
Improper integrals (Sect. 8.7)

I Review: Improper integrals type I and II.

I Examples: I =

∫ ∞

1

dx

xp
, and I =

∫ 1

0

dx

xp
.

I Convergence test: Direct comparison test.

I Convergence test: Limit comparison test.
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Review: Improper integrals type I

Definition (Type I)

Improper integrals of Type I are integrals of continuous functions
on infinite domains;

these include:
The improper integral of a continuous function f on [a,∞),∫ ∞

a
f (x) dx = lim

b→∞

∫ b

a
f (x) dx .

The improper integral of a continuous function f on (−∞, b],∫ b

−∞
f (x) dx = lim

a→−∞

∫ b

a
f (x) dx .

The improper integral of a continuous function f on (−∞,∞),∫ ∞

−∞
f (x) dx =

∫ c

−∞
f (x) dx +

∫ ∞

c
f (x) dx .
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Review: Improper integrals type II

Definition (Type II)

Improper integrals of Type II are integrals of functions with vertical
asymptotes within the integration interval;

these include:

If f is continuous on (a, b] and discontinuous at a, then∫ b

a
f (x) dx = lim

c→a+

∫ b

c
f (x) dx .

If f is continuous on [a, b) and discontinuous at b, then∫ b

a
f (x) dx = lim

c→b−

∫ c

a
f (x) dx .

If f is continuous on [a, c) ∪ (c , b] and discontinuous at c , then∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx .
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The cases

∫ 1

0

dx

xp
and

∫ ∞

1

dx

xp

Summary: In the case p = 1 both integrals diverge,∫ 1

0

dx

x
= diverges,

∫ ∞

1

dx

x
= diverges.

In the case p 6= 1 we have:

∫ 1

0

dx

xp
=

 =
1

1− p
p < 1,

diverges p > 1.

∫ ∞

1

dx

xp
=


diverges p < 1,

=
1

p − 1
p > 1. 0

y

x

1

1

y = 1/x

y = 1/x

y = 1/x

1/2

2
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Convergence test: Direct comparison test

Remark: Convergence tests determine whether an improper
integral converges or diverges.

Theorem (Direct comparison test)

If functions f , g : [a,∞) → R are continuous and 0 6 f (x) 6 g(x)
for every x ∈ [a,∞), then holds

0 6
∫ ∞

a
f (x) dx 6

∫ ∞

a
g(x) dx .

The inequalities above imply the following statements:

(a)

∫ ∞

a
g(x) dx converges ⇒

∫ ∞

a
f (x) dx converges;

(b)

∫ ∞

a
f (x) dx diverges ⇒

∫ ∞

a
g(x) dx diverges.



Convergence test: Direct comparison test

Example

Determine whether I =

∫ ∞

1
e−x2

dx converges or diverges.

Solution: Notice that

∫
e−x2

dx does not have an expression in

terms of elementary functions. However,

1 6 x ⇒ x 6 x2 ⇒ −x2 6 −x ⇒ e−x2
6 e−x .

The last inequality follows because exp is an increasing function.

0 6
∫ ∞

1
e−x2

dx 6
∫ ∞

1
e−x dx = −e−x

∣∣∣∞
1

=
1

e
.

Since 0 6
∫ ∞

1
e−x2

dx 6
1

e
, the integral converges. C
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Convergence test: Direct comparison test

Example

Determine whether I =

∫ ∞

1

dx√
x6 + 1

converges or diverges.

Solution: We need to find an appropriate function to compare with
the integrand above. We need to find either

I a bigger function with convergent integral;

I or a smaller function with divergent integral.

Notice: x6 < x6+1 ⇒ x3 <
√

x6 + 1 ⇒ 1√
x6 + 1

<
1

x3
.

Therefore, 0 <

∫ ∞

1

dx√
x6 + 1

<

∫ ∞

1

dx

x3
= −x−2

2

∣∣∣∞
1

=
1

2
.

Since 0 6
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dx√
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6
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Improper integrals (Sect. 8.7)

I Review: Improper integrals type I and II.

I Examples: I =

∫ ∞

1

dx

xp
, and I =

∫ 1

0

dx

xp
.

I Convergence test: Direct comparison test.

I Convergence test: Limit comparison test.



Convergence test: Limit comparison test

Remark: Convergence tests determine whether an improper
integral converges or diverges.

Theorem (Limit comparison test)

If positive functions f , g : [a,∞) → R are continuous and

lim
x→∞

f (x)

g(x)
= L, with 0 < L < ∞,

then the integrals ∫ ∞

a
f (x) dx ,

∫ ∞

a
g(x) dx

both converge or both diverge.

Remark: Although both integrals above may converge, their values
need not be the same.
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Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

1

dx√
x6 + 1

converges or diverges.

Solution: The convergence of integrals involving rational functions
is simple to determine with the limit comparison test.

First, determine the behavior of the rational function as x →∞;

1√
x6 + 1

→ 1

x3
, as x →∞.

Then, chose the limit comparison function g(x) = 1/x3; since

lim
x→∞

f (x)

g(x)
= lim

x→∞

1/
√

x6 + 1

1/x3
= lim

x→∞

x3

√
x6 + 1

= 1.

Since

∫ ∞

1

dx

x3
converges, then

∫ ∞

1

dx√
x6 + 1

converges too. C
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Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

dx

(2 + cos(x) + ln(x))
converges or not.

Solution: Choose the comparison function g(x) = 1/ ln(x);

lim
x→∞

1/(2 + cos(x) + ln(x))

1/ ln(x)
= lim

x→∞

ln(x)

(2 + cos(x) + ln(x))
= 1.

The limit comparison test says: The integral I converges iff

J =

∫ ∞

3

dx

ln(x)
converges. We need to find out if J converges.

We now use the direct comparison test: for x > 0 holds

ln(x) < x ⇒ 1

x
<

1

ln(x)
⇒

∫ ∞

3

dx

x
<

∫ ∞

3

dx

ln(x)
.

Since

∫ ∞

3

dx

x
diverges, then both J and I diverge. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

dx

(2 + cos(x) + ln(x))
converges or not.

Solution: Choose the comparison function g(x) = 1/ ln(x);

lim
x→∞

1/(2 + cos(x) + ln(x))

1/ ln(x)
= lim

x→∞

ln(x)

(2 + cos(x) + ln(x))
= 1.

The limit comparison test says: The integral I converges iff

J =

∫ ∞

3

dx

ln(x)
converges. We need to find out if J converges.

We now use the direct comparison test: for x > 0 holds

ln(x) < x ⇒ 1

x
<

1

ln(x)
⇒

∫ ∞

3

dx

x
<

∫ ∞

3

dx

ln(x)
.

Since

∫ ∞

3

dx

x
diverges, then both J and I diverge. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

dx

(2 + cos(x) + ln(x))
converges or not.

Solution: Choose the comparison function g(x) = 1/ ln(x);

lim
x→∞

1/(2 + cos(x) + ln(x))

1/ ln(x)

= lim
x→∞

ln(x)

(2 + cos(x) + ln(x))
= 1.

The limit comparison test says: The integral I converges iff

J =

∫ ∞

3

dx

ln(x)
converges. We need to find out if J converges.

We now use the direct comparison test: for x > 0 holds

ln(x) < x ⇒ 1

x
<

1

ln(x)
⇒

∫ ∞

3

dx

x
<

∫ ∞

3

dx

ln(x)
.

Since

∫ ∞

3

dx

x
diverges, then both J and I diverge. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

dx

(2 + cos(x) + ln(x))
converges or not.

Solution: Choose the comparison function g(x) = 1/ ln(x);

lim
x→∞

1/(2 + cos(x) + ln(x))

1/ ln(x)
= lim

x→∞

ln(x)

(2 + cos(x) + ln(x))

= 1.

The limit comparison test says: The integral I converges iff

J =

∫ ∞

3

dx

ln(x)
converges. We need to find out if J converges.

We now use the direct comparison test: for x > 0 holds

ln(x) < x ⇒ 1

x
<

1

ln(x)
⇒

∫ ∞

3

dx

x
<

∫ ∞

3

dx

ln(x)
.

Since

∫ ∞

3

dx

x
diverges, then both J and I diverge. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

dx

(2 + cos(x) + ln(x))
converges or not.

Solution: Choose the comparison function g(x) = 1/ ln(x);

lim
x→∞

1/(2 + cos(x) + ln(x))

1/ ln(x)
= lim

x→∞

ln(x)

(2 + cos(x) + ln(x))
= 1.

The limit comparison test says: The integral I converges iff

J =

∫ ∞

3

dx

ln(x)
converges. We need to find out if J converges.

We now use the direct comparison test: for x > 0 holds

ln(x) < x ⇒ 1

x
<

1

ln(x)
⇒

∫ ∞

3

dx

x
<

∫ ∞

3

dx

ln(x)
.

Since

∫ ∞

3

dx

x
diverges, then both J and I diverge. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

dx

(2 + cos(x) + ln(x))
converges or not.

Solution: Choose the comparison function g(x) = 1/ ln(x);

lim
x→∞

1/(2 + cos(x) + ln(x))

1/ ln(x)
= lim

x→∞

ln(x)

(2 + cos(x) + ln(x))
= 1.

The limit comparison test says:

The integral I converges iff

J =

∫ ∞

3

dx

ln(x)
converges. We need to find out if J converges.

We now use the direct comparison test: for x > 0 holds

ln(x) < x ⇒ 1

x
<

1

ln(x)
⇒

∫ ∞

3

dx

x
<

∫ ∞

3

dx

ln(x)
.

Since

∫ ∞

3

dx

x
diverges, then both J and I diverge. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

dx

(2 + cos(x) + ln(x))
converges or not.

Solution: Choose the comparison function g(x) = 1/ ln(x);

lim
x→∞

1/(2 + cos(x) + ln(x))

1/ ln(x)
= lim

x→∞

ln(x)

(2 + cos(x) + ln(x))
= 1.

The limit comparison test says: The integral I converges iff

J =

∫ ∞

3

dx

ln(x)
converges.

We need to find out if J converges.

We now use the direct comparison test: for x > 0 holds

ln(x) < x ⇒ 1

x
<

1

ln(x)
⇒

∫ ∞

3

dx

x
<

∫ ∞

3

dx

ln(x)
.

Since

∫ ∞

3

dx

x
diverges, then both J and I diverge. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

dx

(2 + cos(x) + ln(x))
converges or not.

Solution: Choose the comparison function g(x) = 1/ ln(x);

lim
x→∞

1/(2 + cos(x) + ln(x))

1/ ln(x)
= lim

x→∞

ln(x)

(2 + cos(x) + ln(x))
= 1.

The limit comparison test says: The integral I converges iff

J =

∫ ∞

3

dx

ln(x)
converges. We need to find out if J converges.

We now use the direct comparison test: for x > 0 holds

ln(x) < x ⇒ 1

x
<

1

ln(x)
⇒

∫ ∞

3

dx

x
<

∫ ∞

3

dx

ln(x)
.

Since

∫ ∞

3

dx

x
diverges, then both J and I diverge. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

dx

(2 + cos(x) + ln(x))
converges or not.

Solution: Choose the comparison function g(x) = 1/ ln(x);

lim
x→∞

1/(2 + cos(x) + ln(x))

1/ ln(x)
= lim

x→∞

ln(x)

(2 + cos(x) + ln(x))
= 1.

The limit comparison test says: The integral I converges iff

J =

∫ ∞

3

dx

ln(x)
converges. We need to find out if J converges.

We now use the direct comparison test:

for x > 0 holds

ln(x) < x ⇒ 1

x
<

1

ln(x)
⇒

∫ ∞

3

dx

x
<

∫ ∞

3

dx

ln(x)
.

Since

∫ ∞

3

dx

x
diverges, then both J and I diverge. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

dx

(2 + cos(x) + ln(x))
converges or not.

Solution: Choose the comparison function g(x) = 1/ ln(x);

lim
x→∞

1/(2 + cos(x) + ln(x))

1/ ln(x)
= lim

x→∞

ln(x)

(2 + cos(x) + ln(x))
= 1.

The limit comparison test says: The integral I converges iff

J =

∫ ∞

3

dx

ln(x)
converges. We need to find out if J converges.

We now use the direct comparison test: for x > 0 holds

ln(x) < x ⇒ 1

x
<

1

ln(x)
⇒

∫ ∞

3

dx

x
<

∫ ∞

3

dx

ln(x)
.

Since

∫ ∞

3

dx

x
diverges, then both J and I diverge. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

dx

(2 + cos(x) + ln(x))
converges or not.

Solution: Choose the comparison function g(x) = 1/ ln(x);

lim
x→∞

1/(2 + cos(x) + ln(x))

1/ ln(x)
= lim

x→∞

ln(x)

(2 + cos(x) + ln(x))
= 1.

The limit comparison test says: The integral I converges iff

J =

∫ ∞

3

dx

ln(x)
converges. We need to find out if J converges.

We now use the direct comparison test: for x > 0 holds

ln(x) < x

⇒ 1

x
<

1

ln(x)
⇒

∫ ∞

3

dx

x
<

∫ ∞

3

dx

ln(x)
.

Since

∫ ∞

3

dx

x
diverges, then both J and I diverge. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

dx

(2 + cos(x) + ln(x))
converges or not.

Solution: Choose the comparison function g(x) = 1/ ln(x);

lim
x→∞

1/(2 + cos(x) + ln(x))

1/ ln(x)
= lim

x→∞

ln(x)

(2 + cos(x) + ln(x))
= 1.

The limit comparison test says: The integral I converges iff

J =

∫ ∞

3

dx

ln(x)
converges. We need to find out if J converges.

We now use the direct comparison test: for x > 0 holds

ln(x) < x ⇒ 1

x
<

1

ln(x)

⇒
∫ ∞

3

dx

x
<

∫ ∞

3

dx

ln(x)
.

Since

∫ ∞

3

dx

x
diverges, then both J and I diverge. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

dx

(2 + cos(x) + ln(x))
converges or not.

Solution: Choose the comparison function g(x) = 1/ ln(x);

lim
x→∞

1/(2 + cos(x) + ln(x))

1/ ln(x)
= lim

x→∞

ln(x)

(2 + cos(x) + ln(x))
= 1.

The limit comparison test says: The integral I converges iff

J =

∫ ∞

3

dx

ln(x)
converges. We need to find out if J converges.

We now use the direct comparison test: for x > 0 holds

ln(x) < x ⇒ 1

x
<

1

ln(x)
⇒

∫ ∞

3

dx

x
<

∫ ∞

3

dx

ln(x)
.

Since

∫ ∞

3

dx

x
diverges, then both J and I diverge. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

dx

(2 + cos(x) + ln(x))
converges or not.

Solution: Choose the comparison function g(x) = 1/ ln(x);

lim
x→∞

1/(2 + cos(x) + ln(x))

1/ ln(x)
= lim

x→∞

ln(x)

(2 + cos(x) + ln(x))
= 1.

The limit comparison test says: The integral I converges iff

J =

∫ ∞

3

dx

ln(x)
converges. We need to find out if J converges.

We now use the direct comparison test: for x > 0 holds

ln(x) < x ⇒ 1

x
<

1

ln(x)
⇒

∫ ∞

3

dx

x
<

∫ ∞

3

dx

ln(x)
.

Since

∫ ∞

3

dx

x
diverges,

then both J and I diverge. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

dx

(2 + cos(x) + ln(x))
converges or not.

Solution: Choose the comparison function g(x) = 1/ ln(x);

lim
x→∞

1/(2 + cos(x) + ln(x))

1/ ln(x)
= lim

x→∞

ln(x)

(2 + cos(x) + ln(x))
= 1.

The limit comparison test says: The integral I converges iff

J =

∫ ∞

3

dx

ln(x)
converges. We need to find out if J converges.

We now use the direct comparison test: for x > 0 holds

ln(x) < x ⇒ 1

x
<

1

ln(x)
⇒

∫ ∞

3

dx

x
<

∫ ∞

3

dx

ln(x)
.

Since

∫ ∞

3

dx

x
diverges, then both J and I diverge. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

x dx√
x5 + x3

converges or not.

Solution: First, find an appropriate function g(x) such that:

lim
x→∞

g(x) = lim
x→∞

x√
x5 + x3

= lim
x→∞

x

x5/2
= lim

x→∞

1

x3/2
.

Therefore, we use the limit comparison test with g(x) = x−3/2.
Then, by construction,

lim
x→∞

( x√
x5 + x3

)( 1

x−3/2

)
= lim

x→∞

( x

x5/2

)( 1

x−3/2

)
= 1.

Since

∫ ∞

3
x−3/2 dx = −2 x−1/2

∣∣∣∞
3

= −2
(
0− 1√

3

)
=

2√
3
,

we conclude that I converges. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

x dx√
x5 + x3

converges or not.

Solution: First, find an appropriate function g(x) such that:

lim
x→∞

g(x) = lim
x→∞

x√
x5 + x3

= lim
x→∞

x

x5/2
= lim

x→∞

1

x3/2
.

Therefore, we use the limit comparison test with g(x) = x−3/2.
Then, by construction,

lim
x→∞

( x√
x5 + x3

)( 1

x−3/2

)
= lim

x→∞

( x

x5/2

)( 1

x−3/2

)
= 1.

Since

∫ ∞

3
x−3/2 dx = −2 x−1/2

∣∣∣∞
3

= −2
(
0− 1√

3

)
=

2√
3
,

we conclude that I converges. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

x dx√
x5 + x3

converges or not.

Solution: First, find an appropriate function g(x) such that:

lim
x→∞

g(x) = lim
x→∞

x√
x5 + x3

= lim
x→∞

x

x5/2
= lim

x→∞

1

x3/2
.

Therefore, we use the limit comparison test with g(x) = x−3/2.
Then, by construction,

lim
x→∞

( x√
x5 + x3

)( 1

x−3/2

)
= lim

x→∞

( x

x5/2

)( 1

x−3/2

)
= 1.

Since

∫ ∞

3
x−3/2 dx = −2 x−1/2

∣∣∣∞
3

= −2
(
0− 1√

3

)
=

2√
3
,

we conclude that I converges. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

x dx√
x5 + x3

converges or not.

Solution: First, find an appropriate function g(x) such that:

lim
x→∞

g(x) = lim
x→∞

x√
x5 + x3

= lim
x→∞

x

x5/2

= lim
x→∞

1

x3/2
.

Therefore, we use the limit comparison test with g(x) = x−3/2.
Then, by construction,

lim
x→∞

( x√
x5 + x3

)( 1

x−3/2

)
= lim

x→∞

( x

x5/2

)( 1

x−3/2

)
= 1.

Since

∫ ∞

3
x−3/2 dx = −2 x−1/2

∣∣∣∞
3

= −2
(
0− 1√

3

)
=

2√
3
,

we conclude that I converges. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

x dx√
x5 + x3

converges or not.

Solution: First, find an appropriate function g(x) such that:

lim
x→∞

g(x) = lim
x→∞

x√
x5 + x3

= lim
x→∞

x

x5/2
= lim

x→∞

1

x3/2
.

Therefore, we use the limit comparison test with g(x) = x−3/2.
Then, by construction,

lim
x→∞

( x√
x5 + x3

)( 1

x−3/2

)
= lim

x→∞

( x

x5/2

)( 1

x−3/2

)
= 1.

Since

∫ ∞

3
x−3/2 dx = −2 x−1/2

∣∣∣∞
3

= −2
(
0− 1√

3

)
=

2√
3
,

we conclude that I converges. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

x dx√
x5 + x3

converges or not.

Solution: First, find an appropriate function g(x) such that:

lim
x→∞

g(x) = lim
x→∞

x√
x5 + x3

= lim
x→∞

x

x5/2
= lim

x→∞

1

x3/2
.

Therefore, we use the limit comparison test with g(x) = x−3/2.

Then, by construction,

lim
x→∞

( x√
x5 + x3

)( 1

x−3/2

)
= lim

x→∞

( x

x5/2

)( 1

x−3/2

)
= 1.

Since

∫ ∞

3
x−3/2 dx = −2 x−1/2

∣∣∣∞
3

= −2
(
0− 1√

3

)
=

2√
3
,

we conclude that I converges. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

x dx√
x5 + x3

converges or not.

Solution: First, find an appropriate function g(x) such that:

lim
x→∞

g(x) = lim
x→∞

x√
x5 + x3

= lim
x→∞

x

x5/2
= lim

x→∞

1

x3/2
.

Therefore, we use the limit comparison test with g(x) = x−3/2.
Then, by construction,

lim
x→∞

( x√
x5 + x3

)( 1

x−3/2

)
= lim

x→∞

( x

x5/2

)( 1

x−3/2

)
= 1.

Since

∫ ∞

3
x−3/2 dx = −2 x−1/2

∣∣∣∞
3

= −2
(
0− 1√

3

)
=

2√
3
,

we conclude that I converges. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

x dx√
x5 + x3

converges or not.

Solution: First, find an appropriate function g(x) such that:

lim
x→∞

g(x) = lim
x→∞

x√
x5 + x3

= lim
x→∞

x

x5/2
= lim

x→∞

1

x3/2
.

Therefore, we use the limit comparison test with g(x) = x−3/2.
Then, by construction,

lim
x→∞

( x√
x5 + x3

)( 1

x−3/2

)

= lim
x→∞

( x

x5/2

)( 1

x−3/2

)
= 1.

Since

∫ ∞

3
x−3/2 dx = −2 x−1/2

∣∣∣∞
3

= −2
(
0− 1√

3

)
=

2√
3
,

we conclude that I converges. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

x dx√
x5 + x3

converges or not.

Solution: First, find an appropriate function g(x) such that:

lim
x→∞

g(x) = lim
x→∞

x√
x5 + x3

= lim
x→∞

x

x5/2
= lim

x→∞

1

x3/2
.

Therefore, we use the limit comparison test with g(x) = x−3/2.
Then, by construction,

lim
x→∞

( x√
x5 + x3

)( 1

x−3/2

)
= lim

x→∞

( x

x5/2

)( 1

x−3/2

)

= 1.

Since

∫ ∞

3
x−3/2 dx = −2 x−1/2

∣∣∣∞
3

= −2
(
0− 1√

3

)
=

2√
3
,

we conclude that I converges. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

x dx√
x5 + x3

converges or not.

Solution: First, find an appropriate function g(x) such that:

lim
x→∞

g(x) = lim
x→∞

x√
x5 + x3

= lim
x→∞

x

x5/2
= lim

x→∞

1

x3/2
.

Therefore, we use the limit comparison test with g(x) = x−3/2.
Then, by construction,

lim
x→∞

( x√
x5 + x3

)( 1

x−3/2

)
= lim

x→∞

( x

x5/2

)( 1

x−3/2

)
= 1.

Since

∫ ∞

3
x−3/2 dx = −2 x−1/2

∣∣∣∞
3

= −2
(
0− 1√

3

)
=

2√
3
,

we conclude that I converges. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

x dx√
x5 + x3

converges or not.

Solution: First, find an appropriate function g(x) such that:

lim
x→∞

g(x) = lim
x→∞

x√
x5 + x3

= lim
x→∞

x

x5/2
= lim

x→∞

1

x3/2
.

Therefore, we use the limit comparison test with g(x) = x−3/2.
Then, by construction,

lim
x→∞

( x√
x5 + x3

)( 1

x−3/2

)
= lim

x→∞

( x

x5/2

)( 1

x−3/2

)
= 1.

Since

∫ ∞

3
x−3/2 dx = −2 x−1/2

∣∣∣∞
3

= −2
(
0− 1√

3

)
=

2√
3
,

we conclude that I converges. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

x dx√
x5 + x3

converges or not.

Solution: First, find an appropriate function g(x) such that:

lim
x→∞

g(x) = lim
x→∞

x√
x5 + x3

= lim
x→∞

x

x5/2
= lim

x→∞

1

x3/2
.

Therefore, we use the limit comparison test with g(x) = x−3/2.
Then, by construction,

lim
x→∞

( x√
x5 + x3

)( 1

x−3/2

)
= lim

x→∞

( x

x5/2

)( 1

x−3/2

)
= 1.

Since

∫ ∞

3
x−3/2 dx = −2 x−1/2

∣∣∣∞
3

= −2
(
0− 1√

3

)

=
2√
3
,

we conclude that I converges. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

x dx√
x5 + x3

converges or not.

Solution: First, find an appropriate function g(x) such that:

lim
x→∞

g(x) = lim
x→∞

x√
x5 + x3

= lim
x→∞

x

x5/2
= lim

x→∞

1

x3/2
.

Therefore, we use the limit comparison test with g(x) = x−3/2.
Then, by construction,

lim
x→∞

( x√
x5 + x3

)( 1

x−3/2

)
= lim

x→∞

( x

x5/2

)( 1

x−3/2

)
= 1.

Since

∫ ∞

3
x−3/2 dx = −2 x−1/2

∣∣∣∞
3

= −2
(
0− 1√

3

)
=

2√
3
,

we conclude that I converges. C



Convergence test: Limit comparison test

Example

Determine whether I =

∫ ∞

3

x dx√
x5 + x3

converges or not.

Solution: First, find an appropriate function g(x) such that:

lim
x→∞

g(x) = lim
x→∞

x√
x5 + x3

= lim
x→∞

x

x5/2
= lim

x→∞

1

x3/2
.

Therefore, we use the limit comparison test with g(x) = x−3/2.
Then, by construction,

lim
x→∞

( x√
x5 + x3

)( 1

x−3/2

)
= lim

x→∞

( x

x5/2

)( 1

x−3/2

)
= 1.

Since

∫ ∞

3
x−3/2 dx = −2 x−1/2

∣∣∣∞
3

= −2
(
0− 1√

3

)
=

2√
3
,

we conclude that I converges. C



Infinite sequences (Sect. 10.1)

Today’s Lecture:

I Overview: Sequences, series, and calculus.

I Definition and geometrical representations.

I The limit of a sequence, convergence, divergence.

I Properties of sequence limits.

I The Sandwich Theorem for sequences.

Next Lecture:

I The Continuous Function Theorem for sequences.

I Using L’Hôpital’s rule on sequences.

I Table of useful limits.

I Bounded and monotonic sequences.



Overview: Sequences, series, and calculus

Remarks:

I We have defined the

∫ b

a
f (x) dx as a limit of partial sums.

That is, as an infinite sum of numbers (areas of rectangles).

I In the next section we define, precisely, what is an infinite
sum. Infinite sums are called series.

I In this section we introduce the idea of an infinite sequence of
numbers. We will use sequences to define series.

I Later on, the idea of infinite sums will be generalized from
numbers to functions.

I We will express differentiable functions as infinite sums of
polynomials (Taylor series expansions).

I Then we will be able to compute integrals like

∫ b

a
e−x2

dx .
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Infinite sequences (Sect. 10.1)

I Overview: Sequences, series, and calculus.

I Definition and geometrical representations.

I The limit of a sequence, convergence, divergence.

I Properties of sequence limits.

I The Sandwich Theorem for sequences.



Definition and geometrical representations

Definition
An infinite sequence of numbers is an ordered set of real numbers.

Remark: A sequence is denoted as

{a1, a2, a3, · · · , an, · · · }, or {an}∞n=1, or {an}.

Example{ n

n + 1

}∞
n=1

, an =
n

n + 1
,

{1

2
,

2

3
,

3

4
, · · · ,

n

n + 1
, · · ·

}
.

{
(−1)n

√
n
}∞

n=3
, an = (−1)n

√
n,

{
−
√

3,
√

4,−
√

5, · · ·
}
.

{
cos(nπ/6)

}∞
n=0

, an = cos(nπ/6),
{

1,

√
3

2
,
1

2
, 0, · · ·

}
.
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Definition and geometrical representations

Example

Find a formula for the general term of the sequence{3

5
, − 4

25
,

5

125
, − 6

625
, · · ·

}
.

Solution: We know that:

a1 =
3

5
, a2 = − 4

25
, a3 =

5

125
, a4 = − 6

625
.

a1 =
(1 + 2)

5
, a2 = −(2 + 2)

52
, a3 =

(3 + 2)

53
, a4 = −(4 + 2)

54
.

We conclude that an = (−1)(n−1) (n + 2)

5n
. C
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Definition and geometrical representations

Remark:
Infinite sequences can be represented on a line or on a plane.

Example

Graph the sequence
{1

n

}∞
n=1

on a line and on a plane.

Solution:

11/31/41/8 a n0 1/2
n0

1/2

1

a n

1/4

1/8

1/3

1 2 3 4

C
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Infinite sequences (Sect. 10.1)

I Overview: Sequences, series, and calculus.

I Definition and geometrical representations.

I The limit of a sequence, convergence, divergence.

I Properties of sequence limits.

I The Sandwich Theorem for sequences.



The limit of a sequence, convergence, divergence

Remark:

I As it happened in the example above, the numbers an in a
sequence may approach a single value as n increases.

{
an =

1

n

}∞
n=1

=
{

1,
1

2
,

1

3
,

1

4
, · · ·

}
→ 0.

I This is not the case for every sequence. The sequence
elements may grow unbounded:{

n2
}∞

n=1
=

{
1, 4, 9, 16, · · ·

}
.

The sequence numbers may oscillate:{
(−1)n

}∞
n=0

=
{
1, −1, 1, −1, 1, · · ·

}
.
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The limit of a sequence, convergence, divergence

Definition
An infinite sequence {an} has limit L iff for every number ε > 0
there exists a positive integer N such that

N < n ⇒ |an − L| < ε.

A sequence is called convergent iff it has a limit, otherwise it is
called divergent.

Remark: We use the notation limn→∞ an = L or an → L.

Example

Find the limit of the sequence
{

an = 1 +
3

n2

}∞
n=1

.

Solution: Since
1

n2
→ 0, we will prove that L = 1.
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The limit of a sequence, convergence, divergence

Example

Find the limit of the sequence
{

an = 1 +
3

n2

}∞
n=1

.

Solution: Recall: The candidate for limit is L = 1.

Given any ε > 0, we need to find the appropriate N. Since

|an − 1| < ε ⇔
∣∣∣ 3

n2

∣∣∣ < ε ⇔ 3

ε
< n2 ⇔

√
3

ε
< n.

Therefore, given ε > 0, choose N =

√
3

ε
.

We then conclude that for all n > N holds,√
3

ε
< n ⇔ 3

ε
< n2 ⇔

∣∣∣ 3

n2

∣∣∣ < ε ⇔ |an − 1| < ε.
C
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Infinite sequences (Sect. 10.1)

I Overview: Sequences, series, and calculus.

I Definition and geometrical representations.

I The limit of a sequence, convergence, divergence.

I Properties of sequence limits.

I The Sandwich Theorem for sequences.



Properties of sequence limits

Remark: The limits of simple sequences can be used to compute
limits of more complicated sequences.

Theorem (Limit properties)

If the sequence {an} → A and {bn} → B, then holds,

(a) lim
n→∞

{an + bn} = A + B;

(b) lim
n→∞

{an − bn} = A− B;

(c) lim
n→∞

{kan} = kA;

(d) lim
n→∞

{anbn} = AB;

(e) If B 6= 0, then lim
n→∞

{an

bn

}
=

A

B
.
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Properties of sequence limits

Example

Find the limit of the sequence
{

an =
1− 2n

2 + 3n

}∞
n=1

.

Solution: We use the properties above to find the limit.

Rewrite the sequence as follows,

an =
(1− 2n)

(2 + 3n)

(
1
n

)(
1
n

) =
1
n − 2
2
n + 3

.

Since
1

n
→ 0 as n →∞, then

1

n
− 2 → −2,

2

n
→ 0,

2

n
+ 3 → 3.

Hence, the quotient property implies an → −2

3
. C
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Properties of sequence limits

Example

Find the limit of the sequence
{

an =
3n3 − 2n + 1

2n2 + 4

}∞
n=1

.

Solution: Rewrite the sequence as follows,

an =
(3n3 − 2n + 1)

(2n2 + 4)

(
1
n2

)(
1
n2

) =
3n − 2

n + 1
n2

2 + 4
n2

Since
1

n
→ 0 as n →∞, then

1

n2
=

(1

n

)2
→ 0,

2

n
→ 0, 2 +

4

n2
→ 2.

Hence, the quotient property implies lim
n→∞

an = lim
n→∞

3n

2
.

We conclude that an diverges. C
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I Overview: Sequences, series, and calculus.

I Definition and geometrical representations.

I The limit of a sequence, convergence, divergence.

I Properties of sequence limits.

I The Sandwich Theorem for sequences.



The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)

If the sequences {an}, {bn}, and {cn} satisfy

an 6 bn 6 cn, for n > N,

and if both an → L and cn → L, then holds

bn → L.

Example

Find the limit of the sequence
{

an =
sin(3n)

n2

}∞
n=1

.

Solution: Since | sin(3n)| 6 1, then

|an| =
∣∣∣sin(3n)

n2

∣∣∣ 6
∣∣∣ 1

n2

∣∣∣ =
1

n2
⇒ − 1

n2
6 an 6

1

n2
.

Since ± 1

n2
→ 0, we conclude that an → 0. C
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Infinite sequences (Sect. 10.1)

Today’s Lecture:

I Review: Infinite sequences.

I The Continuous Function Theorem for sequences.

I Using L’Hôpital’s rule on sequences.

I Table of useful limits.

I Bounded and monotonic sequences.

Previous Lecture:

I Overview: Sequences, series, and calculus.

I Definition and geometrical representations.

I The limit of a sequence, convergence, divergence.

I Properties of sequence limits.

I The Sandwich Theorem for sequences.



Review: Infinite sequences

Definition
An infinite sequence of numbers is an ordered set of real numbers.

Definition
An infinite sequence {an} has limit L iff for every number ε > 0
there exists a positive integer N such that

N < n ⇒ |an − L| < ε.

A sequence is called convergent iff it has a limit, otherwise it is
called divergent.

Remark: The limits of simple sequences can be used to compute
limits of more complicated sequences.
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Infinite sequences (Sect. 10.1)

I Review: Infinite sequences.

I The Continuous Function Theorem for sequences.

I Using L’Hôpital’s rule on sequences.

I Table of useful limits.

I Bounded and monotonic sequences.



The Continuous Function Theorem for sequences

Theorem
If a sequence {an} → L and a continuous function f is defined
both at L and every an, then the sequence {f (an)} → f (L).

Example

Find the limit of
{

ln
((2 + n + 3n2)

(2n2 + 3)

)}
as n →∞.

Solution: The sequence bn = ln
((2 + n + 3n2)

(2n2 + 3)

)
can be written as

bn = f (an), f (x) = ln(x), an =
(2 + n + 3n2)

(2n2 + 3)
.

an =
(2 + n + 3n2)

(2n2 + 3)

(
1
n2

)(
1
n2

) =

(
2
n2 + 1

n + 3
)(

2 + 3
n2

) → 3

2
.

We conclude that bn → ln
(3

2

)
. C
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Infinite sequences (Sect. 10.1)

I Review: Infinite sequences.

I The Continuous Function Theorem for sequences.

I Using L’Hôpital’s rule on sequences.

I Table of useful limits.

I Bounded and monotonic sequences.



Using L’Hôpital’s rule on sequences

Theorem (L’Hôpital’s rule for sequences)

If the sequence {an} satisfies that:

I There exist a function f such that for n > N the sequence
elements an can be written as an = f (n);

I And lim
x→∞

f (x) = L;

then holds that lim
n→∞

an = L.

Remark: The lim
x→∞

f (x) may indeterminate, and L’Hôpital’s rule

might be used to compute that limit.

Example

Find the limit an = 8n
√

5n as n →∞.

Solution: Notice that an = f (n) for f (x) = 8x
√

5x .
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Using L’Hôpital’s rule on sequences

Example

Find the limit an = 8n
√

5n as n →∞.

Solution: Recall: an = f (n) for f (x) = 8x
√

5x .

8x
√

5x = e ln( 8x√5x) = e

(
ln(5x)

8x

)
But lim

x→∞

ln(5x)

8x
is indeterminate

∞
∞

. L’Hôpital’s rule,

lim
x→∞

ln(5x)

8x
= lim

x→∞

(
1
x

)
8

= lim
x→∞

1

8x
= 0.

lim
x→∞

8x
√

5x = lim
x→∞

e

(
ln(5x)

8x

)
= e0 ⇒ lim

x→∞
8x
√

5x = 1.

We conclude that
8n
√

5n → 1 as n →∞. C
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Using L’Hôpital’s rule on sequences

Example

Given positive numbers a, b, find the lim
n→∞

(
1− b

n

)an
.

Solution: We rewrite the sequence as follows,

(
1− b

n

)an
= e

[
an ln(1− b

n
)
]

= e

[
a ln(1− b

n )

1
n

]

The exponent has an indeterminate limit,
a ln(1− b

n )
1
n

→ 0

0
.

Recall the argument with the L’Hôpital’s rule on functions,
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I Review: Infinite sequences.
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Table of useful limits

Remark: The following limits appear often in applications:

I lim
n→∞

ln(n)

n
= 0;

I lim
n→∞

n
√

n = 1;

I lim
n→∞

x

(
1
n

)
= 1, for x > 0;

I lim
n→∞

xn = 0, for |x | < 1;

I lim
n→∞

(
1 +

x

n

)n
= ex , for x ∈ R;

I lim
n→∞

xn

n!
= 0.
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Bounded and monotonic sequences

Definition
A sequence {an} is bounded above iff there is M ∈ R such that

an 6 M for all n > 1.

The sequence {an} is bounded below iff there is m ∈ R such that

m 6 an for all n > 1.

A sequence is bounded iff it is bounded above and below.

Example

I an =
1

n
is bounded, since 0 <

1

n
6 1.

I an = (−1)n is bounded, since −1 6 (−1)n 6 1.
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Bounded and monotonic sequences

Definition

I A sequence {an} is increasing iff an < an+1.

I A sequence {an} is non-decreasing iff an 6 an+1.

I A sequence {an} is decreasing iff an > an+1.

I A sequence {an} is non-increasing iff an > an+1.

I A sequence is monotonic iff the sequence is both
non-increasing and non-decreasing.

Theorem

I A non-decreasing, bounded above sequence, converges.

I A non-increasing, bounded below sequence, converges.
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Bounded and monotonic sequences

Example

Determine whether the sequence an =
n

n2 + 1
converges or not.

Solution: We show that an is decreasing. Indeed, the condition

an+1 < an ⇔ n + 1

(n + 1)2 + 1
<

n

n2 + 1

(n + 1)(n2 + 1) < n(n2 + 2n + 2)

n3 + n2 + n + 1 < n3 + 2n2 + 2n

Since 1 < (n2 + n) is true for n > 1, then an+1 < an; decreasing.

The sequence satisfies that 0 < an, bounded below.

We conclude that an converges. C
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