / ((X_2) dx.

x? —x—6)

Solution: We find the roots of the denominator, x2 — x — 6 = 0,

L1+ Vit o) = (1i5) = {X+i3’

N \

(x-2)

Therefore, | = [ ————"—=d
erefore /(x—3)(x—|—2) Ix



Integration using partial fractions (8.4)

Recall: If the polynomial in the numerator has larger degree than
the polynomial in the denominator, then do the long division first.

Example
Evaluate | = / ((X_2) dx.

x? —x—6)

Solution: We find the roots of the denominator, x2 — x — 6 = 0,

L1+ Vit o) = (1i5) = {X+i3’

N \

(x-2)

——————— dx. Now, partial fractions:
(x—3)(x +2) x. Now, partial fractions

Therefore, I—/



Integration using partial fractions (8.4)

Recall: If the polynomial in the numerator has larger degree than
the polynomial in the denominator, then do the long division first.

Example
Evaluate | = / ((X_2) dx.

x? —x—6)

Solution: We find the roots of the denominator, x2 — x — 6 = 0,

L1+ Vit o) = (1i5) = {X+i3’

N \

(x-2)

——————— dx. Now, partial fractions:
(x—3)(x +2) x. Now, partial fractions

Therefore, I—/

(x—2)
(x—3)(x+2)



Integration using partial fractions (8.4)

Recall: If the polynomial in the numerator has larger degree than
the polynomial in the denominator, then do the long division first.

Example

Evaluate / :/(X_2)dx.
(x2—x—6)

Solution: We find the roots of the denominator, x2 — x — 6 = 0,

N \

L1+ Vit o) = (1i5) = {X+i3’

(x-2)
(x =3)(x+2)
(x—2) a b

x—3)x+2) (x=3) (x12)

Therefore, | —/ dx. Now, partial fractions:




Integration using partial fractions (8.4)

Recall: If the polynomial in the numerator has larger degree than
the polynomial in the denominator, then do the long division first.

Example

Evaluate / :/(X_2)dx.
(x2—x—6)

Solution: We find the roots of the denominator, x2 — x — 6 = 0,

N \

L1+ Vit o) = (1i5) = {X+i3’

(x-2)
(x =3)(x+2)
(x—2) a

x—3)x+2) (x=3) (xt2) =~

Therefore, | —/ dx. Now, partial fractions:

—2 = a(x+2)+b(x—3).



Integration using partial fractions (8.4)

Example
(x=2)

Eval | = | ————dx.
valuate /(x2—x—6) dx

Solution: Recall that:

l:/[(xi3)+(x—?—2)] dx; x —2=a(x+2)+ b(x —3).




Integration using partial fractions (8.4)

Example
(x=2)

Eval | = | ————dx.
valuate /(x2—x—6) dx

Solution: Recall that:

/:/[(Xi?))—i—(xiz)}dx; x —2=a(x+2)+ b(x —3).

Evaluating at x =3



Integration using partial fractions (8.4)

Example
(x=2)

Eval | = | ————dx.
valuate /(x2—x—6) dx

Solution: Recall that:

/:/[(Xi3)+(xi2)}dx; x—2=a(x+2)+ b(x — 3).

1
Evaluating at x = 3 we get a = 5



Integration using partial fractions (8.4)

Example
(x=2)

Eval | = | ————dx.
valuate /(x2—x—6) dx

Solution: Recall that:

I:/{(Xi3)+(xi2)}dx; x—2=a(x+2)+ b(x — 3).

1
Evaluating at x = 3 we get a = 3 and at x = -2



Integration using partial fractions (8.4)

Example
Evaluate | = / ﬂ dx.
(x2 —x—6)

Solution: Recall that:

I:/{(Xi3)+(xi2)}dx; x—2=a(x+2)+ b(x — 3).

1 4
Evaluating at x = 3 we get a = 3 and at x = —2 we get b= 5



Integration using partial fractions (8.4)

Example
Evaluate | = / ﬂ dx.
(x2—x—16)

Solution: Recall that:

I:/{(Xi3)+(xi2)}dx; x—2=a(x+2)+ b(x — 3).

1 4
Evaluating at x = 3 we get a = 3 and at x = —2 we get b= 5

I:;/[(Xi3)+(xj—2)} dx




Integration using partial fractions (8.4)

Example
Evaluate | = / ﬂ dx.
(x2—x—16)

Solution: Recall that:

I:/{(Xi3)+(xi2)}dx; x—2=a(x+2)+ b(x — 3).

1 4
Evaluating at x = 3 we get a = 3 and at x = —2 we get b= 5

1 1 4 1
/:/[(X_3)+ (X+2)}dx:g(|n|x—3|+4|n|x—|—2|)+C.



Integration using partial fractions (8.4)

Example
(x=2)

Eval | = | ————dx.
valuate /(x2—x—6) dx

Solution: Recall that:

I:/{(Xi3)+(xi2)}dx; x—2=a(x+2)+ b(x — 3).

1 4
Evaluating at x = 3 we get a = 3 and at x = —2 we get b= 5

1 1 4 1
/:/[(X_3)+ (X+2)}dx:g(|n|x—3|+4|n|x—|—2|)+C.

We conclude that / = In(|x — 3|"/5(x +2)*/%) + c. 4



Integration using partial fractions (8.4)

Remark: Incomplete summary of partial fraction decompositions:

> P2 (X ) _ ] (%) C3

(x—n)x—n)(x—n) (x—n) + (x—n) + (x—r3)




Integration using partial fractions (8.4)

Remark: Incomplete summary of partial fraction decompositions:

> P2 (X ) _ ] (%) C3

(x—n)x—n)(x—n) (x—n) + (x—n) + (x—r3)

. p2(x) __a o a3

(x—n)? (x—n) (x—n)? + (x —n)¥




Integration using partial fractions (8.4)

Remark: Incomplete summary of partial fraction decompositions:

> P2(X) _ 1 2 C3
(x—n)x—n)(x—n) (x—n) + (x—n) + (x—r3)
pAx)  a %) a3
g (x—n)3® (x—n) (x—n)? + (x —n)¥
> p2(x) a o) (c3x + ca)

C—mx-nZ -n) x=n) (x=n2



Integration using partial fractions (8.4)

Remark: Incomplete summary of partial fraction decompositions:

> p2(x) _ 1 2 C3
(x—n)x—n)(x—n) (x—n) + (x—n) + (x—r3)
pAx)  a %) a3
g (x—n)3® (x—n) (x—n)? + (x —n)¥
> p2(x) __a n o (c3x + ca)
(x—n)(x—nr)? (x-n) ((x-—n) (x—nr)?’
ps(x)  (ax+c)  (a3x+a)  (csx+ ce)

(X2+b2)3 - (X2—|—b2) (X2+b2)2 (X2+b2)3'



Integration using partial fractions (8.4)

Remark: Incomplete summary of partial fraction decompositions:

> p2(x) _ 1 2 C3
(x—n)x—n)(x—n) (x—n) + (x—n) + (x—r3)
pAx)  a %) a3
g (x—n)3® (x—n) (x—n)? + (x —n)¥
> p2(x) __a n o (c3x + ca)
(x—n)(x—nr)? (x-n) ((x-—n) (x—nr)?’
ps(x)  (ax+c)  (a3x+a)  (csx+ ce)

(X2+b2)3 - (X2—|—b2) (X2+b2)2 (X2+b2)3'

. pa(x) __a (e2x+c3) | (ax+c)

(x —n)(x2+b2)?%2 (x—n) (x2+b%) (x2+ b?)?
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Trigonometric substitutions (8.3).
Integration using partial fractions (8.4).
L’Hopital’s rule (7.5).

Improper integrals (8.7).
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L'Hopital’s rule (7.5)

Example
2 3 8x
Evaluate the limit L = lim (1 - - 7) _

X—00 X2



L'Hopital’s rule (7.5)

Example

2 38
Evaluate the limit L = lim (1-47—-45) _
X—00 X X

Solution: We first rewrite the limit as follows,

L:nm@—g—ifx

X—00 x  x2



L'Hopital’s rule (7.5)

Example

2 3y8x
Evaluate the limit L = lim (1 __ 7) _
X—00 X X

Solution: We first rewrite the limit as follows,

L= i (122 3)% = i efern(-2-2)]

X—00 X X2 X—00



L'Hopital’s rule (7.5)

Example

2 3y8x
Evaluate the limit L = lim (1 __ 7) _
X—00 X X

Solution: We first rewrite the limit as follows,

L= i (122 3)% = i efern(-2-2)]

X—00 X x2 X—00

[ — glimece [8x In (1—§_X12)]



L'Hopital’s rule (7.5)

Example

2 3y8x
Evaluate the limit L = lim (1 __ 7) _
X—00 X X

Solution: We first rewrite the limit as follows,

(1 2 i)sx _ jim elBxn(1-2-3)]

L= lim .
X X X—00

X—00

| Qi [BxIn(1-2-3)] _ fimeo [SXTX



L'Hopital’s rule (7.5)

Example

2 3y8x
Evaluate the limit L = lim (1 __ 7) _
X—00 X X

Solution: We first rewrite the limit as follows,

L= i (122 3)% = i efern(-2-2)]

X—00 X X2 T x—00

| limeo [Bxin(1-2-3)] _ elimxw[ T

L'Hopital rule in the exponent implies,



L'Hopital’s rule (7.5)

Example

2 3y8x
Evaluate the limit L = lim (1 __ 7) _
X—00 X X

Solution: We first rewrite the limit as follows,

L= i (122 3)% = i efern(-2-2)]

X—00 x  x2 X—00
| Qi [BxIn(1-2-3)] _ fimeo [;TX

L'Hopital rule in the exponent implies,
In(1—2 -3
lim ( X2)
X—00

?<°\"‘ X N



L'Hopital’s rule (7.5)

Example

2 3y8x
Evaluate the limit L = lim (1 __ 7) _
X—00 X X

Solution: We first rewrite the limit as follows,

L= i (122 3)% = i efern(-2-2)]

X—00 X X2 X—00
23 lim [Xi
L = ellrnx;)(>O [8X In(l_;_xj)] = e e %
L'Hopital rule in the exponent implies,

lim In(l _ % _ %) = lim
X—00 8%( X—00 (—i)




L'Hopital’s rule (7.5)

Example
2 3\8
Evaluate the limit L = fim (1=~ )"
X—00 X X
_ limy oo [Llf%f%) ]
Solution: Recall: L = e Bx , and
-1
omEe2od) (223 )
X—00 SLX X— 00 (—873;2)



L'Hopital’s rule (7.5)

Example
.. i 2 3\ 8x
Evaluate the limit L = lim (1 - — — 7) i
X—00 X X
limx_, [@]
Solution: Recall: L =e - o and
. In(1—2 -3 2 _3\1lr2 .6
[= lim n( x ) _ lim (1-% x2)1 (2 +53)
X—00 3% X—00 (_W>
_ 2 3.-1 6
L= lim —8(1—_~3) (2+7)



L'Hopital’s rule (7.5)

Example
L. ) 2 3\ 8
Evaluate the limit L = lim (1 - — = —2) )
X—00 X X
_ “mxm[@]
Solution: Recall: L = e Bx , and
-1
i P02 023G+
X—00 Six X— 00 (_87}(2)
2 3.1 6
L:XIer;O—S(l—;—;) (2+;):—16



L'Hopital’s rule (7.5)

Example
L. ) 2 3\ 8
Evaluate the limit L = lim (1 - — = —2) )
X—00 X X
_ “mxm[@]
Solution: Recall: L = e Bx , and
-1
i P02 023G+
X—00 Six X— 00 (_87}(2)
2 3.1 6
L:XILn;O—S(l—;—;) (2+;):—16

We conclude that L = ¢~ 19,
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Trigonometric substitutions (8.3).
Integration using partial fractions (8.4).
L'Hépital's rule (7.5).

Improper integrals (8.7).
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Improper integrals (8.7)

Example
* (x+1)
Evaluate the integral I:/ —2dx
€ 0 V25— x?



Improper integrals (8.7)

Example

x+1)

5
Evaluate the integral |/ :/ ( dx.
0 25 — x2

Solution: We split the integral in two terms,



Improper integrals (8.7)
Example

x+1)

5
Evaluate the integral |/ :/ ( dx.
0 25 — x2

Solution: We split the integral in two terms,

5 5
1
I—/ de+/ — dx.
0 25 — x2 0 25 — x2



Improper integrals (8.7)
Example

x+1)

5
Evaluate the integral |/ :/ ( dx.
0 25 — x2

Solution: We split the integral in two terms,

5 5
1
I—/ de+/ — dx.
0 25 — x2 0 25 — x2

On the first term:



Improper integrals (8.7)
Example

x+1)

5
Evaluate the integral |/ :/ ( dx.
0 25 — x2

Solution: We split the integral in two terms,

5 5
1
I—/ de+/ — dx.
0 25 — x2 0 25 — x2

On the first term: u = 25 — x2,



Improper integrals (8.7)
Example

x+1)

5
Evaluate the integral |/ :/ ( dx.
0 25 — x2

Solution: We split the integral in two terms,

5 5
1
I—/ de+/ — dx.
0 25 — x2 0 25 — x2

On the first term: u = 25 — x2, du = —2x dx.



Improper integrals (8.7)
Example

x+1)

5
Evaluate the integral |/ :/ ( dx.
0 25 — x2

Solution: We split the integral in two terms,

5 5
1
I—/ de+/ — dx.
0 25 — x2 0 25 — x2

On the first term: u = 25 — x2, du = —2x dx. Hence,

5
/1:/ X dx
0 V25— x2



Improper integrals (8.7)

Example

x+1)

5
Evaluate the integral |/ :/ ( dx.
0 25 — x2

Solution: We split the integral in two terms,

5 5
1
I—/ de+/ — dx.
0 25 — x2 0 25 — x2

On the first term: u = 25 — x2, du = —2x dx. Hence,

5 X O 1 du
h=| X = -
0 V25— x2 25 VU 2



Improper integrals (8.7)

Example

x+1)

5
Evaluate the integral |/ :/ ( dx.
0 25 — x2

Solution: We split the integral in two terms,

5 5
1
I—/ de+/ — dx.
0 25 — x2 0 25 — x2

On the first term: u = 25 — x2, du = —2x dx. Hence,

5 3% 0 1 du 1 5
/ :/ ——dx = —:/ ufl/zdu.
Yo V25— x2 s VU 2 2



Improper integrals (8.7)

Example

x+1)

5
Evaluate the integral |/ :/ ( dx.
0 25 — x2

Solution: We split the integral in two terms,

5 5
1
I—/ de+/ — dx.
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Example
5
1
Evaluate the integral |/ _/ g dx.
0 V25— x2
> X
Solution: Recall: ; = / —— dx = 5.
Jo V25 — x2

In the second integral: x = 5sin(f), dx = 5cos(f) df; Hence

/5 dx m/ 5cos(f) df
b= =

0 V25— x? 0 /25— 255|n

/2 cos(6) /2 T
L= = h=—.
=) Te@m ) s

We conclude that [ =5 + g
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Improper integrals (8.7): Comparison tests

» Direct comparison test:

If 0 < f(x) < g(x) for x € [a,00), then holds
0< / f(x)dx < / g(x) dx.
a a

oo
/ g(x) dx converges = / f(x) dx converges;

/ f(x) dx diverges = / x) dx diverges.

» Limit comparison test:
f
If lim EX; = L, with 0 < L < oo, then the integrals
X—00 g 0o 0o
/ f(x) dx, / g(x)dx
a a

both converge or both diverge.
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Example
Determine whether / /Oo x dx t
etermine wnether | = ——= converges or not.
3 VxP+x3

Solution: We use the Direct Comparison Test: For x > 0 holds

1 1

5_ .5 ,3
X7 <X +x = ——— <=
x>+ x3 x5

1 1 _5/2 X —5/2, _ —3/2
- 5 < = =X = ——— < X X=X .
VX2 4+ x VvV X VX2 + X

> 00 1 2
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3 3

We conclude that / converges.



Review for Exam 3.

Trigonometric substitutions (8.3).
Integration using partial fractions (8.4).
L'Hépital's rule (7.5).

Improper integrals (8.7).

vV v . v. v Y

Infinite sequences (10.1).
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Example

./ 8\
Evaluate L= Ilim (—) }
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Solution: We study a similar limit for the function f(x) = (§> >

8
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—
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Series and partial sums

Definition
An infinite series is a sum of infinite terms,

o0
aata+az+---+ap+--- :Zam
n=1

o0
Remark: Any sequence {a,};<; defines the series Z ap.

n=1
Example
1y _ N

The sequence {an = —} defines 18

) 2 ) p=1 1/16
the series 2

1 1 1 1

e R R 1/4

> + 2 + 3 + n +

This infinite sum makes sense, since
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Series and partial sums

Definition

o0
Given an infinite series Z an, the sequence of partial sums of the

n=1
n

series is the sequence {s,} given by s, = Z ak, that is,

k=1
S1 = a1

Sp=a; + a2
S3=a1+ax+ a3

The series converges to L iff the sequence of partial sums {s,}

oo

converges to L, and in this case we write Z an = L. The series
n=1

diverges iff the sequence of partial sums {s,} diverges.
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Remark: The series a; +a +az+---+a,+--- can be denoted as

o [o@)
E an, § ak, E dan
n=1 k=1

Example

[e.9]
1
The series Z o converges to 1,

n=1
1+1+1+ +1+ =1
2 4 8 2n a

Since {s,} — 1,



Series and partial sums

Remark: The series a; +a +az+---+a,+--- can be denoted as

o [o@)
§ an, § ak, E dan
n=1 k=1

Example
00 1 N
The series Z on converges to 1, s
n=1 1/16
12
! + ! + ! +- ! +--=1
2 4 8 2n - va

Since {s,} — 1, as can be seen in the
picture.
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» The seriesZn: 1+24+34---4+n+--- diverges.
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Indeed, the sequence of partial sums diverges,

1 1 1
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Example

oo
» The seriesZn: 1+24+34---4+n+--- diverges.
n=1
Indeed, the sequence of partial sums diverges,

1 1 1
» The series Z *1+2+3+ +*+-~- is called the

harmonic serles We will see that the harmonic series diverges.

oo
. _ (1)) 1 1 1
» While th E AS? N,

ile the series 2 2-|-3 4+
converges. B
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1
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2 (293 3@  @0)
Solution: We first find the general term a,, that is,

_ 1
- n(n+1)

an

L1 1 1oL
Zn(n+1) 2 (2)3) (3@ @)
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1
an:m, n=1,---00.
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Evaluate the infinite series — + + +
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Solution: We first find the general term a,, that is,

1

- — 1. 00.
n(n+1)’ = hree
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> 1 1 1 1 1

i) 2 o0 00 B
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o0
1 1
Partial fracti -|-§7: (*_
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Evaluate the infinite series — + + + + e
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Solution: We first find the general term a,, that is,

1
an:m, n=1,---00.
> 1 1 1 1 1
2inin 2 e ew  @E

o0

oo
1 1 1
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1

o

1 1 1 1
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Evaluate the infinite series — + + +
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Solution: We first find the general term a,, that is,

(4)(3)

4+

1

n=— v :1’ .

? n(n+1) g 0
SUEE R IO
Sn(n+1) 2 (2)B3) )4 4O)

. ] /1 1
Partial fractions implies nz::l A i D) = nz::l(n SCEs)
SIS USSR U N
“n(n+1) 2 3 2 3 4

o0

1

We conclude: _ =1
nzl n(n+1)



Infinite series (Sect. 10.2)

Series and partial sums.
Geometric series.
The n-term test for a divergent series.

Operations with series.
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Adding-deleting terms and re-indexing.
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Definition
A geometric series is a series of the form
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Example
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The case a =1, and ratio r = 5 is the geometric series
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Definition
A geometric series is a series of the form
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where a and r are real numbers.

Example

. 1. . :
The case a =1, and ratio r = 5 is the geometric series
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n=0
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Proof: Multiply any partial sum s, by (1 — r), that is,
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A—=r)sp=al4+r+rP+-+r—a(r+rP+r3+... 41
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We now use the Theorem above, g ar" =
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=1
Solution: Recall the picture says Z o

n=0

o0
We now use the Theorem above, g ar" =

fi =land r= .
or a and r = o

=2

a
1—r
(e,
= Z(
n=0
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Solution: This is a geometric series, since

[e 9] o0

1 3 - n —3 Iyn
S e d =Sy oS (-3)"

n=1 n=1 n=1
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Evaluate the infinite sum Z an

n=1

Solution: This is a geometric series, since

[o.¢] 3 o _3 o n
S =3 =39 ()"
Hence a= -3 and r = —1.

4
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Solution: This is a geometric series, since
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Hence a= —3 and r = e The Theorem above implies,
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Solution: This is a geometric series, since

(1) 2 _1yn 2 A
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Hence a= —3 and r = e The Theorem above implies,
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Solution: This is a geometric series, since

(1) 2 i 2 A
> =) = 9 ()
n=1 n=1 n=1
1
Hence a= —3 and r = e The Theorem above implies,
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n+1 _ n —
DL =Y ()
n=1 n=1 n=1
Hence a= —3 and r = —%. The Theorem above implies,
> 3 & 3 (-3)
(-2 =S S (-3) = +3
2V = U 0+ h
S 3 3
(*1)(n+1)*,, = - +3,
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Solution: This is a geometric series, since

n+1 _ n —
DL =Y ()
n=1 n=1 n=1
Hence a= —3 and r = —%. The Theorem above implies,
> 3 & 3 (-3)
(-2 =S S (-3) = +3
2V = U 0+ h
S 3 3 3 12
n+1 n+1
> ()t = (4+1)+3 thenz ) =T 43,
n=1 n=1
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The n-term test for a divergent series

Theorem

o
If the series an converges, then a, — 0.
g
n=1

Remark: This result is useful to find divergent series.

Remark: If lim a, # 0, then Zan diverges.
n=1
Example

o0
> E n diverges, since n — oo.
n=1
o0
n . . n
> E —— diverges, since
n+1 n+1
n=1
o0

> Z(—l)” diverges, since lim (—1)" does not exist.
n=1

—1#£0.

n—oo
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Operations with series

Remark: Additions of convergent series define convergent series.

Theorem
o o
If the series Z an = A and Z b, = B, then

n=1 n=1

)

(an+ bn) = A+ B;

3
Il
—

NE

> N (an— b)) = A—B;

n=1

> i ka, = KA.
n=1
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Remarks:
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» A non-increasing sequence converges iff it bounded below.
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Review: Bounded and monotonic sequences

Example

Determine whether the sequence a, = converges or not.

n?+1
Solution: We show that a, is decreasing. Indeed, the condition

n+1 < n
(n+1)2+1 n?+1

apt1 < an <~

(n+1)(n* 4+ 1) < n(n® +2n+2)
w4+’ +n+1<n+20+2n

Since 1 < (n2 + n) is true for n > 1, then a,41 < a,; decreasing.
The sequence satisfies that 0 < a,, bounded below.

We conclude that a, converges. <



The integral test (Sect. 10.3)

» Review: Bounded and monotonic sequences.
» Application: The harmonic series.
» Testing with an integral.

» Error estimation in the integral test.



Application: The harmonic series

Remarks:

n
» The partial sums of the harmonic series, s, = Z
k=1

1
k ’



Application: The harmonic series

Remarks:

n
» The partial sums of the harmonic series, s, = Z
k=1

1
k ’

define an increasing sequence:



Application: The harmonic series

Remarks:

n
» The partial sums of the harmonic series, s, = Z
k=1

1
k ’

define an increasing sequence: s,11 > Sp.



Application: The harmonic series

Remarks:

n
» The partial sums of the harmonic series, s, = Z
k=1

1
kl
define an increasing sequence: s,11 > Sp.

» We now show that {s,} is unbounded from above.

Example

1
Show that the harmonic series Z — diverges.
n

n=1



Application: The harmonic series

Remarks:

n
» The partial sums of the harmonic series, s, = Z
k=1

1
kl
define an increasing sequence: s,11 > Sp.

» We now show that {s,} is unbounded from above.

Example
1

Show that the harmonic series Z — diverges.
n=1 n

Solution: Notice the following inequalities:

il1+1+[1+1]+[1+1+1+1]+...
n 2 3 4 5 6 7 8



Application: The harmonic series

Remarks:

n
» The partial sums of the harmonic series, s, = Z
k=1

1
kl
define an increasing sequence: s,11 > Sp.

» We now show that {s,} is unbounded from above.

Example

1
Show that the harmonic series Z — diverges.
n=1 n
Solution: Notice the following inequalities:
ST Eoletelelidsn
n "2 13 4] 15 6 7 8

I At

n=1



Application: The harmonic series

Remarks:

n
» The partial sums of the harmonic series, s, = Z
k=1

1
kl
define an increasing sequence: s,11 > Sp.

» We now show that {s,} is unbounded from above.

Example

1
Show that the harmonic series Z — diverges.
n=1 n
Solution: Notice the following inequalities:
ST Eoletelelidsn
n "2 13 4] 15 6 7 8

(o ¢]

o
1 1 2 4 1 .
>t e gl e = X dveres
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Remark:
=1
» The idea used above to show that Z - diverges cannot be
n=1

generalized to other series.

» Now we introduce an idea to test the convergence of series.
The idea is based on calculus.

Theorem
If f:[1,00) — R is a continuous, positive, decreasing function,
and a, = f(n), then the following holds:

o0 [

Za,, converges <& / f(x)dx converges.
1

n=1



Testing with an integral



Testing with an integral

Proof: Recall: a, = f(n). The proof is based in the pictures:

y y

% — f(x) . a f(x)

%— a,




Testing with an integral

Proof: Recall: a, = f(n). The proof is based in the pictures:

y y

% — f(x) . a f(x)

%— a,

4
/ f(x)dx < a;+ax+ a3
1



Testing with an integral

Proof: Recall: a, = f(n). The proof is based in the pictures:

y y

ay N f(x) &1 A f(x)

%— a,

1 2 3 4 X 1 2 3 4 X

n

4 n+1
/ f(x)dx<ai+a+a = / f(x)dx < ak.
1 1 p]



Testing with an integral

Proof: Recall: a, = f(n). The proof is based in the pictures:
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1
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1 2 3 4 X 1 2 3 4 X

N
5}
==
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3
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Proof: Recall: a, = f(n). The proof is based in the pictures:

y y

ay N f(x) &1 A f(x)

M a,

1 2 3 4 X 1 2 3 4 X

4 n+1 n
/ f(x)dx<ai+a+a = / f(x)dx < ak.
1 1 k=1

3 n n
az—i—agg/ f(x)dx = Zak<21+/ f(x) dx.
1 1 1

n+1 n n
/ f(x)dx < Zan < a —|—/ f(x) dx.
1 1 1
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Solution: The convergence of the harmonic series E — is related
n
n=1

: Cdx .
to the convergence of the integral —. Since
1 X
n+1 dX
In(n+1):/ Za,, In(n+1) — oo
1

o0
. . 1 .
then the harmonic series g — diverges. <
n
n=1
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[e.e]

Integral test for series implies: Z

1
—~/nvn+1

diverges. <
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