
Review for Exam 3.

I 5 or 6 problems.

I No multiple choice questions.

I No notes, no books, no calculators.

I Problems similar to homeworks.
I Exam covers: 8.3, 8.4, 7.5, 8.7, 10.1.

I Trigonometric substitutions (8.3).
I Integration using partial fractions (8.4).
I L’Hôpital’s rule (7.5).
I Improper integrals (8.7).
I Infinite sequences (10.1).

I Section not covered:
I Integration using tables (8.5).
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Trigonometric substitutions (8.3)

Recall: From Sect. 8.2:

∫
sec(θ) dθ = ln

(
sec(θ) + tan(θ)

)
+ c .

Example

Evaluate I =

∫
ex dx√
e2x + 9

. Express you result in terms of the

variable x .

Solution: First substitution, y = ex , then dy = ex dx , y > 0,

I =

∫
dy√
y2 + 9

. Second subs.:


y = 3 tan(θ),

dy = 3 sec2(θ) dθ,

θ ∈ (0, π/2).

I =

∫
3 sec2(θ) dθ√
9 tan2(θ) + 9

=

∫
3 sec2(θ) dθ

3
√

tan2(θ) + 1
=

∫
sec2(θ) dθ

| sec(θ)|
.
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Review for Exam 3.

I Trigonometric substitutions (8.3).

I Integration using partial fractions (8.4).

I L’Hôpital’s rule (7.5).

I Improper integrals (8.7).

I Infinite sequences (10.1).



Integration using partial fractions (8.4)

Recall: If the polynomial in the numerator has larger degree than
the polynomial in the denominator, then do the long division first.

Example

Evaluate I =

∫
(x − 2)

(x2 − x − 6)
dx .

Solution: We find the roots of the denominator, x2 − x − 6 = 0,

x± =
1

2

(
1±

√
1 + 24

)
=

1

2
(1± 5) ⇒

{
x+ = 3,

x− = −2.

Therefore, I =

∫
(x − 2)

(x − 3)(x + 2)
dx . Now, partial fractions:

(x − 2)

(x − 3)(x + 2)
=

a

(x − 3)
+

b

(x + 2)
⇒ x−2 = a(x+2)+b(x−3).
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Example

Evaluate I =

∫
(x − 2)

(x2 − x − 6)
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Solution: Recall that:

I =

∫ [ a

(x − 3)
+

b

(x + 2)

]
dx ; x − 2 = a(x + 2) + b(x − 3).

Evaluating at x = 3 we get a =
1

5
, and at x = −2 we get b =

4

5
.

I =
1

5

∫ [ 1

(x − 3)
+

4

(x + 2)

]
dx =

1

5

(
ln |x − 3|+ 4 ln |x + 2|

)
+ c .

We conclude that I = ln
(
|x − 3|1/5(x + 2)4/5

)
+ c . C
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Integration using partial fractions (8.4)

Remark: Incomplete summary of partial fraction decompositions:

I
p2(x)

(x − r1)(x − r2)(x − r3)
=

c1

(x − r1)
+

c2

(x − r2)
+

c3

(x − r3)
.

I
p2(x)

(x − r1)3
=

c1

(x − r1)
+

c2

(x − r1)2
+

c3

(x − r1)3
.

I
p2(x)

(x − r1)(x − r2)2
=

c1

(x − r1)
+

c2

(x − r2)
+

(c3x + c4)

(x − r2)2
.

I
p5(x)

(x2 + b2)3
=

(c1x + c2)

(x2 + b2)
+

(c3x + c4)

(x2 + b2)2
+

(c5x + c6)

(x2 + b2)3
.

I
p4(x)

(x − r1)(x2 + b2)2
=

c1

(x − r1)
+

(c2x + c3)

(x2 + b2)
+

(c4x + c5)

(x2 + b2)2
.
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Review for Exam 3.

I Trigonometric substitutions (8.3).

I Integration using partial fractions (8.4).

I L’Hôpital’s rule (7.5).

I Improper integrals (8.7).

I Infinite sequences (10.1).



L’Hôpital’s rule (7.5)

Example

Evaluate the limit L = lim
x→∞

(
1− 2

x
− 3

x2

)8x
.

Solution: We first rewrite the limit as follows,

L = lim
x→∞

(
1− 2

x
− 3

x2

)8x
= lim

x→∞
e

[
8x ln

(
1− 2

x
− 3

x2

)]

L = e limx→∞
[
8x ln

(
1− 2

x
− 3

x2

)]
= e

limx→∞
[ ln

(
1− 2

x −
3
x2

)
1
8x

]
L’Hôpital rule in the exponent implies,

lim
x→∞

ln
(
1− 2

x −
3
x2

)
1
8x

= lim
x→∞

(
1− 2

x −
3
x2

)−1( 2
x2 + 6

x3

)(
− 1

8x2

)
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L’Hôpital rule in the exponent implies,

lim
x→∞

ln
(
1− 2

x −
3
x2

)
1
8x

= lim
x→∞

(
1− 2

x −
3
x2

)−1( 2
x2 + 6

x3

)(
− 1

8x2

)
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L’Hôpital’s rule (7.5)

Example

Evaluate the limit L = lim
x→∞

(
1− 2

x
− 3

x2

)8x
.

Solution: We first rewrite the limit as follows,

L = lim
x→∞

(
1− 2

x
− 3

x2

)8x
= lim

x→∞
e

[
8x ln

(
1− 2

x
− 3

x2

)]

L = e limx→∞
[
8x ln

(
1− 2

x
− 3

x2

)]
= e

limx→∞
[ ln

(
1− 2

x −
3
x2

)
1
8x

]
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x2

)−1(
2 +

6

x

)
= −16

We conclude that L = e−16. C
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Review for Exam 3.

I Trigonometric substitutions (8.3).

I Integration using partial fractions (8.4).

I L’Hôpital’s rule (7.5).

I Improper integrals (8.7).

I Infinite sequences (10.1).



Improper integrals (8.7)

Example

Evaluate the integral I =

∫ 5

0

(x + 1)√
25− x2

dx .

Solution: We split the integral in two terms,

I =

∫ 5

0

x√
25− x2

dx +

∫ 5

0

1√
25− x2

dx .

On the first term: u = 25− x2, du = −2x dx . Hence,

I1 =

∫ 5

0

x√
25− x2

dx =

∫ 0

25
− 1√

u

du

2
=

1

2

∫ 25

0
u−1/2 du.

I1 =
1

2
lim

c→0+

∫ 25

c
u−1/2 du =

1

2
lim

c→0+
2u1/2

∣∣∣25

c
⇒ I1 = 5.
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Improper integrals (8.7): Comparison tests

I Direct comparison test:

If 0 6 f (x) 6 g(x) for x ∈ [a,∞), then holds

0 6
∫ ∞

a
f (x) dx 6

∫ ∞

a
g(x) dx .

(a)

∫ ∞
a

g(x) dx converges ⇒
∫ ∞

a

f (x) dx converges;

(b)

∫ ∞
a

f (x) dx diverges ⇒
∫ ∞

a

g(x) dx diverges.

I Limit comparison test:

If lim
x→∞

f (x)

g(x)
= L, with 0 < L < ∞, then the integrals∫ ∞

a
f (x) dx ,

∫ ∞

a
g(x) dx

both converge or both diverge.
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Improper integrals (8.7): Comparison tests

Example

Determine whether I =

∫ ∞

3

x dx√
x5 + x3

converges or not.

Solution: First, find an appropriate function g(x) such that:

lim
x→∞

g(x) = lim
x→∞

x√
x5 + x3

= lim
x→∞

x

x5/2
= lim

x→∞

1

x3/2
.

Therefore, we use the limit comparison test with g(x) = x−3/2.
Then, by construction,

lim
x→∞

( x√
x5 + x3

)( 1

x−3/2

)
= lim

x→∞

( x

x5/2

)( 1

x−3/2

)
= 1.

Since

∫ ∞

3
x−3/2 dx = −2 x−1/2

∣∣∣∞
3

= −2
(
0− 1√

3

)
=

2√
3
,

we conclude that I converges. C
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Review for Exam 3.

I Trigonometric substitutions (8.3).

I Integration using partial fractions (8.4).

I L’Hôpital’s rule (7.5).

I Improper integrals (8.7).

I Infinite sequences (10.1).



Infinite sequences (10.1)

Example

Evaluate L = lim
n→∞

( 8

3n

) 1
3n

.

Solution: We study a similar limit for the function f (x) =
(

8
3x

) 1
3x

.

lim
x→∞

( 8

3x

) 1
3x

= lim
x→∞

e

[ ln

(
8
3x

)
3x

]
= e limx→∞

[ ln

(
8
3x

)
3x

]
Now, L’Hôpital’s rule to find the limit in the exponent;

L̃ = lim
x→∞

ln
(

8
3x

)
3x

= lim
x→∞

(
3x
8

(−8)
3x2

)
3

= lim
x→∞

− 1

3x
= 0.

Hence, limx→∞ f (x) = e0 = 1, therefore, lim
n→∞

( 8

3n

) 1
3n

= 1. C
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Now, L’Hôpital’s rule to find the limit in the exponent;

L̃ = lim
x→∞

ln
(

8
3x

)
3x

= lim
x→∞

(
3x
8

(−8)
3x2

)
3

= lim
x→∞

− 1

3x

= 0.

Hence, limx→∞ f (x) = e0 = 1, therefore, lim
n→∞

( 8

3n

) 1
3n

= 1. C



Infinite sequences (10.1)

Example

Evaluate L = lim
n→∞

( 8

3n

) 1
3n

.

Solution: We study a similar limit for the function f (x) =
(

8
3x

) 1
3x

.

lim
x→∞

( 8

3x

) 1
3x

= lim
x→∞

e

[ ln

(
8
3x

)
3x

]
= e limx→∞

[ ln

(
8
3x

)
3x

]
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Now, L’Hôpital’s rule to find the limit in the exponent;

L̃ = lim
x→∞

ln
(

8
3x

)
3x

= lim
x→∞

(
3x
8

(−8)
3x2

)
3

= lim
x→∞

− 1

3x
= 0.

Hence, limx→∞ f (x) = e0 = 1, therefore, lim
n→∞

( 8

3n

) 1
3n

= 1. C



Infinite series (Sect. 10.2)

I Series and partial sums.

I Geometric series.
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Series and partial sums

Definition
An infinite series is a sum of infinite terms,

a1 + a2 + a3 + · · ·+ an + · · ·

=
∞∑

n=1

an.

Remark: Any sequence {an}∞n=1 defines the series
∞∑

n=1

an.

Example

The sequence
{

an =
1

2n

}∞
n=1

defines

the series

1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
+ · · ·

This infinite sum makes sense, since

1/16

1/4

1/2

1/8
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Series and partial sums

Definition

Given an infinite series
∞∑

n=1

an, the sequence of partial sums of the

series is the sequence {sn} given by sn =
n∑

k=1

ak ,

that is,

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

...

The series converges to L iff the sequence of partial sums {sn}

converges to L, and in this case we write
∞∑

n=1

an = L. The series

diverges iff the sequence of partial sums {sn} diverges.
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Series and partial sums

Example

I The series
∞∑

n=1

n

= 1 + 2 + 3 + · · ·+ n + · · · diverges.

Indeed, the sequence of partial sums diverges,

s1 = 1, s2 = 3, s3 = 6, sn =
n∑

k=1

k.

I The series
∞∑

n=1

1

n
= 1 +

1

2
+

1

3
+ · · ·+ 1

n
+ · · · is called the

harmonic series. We will see that the harmonic series diverges.

I While the series
∞∑

n=1

(−1)(n+1)

n
= 1− 1

2
+

1

3
− 1

4
+ · · ·

converges.
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Series and partial sums

Example

Evaluate the infinite series
1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · · .

Solution: We first find the general term an, that is,

an =
1

n(n + 1)
, n = 1, · · ·∞.

∞∑
n=1

1

n(n + 1)
=

1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · ·

Partial fractions implies
∞∑

n=1

1

n(n + 1)
=

∞∑
n=1

(1

n
− 1

(n + 1)

)
. So,

∞∑
n=1

1

n(n + 1)
= 1 +

1

2
+

1

3
+ · · · − 1

2
− 1

3
− 1

4
− · · · = 1.

We conclude:
∞∑

n=1

1

n(n + 1)
= 1. C



Series and partial sums

Example

Evaluate the infinite series
1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · · .

Solution: We first find the general term an,

that is,

an =
1

n(n + 1)
, n = 1, · · ·∞.

∞∑
n=1

1

n(n + 1)
=

1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · ·

Partial fractions implies
∞∑

n=1

1

n(n + 1)
=

∞∑
n=1

(1

n
− 1

(n + 1)

)
. So,

∞∑
n=1

1

n(n + 1)
= 1 +

1

2
+

1

3
+ · · · − 1

2
− 1

3
− 1

4
− · · · = 1.

We conclude:
∞∑

n=1

1

n(n + 1)
= 1. C



Series and partial sums

Example

Evaluate the infinite series
1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · · .

Solution: We first find the general term an, that is,

an =
1

n(n + 1)
, n = 1, · · ·∞.

∞∑
n=1

1

n(n + 1)
=

1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · ·

Partial fractions implies
∞∑

n=1

1

n(n + 1)
=

∞∑
n=1

(1

n
− 1

(n + 1)

)
. So,

∞∑
n=1

1

n(n + 1)
= 1 +

1

2
+

1

3
+ · · · − 1

2
− 1

3
− 1

4
− · · · = 1.

We conclude:
∞∑

n=1

1

n(n + 1)
= 1. C



Series and partial sums

Example

Evaluate the infinite series
1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · · .

Solution: We first find the general term an, that is,

an =
1

n(n + 1)
, n = 1, · · ·∞.

∞∑
n=1

1

n(n + 1)
=

1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · ·

Partial fractions implies
∞∑

n=1

1

n(n + 1)
=

∞∑
n=1

(1

n
− 1

(n + 1)

)
. So,

∞∑
n=1

1

n(n + 1)
= 1 +

1

2
+

1

3
+ · · · − 1

2
− 1

3
− 1

4
− · · · = 1.

We conclude:
∞∑

n=1

1

n(n + 1)
= 1. C



Series and partial sums

Example

Evaluate the infinite series
1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · · .

Solution: We first find the general term an, that is,

an =
1

n(n + 1)
, n = 1, · · ·∞.

∞∑
n=1

1

n(n + 1)
=

1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · ·

Partial fractions implies
∞∑

n=1

1

n(n + 1)
=

∞∑
n=1

(1

n
− 1

(n + 1)

)
.

So,

∞∑
n=1

1

n(n + 1)
= 1 +

1

2
+

1

3
+ · · · − 1

2
− 1

3
− 1

4
− · · · = 1.

We conclude:
∞∑

n=1

1

n(n + 1)
= 1. C



Series and partial sums

Example

Evaluate the infinite series
1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · · .

Solution: We first find the general term an, that is,

an =
1

n(n + 1)
, n = 1, · · ·∞.

∞∑
n=1

1

n(n + 1)
=

1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · ·

Partial fractions implies
∞∑

n=1

1

n(n + 1)
=

∞∑
n=1

(1

n
− 1

(n + 1)

)
. So,

∞∑
n=1

1

n(n + 1)
= 1 +

1

2
+

1

3
+ · · · − 1

2
− 1

3
− 1

4
− · · · = 1.

We conclude:
∞∑

n=1

1

n(n + 1)
= 1. C



Series and partial sums

Example

Evaluate the infinite series
1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · · .

Solution: We first find the general term an, that is,

an =
1

n(n + 1)
, n = 1, · · ·∞.

∞∑
n=1

1

n(n + 1)
=

1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · ·

Partial fractions implies
∞∑

n=1

1

n(n + 1)
=

∞∑
n=1

(1

n
− 1

(n + 1)

)
. So,

∞∑
n=1

1

n(n + 1)

= 1 +
1

2
+

1

3
+ · · · − 1

2
− 1

3
− 1

4
− · · · = 1.

We conclude:
∞∑

n=1

1

n(n + 1)
= 1. C



Series and partial sums

Example

Evaluate the infinite series
1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · · .

Solution: We first find the general term an, that is,

an =
1

n(n + 1)
, n = 1, · · ·∞.

∞∑
n=1

1

n(n + 1)
=

1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · ·

Partial fractions implies
∞∑

n=1

1

n(n + 1)
=

∞∑
n=1

(1

n
− 1

(n + 1)

)
. So,

∞∑
n=1

1

n(n + 1)
= 1 +

1

2
+

1

3
+ · · ·

− 1

2
− 1

3
− 1

4
− · · · = 1.

We conclude:
∞∑

n=1

1

n(n + 1)
= 1. C



Series and partial sums

Example

Evaluate the infinite series
1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · · .

Solution: We first find the general term an, that is,

an =
1

n(n + 1)
, n = 1, · · ·∞.

∞∑
n=1

1

n(n + 1)
=

1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · ·

Partial fractions implies
∞∑

n=1

1

n(n + 1)
=

∞∑
n=1

(1

n
− 1

(n + 1)

)
. So,

∞∑
n=1

1

n(n + 1)
= 1 +

1

2
+

1

3
+ · · · − 1

2
− 1

3
− 1

4
− · · ·

= 1.

We conclude:
∞∑

n=1

1

n(n + 1)
= 1. C



Series and partial sums

Example

Evaluate the infinite series
1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · · .

Solution: We first find the general term an, that is,

an =
1

n(n + 1)
, n = 1, · · ·∞.

∞∑
n=1

1

n(n + 1)
=

1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · ·

Partial fractions implies
∞∑

n=1

1

n(n + 1)
=

∞∑
n=1

(1

n
− 1

(n + 1)

)
. So,

∞∑
n=1

1

n(n + 1)
= 1 +

1

2
+

1

3
+ · · · − 1

2
− 1

3
− 1

4
− · · · = 1.

We conclude:
∞∑

n=1

1

n(n + 1)
= 1. C



Series and partial sums

Example

Evaluate the infinite series
1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · · .

Solution: We first find the general term an, that is,

an =
1

n(n + 1)
, n = 1, · · ·∞.

∞∑
n=1

1

n(n + 1)
=

1

2
+

1

(2)(3)
+

1

(3)(4)
+

1

(4)(5)
+ · · ·

Partial fractions implies
∞∑

n=1

1

n(n + 1)
=

∞∑
n=1

(1

n
− 1

(n + 1)

)
. So,

∞∑
n=1

1

n(n + 1)
= 1 +

1

2
+

1

3
+ · · · − 1

2
− 1

3
− 1

4
− · · · = 1.

We conclude:
∞∑

n=1

1

n(n + 1)
= 1. C



Infinite series (Sect. 10.2)

I Series and partial sums.

I Geometric series.

I The n-term test for a divergent series.

I Operations with series.

I Adding-deleting terms and re-indexing.



Geometric series

Definition
A geometric series is a series of the form

∞∑
n=0

a rn

= a + a r + a r2 + a r3 + · · · .

where a and r are real numbers.

Example

The case a = 1, and ratio r =
1

2
is the geometric series

∞∑
n=0

(1

2

)n
= 1 +

1

2
+

1

4
+

1

8
+ · · · .

We have seen
1

2
+

1

4
+

1

8
+ · · · = 1, so

∞∑
n=0

(1

2

)n
= 2
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Geometric series

Theorem

If the geometric series
∞∑

n=0

a rn has ratio |r | < 1, then converges,

∞∑
n=0

a rn =
a

1− r
.

Proof: Multiply any partial sum sn by (1− r), that is,

(1− r)sn = a(1− r)(1 + r + r2 + · · ·+ rn)

(1− r)sn = a(1 + r + r2 + · · ·+ rn)− a(r + r2 + r3 + · · ·+ rn+1)

(1− r)sn = a(1− rn+1) ⇒ sn =
a(1− rn+1)

(1− r)
.

Since |r | < 1, then rn+1 → 0.
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Geometric series

Example

Evaluate the infinite series
∞∑

n=0

1

2n
.
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Geometric series

Example

Evaluate the infinite sum
∞∑

n=1

(−1)(n+1) 3

4n
.

Solution: This is a geometric series, since
∞∑

n=1

(−1)(n+1) 3

4n
=

∞∑
n=1

(−1)n
(−3)

4n
=

∞∑
n=1

(−3)
(
−1

4

)n
.

Hence a = −3 and r = −1

4
. The Theorem above implies,

∞∑
n=1

(−1)(n+1) 3

4n
=

∞∑
n=0

(−1)(n+1) 3

4n
− (−3) =

(−3)(
1 + 1

4

) + 3

∞∑
n=1

(−1)(n+1) 3

4n
= − 3(

4+1
4

) + 3, then
∞∑

n=1

(−1)(n+1) 3

4n
= −12

5
+ 3.



Geometric series

Example

Evaluate the infinite sum
∞∑

n=1

(−1)(n+1) 3

4n
.

Solution: This is a geometric series,

since
∞∑

n=1

(−1)(n+1) 3

4n
=

∞∑
n=1

(−1)n
(−3)

4n
=

∞∑
n=1

(−3)
(
−1

4

)n
.

Hence a = −3 and r = −1

4
. The Theorem above implies,

∞∑
n=1

(−1)(n+1) 3

4n
=

∞∑
n=0

(−1)(n+1) 3

4n
− (−3) =

(−3)(
1 + 1

4

) + 3

∞∑
n=1

(−1)(n+1) 3

4n
= − 3(

4+1
4

) + 3, then
∞∑

n=1

(−1)(n+1) 3

4n
= −12

5
+ 3.



Geometric series

Example

Evaluate the infinite sum
∞∑

n=1

(−1)(n+1) 3

4n
.

Solution: This is a geometric series, since
∞∑

n=1

(−1)(n+1) 3

4n

=
∞∑

n=1

(−1)n
(−3)

4n
=

∞∑
n=1

(−3)
(
−1

4

)n
.

Hence a = −3 and r = −1

4
. The Theorem above implies,

∞∑
n=1

(−1)(n+1) 3

4n
=

∞∑
n=0

(−1)(n+1) 3

4n
− (−3) =

(−3)(
1 + 1

4

) + 3

∞∑
n=1

(−1)(n+1) 3

4n
= − 3(

4+1
4

) + 3, then
∞∑

n=1

(−1)(n+1) 3

4n
= −12

5
+ 3.



Geometric series

Example

Evaluate the infinite sum
∞∑

n=1

(−1)(n+1) 3

4n
.

Solution: This is a geometric series, since
∞∑

n=1

(−1)(n+1) 3

4n
=

∞∑
n=1

(−1)n
(−3)

4n

=
∞∑

n=1

(−3)
(
−1

4

)n
.

Hence a = −3 and r = −1

4
. The Theorem above implies,

∞∑
n=1

(−1)(n+1) 3

4n
=

∞∑
n=0

(−1)(n+1) 3

4n
− (−3) =

(−3)(
1 + 1

4

) + 3

∞∑
n=1

(−1)(n+1) 3

4n
= − 3(

4+1
4

) + 3, then
∞∑

n=1

(−1)(n+1) 3

4n
= −12

5
+ 3.



Geometric series

Example

Evaluate the infinite sum
∞∑

n=1

(−1)(n+1) 3

4n
.

Solution: This is a geometric series, since
∞∑

n=1

(−1)(n+1) 3

4n
=

∞∑
n=1

(−1)n
(−3)

4n
=

∞∑
n=1

(−3)
(
−1

4

)n
.

Hence a = −3 and r = −1

4
. The Theorem above implies,

∞∑
n=1

(−1)(n+1) 3

4n
=

∞∑
n=0

(−1)(n+1) 3

4n
− (−3) =

(−3)(
1 + 1

4

) + 3

∞∑
n=1

(−1)(n+1) 3

4n
= − 3(

4+1
4

) + 3, then
∞∑

n=1

(−1)(n+1) 3

4n
= −12

5
+ 3.



Geometric series

Example

Evaluate the infinite sum
∞∑

n=1

(−1)(n+1) 3

4n
.

Solution: This is a geometric series, since
∞∑

n=1

(−1)(n+1) 3

4n
=

∞∑
n=1

(−1)n
(−3)

4n
=

∞∑
n=1

(−3)
(
−1

4

)n
.

Hence a = −3 and r = −1

4
.

The Theorem above implies,

∞∑
n=1

(−1)(n+1) 3

4n
=

∞∑
n=0

(−1)(n+1) 3

4n
− (−3) =

(−3)(
1 + 1

4

) + 3

∞∑
n=1

(−1)(n+1) 3

4n
= − 3(

4+1
4

) + 3, then
∞∑

n=1

(−1)(n+1) 3

4n
= −12

5
+ 3.



Geometric series

Example

Evaluate the infinite sum
∞∑

n=1

(−1)(n+1) 3

4n
.

Solution: This is a geometric series, since
∞∑

n=1

(−1)(n+1) 3

4n
=

∞∑
n=1

(−1)n
(−3)

4n
=

∞∑
n=1

(−3)
(
−1

4

)n
.

Hence a = −3 and r = −1

4
. The Theorem above implies,

∞∑
n=1

(−1)(n+1) 3

4n

=
∞∑

n=0

(−1)(n+1) 3

4n
− (−3) =

(−3)(
1 + 1

4

) + 3

∞∑
n=1

(−1)(n+1) 3

4n
= − 3(

4+1
4

) + 3, then
∞∑

n=1

(−1)(n+1) 3

4n
= −12

5
+ 3.



Geometric series

Example

Evaluate the infinite sum
∞∑

n=1

(−1)(n+1) 3

4n
.

Solution: This is a geometric series, since
∞∑

n=1

(−1)(n+1) 3

4n
=

∞∑
n=1

(−1)n
(−3)

4n
=

∞∑
n=1

(−3)
(
−1

4

)n
.

Hence a = −3 and r = −1

4
. The Theorem above implies,

∞∑
n=1

(−1)(n+1) 3

4n
=

∞∑
n=0

(−1)(n+1) 3

4n
− (−3)

=
(−3)(
1 + 1

4

) + 3

∞∑
n=1

(−1)(n+1) 3

4n
= − 3(

4+1
4

) + 3, then
∞∑

n=1

(−1)(n+1) 3

4n
= −12

5
+ 3.



Geometric series

Example

Evaluate the infinite sum
∞∑

n=1

(−1)(n+1) 3

4n
.

Solution: This is a geometric series, since
∞∑

n=1

(−1)(n+1) 3

4n
=

∞∑
n=1

(−1)n
(−3)

4n
=

∞∑
n=1

(−3)
(
−1

4

)n
.

Hence a = −3 and r = −1

4
. The Theorem above implies,

∞∑
n=1

(−1)(n+1) 3

4n
=

∞∑
n=0

(−1)(n+1) 3

4n
− (−3) =

(−3)(
1 + 1

4

) + 3

∞∑
n=1

(−1)(n+1) 3

4n
= − 3(

4+1
4

) + 3, then
∞∑

n=1

(−1)(n+1) 3

4n
= −12

5
+ 3.



Geometric series

Example

Evaluate the infinite sum
∞∑

n=1

(−1)(n+1) 3

4n
.

Solution: This is a geometric series, since
∞∑

n=1

(−1)(n+1) 3

4n
=

∞∑
n=1

(−1)n
(−3)

4n
=

∞∑
n=1

(−3)
(
−1

4

)n
.

Hence a = −3 and r = −1

4
. The Theorem above implies,

∞∑
n=1

(−1)(n+1) 3

4n
=

∞∑
n=0

(−1)(n+1) 3

4n
− (−3) =

(−3)(
1 + 1

4

) + 3

∞∑
n=1

(−1)(n+1) 3

4n
= − 3(

4+1
4

) + 3,

then
∞∑

n=1

(−1)(n+1) 3

4n
= −12

5
+ 3.



Geometric series

Example

Evaluate the infinite sum
∞∑

n=1

(−1)(n+1) 3

4n
.

Solution: This is a geometric series, since
∞∑

n=1

(−1)(n+1) 3

4n
=

∞∑
n=1

(−1)n
(−3)

4n
=

∞∑
n=1

(−3)
(
−1

4

)n
.

Hence a = −3 and r = −1

4
. The Theorem above implies,

∞∑
n=1

(−1)(n+1) 3

4n
=

∞∑
n=0

(−1)(n+1) 3

4n
− (−3) =

(−3)(
1 + 1

4

) + 3

∞∑
n=1

(−1)(n+1) 3

4n
= − 3(

4+1
4

) + 3, then
∞∑

n=1

(−1)(n+1) 3

4n
= −12

5
+ 3.



Infinite series (Sect. 10.2)

I Series and partial sums.

I Geometric series.

I The n-term test for a divergent series.

I Operations with series.

I Adding-deleting terms and re-indexing.



The n-term test for a divergent series

Theorem

If the series
∞∑

n=1

an converges, then an → 0.

Remark: This result is useful to find divergent series.

Remark: If lim
n→∞

an 6= 0, then
∞∑

n=1

an diverges.

Example

I

∞∑
n=1

n diverges, since n →∞.

I

∞∑
n=1

n

n + 1
diverges, since

n

n + 1
→ 1 6= 0.

I

∞∑
n=1

(−1)n diverges, since lim
n→∞

(−1)n does not exist.
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Infinite series (Sect. 10.2)

I Series and partial sums.

I Geometric series.

I The n-term test for a divergent series.

I Operations with series.

I Adding-deleting terms and re-indexing.



Operations with series

Remark: Additions of convergent series define convergent series.

Theorem

If the series
∞∑

n=1

an = A and
∞∑

n=1

bn = B, then

I

∞∑
n=1

(an + bn) = A + B;

I

∞∑
n=1

(an − bn) = A− B;

I

∞∑
n=1

kan = kA.
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Infinite series (Sect. 10.2)

I Series and partial sums.

I Geometric series.

I The n-term test for a divergent series.

I Operations with series.

I Adding-deleting terms and re-indexing.



Adding-deleting terms and re-indexing

Remarks:

I Adding or deleting a finite number of terms to series does not
change the series convergence or divergence.

Example:
∞∑

n=1

1

2n
=

1

2
+

1

4
+

1

8
+
∞∑

n=4

1

2n
.

I The same series can be written using different indexes.

Example:
∞∑

n=1

an =
∞∑

`=1

a` =
∞∑

k=7

ak−6.

Example:
∞∑

n=0

1

2n
=

∞∑
k=8

1

2(k−7)
=

∞∑
k=8

27

2k
.
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Review: Bounded and monotonic sequences

Definition
A sequence {an} is bounded above iff there is M ∈ R such that

an 6 M for all n > 1.

The sequence {an} is bounded below iff there is m ∈ R such that

m 6 an for all n > 1.

A sequence is bounded iff it is bounded above and below.

Example

I an =
1

n
is bounded, since 0 <

1

n
6 1.

I an = (−1)n is bounded, since −1 6 (−1)n 6 1.
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Review: Bounded and monotonic sequences

Definition

I A sequence {an} is increasing iff an < an+1.

I A sequence {an} is non-decreasing iff an 6 an+1.

I A sequence {an} is decreasing iff an > an+1.

I A sequence {an} is non-increasing iff an > an+1.

I A sequence is monotonic iff the sequence is both
non-increasing and non-decreasing.

Theorem

I A non-decreasing sequence converges iff it is bounded above.

I A non-increasing sequence converges iff it bounded below.
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Review: Bounded and monotonic sequences

Example

Determine whether the sequence an =
n

n2 + 1
converges or not.

Solution: We show that an is decreasing. Indeed, the condition

an+1 < an ⇔ n + 1

(n + 1)2 + 1
<

n

n2 + 1

(n + 1)(n2 + 1) < n(n2 + 2n + 2)

n3 + n2 + n + 1 < n3 + 2n2 + 2n

Since 1 < (n2 + n) is true for n > 1, then an+1 < an; decreasing.

The sequence satisfies that 0 < an, bounded below.

We conclude that an converges. C
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Application: The harmonic series

Remarks:

I The partial sums of the harmonic series, sn =
n∑

k=1

1

k
,

define an increasing sequence: sn+1 > sn.

I We now show that {sn} is unbounded from above.

Example

Show that the harmonic series
∞∑

n=1

1

n
diverges.

Solution: Notice the following inequalities:
∞∑

n=1

1

n
= 1 +

1

2
+

[1

3
+

1

4

]
+

[1

5
+

1

6
+

1

7
+

1

8

]
+ · · ·

∞∑
n=1

1

n
> 1 +

1

2
+

[2

4

]
+

[4

8

]
+ · · · ⇒

∞∑
n=1

1

n
diverges. C
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I Application: The harmonic series.

I Testing with an integral.
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Testing with an integral

Remark:

I The idea used above to show that
∞∑

n=1

1

n
diverges cannot be

generalized to other series.

I Now we introduce an idea to test the convergence of series.
The idea is based on calculus.

Theorem
If f : [1,∞) → R is a continuous, positive, decreasing function,
and an = f (n), then the following holds:

∞∑
n=1

an converges ⇔
∫ ∞

1
f (x) dx converges.
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Testing with an integral

Proof: Recall: an = f (n). The proof is based in the pictures:

a

4

a

2 3

f(x)

1

1

y

x
2a1 2

1 4

a

2 3

f(x)1

y

x

a1 a

∫ 4

1
f (x) dx 6 a1 + a2 + a3 ⇒

∫ n+1

1
f (x) dx 6

n∑
k=1

ak .

a2 + a3 6
∫ 3

1
f (x) dx ⇒

n∑
k=1

ak 6 a1 +

∫ n

1
f (x) dx .

∫ n+1

1
f (x) dx 6

n∑
k=1

an 6 a1 +

∫ n

1
f (x) dx .
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Example

Use the integral test to show that
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The integral test (Sect. 10.3)

I Review: Bounded and monotonic sequences.

I Application: The harmonic series.

I Testing with an integral.

I Error estimation in the integral test.



Error estimation in the integral test.

Theorem
If f : [1,∞) → R is a continuous, positive, decreasing function,

and the series
n∑

k=1

ak = sn → S, where an = f (n), then the

remainder Rn = S − sn satisfies∫ ∞

n+1
f (x) dx 6 Rn 6

∫ ∞

n
f (x) dx .

Proof: Again, the proof is based in the pictures:
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y
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∫ ∞

3
f (x) dx 6 R2 = a3 + a4 + · · · 6

∫ ∞

2
f (x) dx
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