## Improper integrals (Sect. 8.7)

- Review: Improper integrals type I and II.
- Examples: $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$, and $I=\int_{0}^{1} \frac{d x}{x^{p}}$.
- Convergence test: Direct comparison test.
- Convergence test: Limit comparison test.


## Improper integrals (Sect. 8.7)

- Review: Improper integrals type I and II.
- Examples: $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$, and $I=\int_{0}^{1} \frac{d x}{x^{p}}$.
- Convergence test: Direct comparison test.
- Convergence test: Limit comparison test.


## Review: Improper integrals type I

Definition (Type I)
Improper integrals of Type I are integrals of continuous functions on infinite domains;

## Review: Improper integrals type I

Definition (Type I)
Improper integrals of Type I are integrals of continuous functions on infinite domains; these include:
The improper integral of a continuous function $f$ on $[a, \infty)$,

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

## Review: Improper integrals type I

Definition (Type I)
Improper integrals of Type I are integrals of continuous functions on infinite domains; these include:
The improper integral of a continuous function $f$ on $[a, \infty)$,

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

The improper integral of a continuous function $f$ on $(-\infty, b]$,

$$
\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

## Review: Improper integrals type I

## Definition (Type I)

Improper integrals of Type I are integrals of continuous functions on infinite domains; these include:
The improper integral of a continuous function $f$ on $[a, \infty)$,

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

The improper integral of a continuous function $f$ on $(-\infty, b]$,

$$
\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

The improper integral of a continuous function $f$ on $(-\infty, \infty)$,

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x
$$

## Review: Improper integrals type II

## Definition (Type II)

Improper integrals of Type II are integrals of functions with vertical asymptotes within the integration interval;

## Review: Improper integrals type II

## Definition (Type II)

Improper integrals of Type II are integrals of functions with vertical asymptotes within the integration interval; these include:

If $f$ is continuous on ( $a, b]$ and discontinuous at $a$, then

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

## Review: Improper integrals type II

## Definition (Type II)

Improper integrals of Type II are integrals of functions with vertical asymptotes within the integration interval; these include:

If $f$ is continuous on ( $a, b]$ and discontinuous at $a$, then

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

If $f$ is continuous on $[a, b)$ and discontinuous at $b$, then

$$
\int_{a}^{b^{-}} f(x) d x=\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x
$$

## Review: Improper integrals type II

## Definition (Type II)

Improper integrals of Type II are integrals of functions with vertical asymptotes within the integration interval; these include:

If $f$ is continuous on $(a, b]$ and discontinuous at $a$, then

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

If $f$ is continuous on $[a, b)$ and discontinuous at $b$, then

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x
$$

If $f$ is continuous on $[a, c) \cup(c, b]$ and discontinuous at $c$, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

## Improper integrals (Sect. 8.7)

- Review: Improper integrals type I and II.
- Examples: $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$, and $I=\int_{0}^{1} \frac{d x}{x^{p}}$.
- Convergence test: Direct comparison test.
- Convergence test: Limit comparison test.

The cases $\int_{0}^{1} \frac{d x}{x^{p}}$ and $\int_{1}^{\infty} \frac{d x}{x^{p}}$
Summary: In the case $p=1$ both integrals diverge,

$$
\int_{0}^{1} \frac{d x}{x}=\text { diverges, } \quad \int_{1}^{\infty} \frac{d x}{x}=\text { diverges. }
$$

The cases $\int_{0}^{1} \frac{d x}{x^{p}}$ and $\int_{1}^{\infty} \frac{d x}{x^{p}}$
Summary: In the case $p=1$ both integrals diverge,

$$
\int_{0}^{1} \frac{d x}{x}=\text { diverges, } \quad \int_{1}^{\infty} \frac{d x}{x}=\text { diverges. }
$$

In the case $p \neq 1$ we have:

$$
\int_{0}^{1} \frac{d x}{x^{p}}
$$

The cases $\int_{0}^{1} \frac{d x}{x^{p}}$ and $\int_{1}^{\infty} \frac{d x}{x^{p}}$
Summary: In the case $p=1$ both integrals diverge,

$$
\int_{0}^{1} \frac{d x}{x}=\text { diverges, } \quad \int_{1}^{\infty} \frac{d x}{x}=\text { diverges. }
$$

In the case $p \neq 1$ we have:

$$
\int_{0}^{1} \frac{d x}{x^{p}}= \begin{cases}=\frac{1}{1-p} & p<1, \\ \text { diverges } & p>1 .\end{cases}
$$

The cases $\int_{0}^{1} \frac{d x}{x^{p}}$ and $\int_{1}^{\infty} \frac{d x}{x^{p}}$
Summary: In the case $p=1$ both integrals diverge,

$$
\int_{0}^{1} \frac{d x}{x}=\text { diverges, } \quad \int_{1}^{\infty} \frac{d x}{x}=\text { diverges. }
$$

In the case $p \neq 1$ we have:

$$
\int_{0}^{1} \frac{d x}{x^{p}}= \begin{cases}=\frac{1}{1-p} & p<1, \\ \text { diverges } & p>1 .\end{cases}
$$

$$
\int_{1}^{\infty} \frac{d x}{x^{p}}
$$

The cases $\int_{0}^{1} \frac{d x}{x^{p}}$ and $\int_{1}^{\infty} \frac{d x}{x^{p}}$
Summary: In the case $p=1$ both integrals diverge,

$$
\int_{0}^{1} \frac{d x}{x}=\text { diverges, } \quad \int_{1}^{\infty} \frac{d x}{x}=\text { diverges. }
$$

In the case $p \neq 1$ we have:

$$
\begin{aligned}
& \int_{0}^{1} \frac{d x}{x^{p}}= \begin{cases}=\frac{1}{1-p} & p<1, \\
\text { diverges } & p>1 .\end{cases} \\
& \int_{1}^{\infty} \frac{d x}{x^{p}}= \begin{cases}\text { diverges } & p<1, \\
=\frac{1}{p-1} & p>1 .\end{cases}
\end{aligned}
$$

The cases $\int_{0}^{1} \frac{d x}{x^{p}}$ and $\int_{1}^{\infty} \frac{d x}{x^{p}}$
Summary: In the case $p=1$ both integrals diverge,

$$
\int_{0}^{1} \frac{d x}{x}=\text { diverges, } \quad \int_{1}^{\infty} \frac{d x}{x}=\text { diverges. }
$$

In the case $p \neq 1$ we have:

$$
\begin{aligned}
& \int_{0}^{1} \frac{d x}{x^{p}}= \begin{cases}=\frac{1}{1-p} & p<1, \\
\text { diverges } & p>1 .\end{cases} \\
& \int_{1}^{\infty} \frac{d x}{x^{p}}= \begin{cases}\text { diverges } & p<1, \\
=\frac{1}{p-1} & p>1 .\end{cases}
\end{aligned}
$$



## Improper integrals (Sect. 8.7)

- Review: Improper integrals type I and II.
- Examples: $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$, and $I=\int_{0}^{1} \frac{d x}{x^{p}}$.
- Convergence test: Direct comparison test.
- Convergence test: Limit comparison test.


## Convergence test: Direct comparison test

Remark: Convergence tests determine whether an improper integral converges or diverges.

Theorem (Direct comparison test)
If functions $f, g:[a, \infty) \rightarrow \mathbb{R}$ are continuous and $0 \leqslant f(x) \leqslant g(x)$ for every $x \in[a, \infty)$, then holds

$$
0 \leqslant \int_{a}^{\infty} f(x) d x \leqslant \int_{a}^{\infty} g(x) d x
$$

The inequalities above imply the following statements:
(a) $\int_{a}^{\infty} g(x) d x$ converges $\Rightarrow \int_{a}^{\infty} f(x) d x$ converges;
(b) $\int_{a}^{\infty} f(x) d x$ diverges $\Rightarrow \int_{a}^{\infty} g(x) d x$ diverges .

## Convergence test: Direct comparison test

## Example

Determine whether $I=\int_{1}^{\infty} e^{-x^{2}} d x$ converges or diverges.

## Convergence test: Direct comparison test

Example
Determine whether $I=\int_{1}^{\infty} e^{-x^{2}} d x$ converges or diverges.
Solution: Notice that $\int e^{-x^{2}} d x$ does not have an expression in terms of elementary functions.

## Convergence test: Direct comparison test

Example
Determine whether $I=\int_{1}^{\infty} e^{-x^{2}} d x$ converges or diverges.
Solution: Notice that $\int e^{-x^{2}} d x$ does not have an expression in terms of elementary functions. However,

$$
1 \leqslant x
$$

## Convergence test: Direct comparison test

Example
Determine whether $I=\int_{1}^{\infty} e^{-x^{2}} d x$ converges or diverges.
Solution: Notice that $\int e^{-x^{2}} d x$ does not have an expression in terms of elementary functions. However,

$$
1 \leqslant x \quad \Rightarrow \quad x \leqslant x^{2}
$$

## Convergence test: Direct comparison test

Example
Determine whether $I=\int_{1}^{\infty} e^{-x^{2}} d x$ converges or diverges.
Solution: Notice that $\int e^{-x^{2}} d x$ does not have an expression in terms of elementary functions. However,

$$
1 \leqslant x \Rightarrow x \leqslant x^{2} \quad \Rightarrow \quad-x^{2} \leqslant-x
$$

## Convergence test: Direct comparison test

## Example

Determine whether $I=\int_{1}^{\infty} e^{-x^{2}} d x$ converges or diverges.
Solution: Notice that $\int e^{-x^{2}} d x$ does not have an expression in terms of elementary functions. However,

$$
1 \leqslant x \quad \Rightarrow \quad x \leqslant x^{2} \quad \Rightarrow \quad-x^{2} \leqslant-x \quad \Rightarrow \quad e^{-x^{2}} \leqslant e^{-x}
$$

## Convergence test: Direct comparison test

## Example

Determine whether $I=\int_{1}^{\infty} e^{-x^{2}} d x$ converges or diverges.
Solution: Notice that $\int e^{-x^{2}} d x$ does not have an expression in terms of elementary functions. However,

$$
1 \leqslant x \quad \Rightarrow \quad x \leqslant x^{2} \quad \Rightarrow \quad-x^{2} \leqslant-x \quad \Rightarrow \quad e^{-x^{2}} \leqslant e^{-x}
$$

The last inequality follows because exp is an increasing function.

## Convergence test: Direct comparison test

## Example

Determine whether $I=\int_{1}^{\infty} e^{-x^{2}} d x$ converges or diverges.
Solution: Notice that $\int e^{-x^{2}} d x$ does not have an expression in terms of elementary functions. However,

$$
1 \leqslant x \quad \Rightarrow \quad x \leqslant x^{2} \quad \Rightarrow \quad-x^{2} \leqslant-x \quad \Rightarrow \quad e^{-x^{2}} \leqslant e^{-x} .
$$

The last inequality follows because $\exp$ is an increasing function.

$$
0 \leqslant \int_{1}^{\infty} e^{-x^{2}} d x
$$

## Convergence test: Direct comparison test

## Example

Determine whether $I=\int_{1}^{\infty} e^{-x^{2}} d x$ converges or diverges.
Solution: Notice that $\int e^{-x^{2}} d x$ does not have an expression in terms of elementary functions. However,

$$
1 \leqslant x \quad \Rightarrow \quad x \leqslant x^{2} \quad \Rightarrow \quad-x^{2} \leqslant-x \quad \Rightarrow \quad e^{-x^{2}} \leqslant e^{-x} .
$$

The last inequality follows because $\exp$ is an increasing function.

$$
0 \leqslant \int_{1}^{\infty} e^{-x^{2}} d x \leqslant \int_{1}^{\infty} e^{-x} d x
$$

## Convergence test: Direct comparison test

## Example

Determine whether $I=\int_{1}^{\infty} e^{-x^{2}} d x$ converges or diverges.
Solution: Notice that $\int e^{-x^{2}} d x$ does not have an expression in terms of elementary functions. However,

$$
1 \leqslant x \quad \Rightarrow \quad x \leqslant x^{2} \quad \Rightarrow \quad-x^{2} \leqslant-x \quad \Rightarrow \quad e^{-x^{2}} \leqslant e^{-x} .
$$

The last inequality follows because $\exp$ is an increasing function.

$$
0 \leqslant \int_{1}^{\infty} e^{-x^{2}} d x \leqslant \int_{1}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{1} ^{\infty}
$$

## Convergence test: Direct comparison test

## Example

Determine whether $I=\int_{1}^{\infty} e^{-x^{2}} d x$ converges or diverges.
Solution: Notice that $\int e^{-x^{2}} d x$ does not have an expression in terms of elementary functions. However,

$$
1 \leqslant x \quad \Rightarrow \quad x \leqslant x^{2} \quad \Rightarrow \quad-x^{2} \leqslant-x \quad \Rightarrow \quad e^{-x^{2}} \leqslant e^{-x} .
$$

The last inequality follows because $\exp$ is an increasing function.

$$
0 \leqslant \int_{1}^{\infty} e^{-x^{2}} d x \leqslant \int_{1}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{1} ^{\infty}=\frac{1}{e}
$$

## Convergence test: Direct comparison test

## Example

Determine whether $I=\int_{1}^{\infty} e^{-x^{2}} d x$ converges or diverges.
Solution: Notice that $\int e^{-x^{2}} d x$ does not have an expression in terms of elementary functions. However,

$$
1 \leqslant x \quad \Rightarrow \quad x \leqslant x^{2} \quad \Rightarrow \quad-x^{2} \leqslant-x \quad \Rightarrow \quad e^{-x^{2}} \leqslant e^{-x} .
$$

The last inequality follows because $\exp$ is an increasing function.

$$
0 \leqslant \int_{1}^{\infty} e^{-x^{2}} d x \leqslant \int_{1}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{1} ^{\infty}=\frac{1}{e}
$$

Since $0 \leqslant \int_{1}^{\infty} e^{-x^{2}} d x \leqslant \frac{1}{e}$, the integral converges.

## Convergence test: Direct comparison test

Example
Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.

## Convergence test: Direct comparison test

Example
Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: We need to find an appropriate function to compare with the integrand above.

## Convergence test: Direct comparison test

Example
Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: We need to find an appropriate function to compare with the integrand above. We need to find either

- a bigger function with convergent integral;


## Convergence test: Direct comparison test

Example
Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: We need to find an appropriate function to compare with the integrand above. We need to find either

- a bigger function with convergent integral;
- or a smaller function with divergent integral.


## Convergence test: Direct comparison test

Example
Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: We need to find an appropriate function to compare with the integrand above. We need to find either

- a bigger function with convergent integral;
- or a smaller function with divergent integral.

Notice: $x^{6}<x^{6}+1$

## Convergence test: Direct comparison test

## Example

Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: We need to find an appropriate function to compare with the integrand above. We need to find either

- a bigger function with convergent integral;
- or a smaller function with divergent integral.

Notice: $x^{6}<x^{6}+1 \quad \Rightarrow \quad x^{3}<\sqrt{x^{6}+1}$

## Convergence test: Direct comparison test

## Example

Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: We need to find an appropriate function to compare with the integrand above. We need to find either

- a bigger function with convergent integral;
- or a smaller function with divergent integral.

Notice: $x^{6}<x^{6}+1 \Rightarrow x^{3}<\sqrt{x^{6}+1} \quad \Rightarrow \quad \frac{1}{\sqrt{x^{6}+1}}<\frac{1}{x^{3}}$.

## Convergence test: Direct comparison test

## Example

Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: We need to find an appropriate function to compare with the integrand above. We need to find either

- a bigger function with convergent integral;
- or a smaller function with divergent integral.

Notice: $x^{6}<x^{6}+1 \Rightarrow x^{3}<\sqrt{x^{6}+1} \quad \Rightarrow \quad \frac{1}{\sqrt{x^{6}+1}}<\frac{1}{x^{3}}$.
Therefore, $0<\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}<\int_{1}^{\infty} \frac{d x}{x^{3}}$

## Convergence test: Direct comparison test

## Example

Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: We need to find an appropriate function to compare with the integrand above. We need to find either

- a bigger function with convergent integral;
- or a smaller function with divergent integral.

Notice: $x^{6}<x^{6}+1 \Rightarrow x^{3}<\sqrt{x^{6}+1} \Rightarrow \frac{1}{\sqrt{x^{6}+1}}<\frac{1}{x^{3}}$.
Therefore, $0<\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}<\int_{1}^{\infty} \frac{d x}{x^{3}}=-\left.\frac{x^{-2}}{2}\right|_{1} ^{\infty}$

## Convergence test: Direct comparison test

## Example

Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: We need to find an appropriate function to compare with the integrand above. We need to find either

- a bigger function with convergent integral;
- or a smaller function with divergent integral.

Notice: $x^{6}<x^{6}+1 \Rightarrow x^{3}<\sqrt{x^{6}+1} \quad \Rightarrow \quad \frac{1}{\sqrt{x^{6}+1}}<\frac{1}{x^{3}}$.
Therefore, $\quad 0<\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}<\int_{1}^{\infty} \frac{d x}{x^{3}}=-\left.\frac{x^{-2}}{2}\right|_{1} ^{\infty}=\frac{1}{2}$.

## Convergence test: Direct comparison test

## Example

Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: We need to find an appropriate function to compare with the integrand above. We need to find either

- a bigger function with convergent integral;
- or a smaller function with divergent integral.

Notice: $x^{6}<x^{6}+1 \Rightarrow x^{3}<\sqrt{x^{6}+1} \quad \Rightarrow \quad \frac{1}{\sqrt{x^{6}+1}}<\frac{1}{x^{3}}$.
Therefore, $\quad 0<\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}<\int_{1}^{\infty} \frac{d x}{x^{3}}=-\left.\frac{x^{-2}}{2}\right|_{1} ^{\infty}=\frac{1}{2}$.
Since $0 \leqslant \int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}} \leqslant \frac{1}{2}$, the integral converges.

## Improper integrals (Sect. 8.7)

- Review: Improper integrals type I and II.
- Examples: $I=\int_{1}^{\infty} \frac{d x}{x^{p}}$, and $I=\int_{0}^{1} \frac{d x}{x^{p}}$.
- Convergence test: Direct comparison test.
- Convergence test: Limit comparison test.


## Convergence test: Limit comparison test

Remark: Convergence tests determine whether an improper integral converges or diverges.

Theorem (Limit comparison test)
If positive functions $f, g:[a, \infty) \rightarrow \mathbb{R}$ are continuous and

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L, \quad \text { with } \quad 0<L<\infty
$$

then the integrals

$$
\int_{a}^{\infty} f(x) d x, \quad \int_{a}^{\infty} g(x) d x
$$

both converge or both diverge.

## Convergence test: Limit comparison test

Remark: Convergence tests determine whether an improper integral converges or diverges.

Theorem (Limit comparison test)
If positive functions $f, g:[a, \infty) \rightarrow \mathbb{R}$ are continuous and

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L, \quad \text { with } \quad 0<L<\infty
$$

then the integrals

$$
\int_{a}^{\infty} f(x) d x, \quad \int_{a}^{\infty} g(x) d x
$$

both converge or both diverge.
Remark: Although both integrals above may converge, their values need not be the same.

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: The convergence of integrals involving rational functions is simple to determine with the limit comparison test.

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: The convergence of integrals involving rational functions is simple to determine with the limit comparison test.

First, determine the behavior of the rational function as $x \rightarrow \infty$;

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: The convergence of integrals involving rational functions is simple to determine with the limit comparison test.

First, determine the behavior of the rational function as $x \rightarrow \infty$;

$$
\frac{1}{\sqrt{x^{6}+1}} \rightarrow \frac{1}{x^{3}}, \quad \text { as } \quad x \rightarrow \infty
$$

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: The convergence of integrals involving rational functions is simple to determine with the limit comparison test.

First, determine the behavior of the rational function as $x \rightarrow \infty$;

$$
\frac{1}{\sqrt{x^{6}+1}} \rightarrow \frac{1}{x^{3}}, \quad \text { as } \quad x \rightarrow \infty
$$

Then, chose the limit comparison function $g(x)=1 / x^{3}$;

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: The convergence of integrals involving rational functions is simple to determine with the limit comparison test.

First, determine the behavior of the rational function as $x \rightarrow \infty$;

$$
\frac{1}{\sqrt{x^{6}+1}} \rightarrow \frac{1}{x^{3}}, \quad \text { as } \quad x \rightarrow \infty
$$

Then, chose the limit comparison function $g(x)=1 / x^{3}$; since

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: The convergence of integrals involving rational functions is simple to determine with the limit comparison test.

First, determine the behavior of the rational function as $x \rightarrow \infty$;

$$
\frac{1}{\sqrt{x^{6}+1}} \rightarrow \frac{1}{x^{3}}, \quad \text { as } \quad x \rightarrow \infty
$$

Then, chose the limit comparison function $g(x)=1 / x^{3}$; since

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{1 / \sqrt{x^{6}+1}}{1 / x^{3}}
$$

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: The convergence of integrals involving rational functions is simple to determine with the limit comparison test.

First, determine the behavior of the rational function as $x \rightarrow \infty$;

$$
\frac{1}{\sqrt{x^{6}+1}} \rightarrow \frac{1}{x^{3}}, \quad \text { as } \quad x \rightarrow \infty
$$

Then, chose the limit comparison function $g(x)=1 / x^{3}$; since

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{1 / \sqrt{x^{6}+1}}{1 / x^{3}}=\lim _{x \rightarrow \infty} \frac{x^{3}}{\sqrt{x^{6}+1}}
$$

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: The convergence of integrals involving rational functions is simple to determine with the limit comparison test.

First, determine the behavior of the rational function as $x \rightarrow \infty$;

$$
\frac{1}{\sqrt{x^{6}+1}} \rightarrow \frac{1}{x^{3}}, \quad \text { as } \quad x \rightarrow \infty
$$

Then, chose the limit comparison function $g(x)=1 / x^{3}$; since

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{1 / \sqrt{x^{6}+1}}{1 / x^{3}}=\lim _{x \rightarrow \infty} \frac{x^{3}}{\sqrt{x^{6}+1}}=1
$$

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges or diverges.
Solution: The convergence of integrals involving rational functions is simple to determine with the limit comparison test.

First, determine the behavior of the rational function as $x \rightarrow \infty$;

$$
\frac{1}{\sqrt{x^{6}+1}} \rightarrow \frac{1}{x^{3}}, \quad \text { as } \quad x \rightarrow \infty
$$

Then, chose the limit comparison function $g(x)=1 / x^{3}$; since

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{1 / \sqrt{x^{6}+1}}{1 / x^{3}}=\lim _{x \rightarrow \infty} \frac{x^{3}}{\sqrt{x^{6}+1}}=1
$$

Since $\int_{1}^{\infty} \frac{d x}{x^{3}}$ converges, then $\int_{1}^{\infty} \frac{d x}{\sqrt{x^{6}+1}}$ converges too.

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.
Solution: Choose the comparison function $g(x)=1 / \ln (x)$;

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.
Solution: Choose the comparison function $g(x)=1 / \ln (x)$;

$$
\lim _{x \rightarrow \infty} \frac{1 /(2+\cos (x)+\ln (x))}{1 / \ln (x)}
$$

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.
Solution: Choose the comparison function $g(x)=1 / \ln (x)$;

$$
\lim _{x \rightarrow \infty} \frac{1 /(2+\cos (x)+\ln (x))}{1 / \ln (x)}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{(2+\cos (x)+\ln (x))}
$$

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.
Solution: Choose the comparison function $g(x)=1 / \ln (x)$;

$$
\lim _{x \rightarrow \infty} \frac{1 /(2+\cos (x)+\ln (x))}{1 / \ln (x)}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{(2+\cos (x)+\ln (x))}=1 .
$$

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.
Solution: Choose the comparison function $g(x)=1 / \ln (x)$;

$$
\lim _{x \rightarrow \infty} \frac{1 /(2+\cos (x)+\ln (x))}{1 / \ln (x)}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{(2+\cos (x)+\ln (x))}=1 .
$$

The limit comparison test says:

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.
Solution: Choose the comparison function $g(x)=1 / \ln (x)$;

$$
\lim _{x \rightarrow \infty} \frac{1 /(2+\cos (x)+\ln (x))}{1 / \ln (x)}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{(2+\cos (x)+\ln (x))}=1 .
$$

The limit comparison test says: The integral I converges iff $J=\int_{3}^{\infty} \frac{d x}{\ln (x)}$ converges.

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.
Solution: Choose the comparison function $g(x)=1 / \ln (x)$;

$$
\lim _{x \rightarrow \infty} \frac{1 /(2+\cos (x)+\ln (x))}{1 / \ln (x)}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{(2+\cos (x)+\ln (x))}=1 .
$$

The limit comparison test says: The integral I converges iff $J=\int_{3}^{\infty} \frac{d x}{\ln (x)}$ converges. We need to find out if $J$ converges.

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.
Solution: Choose the comparison function $g(x)=1 / \ln (x)$;

$$
\lim _{x \rightarrow \infty} \frac{1 /(2+\cos (x)+\ln (x))}{1 / \ln (x)}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{(2+\cos (x)+\ln (x))}=1 .
$$

The limit comparison test says: The integral / converges iff $J=\int_{3}^{\infty} \frac{d x}{\ln (x)}$ converges. We need to find out if $J$ converges.
We now use the direct comparison test:

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.
Solution: Choose the comparison function $g(x)=1 / \ln (x)$;

$$
\lim _{x \rightarrow \infty} \frac{1 /(2+\cos (x)+\ln (x))}{1 / \ln (x)}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{(2+\cos (x)+\ln (x))}=1 .
$$

The limit comparison test says: The integral / converges iff $J=\int_{3}^{\infty} \frac{d x}{\ln (x)}$ converges. We need to find out if $J$ converges.
We now use the direct comparison test: for $x>0$ holds

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.
Solution: Choose the comparison function $g(x)=1 / \ln (x)$;

$$
\lim _{x \rightarrow \infty} \frac{1 /(2+\cos (x)+\ln (x))}{1 / \ln (x)}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{(2+\cos (x)+\ln (x))}=1 .
$$

The limit comparison test says: The integral / converges iff $J=\int_{3}^{\infty} \frac{d x}{\ln (x)}$ converges. We need to find out if $J$ converges.
We now use the direct comparison test: for $x>0$ holds

$$
\ln (x)<x
$$

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.
Solution: Choose the comparison function $g(x)=1 / \ln (x)$;

$$
\lim _{x \rightarrow \infty} \frac{1 /(2+\cos (x)+\ln (x))}{1 / \ln (x)}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{(2+\cos (x)+\ln (x))}=1 .
$$

The limit comparison test says: The integral I converges iff $J=\int_{3}^{\infty} \frac{d x}{\ln (x)}$ converges. We need to find out if $J$ converges.
We now use the direct comparison test: for $x>0$ holds

$$
\ln (x)<x \quad \Rightarrow \quad \frac{1}{x}<\frac{1}{\ln (x)}
$$

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.
Solution: Choose the comparison function $g(x)=1 / \ln (x)$;

$$
\lim _{x \rightarrow \infty} \frac{1 /(2+\cos (x)+\ln (x))}{1 / \ln (x)}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{(2+\cos (x)+\ln (x))}=1 .
$$

The limit comparison test says: The integral I converges iff $J=\int_{3}^{\infty} \frac{d x}{\ln (x)}$ converges. We need to find out if $J$ converges.
We now use the direct comparison test: for $x>0$ holds

$$
\ln (x)<x \Rightarrow \frac{1}{x}<\frac{1}{\ln (x)} \Rightarrow \int_{3}^{\infty} \frac{d x}{x}<\int_{3}^{\infty} \frac{d x}{\ln (x)} .
$$

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.
Solution: Choose the comparison function $g(x)=1 / \ln (x)$;

$$
\lim _{x \rightarrow \infty} \frac{1 /(2+\cos (x)+\ln (x))}{1 / \ln (x)}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{(2+\cos (x)+\ln (x))}=1 .
$$

The limit comparison test says: The integral I converges iff $J=\int_{3}^{\infty} \frac{d x}{\ln (x)}$ converges. We need to find out if $J$ converges.
We now use the direct comparison test: for $x>0$ holds

$$
\ln (x)<x \Rightarrow \frac{1}{x}<\frac{1}{\ln (x)} \Rightarrow \int_{3}^{\infty} \frac{d x}{x}<\int_{3}^{\infty} \frac{d x}{\ln (x)} .
$$

Since $\int_{3}^{\infty} \frac{d x}{x}$ diverges,

## Convergence test: Limit comparison test

## Example

Determine whether $I=\int_{3}^{\infty} \frac{d x}{(2+\cos (x)+\ln (x))}$ converges or not.
Solution: Choose the comparison function $g(x)=1 / \ln (x)$;

$$
\lim _{x \rightarrow \infty} \frac{1 /(2+\cos (x)+\ln (x))}{1 / \ln (x)}=\lim _{x \rightarrow \infty} \frac{\ln (x)}{(2+\cos (x)+\ln (x))}=1 .
$$

The limit comparison test says: The integral I converges of $J=\int_{3}^{\infty} \frac{d x}{\ln (x)}$ converges. We need to find out if $J$ converges.
We now use the direct comparison test: for $x>0$ holds

$$
\ln (x)<x \Rightarrow \frac{1}{x}<\frac{1}{\ln (x)} \Rightarrow \int_{3}^{\infty} \frac{d x}{x}<\int_{3}^{\infty} \frac{d x}{\ln (x)} .
$$

Since $\int_{3}^{\infty} \frac{d x}{x}$ diverges, then both $J$ and $/$ diverge.

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{3}^{\infty} \frac{x d x}{\sqrt{x^{5}+x^{3}}}$ converges or not.

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{3}^{\infty} \frac{x d x}{\sqrt{x^{5}+x^{3}}}$ converges or not.
Solution: First, find an appropriate function $g(x)$ such that:

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{3}^{\infty} \frac{x d x}{\sqrt{x^{5}+x^{3}}}$ converges or not.
Solution: First, find an appropriate function $g(x)$ such that:

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{5}+x^{3}}}
$$

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{3}^{\infty} \frac{x d x}{\sqrt{x^{5}+x^{3}}}$ converges or not.
Solution: First, find an appropriate function $g(x)$ such that:

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{5}+x^{3}}}=\lim _{x \rightarrow \infty} \frac{x}{x^{5 / 2}}
$$

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{3}^{\infty} \frac{x d x}{\sqrt{x^{5}+x^{3}}}$ converges or not.
Solution: First, find an appropriate function $g(x)$ such that:

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{5}+x^{3}}}=\lim _{x \rightarrow \infty} \frac{x}{x^{5 / 2}}=\lim _{x \rightarrow \infty} \frac{1}{x^{3 / 2}} .
$$

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{3}^{\infty} \frac{x d x}{\sqrt{x^{5}+x^{3}}}$ converges or not.
Solution: First, find an appropriate function $g(x)$ such that:

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{5}+x^{3}}}=\lim _{x \rightarrow \infty} \frac{x}{x^{5 / 2}}=\lim _{x \rightarrow \infty} \frac{1}{x^{3 / 2}} .
$$

Therefore, we use the limit comparison test with $g(x)=x^{-3 / 2}$.

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{3}^{\infty} \frac{x d x}{\sqrt{x^{5}+x^{3}}}$ converges or not.
Solution: First, find an appropriate function $g(x)$ such that:

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{5}+x^{3}}}=\lim _{x \rightarrow \infty} \frac{x}{x^{5 / 2}}=\lim _{x \rightarrow \infty} \frac{1}{x^{3 / 2}}
$$

Therefore, we use the limit comparison test with $g(x)=x^{-3 / 2}$. Then, by construction,

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{3}^{\infty} \frac{x d x}{\sqrt{x^{5}+x^{3}}}$ converges or not.
Solution: First, find an appropriate function $g(x)$ such that:

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{5}+x^{3}}}=\lim _{x \rightarrow \infty} \frac{x}{x^{5 / 2}}=\lim _{x \rightarrow \infty} \frac{1}{x^{3 / 2}} .
$$

Therefore, we use the limit comparison test with $g(x)=x^{-3 / 2}$. Then, by construction,

$$
\lim _{x \rightarrow \infty}\left(\frac{x}{\sqrt{x^{5}+x^{3}}}\right)\left(\frac{1}{x^{-3 / 2}}\right)
$$

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{3}^{\infty} \frac{x d x}{\sqrt{x^{5}+x^{3}}}$ converges or not.
Solution: First, find an appropriate function $g(x)$ such that:

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{5}+x^{3}}}=\lim _{x \rightarrow \infty} \frac{x}{x^{5 / 2}}=\lim _{x \rightarrow \infty} \frac{1}{x^{3 / 2}} .
$$

Therefore, we use the limit comparison test with $g(x)=x^{-3 / 2}$. Then, by construction,

$$
\lim _{x \rightarrow \infty}\left(\frac{x}{\sqrt{x^{5}+x^{3}}}\right)\left(\frac{1}{x^{-3 / 2}}\right)=\lim _{x \rightarrow \infty}\left(\frac{x}{x^{5 / 2}}\right)\left(\frac{1}{x^{-3 / 2}}\right)
$$

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{3}^{\infty} \frac{x d x}{\sqrt{x^{5}+x^{3}}}$ converges or not.
Solution: First, find an appropriate function $g(x)$ such that:

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{5}+x^{3}}}=\lim _{x \rightarrow \infty} \frac{x}{x^{5 / 2}}=\lim _{x \rightarrow \infty} \frac{1}{x^{3 / 2}} .
$$

Therefore, we use the limit comparison test with $g(x)=x^{-3 / 2}$. Then, by construction,

$$
\lim _{x \rightarrow \infty}\left(\frac{x}{\sqrt{x^{5}+x^{3}}}\right)\left(\frac{1}{x^{-3 / 2}}\right)=\lim _{x \rightarrow \infty}\left(\frac{x}{x^{5 / 2}}\right)\left(\frac{1}{x^{-3 / 2}}\right)=1 .
$$

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{3}^{\infty} \frac{x d x}{\sqrt{x^{5}+x^{3}}}$ converges or not.
Solution: First, find an appropriate function $g(x)$ such that:

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{5}+x^{3}}}=\lim _{x \rightarrow \infty} \frac{x}{x^{5 / 2}}=\lim _{x \rightarrow \infty} \frac{1}{x^{3 / 2}} .
$$

Therefore, we use the limit comparison test with $g(x)=x^{-3 / 2}$. Then, by construction,

$$
\lim _{x \rightarrow \infty}\left(\frac{x}{\sqrt{x^{5}+x^{3}}}\right)\left(\frac{1}{x^{-3 / 2}}\right)=\lim _{x \rightarrow \infty}\left(\frac{x}{x^{5 / 2}}\right)\left(\frac{1}{x^{-3 / 2}}\right)=1 .
$$

Since $\int_{3}^{\infty} x^{-3 / 2} d x=-\left.2 x^{-1 / 2}\right|_{3} ^{\infty}$

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{3}^{\infty} \frac{x d x}{\sqrt{x^{5}+x^{3}}}$ converges or not.
Solution: First, find an appropriate function $g(x)$ such that:

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{5}+x^{3}}}=\lim _{x \rightarrow \infty} \frac{x}{x^{5 / 2}}=\lim _{x \rightarrow \infty} \frac{1}{x^{3 / 2}} .
$$

Therefore, we use the limit comparison test with $g(x)=x^{-3 / 2}$. Then, by construction,

$$
\lim _{x \rightarrow \infty}\left(\frac{x}{\sqrt{x^{5}+x^{3}}}\right)\left(\frac{1}{x^{-3 / 2}}\right)=\lim _{x \rightarrow \infty}\left(\frac{x}{x^{5 / 2}}\right)\left(\frac{1}{x^{-3 / 2}}\right)=1 .
$$

Since $\int_{3}^{\infty} x^{-3 / 2} d x=-\left.2 x^{-1 / 2}\right|_{3} ^{\infty}=-2\left(0-\frac{1}{\sqrt{3}}\right)$

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{3}^{\infty} \frac{x d x}{\sqrt{x^{5}+x^{3}}}$ converges or not.
Solution: First, find an appropriate function $g(x)$ such that:

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{5}+x^{3}}}=\lim _{x \rightarrow \infty} \frac{x}{x^{5 / 2}}=\lim _{x \rightarrow \infty} \frac{1}{x^{3 / 2}} .
$$

Therefore, we use the limit comparison test with $g(x)=x^{-3 / 2}$. Then, by construction,

$$
\lim _{x \rightarrow \infty}\left(\frac{x}{\sqrt{x^{5}+x^{3}}}\right)\left(\frac{1}{x^{-3 / 2}}\right)=\lim _{x \rightarrow \infty}\left(\frac{x}{x^{5 / 2}}\right)\left(\frac{1}{x^{-3 / 2}}\right)=1 .
$$

Since $\int_{3}^{\infty} x^{-3 / 2} d x=-\left.2 x^{-1 / 2}\right|_{3} ^{\infty}=-2\left(0-\frac{1}{\sqrt{3}}\right)=\frac{2}{\sqrt{3}}$,

## Convergence test: Limit comparison test

Example
Determine whether $I=\int_{3}^{\infty} \frac{x d x}{\sqrt{x^{5}+x^{3}}}$ converges or not.
Solution: First, find an appropriate function $g(x)$ such that:

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{5}+x^{3}}}=\lim _{x \rightarrow \infty} \frac{x}{x^{5 / 2}}=\lim _{x \rightarrow \infty} \frac{1}{x^{3 / 2}} .
$$

Therefore, we use the limit comparison test with $g(x)=x^{-3 / 2}$. Then, by construction,

$$
\lim _{x \rightarrow \infty}\left(\frac{x}{\sqrt{x^{5}+x^{3}}}\right)\left(\frac{1}{x^{-3 / 2}}\right)=\lim _{x \rightarrow \infty}\left(\frac{x}{x^{5 / 2}}\right)\left(\frac{1}{x^{-3 / 2}}\right)=1 .
$$

Since $\int_{3}^{\infty} x^{-3 / 2} d x=-\left.2 x^{-1 / 2}\right|_{3} ^{\infty}=-2\left(0-\frac{1}{\sqrt{3}}\right)=\frac{2}{\sqrt{3}}$,
we conclude that I converges.

## Infinite sequences (Sect. 10.1)

Today's Lecture:

- Overview: Sequences, series, and calculus.
- Definition and geometrical representations.
- The limit of a sequence, convergence, divergence.
- Properties of sequence limits.
- The Sandwich Theorem for sequences.

Next Lecture:

- The Continuous Function Theorem for sequences.
- Using L'Hôpital's rule on sequences.
- Table of useful limits.
- Bounded and monotonic sequences.


## Overview: Sequences, series, and calculus

Remarks:

- We have defined the $\int_{a}^{b} f(x) d x$ as a limit of partial sums.


## Overview: Sequences, series, and calculus

Remarks:

- We have defined the $\int_{a}^{b} f(x) d x$ as a limit of partial sums.

That is, as an infinite sum of numbers (areas of rectangles).

## Overview: Sequences, series, and calculus

Remarks:

- We have defined the $\int_{a}^{b} f(x) d x$ as a limit of partial sums. That is, as an infinite sum of numbers (areas of rectangles).
- In the next section we define, precisely, what is an infinite sum.


## Overview: Sequences, series, and calculus

Remarks:

- We have defined the $\int_{a}^{b} f(x) d x$ as a limit of partial sums. That is, as an infinite sum of numbers (areas of rectangles).
- In the next section we define, precisely, what is an infinite sum. Infinite sums are called series.


## Overview: Sequences, series, and calculus

Remarks:

- We have defined the $\int_{a}^{b} f(x) d x$ as a limit of partial sums. That is, as an infinite sum of numbers (areas of rectangles).
- In the next section we define, precisely, what is an infinite sum. Infinite sums are called series.
- In this section we introduce the idea of an infinite sequence of numbers.


## Overview: Sequences, series, and calculus

Remarks:

- We have defined the $\int_{a}^{b} f(x) d x$ as a limit of partial sums. That is, as an infinite sum of numbers (areas of rectangles).
- In the next section we define, precisely, what is an infinite sum. Infinite sums are called series.
- In this section we introduce the idea of an infinite sequence of numbers. We will use sequences to define series.


## Overview: Sequences, series, and calculus

Remarks:

- We have defined the $\int_{a}^{b} f(x) d x$ as a limit of partial sums. That is, as an infinite sum of numbers (areas of rectangles).
- In the next section we define, precisely, what is an infinite sum. Infinite sums are called series.
- In this section we introduce the idea of an infinite sequence of numbers. We will use sequences to define series.
- Later on, the idea of infinite sums will be generalized from numbers to functions.


## Overview: Sequences, series, and calculus

Remarks:

- We have defined the $\int_{a}^{b} f(x) d x$ as a limit of partial sums. That is, as an infinite sum of numbers (areas of rectangles).
- In the next section we define, precisely, what is an infinite sum. Infinite sums are called series.
- In this section we introduce the idea of an infinite sequence of numbers. We will use sequences to define series.
- Later on, the idea of infinite sums will be generalized from numbers to functions.
- We will express differentiable functions as infinite sums of polynomials (Taylor series expansions).


## Overview: Sequences, series, and calculus

Remarks:

- We have defined the $\int_{a}^{b} f(x) d x$ as a limit of partial sums. That is, as an infinite sum of numbers (areas of rectangles).
- In the next section we define, precisely, what is an infinite sum. Infinite sums are called series.
- In this section we introduce the idea of an infinite sequence of numbers. We will use sequences to define series.
- Later on, the idea of infinite sums will be generalized from numbers to functions.
- We will express differentiable functions as infinite sums of polynomials (Taylor series expansions).
- Then we will be able to compute integrals like $\int_{a}^{b} e^{-x^{2}} d x$.


## Infinite sequences (Sect. 10.1)

- Overview: Sequences, series, and calculus.
- Definition and geometrical representations.
- The limit of a sequence, convergence, divergence.
- Properties of sequence limits.
- The Sandwich Theorem for sequences.


## Definition and geometrical representations

Definition
An infinite sequence of numbers is an ordered set of real numbers.

## Definition and geometrical representations

Definition
An infinite sequence of numbers is an ordered set of real numbers.

Remark: A sequence is denoted as

$$
\left\{a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots\right\}, \quad \text { or }\left\{a_{n}\right\}_{n=1}^{\infty}, \text { or }\left\{a_{n}\right\} .
$$

## Definition and geometrical representations

Definition
An infinite sequence of numbers is an ordered set of real numbers.

Remark: A sequence is denoted as

$$
\left\{a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots\right\}, \quad \text { or }\left\{a_{n}\right\}_{n=1}^{\infty}, \text { or }\left\{a_{n}\right\} .
$$

Example

$$
\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty},
$$

## Definition and geometrical representations

Definition
An infinite sequence of numbers is an ordered set of real numbers.

Remark: A sequence is denoted as

$$
\left\{a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots\right\}, \quad \text { or }\left\{a_{n}\right\}_{n=1}^{\infty}, \text { or }\left\{a_{n}\right\} .
$$

Example

$$
\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}, \quad a_{n}=\frac{n}{n+1},
$$

## Definition and geometrical representations

## Definition

An infinite sequence of numbers is an ordered set of real numbers.

Remark: A sequence is denoted as

$$
\left\{a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots\right\}, \quad \text { or }\left\{a_{n}\right\}_{n=1}^{\infty}, \quad \text { or }\left\{a_{n}\right\} .
$$

Example

$$
\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}, \quad a_{n}=\frac{n}{n+1}, \quad\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots, \frac{n}{n+1}, \cdots\right\} .
$$

## Definition and geometrical representations

## Definition

An infinite sequence of numbers is an ordered set of real numbers.

Remark: A sequence is denoted as

$$
\left\{a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots\right\}, \quad \text { or }\left\{a_{n}\right\}_{n=1}^{\infty}, \quad \text { or }\left\{a_{n}\right\} .
$$

Example

$$
\begin{aligned}
& \left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}, \quad a_{n}=\frac{n}{n+1}, \quad\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots, \frac{n}{n+1}, \cdots\right\} . \\
& \left\{(-1)^{n} \sqrt{n}\right\}_{n=3}^{\infty},
\end{aligned}
$$

## Definition and geometrical representations

## Definition

An infinite sequence of numbers is an ordered set of real numbers.

Remark: A sequence is denoted as

$$
\left\{a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots\right\}, \quad \text { or }\left\{a_{n}\right\}_{n=1}^{\infty}, \quad \text { or }\left\{a_{n}\right\} .
$$

Example

$$
\begin{aligned}
& \left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}, \quad a_{n}=\frac{n}{n+1}, \quad\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots, \frac{n}{n+1}, \cdots\right\} . \\
& \left\{(-1)^{n} \sqrt{n}\right\}_{n=3}^{\infty}, \quad a_{n}=(-1)^{n} \sqrt{n},
\end{aligned}
$$

## Definition and geometrical representations

## Definition

An infinite sequence of numbers is an ordered set of real numbers.

Remark: A sequence is denoted as

$$
\left\{a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots\right\}, \quad \text { or }\left\{a_{n}\right\}_{n=1}^{\infty}, \quad \text { or }\left\{a_{n}\right\} .
$$

Example

$$
\begin{aligned}
& \left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}, \quad a_{n}=\frac{n}{n+1}, \quad\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots, \frac{n}{n+1}, \cdots\right\} . \\
& \left\{(-1)^{n} \sqrt{n}\right\}_{n=3}^{\infty}, \quad a_{n}=(-1)^{n} \sqrt{n}, \quad\{-\sqrt{3}, \sqrt{4},-\sqrt{5}, \cdots\} .
\end{aligned}
$$

## Definition and geometrical representations

## Definition

An infinite sequence of numbers is an ordered set of real numbers.

Remark: A sequence is denoted as

$$
\left\{a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots\right\}, \quad \text { or }\left\{a_{n}\right\}_{n=1}^{\infty}, \quad \text { or }\left\{a_{n}\right\} .
$$

Example

$$
\begin{aligned}
& \left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}, \quad a_{n}=\frac{n}{n+1}, \quad\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots, \frac{n}{n+1}, \cdots\right\} \\
& \left\{(-1)^{n} \sqrt{n}\right\}_{n=3}^{\infty}, \quad a_{n}=(-1)^{n} \sqrt{n}, \quad\{-\sqrt{3}, \sqrt{4},-\sqrt{5}, \cdots\} \\
& \{\cos (n \pi / 6)\}_{n=0}^{\infty}
\end{aligned}
$$

## Definition and geometrical representations

## Definition

An infinite sequence of numbers is an ordered set of real numbers.

Remark: A sequence is denoted as

$$
\left\{a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots\right\}, \quad \text { or }\left\{a_{n}\right\}_{n=1}^{\infty}, \quad \text { or }\left\{a_{n}\right\} .
$$

Example

$$
\begin{aligned}
& \left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}, \quad a_{n}=\frac{n}{n+1}, \quad\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots, \frac{n}{n+1}, \cdots\right\} \\
& \left\{(-1)^{n} \sqrt{n}\right\}_{n=3}^{\infty}, \quad a_{n}=(-1)^{n} \sqrt{n}, \quad\{-\sqrt{3}, \sqrt{4},-\sqrt{5}, \cdots\} \\
& \{\cos (n \pi / 6)\}_{n=0}^{\infty}, \quad a_{n}=\cos (n \pi / 6)
\end{aligned}
$$

## Definition and geometrical representations

## Definition

An infinite sequence of numbers is an ordered set of real numbers.

Remark: A sequence is denoted as

$$
\left\{a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots\right\}, \quad \text { or }\left\{a_{n}\right\}_{n=1}^{\infty}, \quad \text { or }\left\{a_{n}\right\} .
$$

Example

$$
\begin{aligned}
& \left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}, \quad a_{n}=\frac{n}{n+1}, \quad\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots, \frac{n}{n+1}, \cdots\right\} \\
& \left\{(-1)^{n} \sqrt{n}\right\}_{n=3}^{\infty}, \quad a_{n}=(-1)^{n} \sqrt{n}, \quad\{-\sqrt{3}, \sqrt{4},-\sqrt{5}, \cdots\} \\
& \{\cos (n \pi / 6)\}_{n=0}^{\infty}, \quad a_{n}=\cos (n \pi / 6), \quad\left\{1, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \cdots\right\}
\end{aligned}
$$

## Definition and geometrical representations

## Example

Find a formula for the general term of the sequence

$$
\left\{\frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \cdots\right\} .
$$

## Definition and geometrical representations

## Example

Find a formula for the general term of the sequence

$$
\left\{\frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \cdots\right\} .
$$

Solution: We know that:

$$
a_{1}=\frac{3}{5},
$$

## Definition and geometrical representations

## Example

Find a formula for the general term of the sequence

$$
\left\{\frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \cdots\right\} .
$$

Solution: We know that:

$$
a_{1}=\frac{3}{5}, \quad a_{2}=-\frac{4}{25},
$$

## Definition and geometrical representations

## Example

Find a formula for the general term of the sequence

$$
\left\{\frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \cdots\right\} .
$$

Solution: We know that:

$$
a_{1}=\frac{3}{5}, \quad a_{2}=-\frac{4}{25}, \quad a_{3}=\frac{5}{125},
$$

## Definition and geometrical representations

## Example

Find a formula for the general term of the sequence

$$
\left\{\frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \cdots\right\}
$$

Solution: We know that:

$$
a_{1}=\frac{3}{5}, \quad a_{2}=-\frac{4}{25}, \quad a_{3}=\frac{5}{125}, \quad a_{4}=-\frac{6}{625} .
$$

## Definition and geometrical representations

## Example

Find a formula for the general term of the sequence

$$
\left\{\frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \cdots\right\}
$$

Solution: We know that:

$$
\begin{aligned}
& \quad a_{1}=\frac{3}{5}, \quad a_{2}=-\frac{4}{25}, \quad a_{3}=\frac{5}{125}, \quad a_{4}=-\frac{6}{625} . \\
& a_{1}=\frac{(1+2)}{5},
\end{aligned}
$$

## Definition and geometrical representations

## Example

Find a formula for the general term of the sequence

$$
\left\{\frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \cdots\right\} .
$$

Solution: We know that:

$$
\begin{aligned}
& a_{1}=\frac{3}{5}, \quad a_{2}=-\frac{4}{25}, \quad a_{3}=\frac{5}{125}, \quad a_{4}=-\frac{6}{625} . \\
& a_{1}=\frac{(1+2)}{5}, \quad a_{2}=-\frac{(2+2)}{5^{2}},
\end{aligned}
$$

## Definition and geometrical representations

## Example

Find a formula for the general term of the sequence

$$
\left\{\frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \cdots\right\} .
$$

Solution: We know that:

$$
\begin{aligned}
& a_{1}=\frac{3}{5}, \quad a_{2}=-\frac{4}{25}, \quad a_{3}=\frac{5}{125}, \quad a_{4}=-\frac{6}{625} . \\
& a_{1}=\frac{(1+2)}{5}, \quad a_{2}=-\frac{(2+2)}{5^{2}}, \quad a_{3}=\frac{(3+2)}{5^{3}},
\end{aligned}
$$

## Definition and geometrical representations

## Example

Find a formula for the general term of the sequence

$$
\left\{\frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \cdots\right\} .
$$

Solution: We know that:

$$
\begin{gathered}
a_{1}=\frac{3}{5}, \quad a_{2}=-\frac{4}{25}, \quad a_{3}=\frac{5}{125}, \quad a_{4}=-\frac{6}{625} . \\
a_{1}=\frac{(1+2)}{5}, \quad a_{2}=-\frac{(2+2)}{5^{2}}, \quad a_{3}=\frac{(3+2)}{5^{3}}, \quad a_{4}=-\frac{(4+2)}{5^{4}} .
\end{gathered}
$$

## Definition and geometrical representations

## Example

Find a formula for the general term of the sequence

$$
\left\{\frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \cdots\right\} .
$$

Solution: We know that:
$a_{1}=\frac{3}{5}, \quad a_{2}=-\frac{4}{25}, \quad a_{3}=\frac{5}{125}, \quad a_{4}=-\frac{6}{625}$.
$a_{1}=\frac{(1+2)}{5}, \quad a_{2}=-\frac{(2+2)}{5^{2}}, \quad a_{3}=\frac{(3+2)}{5^{3}}, \quad a_{4}=-\frac{(4+2)}{5^{4}}$.
We conclude that $a_{n}=(-1)^{(n-1)} \frac{(n+2)}{5^{n}}$.

## Definition and geometrical representations

Remark:
Infinite sequences can be represented on a line or on a plane.

## Definition and geometrical representations

Remark:
Infinite sequences can be represented on a line or on a plane.
Example
Graph the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ on a line and on a plane.

## Definition and geometrical representations

Remark:
Infinite sequences can be represented on a line or on a plane.
Example
Graph the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ on a line and on a plane.
Solution:



## Infinite sequences (Sect. 10.1)

- Overview: Sequences, series, and calculus.
- Definition and geometrical representations.
- The limit of a sequence, convergence, divergence.
- Properties of sequence limits.
- The Sandwich Theorem for sequences.


## The limit of a sequence, convergence, divergence

Remark:

- As it happened in the example above, the numbers $a_{n}$ in a sequence may approach a single value as $n$ increases.


## The limit of a sequence, convergence, divergence

Remark:

- As it happened in the example above, the numbers $a_{n}$ in a sequence may approach a single value as $n$ increases.

$$
\left\{a_{n}=\frac{1}{n}\right\}_{n=1}^{\infty}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\} \rightarrow 0
$$

## The limit of a sequence, convergence, divergence

Remark:

- As it happened in the example above, the numbers $a_{n}$ in a sequence may approach a single value as $n$ increases.

$$
\left\{a_{n}=\frac{1}{n}\right\}_{n=1}^{\infty}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\} \rightarrow 0
$$

- This is not the case for every sequence.


## The limit of a sequence, convergence, divergence

Remark:

- As it happened in the example above, the numbers $a_{n}$ in a sequence may approach a single value as $n$ increases.

$$
\left\{a_{n}=\frac{1}{n}\right\}_{n=1}^{\infty}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\} \rightarrow 0 .
$$

- This is not the case for every sequence. The sequence elements may grow unbounded:


## The limit of a sequence, convergence, divergence

Remark:

- As it happened in the example above, the numbers $a_{n}$ in a sequence may approach a single value as $n$ increases.

$$
\left\{a_{n}=\frac{1}{n}\right\}_{n=1}^{\infty}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\} \rightarrow 0 .
$$

- This is not the case for every sequence. The sequence elements may grow unbounded:

$$
\left\{n^{2}\right\}_{n=1}^{\infty}=\{1,4,9,16, \cdots\} .
$$

## The limit of a sequence, convergence, divergence

Remark:

- As it happened in the example above, the numbers $a_{n}$ in a sequence may approach a single value as $n$ increases.

$$
\left\{a_{n}=\frac{1}{n}\right\}_{n=1}^{\infty}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\} \rightarrow 0
$$

- This is not the case for every sequence. The sequence elements may grow unbounded:

$$
\left\{n^{2}\right\}_{n=1}^{\infty}=\{1,4,9,16, \cdots\}
$$

The sequence numbers may oscillate:

## The limit of a sequence, convergence, divergence

## Remark:

- As it happened in the example above, the numbers $a_{n}$ in a sequence may approach a single value as $n$ increases.

$$
\left\{a_{n}=\frac{1}{n}\right\}_{n=1}^{\infty}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\} \rightarrow 0 .
$$

- This is not the case for every sequence. The sequence elements may grow unbounded:

$$
\left\{n^{2}\right\}_{n=1}^{\infty}=\{1,4,9,16, \cdots\} .
$$

The sequence numbers may oscillate:

$$
\left\{(-1)^{n}\right\}_{n=0}^{\infty}=\{1,-1,1,-1,1, \cdots\} .
$$

## The limit of a sequence, convergence, divergence

## Definition

An infinite sequence $\left\{a_{n}\right\}$ has limit $L$ iff for every number $\epsilon>0$ there exists a positive integer $N$ such that

$$
N<n \quad \Rightarrow \quad\left|a_{n}-L\right|<\epsilon .
$$

## The limit of a sequence, convergence, divergence

## Definition

An infinite sequence $\left\{a_{n}\right\}$ has limit $L$ iff for every number $\epsilon>0$ there exists a positive integer $N$ such that

$$
N<n \quad \Rightarrow \quad\left|a_{n}-L\right|<\epsilon .
$$

A sequence is called convergent iff it has a limit, otherwise it is called divergent.

## The limit of a sequence, convergence, divergence

## Definition

An infinite sequence $\left\{a_{n}\right\}$ has limit $L$ iff for every number $\epsilon>0$ there exists a positive integer $N$ such that

$$
N<n \quad \Rightarrow \quad\left|a_{n}-L\right|<\epsilon .
$$

A sequence is called convergent iff it has a limit, otherwise it is called divergent.

Remark: We use the notation $\lim _{n \rightarrow \infty} a_{n}=L$ or $a_{n} \rightarrow L$.

## The limit of a sequence, convergence, divergence

## Definition

An infinite sequence $\left\{a_{n}\right\}$ has limit $L$ iff for every number $\epsilon>0$ there exists a positive integer $N$ such that

$$
N<n \quad \Rightarrow \quad\left|a_{n}-L\right|<\epsilon .
$$

A sequence is called convergent iff it has a limit, otherwise it is called divergent.

Remark: We use the notation $\lim _{n \rightarrow \infty} a_{n}=L$ or $a_{n} \rightarrow L$.
Example
Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.

## The limit of a sequence, convergence, divergence

## Definition

An infinite sequence $\left\{a_{n}\right\}$ has limit $L$ iff for every number $\epsilon>0$ there exists a positive integer $N$ such that

$$
N<n \quad \Rightarrow \quad\left|a_{n}-L\right|<\epsilon .
$$

A sequence is called convergent iff it has a limit, otherwise it is called divergent.

Remark: We use the notation $\lim _{n \rightarrow \infty} a_{n}=L$ or $a_{n} \rightarrow L$.

Example
Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Since $\frac{1}{n^{2}} \rightarrow 0$, we will prove that $L=1$.

The limit of a sequence, convergence, divergence
Example
Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Recall: The candidate for limit is $L=1$.

## The limit of a sequence, convergence, divergence

## Example

Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Recall: The candidate for limit is $L=1$.
Given any $\epsilon>0$, we need to find the appropriate $N$.

## The limit of a sequence, convergence, divergence

## Example

Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Recall: The candidate for limit is $L=1$.
Given any $\epsilon>0$, we need to find the appropriate $N$. Since

$$
\left|a_{n}-1\right|<\epsilon
$$

## The limit of a sequence, convergence, divergence

## Example

Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Recall: The candidate for limit is $L=1$.
Given any $\epsilon>0$, we need to find the appropriate $N$. Since

$$
\left|a_{n}-1\right|<\epsilon \quad \Leftrightarrow \quad\left|\frac{3}{n^{2}}\right|<\epsilon
$$

## The limit of a sequence, convergence, divergence

## Example

Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Recall: The candidate for limit is $L=1$.
Given any $\epsilon>0$, we need to find the appropriate $N$. Since

$$
\left|a_{n}-1\right|<\epsilon \quad \Leftrightarrow \quad\left|\frac{3}{n^{2}}\right|<\epsilon \quad \Leftrightarrow \quad \frac{3}{\epsilon}<n^{2}
$$

## The limit of a sequence, convergence, divergence

## Example

Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Recall: The candidate for limit is $L=1$.
Given any $\epsilon>0$, we need to find the appropriate $N$. Since

$$
\left|a_{n}-1\right|<\epsilon \Leftrightarrow\left|\frac{3}{n^{2}}\right|<\epsilon \quad \Leftrightarrow \quad \frac{3}{\epsilon}<n^{2} \quad \Leftrightarrow \quad \sqrt{\frac{3}{\epsilon}}<n .
$$

## The limit of a sequence, convergence, divergence

## Example

Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Recall: The candidate for limit is $L=1$.
Given any $\epsilon>0$, we need to find the appropriate $N$. Since

$$
\left|a_{n}-1\right|<\epsilon \quad \Leftrightarrow \quad\left|\frac{3}{n^{2}}\right|<\epsilon \quad \Leftrightarrow \quad \frac{3}{\epsilon}<n^{2} \quad \Leftrightarrow \quad \sqrt{\frac{3}{\epsilon}}<n .
$$

Therefore, given $\epsilon>0$, choose $N=\sqrt{\frac{3}{\epsilon}}$.

## The limit of a sequence, convergence, divergence

## Example

Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Recall: The candidate for limit is $L=1$.
Given any $\epsilon>0$, we need to find the appropriate $N$. Since

$$
\left|a_{n}-1\right|<\epsilon \quad \Leftrightarrow \quad\left|\frac{3}{n^{2}}\right|<\epsilon \quad \Leftrightarrow \quad \frac{3}{\epsilon}<n^{2} \quad \Leftrightarrow \quad \sqrt{\frac{3}{\epsilon}}<n .
$$

Therefore, given $\epsilon>0$, choose $N=\sqrt{\frac{3}{\epsilon}}$.
We then conclude that for all $n>N$ holds,

## The limit of a sequence, convergence, divergence

## Example

Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Recall: The candidate for limit is $L=1$.
Given any $\epsilon>0$, we need to find the appropriate $N$. Since

$$
\left|a_{n}-1\right|<\epsilon \quad \Leftrightarrow \quad\left|\frac{3}{n^{2}}\right|<\epsilon \quad \Leftrightarrow \quad \frac{3}{\epsilon}<n^{2} \quad \Leftrightarrow \quad \sqrt{\frac{3}{\epsilon}}<n .
$$

Therefore, given $\epsilon>0$, choose $N=\sqrt{\frac{3}{\epsilon}}$.
We then conclude that for all $n>N$ holds,

$$
\sqrt{\frac{3}{\epsilon}}<n
$$

## The limit of a sequence, convergence, divergence

## Example

Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Recall: The candidate for limit is $L=1$.
Given any $\epsilon>0$, we need to find the appropriate $N$. Since

$$
\left|a_{n}-1\right|<\epsilon \quad \Leftrightarrow \quad\left|\frac{3}{n^{2}}\right|<\epsilon \quad \Leftrightarrow \quad \frac{3}{\epsilon}<n^{2} \quad \Leftrightarrow \quad \sqrt{\frac{3}{\epsilon}}<n .
$$

Therefore, given $\epsilon>0$, choose $N=\sqrt{\frac{3}{\epsilon}}$.
We then conclude that for all $n>N$ holds,

$$
\sqrt{\frac{3}{\epsilon}}<n \quad \Leftrightarrow \quad \frac{3}{\epsilon}<n^{2}
$$

## The limit of a sequence, convergence, divergence

## Example

Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Recall: The candidate for limit is $L=1$.
Given any $\epsilon>0$, we need to find the appropriate $N$. Since

$$
\left|a_{n}-1\right|<\epsilon \quad \Leftrightarrow \quad\left|\frac{3}{n^{2}}\right|<\epsilon \quad \Leftrightarrow \quad \frac{3}{\epsilon}<n^{2} \quad \Leftrightarrow \quad \sqrt{\frac{3}{\epsilon}}<n .
$$

Therefore, given $\epsilon>0$, choose $N=\sqrt{\frac{3}{\epsilon}}$.
We then conclude that for all $n>N$ holds,

$$
\sqrt{\frac{3}{\epsilon}}<n \quad \Leftrightarrow \quad \frac{3}{\epsilon}<n^{2} \quad \Leftrightarrow \quad\left|\frac{3}{n^{2}}\right|<\epsilon
$$

## The limit of a sequence, convergence, divergence

## Example

Find the limit of the sequence $\left\{a_{n}=1+\frac{3}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Recall: The candidate for limit is $L=1$.
Given any $\epsilon>0$, we need to find the appropriate $N$. Since

$$
\left|a_{n}-1\right|<\epsilon \quad \Leftrightarrow \quad\left|\frac{3}{n^{2}}\right|<\epsilon \quad \Leftrightarrow \quad \frac{3}{\epsilon}<n^{2} \quad \Leftrightarrow \quad \sqrt{\frac{3}{\epsilon}}<n .
$$

Therefore, given $\epsilon>0$, choose $N=\sqrt{\frac{3}{\epsilon}}$.
We then conclude that for all $n>N$ holds,

$$
\sqrt{\frac{3}{\epsilon}}<n \quad \Leftrightarrow \quad \frac{3}{\epsilon}<n^{2} \quad \Leftrightarrow \quad\left|\frac{3}{n^{2}}\right|<\epsilon \quad \Leftrightarrow \quad\left|a_{n}-1\right|<\epsilon
$$

## Infinite sequences (Sect. 10.1)

- Overview: Sequences, series, and calculus.
- Definition and geometrical representations.
- The limit of a sequence, convergence, divergence.
- Properties of sequence limits.
- The Sandwich Theorem for sequences.


## Properties of sequence limits

Remark: The limits of simple sequences can be used to compute limits of more complicated sequences.

## Properties of sequence limits

Remark: The limits of simple sequences can be used to compute limits of more complicated sequences.

Theorem (Limit properties)
If the sequence $\left\{a_{n}\right\} \rightarrow A$ and $\left\{b_{n}\right\} \rightarrow B$, then holds,
(a) $\lim _{n \rightarrow \infty}\left\{a_{n}+b_{n}\right\}=A+B$;
(b) $\lim _{n \rightarrow \infty}\left\{a_{n}-b_{n}\right\}=A-B$;
(c) $\lim _{n \rightarrow \infty}\left\{k a_{n}\right\}=k A$;
(d) $\lim _{n \rightarrow \infty}\left\{a_{n} b_{n}\right\}=A B$;
(e) If $B \neq 0$, then $\lim _{n \rightarrow \infty}\left\{\frac{a_{n}}{b_{n}}\right\}=\frac{A}{B}$.

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{1-2 n}{2+3 n}\right\}_{n=1}^{\infty}$.

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{1-2 n}{2+3 n}\right\}_{n=1}^{\infty}$.
Solution: We use the properties above to find the limit.

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{1-2 n}{2+3 n}\right\}_{n=1}^{\infty}$.
Solution: We use the properties above to find the limit.
Rewrite the sequence as follows,

$$
a_{n}=\frac{(1-2 n)}{(2+3 n)}
$$

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{1-2 n}{2+3 n}\right\}_{n=1}^{\infty}$.
Solution: We use the properties above to find the limit.
Rewrite the sequence as follows,

$$
a_{n}=\frac{(1-2 n)}{(2+3 n)} \frac{\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)}
$$

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{1-2 n}{2+3 n}\right\}_{n=1}^{\infty}$.
Solution: We use the properties above to find the limit.
Rewrite the sequence as follows,

$$
a_{n}=\frac{(1-2 n)}{(2+3 n)} \frac{\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)}=\frac{\frac{1}{n}-2}{\frac{2}{n}+3}
$$

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{1-2 n}{2+3 n}\right\}_{n=1}^{\infty}$.
Solution: We use the properties above to find the limit.
Rewrite the sequence as follows,

$$
a_{n}=\frac{(1-2 n)}{(2+3 n)} \frac{\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)}=\frac{\frac{1}{n}-2}{\frac{2}{n}+3} .
$$

Since $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$,

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{1-2 n}{2+3 n}\right\}_{n=1}^{\infty}$.
Solution: We use the properties above to find the limit.
Rewrite the sequence as follows,

$$
a_{n}=\frac{(1-2 n)}{(2+3 n)} \frac{\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)}=\frac{\frac{1}{n}-2}{\frac{2}{n}+3} .
$$

Since $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\frac{1}{n}-2 \rightarrow-2
$$

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{1-2 n}{2+3 n}\right\}_{n=1}^{\infty}$.
Solution: We use the properties above to find the limit.
Rewrite the sequence as follows,

$$
a_{n}=\frac{(1-2 n)}{(2+3 n)} \frac{\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)}=\frac{\frac{1}{n}-2}{\frac{2}{n}+3} .
$$

Since $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\frac{1}{n}-2 \rightarrow-2, \quad \frac{2}{n} \rightarrow 0
$$

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{1-2 n}{2+3 n}\right\}_{n=1}^{\infty}$.
Solution: We use the properties above to find the limit.
Rewrite the sequence as follows,

$$
a_{n}=\frac{(1-2 n)}{(2+3 n)} \frac{\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)}=\frac{\frac{1}{n}-2}{\frac{2}{n}+3} .
$$

Since $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\frac{1}{n}-2 \rightarrow-2, \quad \frac{2}{n} \rightarrow 0, \quad \frac{2}{n}+3 \rightarrow 3
$$

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{1-2 n}{2+3 n}\right\}_{n=1}^{\infty}$.
Solution: We use the properties above to find the limit.
Rewrite the sequence as follows,

$$
a_{n}=\frac{(1-2 n)}{(2+3 n)} \frac{\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)}=\frac{\frac{1}{n}-2}{\frac{2}{n}+3} .
$$

Since $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\frac{1}{n}-2 \rightarrow-2, \quad \frac{2}{n} \rightarrow 0, \quad \frac{2}{n}+3 \rightarrow 3
$$

Hence, the quotient property implies $a_{n} \rightarrow-\frac{2}{3}$.

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{3 n^{3}-2 n+1}{2 n^{2}+4}\right\}_{n=1}^{\infty}$.

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{3 n^{3}-2 n+1}{2 n^{2}+4}\right\}_{n=1}^{\infty}$.
Solution: Rewrite the sequence as follows,

$$
a_{n}=\frac{\left(3 n^{3}-2 n+1\right)}{\left(2 n^{2}+4\right)}
$$

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{3 n^{3}-2 n+1}{2 n^{2}+4}\right\}_{n=1}^{\infty}$.
Solution: Rewrite the sequence as follows,

$$
a_{n}=\frac{\left(3 n^{3}-2 n+1\right)}{\left(2 n^{2}+4\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}
$$

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{3 n^{3}-2 n+1}{2 n^{2}+4}\right\}_{n=1}^{\infty}$.
Solution: Rewrite the sequence as follows,

$$
a_{n}=\frac{\left(3 n^{3}-2 n+1\right)}{\left(2 n^{2}+4\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{3 n-\frac{2}{n}+\frac{1}{n^{2}}}{2+\frac{4}{n^{2}}}
$$

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{3 n^{3}-2 n+1}{2 n^{2}+4}\right\}_{n=1}^{\infty}$.
Solution: Rewrite the sequence as follows,

$$
a_{n}=\frac{\left(3 n^{3}-2 n+1\right)}{\left(2 n^{2}+4\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{3 n-\frac{2}{n}+\frac{1}{n^{2}}}{2+\frac{4}{n^{2}}}
$$

Since $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$,

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{3 n^{3}-2 n+1}{2 n^{2}+4}\right\}_{n=1}^{\infty}$.
Solution: Rewrite the sequence as follows,

$$
a_{n}=\frac{\left(3 n^{3}-2 n+1\right)}{\left(2 n^{2}+4\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{3 n-\frac{2}{n}+\frac{1}{n^{2}}}{2+\frac{4}{n^{2}}}
$$

Since $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\frac{1}{n^{2}}=\left(\frac{1}{n}\right)^{2} \rightarrow 0
$$

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{3 n^{3}-2 n+1}{2 n^{2}+4}\right\}_{n=1}^{\infty}$.
Solution: Rewrite the sequence as follows,

$$
a_{n}=\frac{\left(3 n^{3}-2 n+1\right)}{\left(2 n^{2}+4\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{3 n-\frac{2}{n}+\frac{1}{n^{2}}}{2+\frac{4}{n^{2}}}
$$

Since $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\frac{1}{n^{2}}=\left(\frac{1}{n}\right)^{2} \rightarrow 0, \quad \frac{2}{n} \rightarrow 0
$$

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{3 n^{3}-2 n+1}{2 n^{2}+4}\right\}_{n=1}^{\infty}$.
Solution: Rewrite the sequence as follows,

$$
a_{n}=\frac{\left(3 n^{3}-2 n+1\right)}{\left(2 n^{2}+4\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{3 n-\frac{2}{n}+\frac{1}{n^{2}}}{2+\frac{4}{n^{2}}}
$$

Since $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\frac{1}{n^{2}}=\left(\frac{1}{n}\right)^{2} \rightarrow 0, \quad \frac{2}{n} \rightarrow 0, \quad 2+\frac{4}{n^{2}} \rightarrow 2
$$

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{3 n^{3}-2 n+1}{2 n^{2}+4}\right\}_{n=1}^{\infty}$.
Solution: Rewrite the sequence as follows,

$$
a_{n}=\frac{\left(3 n^{3}-2 n+1\right)}{\left(2 n^{2}+4\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{3 n-\frac{2}{n}+\frac{1}{n^{2}}}{2+\frac{4}{n^{2}}}
$$

Since $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\frac{1}{n^{2}}=\left(\frac{1}{n}\right)^{2} \rightarrow 0, \quad \frac{2}{n} \rightarrow 0, \quad 2+\frac{4}{n^{2}} \rightarrow 2
$$

Hence, the quotient property implies $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{3 n}{2}$.

## Properties of sequence limits

## Example

Find the limit of the sequence $\left\{a_{n}=\frac{3 n^{3}-2 n+1}{2 n^{2}+4}\right\}_{n=1}^{\infty}$.
Solution: Rewrite the sequence as follows,

$$
a_{n}=\frac{\left(3 n^{3}-2 n+1\right)}{\left(2 n^{2}+4\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{3 n-\frac{2}{n}+\frac{1}{n^{2}}}{2+\frac{4}{n^{2}}}
$$

Since $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\frac{1}{n^{2}}=\left(\frac{1}{n}\right)^{2} \rightarrow 0, \quad \frac{2}{n} \rightarrow 0, \quad 2+\frac{4}{n^{2}} \rightarrow 2
$$

Hence, the quotient property implies $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{3 n}{2}$.
We conclude that $a_{n}$ diverges.

## Infinite sequences (Sect. 10.1)

- Overview: Sequences, series, and calculus.
- Definition and geometrical representations.
- The limit of a sequence, convergence, divergence.
- Properties of sequence limits.
- The Sandwich Theorem for sequences.


## The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)
If the sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ satisfy

$$
a_{n} \leqslant b_{n} \leqslant c_{n}, \quad \text { for } \quad n>N,
$$

and if both $a_{n} \rightarrow L$ and $c_{n} \rightarrow L$, then holds

$$
b_{n} \rightarrow L .
$$

## The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)
If the sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ satisfy

$$
a_{n} \leqslant b_{n} \leqslant c_{n}, \quad \text { for } \quad n>N,
$$

and if both $a_{n} \rightarrow L$ and $c_{n} \rightarrow L$, then holds

$$
b_{n} \rightarrow L
$$

Example
Find the limit of the sequence $\left\{a_{n}=\frac{\sin (3 n)}{n^{2}}\right\}_{n=1}^{\infty}$.

## The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)
If the sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ satisfy

$$
a_{n} \leqslant b_{n} \leqslant c_{n}, \quad \text { for } \quad n>N,
$$

and if both $a_{n} \rightarrow L$ and $c_{n} \rightarrow L$, then holds

$$
b_{n} \rightarrow L
$$

Example
Find the limit of the sequence $\left\{a_{n}=\frac{\sin (3 n)}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Since $|\sin (3 n)| \leqslant 1$,

## The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)
If the sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ satisfy

$$
a_{n} \leqslant b_{n} \leqslant c_{n}, \quad \text { for } \quad n>N,
$$

and if both $a_{n} \rightarrow L$ and $c_{n} \rightarrow L$, then holds

$$
b_{n} \rightarrow L .
$$

Example
Find the limit of the sequence $\left\{a_{n}=\frac{\sin (3 n)}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Since $|\sin (3 n)| \leqslant 1$, then

$$
\left|a_{n}\right|=\left|\frac{\sin (3 n)}{n^{2}}\right|
$$

## The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)
If the sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ satisfy

$$
a_{n} \leqslant b_{n} \leqslant c_{n}, \quad \text { for } \quad n>N,
$$

and if both $a_{n} \rightarrow L$ and $c_{n} \rightarrow L$, then holds

$$
b_{n} \rightarrow L .
$$

Example
Find the limit of the sequence $\left\{a_{n}=\frac{\sin (3 n)}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Since $|\sin (3 n)| \leqslant 1$, then

$$
\left|a_{n}\right|=\left|\frac{\sin (3 n)}{n^{2}}\right| \leqslant\left|\frac{1}{n^{2}}\right|
$$

## The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)
If the sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ satisfy

$$
a_{n} \leqslant b_{n} \leqslant c_{n}, \quad \text { for } \quad n>N,
$$

and if both $a_{n} \rightarrow L$ and $c_{n} \rightarrow L$, then holds

$$
b_{n} \rightarrow L .
$$

Example
Find the limit of the sequence $\left\{a_{n}=\frac{\sin (3 n)}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Since $|\sin (3 n)| \leqslant 1$, then

$$
\left|a_{n}\right|=\left|\frac{\sin (3 n)}{n^{2}}\right| \leqslant\left|\frac{1}{n^{2}}\right|=\frac{1}{n^{2}}
$$

## The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)
If the sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ satisfy

$$
a_{n} \leqslant b_{n} \leqslant c_{n}, \quad \text { for } \quad n>N,
$$

and if both $a_{n} \rightarrow L$ and $c_{n} \rightarrow L$, then holds

$$
b_{n} \rightarrow L
$$

Example
Find the limit of the sequence $\left\{a_{n}=\frac{\sin (3 n)}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Since $|\sin (3 n)| \leqslant 1$, then

$$
\left|a_{n}\right|=\left|\frac{\sin (3 n)}{n^{2}}\right| \leqslant\left|\frac{1}{n^{2}}\right|=\frac{1}{n^{2}} \quad \Rightarrow \quad-\frac{1}{n^{2}} \leqslant a_{n} \leqslant \frac{1}{n^{2}} .
$$

## The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)
If the sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ satisfy

$$
a_{n} \leqslant b_{n} \leqslant c_{n}, \quad \text { for } \quad n>N,
$$

and if both $a_{n} \rightarrow L$ and $c_{n} \rightarrow L$, then holds

$$
b_{n} \rightarrow L
$$

Example
Find the limit of the sequence $\left\{a_{n}=\frac{\sin (3 n)}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Since $|\sin (3 n)| \leqslant 1$, then

$$
\left|a_{n}\right|=\left|\frac{\sin (3 n)}{n^{2}}\right| \leqslant\left|\frac{1}{n^{2}}\right|=\frac{1}{n^{2}} \quad \Rightarrow \quad-\frac{1}{n^{2}} \leqslant a_{n} \leqslant \frac{1}{n^{2}} .
$$

Since $\pm \frac{1}{n^{2}} \rightarrow 0$,

## The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)
If the sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ satisfy

$$
a_{n} \leqslant b_{n} \leqslant c_{n}, \quad \text { for } \quad n>N,
$$

and if both $a_{n} \rightarrow L$ and $c_{n} \rightarrow L$, then holds

$$
b_{n} \rightarrow L
$$

Example
Find the limit of the sequence $\left\{a_{n}=\frac{\sin (3 n)}{n^{2}}\right\}_{n=1}^{\infty}$.
Solution: Since $|\sin (3 n)| \leqslant 1$, then

$$
\left|a_{n}\right|=\left|\frac{\sin (3 n)}{n^{2}}\right| \leqslant\left|\frac{1}{n^{2}}\right|=\frac{1}{n^{2}} \quad \Rightarrow \quad-\frac{1}{n^{2}} \leqslant a_{n} \leqslant \frac{1}{n^{2}} .
$$

Since $\pm \frac{1}{n^{2}} \rightarrow 0$, we conclude that $a_{n} \rightarrow 0$.

## Infinite sequences (Sect. 10.1)

Today's Lecture:

- Review: Infinite sequences.
- The Continuous Function Theorem for sequences.
- Using L'Hôpital's rule on sequences.
- Table of useful limits.
- Bounded and monotonic sequences.

Previous Lecture:

- Overview: Sequences, series, and calculus.
- Definition and geometrical representations.
- The limit of a sequence, convergence, divergence.
- Properties of sequence limits.
- The Sandwich Theorem for sequences.


## Review: Infinite sequences

## Definition

An infinite sequence of numbers is an ordered set of real numbers.

## Review: Infinite sequences

## Definition

An infinite sequence of numbers is an ordered set of real numbers.

## Definition

An infinite sequence $\left\{a_{n}\right\}$ has limit $L$ iff for every number $\epsilon>0$ there exists a positive integer $N$ such that

$$
N<n \quad \Rightarrow \quad\left|a_{n}-L\right|<\epsilon .
$$

A sequence is called convergent iff it has a limit, otherwise it is called divergent.

## Review: Infinite sequences

## Definition

An infinite sequence of numbers is an ordered set of real numbers.

## Definition

An infinite sequence $\left\{a_{n}\right\}$ has limit $L$ iff for every number $\epsilon>0$ there exists a positive integer $N$ such that

$$
N<n \quad \Rightarrow \quad\left|a_{n}-L\right|<\epsilon .
$$

A sequence is called convergent iff it has a limit, otherwise it is called divergent.

Remark: The limits of simple sequences can be used to compute limits of more complicated sequences.

## Infinite sequences (Sect. 10.1)

- Review: Infinite sequences.
- The Continuous Function Theorem for sequences.
- Using L'Hôpital's rule on sequences.
- Table of useful limits.
- Bounded and monotonic sequences.


## The Continuous Function Theorem for sequences

Theorem
If a sequence $\left\{a_{n}\right\} \rightarrow L$ and a continuous function $f$ is defined both at $L$ and every $a_{n}$, then the sequence $\left\{f\left(a_{n}\right)\right\} \rightarrow f(L)$.

## The Continuous Function Theorem for sequences

Theorem
If a sequence $\left\{a_{n}\right\} \rightarrow L$ and a continuous function $f$ is defined both at $L$ and every $a_{n}$, then the sequence $\left\{f\left(a_{n}\right)\right\} \rightarrow f(L)$.

Example
Find the limit of $\left\{\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)\right\}$ as $n \rightarrow \infty$.

## The Continuous Function Theorem for sequences

Theorem
If a sequence $\left\{a_{n}\right\} \rightarrow L$ and a continuous function $f$ is defined both at $L$ and every $a_{n}$, then the sequence $\left\{f\left(a_{n}\right)\right\} \rightarrow f(L)$.

Example
Find the limit of $\left\{\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)\right\}$ as $n \rightarrow \infty$.
Solution: The sequence $b_{n}=\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)$ can be written as

$$
b_{n}=f\left(a_{n}\right)
$$

## The Continuous Function Theorem for sequences

Theorem
If a sequence $\left\{a_{n}\right\} \rightarrow L$ and a continuous function $f$ is defined both at $L$ and every $a_{n}$, then the sequence $\left\{f\left(a_{n}\right)\right\} \rightarrow f(L)$.

Example
Find the limit of $\left\{\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)\right\}$ as $n \rightarrow \infty$.
Solution: The sequence $b_{n}=\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)$ can be written as

$$
b_{n}=f\left(a_{n}\right), \quad f(x)=\ln (x)
$$

## The Continuous Function Theorem for sequences

Theorem
If a sequence $\left\{a_{n}\right\} \rightarrow L$ and a continuous function $f$ is defined both at $L$ and every $a_{n}$, then the sequence $\left\{f\left(a_{n}\right)\right\} \rightarrow f(L)$.

Example
Find the limit of $\left\{\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)\right\}$ as $n \rightarrow \infty$.
Solution: The sequence $b_{n}=\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)$ can be written as

$$
b_{n}=f\left(a_{n}\right), \quad f(x)=\ln (x), \quad a_{n}=\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}
$$

## The Continuous Function Theorem for sequences

Theorem
If a sequence $\left\{a_{n}\right\} \rightarrow L$ and a continuous function $f$ is defined both at $L$ and every $a_{n}$, then the sequence $\left\{f\left(a_{n}\right)\right\} \rightarrow f(L)$.

Example
Find the limit of $\left\{\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)\right\}$ as $n \rightarrow \infty$.
Solution: The sequence $b_{n}=\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)$ can be written as

$$
\begin{aligned}
b_{n} & =f\left(a_{n}\right), \quad f(x)=\ln (x), \quad a_{n}=\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)} \\
a_{n} & =\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}
\end{aligned}
$$

## The Continuous Function Theorem for sequences

Theorem
If a sequence $\left\{a_{n}\right\} \rightarrow L$ and a continuous function $f$ is defined both at $L$ and every $a_{n}$, then the sequence $\left\{f\left(a_{n}\right)\right\} \rightarrow f(L)$.

Example
Find the limit of $\left\{\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)\right\}$ as $n \rightarrow \infty$.
Solution: The sequence $b_{n}=\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)$ can be written as

$$
\begin{aligned}
b_{n} & =f\left(a_{n}\right), \quad f(x)=\ln (x), \quad a_{n}=\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)} \\
a_{n} & =\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}
\end{aligned}
$$

## The Continuous Function Theorem for sequences

## Theorem

If a sequence $\left\{a_{n}\right\} \rightarrow L$ and a continuous function $f$ is defined both at $L$ and every $a_{n}$, then the sequence $\left\{f\left(a_{n}\right)\right\} \rightarrow f(L)$.

Example
Find the limit of $\left\{\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)\right\}$ as $n \rightarrow \infty$.
Solution: The sequence $b_{n}=\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)$ can be written as

$$
\begin{aligned}
& b_{n}=f\left(a_{n}\right), \quad f(x)=\ln (x), \quad a_{n}=\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)} \\
& a_{n}=\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{\left(\frac{2}{n^{2}}+\frac{1}{n}+3\right)}{\left(2+\frac{3}{n^{2}}\right)}
\end{aligned}
$$

## The Continuous Function Theorem for sequences

## Theorem

If a sequence $\left\{a_{n}\right\} \rightarrow L$ and a continuous function $f$ is defined both at $L$ and every $a_{n}$, then the sequence $\left\{f\left(a_{n}\right)\right\} \rightarrow f(L)$.

Example
Find the limit of $\left\{\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)\right\}$ as $n \rightarrow \infty$.
Solution: The sequence $b_{n}=\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)$ can be written as

$$
\begin{gathered}
b_{n}=f\left(a_{n}\right), \quad f(x)=\ln (x), \quad a_{n}=\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)} \\
a_{n}=\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{\left(\frac{2}{n^{2}}+\frac{1}{n}+3\right)}{\left(2+\frac{3}{n^{2}}\right)} \rightarrow \frac{3}{2}
\end{gathered}
$$

## The Continuous Function Theorem for sequences

## Theorem

If a sequence $\left\{a_{n}\right\} \rightarrow L$ and a continuous function $f$ is defined both at $L$ and every $a_{n}$, then the sequence $\left\{f\left(a_{n}\right)\right\} \rightarrow f(L)$.

Example
Find the limit of $\left\{\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)\right\}$ as $n \rightarrow \infty$.
Solution: The sequence $b_{n}=\ln \left(\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)}\right)$ can be written as

$$
\begin{gathered}
b_{n}=f\left(a_{n}\right), \quad f(x)=\ln (x), \quad a_{n}=\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)} \\
a_{n}=\frac{\left(2+n+3 n^{2}\right)}{\left(2 n^{2}+3\right)} \frac{\left(\frac{1}{n^{2}}\right)}{\left(\frac{1}{n^{2}}\right)}=\frac{\left(\frac{2}{n^{2}}+\frac{1}{n}+3\right)}{\left(2+\frac{3}{n^{2}}\right)} \rightarrow \frac{3}{2}
\end{gathered}
$$

We conclude that $b_{n} \rightarrow \ln \left(\frac{3}{2}\right)$.

## Infinite sequences (Sect. 10.1)

- Review: Infinite sequences.
- The Continuous Function Theorem for sequences.
- Using L'Hôpital's rule on sequences.
- Table of useful limits.
- Bounded and monotonic sequences.


## Using L'Hôpital's rule on sequences

Theorem (L'Hôpital's rule for sequences)
If the sequence $\left\{a_{n}\right\}$ satisfies that:

- There exist a function $f$ such that for $n>N$ the sequence elements $a_{n}$ can be written as $a_{n}=f(n)$;
- And $\lim _{x \rightarrow \infty} f(x)=L$;
then holds that $\lim _{n \rightarrow \infty} a_{n}=L$.


## Using L'Hôpital's rule on sequences

Theorem (L'Hôpital's rule for sequences)
If the sequence $\left\{a_{n}\right\}$ satisfies that:

- There exist a function $f$ such that for $n>N$ the sequence elements $a_{n}$ can be written as $a_{n}=f(n)$;
- And $\lim _{x \rightarrow \infty} f(x)=L$;
then holds that $\lim _{n \rightarrow \infty} a_{n}=L$.
Remark: The $\lim _{x \rightarrow \infty} f(x)$ may indeterminate, and L'Hôpital's rule might be used to compute that limit.


## Using L'Hôpital's rule on sequences

Theorem (L'Hôpital's rule for sequences)
If the sequence $\left\{a_{n}\right\}$ satisfies that:

- There exist a function $f$ such that for $n>N$ the sequence elements $a_{n}$ can be written as $a_{n}=f(n)$;
- And $\lim _{x \rightarrow \infty} f(x)=L$;
then holds that $\lim _{n \rightarrow \infty} a_{n}=L$.
Remark: The $\lim _{x \rightarrow \infty} f(x)$ may indeterminate, and L'Hôpital's rule might be used to compute that limit.


## Example

Find the limit $a_{n}=\sqrt[8 n]{5 n}$ as $n \rightarrow \infty$.

## Using L'Hôpital's rule on sequences

Theorem (L'Hôpital's rule for sequences)
If the sequence $\left\{a_{n}\right\}$ satisfies that:

- There exist a function $f$ such that for $n>N$ the sequence elements $a_{n}$ can be written as $a_{n}=f(n)$;
- And $\lim _{x \rightarrow \infty} f(x)=L ;$
then holds that $\lim _{n \rightarrow \infty} a_{n}=L$.
Remark: The $\lim _{x \rightarrow \infty} f(x)$ may indeterminate, and L'Hôpital's rule might be used to compute that limit.


## Example

Find the limit $a_{n}=\sqrt[8 n]{5 n}$ as $n \rightarrow \infty$.
Solution: Notice that $a_{n}=f(n)$ for $f(x)=\sqrt[8 x]{5 x}$.

## Using L'Hôpital's rule on sequences

## Example

Find the limit $a_{n}=\sqrt[8 n]{5 n}$ as $n \rightarrow \infty$.
Solution: Recall: $a_{n}=f(n)$ for $f(x)=\sqrt[8 x]{5 x}$.

## Using L'Hôpital's rule on sequences

## Example

Find the limit $a_{n}=\sqrt[8 n]{5 n}$ as $n \rightarrow \infty$.
Solution: Recall: $a_{n}=f(n)$ for $f(x)=\sqrt[8 x]{5 x}$.

$$
\sqrt[8 x]{5 x}=e^{\ln (\sqrt[8 x]{5 x})}
$$

## Using L'Hôpital's rule on sequences

## Example

Find the limit $a_{n}=\sqrt[8 n]{5 n}$ as $n \rightarrow \infty$.
Solution: Recall: $a_{n}=f(n)$ for $f(x)=\sqrt[8 x]{5 x}$.

$$
\sqrt[8 x]{5 x}=e^{\ln (\sqrt[8 x]{5 x})}=e^{\left(\frac{\ln (5 x)}{8 x}\right)}
$$

## Using L'Hôpital's rule on sequences

## Example

Find the limit $a_{n}=\sqrt[8 n]{5 n}$ as $n \rightarrow \infty$.
Solution: Recall: $a_{n}=f(n)$ for $f(x)=\sqrt[8 x]{5 x}$.

$$
\sqrt[8 x]{5 x}=e^{\ln (\sqrt[8 x]{5 x})}=e^{\left(\frac{\ln (5 x)}{8 x}\right)}
$$

But $\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}$ is indeterminate $\frac{\infty}{\infty}$.

## Using L'Hôpital's rule on sequences

## Example

Find the limit $a_{n}=\sqrt[8 n]{5 n}$ as $n \rightarrow \infty$.
Solution: Recall: $a_{n}=f(n)$ for $f(x)=\sqrt[8 x]{5 x}$.

$$
\sqrt[8 x]{5 x}=e^{\ln (\sqrt[8 x]{5 x})}=e^{\left(\frac{\ln (5 x)}{8 x}\right)}
$$

But $\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}$ is indeterminate $\frac{\infty}{\infty}$. L'Hôpital's rule,

## Using L'Hôpital's rule on sequences

## Example

Find the limit $a_{n}=\sqrt[8 n]{5 n}$ as $n \rightarrow \infty$.
Solution: Recall: $a_{n}=f(n)$ for $f(x)=\sqrt[8 x]{5 x}$.

$$
\sqrt[8 x]{5 x}=e^{\ln (\sqrt[8 x]{5 x})}=e^{\left(\frac{\ln (5 x)}{8 x}\right)}
$$

But $\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}$ is indeterminate $\frac{\infty}{\infty}$. L'Hôpital's rule,

$$
\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}
$$

## Using L'Hôpital's rule on sequences

## Example

Find the limit $a_{n}=\sqrt[8 n]{5 n}$ as $n \rightarrow \infty$.
Solution: Recall: $a_{n}=f(n)$ for $f(x)=\sqrt[8 x]{5 x}$.

$$
\sqrt[8 x]{5 x}=e^{\ln (\sqrt[8 x]{5 x})}=e^{\left(\frac{\ln (5 x)}{8 x}\right)}
$$

But $\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}$ is indeterminate $\frac{\infty}{\infty}$. L'Hôpital's rule,

$$
\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{x}\right)}{8}
$$

## Using L'Hôpital's rule on sequences

## Example

Find the limit $a_{n}=\sqrt[8 n]{5 n}$ as $n \rightarrow \infty$.
Solution: Recall: $a_{n}=f(n)$ for $f(x)=\sqrt[8 x]{5 x}$.

$$
\sqrt[8 x]{5 x}=e^{\ln (\sqrt[8 x]{5 x})}=e^{\left(\frac{\ln (5 x)}{8 x}\right)}
$$

But $\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}$ is indeterminate $\frac{\infty}{\infty}$. L'Hôpital's rule,

$$
\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{x}\right)}{8}=\lim _{x \rightarrow \infty} \frac{1}{8 x}=0
$$

## Using L'Hôpital's rule on sequences

## Example

Find the limit $a_{n}=\sqrt[8 n]{5 n}$ as $n \rightarrow \infty$.
Solution: Recall: $a_{n}=f(n)$ for $f(x)=\sqrt[8 x]{5 x}$.

$$
\sqrt[8 x]{5 x}=e^{\ln (\sqrt[8 x]{5 x})}=e^{\left(\frac{\ln (5 x)}{8 x}\right)}
$$

But $\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}$ is indeterminate $\frac{\infty}{\infty}$. L'Hôpital's rule,

$$
\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{x}\right)}{8}=\lim _{x \rightarrow \infty} \frac{1}{8 x}=0
$$

$$
\lim _{x \rightarrow \infty} \sqrt[8 x]{5 x}
$$

## Using L'Hôpital's rule on sequences

## Example

Find the limit $a_{n}=\sqrt[8 n]{5 n}$ as $n \rightarrow \infty$.
Solution: Recall: $a_{n}=f(n)$ for $f(x)=\sqrt[8 x]{5 x}$.

$$
\sqrt[8 x]{5 x}=e^{\ln (\sqrt[8 x]{5 x})}=e^{\left(\frac{\ln (5 x)}{8 x}\right)}
$$

But $\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}$ is indeterminate $\frac{\infty}{\infty}$. L'Hôpital's rule,

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{x}\right)}{8}=\lim _{x \rightarrow \infty} \frac{1}{8 x}=0 . \\
& \lim _{x \rightarrow \infty} \sqrt[8 x]{5 x}=\lim _{x \rightarrow \infty} e^{\left(\frac{\ln (5 x)}{8 x}\right)}
\end{aligned}
$$

## Using L'Hôpital's rule on sequences

## Example

Find the limit $a_{n}=\sqrt[8 n]{5 n}$ as $n \rightarrow \infty$.
Solution: Recall: $a_{n}=f(n)$ for $f(x)=\sqrt[8 x]{5 x}$.

$$
\sqrt[8 x]{5 x}=e^{\ln (\sqrt[8 x]{5 x})}=e^{\left(\frac{\ln (5 x)}{8 x}\right)}
$$

But $\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}$ is indeterminate $\frac{\infty}{\infty}$. L'Hôpital's rule,

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{x}\right)}{8}=\lim _{x \rightarrow \infty} \frac{1}{8 x}=0 . \\
& \lim _{x \rightarrow \infty} \sqrt[8 x]{5 x}=\lim _{x \rightarrow \infty} e^{\left(\frac{\ln (5 x)}{8 x}\right)}=e^{0}
\end{aligned}
$$

## Using L'Hôpital's rule on sequences

## Example

Find the limit $a_{n}=\sqrt[8 n]{5 n}$ as $n \rightarrow \infty$.
Solution: Recall: $a_{n}=f(n)$ for $f(x)=\sqrt[8 x]{5 x}$.

$$
\sqrt[8 x]{5 x}=e^{\ln (\sqrt[8 x]{5 x})}=e^{\left(\frac{\ln (5 x)}{8 x}\right)}
$$

But $\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}$ is indeterminate $\frac{\infty}{\infty}$. L'Hôpital's rule,

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{x}\right)}{8}=\lim _{x \rightarrow \infty} \frac{1}{8 x}=0 \\
\lim _{x \rightarrow \infty} \sqrt[8 x]{5 x}=\lim _{x \rightarrow \infty} e^{\left(\frac{\ln (5 x)}{8 x}\right)}=e^{0} \Rightarrow \lim _{x \rightarrow \infty} \sqrt[8 x]{5 x}=1
\end{gathered}
$$

## Using L'Hôpital's rule on sequences

## Example

Find the limit $a_{n}=\sqrt[8 n]{5 n}$ as $n \rightarrow \infty$.
Solution: Recall: $a_{n}=f(n)$ for $f(x)=\sqrt[8 x]{5 x}$.

$$
\sqrt[8 x]{5 x}=e^{\ln (\sqrt[8 x]{5 x})}=e^{\left(\frac{\ln (5 x)}{8 x}\right)}
$$

But $\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}$ is indeterminate $\frac{\infty}{\infty}$. L'Hôpital's rule,

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{\ln (5 x)}{8 x}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{x}\right)}{8}=\lim _{x \rightarrow \infty} \frac{1}{8 x}=0 \\
\lim _{x \rightarrow \infty} \sqrt[8 x]{5 x}=\lim _{x \rightarrow \infty} e^{\left(\frac{\ln (5 x)}{8 x}\right)}=e^{0} \Rightarrow \lim _{x \rightarrow \infty} \sqrt[8 x]{5 x}=1 .
\end{gathered}
$$

We conclude that $\sqrt[8 n]{5 n} \rightarrow 1$ as $n \rightarrow \infty$.

## Using L'Hôpital's rule on sequences

Example
Given positive numbers $a, b$, find the $\lim _{n \rightarrow \infty}\left(1-\frac{b}{n}\right)^{a n}$.

## Using L'Hôpital's rule on sequences

Example
Given positive numbers $a, b$, find the $\lim _{n \rightarrow \infty}\left(1-\frac{b}{n}\right)^{a n}$.
Solution: We rewrite the sequence as follows,

$$
\left(1-\frac{b}{n}\right)^{a n}=e^{\left[a n \ln \left(1-\frac{b}{n}\right)\right]}
$$

## Using L'Hôpital's rule on sequences

Example
Given positive numbers $a, b$, find the $\lim _{n \rightarrow \infty}\left(1-\frac{b}{n}\right)^{a n}$.
Solution: We rewrite the sequence as follows,

$$
\left(1-\frac{b}{n}\right)^{a n}=e^{\left[a n \ln \left(1-\frac{b}{n}\right)\right]}=e^{\left[\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}}\right]}
$$

## Using L'Hôpital's rule on sequences

## Example

Given positive numbers $a, b$, find the $\lim _{n \rightarrow \infty}\left(1-\frac{b}{n}\right)^{a n}$.
Solution: We rewrite the sequence as follows,

$$
\left(1-\frac{b}{n}\right)^{a n}=e^{\left[a n \ln \left(1-\frac{b}{n}\right)\right]}=e^{\left[\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}}\right]}
$$

The exponent has an indeterminate limit,

## Using L'Hôpital's rule on sequences

## Example

Given positive numbers $a, b$, find the $\lim _{n \rightarrow \infty}\left(1-\frac{b}{n}\right)^{a n}$.
Solution: We rewrite the sequence as follows,

$$
\left(1-\frac{b}{n}\right)^{a n}=e^{\left[a n \ln \left(1-\frac{b}{n}\right)\right]}=e^{\left[\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}}\right]}
$$

The exponent has an indeterminate limit, $\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}} \rightarrow \frac{0}{0}$.

## Using L'Hôpital's rule on sequences

## Example

Given positive numbers $a, b$, find the $\lim _{n \rightarrow \infty}\left(1-\frac{b}{n}\right)^{a n}$.
Solution: We rewrite the sequence as follows,

$$
\left(1-\frac{b}{n}\right)^{a n}=e^{\left[a n \ln \left(1-\frac{b}{n}\right)\right]}=e^{\left[\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}}\right]}
$$

The exponent has an indeterminate limit, $\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}} \rightarrow \frac{0}{0}$.
Recall the argument with the L'Hôpital's rule on functions,

## Using L'Hôpital's rule on sequences

## Example

Given positive numbers $a, b$, find the $\lim _{n \rightarrow \infty}\left(1-\frac{b}{n}\right)^{a n}$.
Solution: We rewrite the sequence as follows,

$$
\left(1-\frac{b}{n}\right)^{a n}=e^{\left[a n \ln \left(1-\frac{b}{n}\right)\right]}=e^{\left[\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}}\right]}
$$

The exponent has an indeterminate limit, $\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}} \rightarrow \frac{0}{0}$.
Recall the argument with the L'Hôpital's rule on functions,

$$
\lim _{x \rightarrow \infty} \frac{a \ln \left(1-\frac{b}{x}\right)}{\frac{1}{x}}
$$

## Using L'Hôpital's rule on sequences

## Example

Given positive numbers $a, b$, find the $\lim _{n \rightarrow \infty}\left(1-\frac{b}{n}\right)^{a n}$.
Solution: We rewrite the sequence as follows,

$$
\left(1-\frac{b}{n}\right)^{a n}=e^{\left[a n \ln \left(1-\frac{b}{n}\right)\right]}=e^{\left[\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}}\right]}
$$

The exponent has an indeterminate limit, $\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}} \rightarrow \frac{0}{0}$.
Recall the argument with the L'Hôpital's rule on functions,

$$
\lim _{x \rightarrow \infty} \frac{a \ln \left(1-\frac{b}{x}\right)}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{a}{\left(1-\frac{b}{x}\right)} \frac{b}{x^{2}}}{-\frac{1}{x^{2}}}
$$

## Using L'Hôpital's rule on sequences

## Example

Given positive numbers $a, b$, find the $\lim _{n \rightarrow \infty}\left(1-\frac{b}{n}\right)^{a n}$.
Solution: We rewrite the sequence as follows,

$$
\left(1-\frac{b}{n}\right)^{a n}=e^{\left[a n \ln \left(1-\frac{b}{n}\right)\right]}=e^{\left[\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}}\right]}
$$

The exponent has an indeterminate limit, $\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}} \rightarrow \frac{0}{0}$. Recall the argument with the L'Hôpital's rule on functions,

$$
\lim _{x \rightarrow \infty} \frac{a \ln \left(1-\frac{b}{x}\right)}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{a}{\left(1-\frac{b}{x}\right)} \frac{b}{x^{2}}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{a b}{\left(1-\frac{b}{x}\right)}
$$

## Using L'Hôpital's rule on sequences

## Example

Given positive numbers $a, b$, find the $\lim _{n \rightarrow \infty}\left(1-\frac{b}{n}\right)^{a n}$.
Solution: We rewrite the sequence as follows,

$$
\left(1-\frac{b}{n}\right)^{a n}=e^{\left[a n \ln \left(1-\frac{b}{n}\right)\right]}=e^{\left[\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}}\right]}
$$

The exponent has an indeterminate limit, $\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}} \rightarrow \frac{0}{0}$.
Recall the argument with the L'Hôpital's rule on functions,

$$
\lim _{x \rightarrow \infty} \frac{a \ln \left(1-\frac{b}{x}\right)}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{a}{\left(1-\frac{b}{x}\right)} \frac{b}{x^{2}}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{a b}{\left(1-\frac{b}{x}\right)}=a b .
$$

## Using L'Hôpital's rule on sequences

## Example

Given positive numbers $a, b$, find the $\lim _{n \rightarrow \infty}\left(1-\frac{b}{n}\right)^{a n}$.
Solution: We rewrite the sequence as follows,

$$
\left(1-\frac{b}{n}\right)^{a n}=e^{\left[a n \ln \left(1-\frac{b}{n}\right)\right]}=e^{\left[\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}}\right]}
$$

The exponent has an indeterminate limit, $\frac{a \ln \left(1-\frac{b}{n}\right)}{\frac{1}{n}} \rightarrow \frac{0}{0}$.
Recall the argument with the L'Hôpital's rule on functions,

$$
\lim _{x \rightarrow \infty} \frac{a \ln \left(1-\frac{b}{x}\right)}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{a}{\left(1-\frac{b}{x}\right)} \frac{b}{x^{2}}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{a b}{\left(1-\frac{b}{x}\right)}=a b .
$$

We conclude that $\lim _{n \rightarrow \infty}\left(1-\frac{b}{n}\right)^{a n}=e^{a b}$.

## Infinite sequences (Sect. 10.1)

- Review: Infinite sequences.
- The Continuous Function Theorem for sequences.
- Using L'Hôpital's rule on sequences.
- Table of useful limits.
- Bounded and monotonic sequences.


## Table of useful limits

Remark: The following limits appear often in applications:

- $\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=0$;
- $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$;
- $\lim _{n \rightarrow \infty} x^{\left(\frac{1}{n}\right)}=1$, for $x>0$;
- $\lim _{n \rightarrow \infty} x^{n}=0$, for $|x|<1$;
- $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}, \quad$ for $x \in \mathbb{R}$;
- $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$.


## Infinite sequences (Sect. 10.1)

- Review: Infinite sequences.
- The Continuous Function Theorem for sequences.
- Using L'Hôpital's rule on sequences.
- Table of useful limits.
- Bounded and monotonic sequences.


## Bounded and monotonic sequences

Definition
A sequence $\left\{a_{n}\right\}$ is bounded above iff there is $M \in \mathbb{R}$ such that

$$
a_{n} \leqslant M \quad \text { for all } n \geqslant 1
$$

## Bounded and monotonic sequences

Definition
A sequence $\left\{a_{n}\right\}$ is bounded above iff there is $M \in \mathbb{R}$ such that

$$
a_{n} \leqslant M \quad \text { for all } n \geqslant 1
$$

The sequence $\left\{a_{n}\right\}$ is bounded below iff there is $m \in \mathbb{R}$ such that

$$
m \leqslant a_{n} \quad \text { for all } n \geqslant 1
$$

## Bounded and monotonic sequences

Definition
A sequence $\left\{a_{n}\right\}$ is bounded above iff there is $M \in \mathbb{R}$ such that

$$
a_{n} \leqslant M \quad \text { for all } n \geqslant 1 .
$$

The sequence $\left\{a_{n}\right\}$ is bounded below iff there is $m \in \mathbb{R}$ such that

$$
m \leqslant a_{n} \quad \text { for all } n \geqslant 1
$$

A sequence is bounded iff it is bounded above and below.

## Bounded and monotonic sequences

Definition
A sequence $\left\{a_{n}\right\}$ is bounded above iff there is $M \in \mathbb{R}$ such that

$$
a_{n} \leqslant M \quad \text { for all } n \geqslant 1 .
$$

The sequence $\left\{a_{n}\right\}$ is bounded below iff there is $m \in \mathbb{R}$ such that

$$
m \leqslant a_{n} \quad \text { for all } n \geqslant 1
$$

A sequence is bounded iff it is bounded above and below.

Example

- $a_{n}=\frac{1}{n}$ is bounded,


## Bounded and monotonic sequences

## Definition

A sequence $\left\{a_{n}\right\}$ is bounded above iff there is $M \in \mathbb{R}$ such that

$$
a_{n} \leqslant M \quad \text { for all } n \geqslant 1 .
$$

The sequence $\left\{a_{n}\right\}$ is bounded below iff there is $m \in \mathbb{R}$ such that

$$
m \leqslant a_{n} \quad \text { for all } n \geqslant 1
$$

A sequence is bounded iff it is bounded above and below.

Example

- $a_{n}=\frac{1}{n}$ is bounded, since $0<\frac{1}{n} \leqslant 1$.


## Bounded and monotonic sequences

## Definition

A sequence $\left\{a_{n}\right\}$ is bounded above iff there is $M \in \mathbb{R}$ such that

$$
a_{n} \leqslant M \quad \text { for all } n \geqslant 1 .
$$

The sequence $\left\{a_{n}\right\}$ is bounded below iff there is $m \in \mathbb{R}$ such that

$$
m \leqslant a_{n} \quad \text { for all } n \geqslant 1
$$

A sequence is bounded iff it is bounded above and below.

Example

- $a_{n}=\frac{1}{n}$ is bounded, since $0<\frac{1}{n} \leqslant 1$.
- $a_{n}=(-1)^{n}$ is bounded,


## Bounded and monotonic sequences

## Definition

A sequence $\left\{a_{n}\right\}$ is bounded above iff there is $M \in \mathbb{R}$ such that

$$
a_{n} \leqslant M \quad \text { for all } n \geqslant 1
$$

The sequence $\left\{a_{n}\right\}$ is bounded below iff there is $m \in \mathbb{R}$ such that

$$
m \leqslant a_{n} \quad \text { for all } n \geqslant 1
$$

A sequence is bounded iff it is bounded above and below.

Example

- $a_{n}=\frac{1}{n}$ is bounded, since $0<\frac{1}{n} \leqslant 1$.
- $a_{n}=(-1)^{n}$ is bounded, since $-1 \leqslant(-1)^{n} \leqslant 1$.


## Bounded and monotonic sequences

Definition

- A sequence $\left\{a_{n}\right\}$ is increasing iff $a_{n}<a_{n+1}$.


## Bounded and monotonic sequences

Definition

- A sequence $\left\{a_{n}\right\}$ is increasing iff $a_{n}<a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is non-decreasing iff $a_{n} \leqslant a_{n+1}$.


## Bounded and monotonic sequences

## Definition

- A sequence $\left\{a_{n}\right\}$ is increasing iff $a_{n}<a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is non-decreasing iff $a_{n} \leqslant a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is decreasing iff $a_{n}>a_{n+1}$.


## Bounded and monotonic sequences

## Definition

- A sequence $\left\{a_{n}\right\}$ is increasing iff $a_{n}<a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is non-decreasing iff $a_{n} \leqslant a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is decreasing iff $a_{n}>a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is non-increasing iff $a_{n} \geqslant a_{n+1}$.


## Bounded and monotonic sequences

## Definition

- A sequence $\left\{a_{n}\right\}$ is increasing iff $a_{n}<a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is non-decreasing iff $a_{n} \leqslant a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is decreasing iff $a_{n}>a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is non-increasing iff $a_{n} \geqslant a_{n+1}$.
- A sequence is monotonic iff the sequence is both non-increasing and non-decreasing.


## Bounded and monotonic sequences

## Definition

- A sequence $\left\{a_{n}\right\}$ is increasing iff $a_{n}<a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is non-decreasing iff $a_{n} \leqslant a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is decreasing iff $a_{n}>a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is non-increasing iff $a_{n} \geqslant a_{n+1}$.
- A sequence is monotonic iff the sequence is both non-increasing and non-decreasing.


## Theorem

- A non-decreasing, bounded above sequence, converges.


## Bounded and monotonic sequences

## Definition

- A sequence $\left\{a_{n}\right\}$ is increasing iff $a_{n}<a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is non-decreasing iff $a_{n} \leqslant a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is decreasing iff $a_{n}>a_{n+1}$.
- A sequence $\left\{a_{n}\right\}$ is non-increasing iff $a_{n} \geqslant a_{n+1}$.
- A sequence is monotonic iff the sequence is both non-increasing and non-decreasing.


## Theorem

- A non-decreasing, bounded above sequence, converges.
- A non-increasing, bounded below sequence, converges.


## Bounded and monotonic sequences

Example
Determine whether the sequence $a_{n}=\frac{n}{n^{2}+1}$ converges or not.

## Bounded and monotonic sequences

Example
Determine whether the sequence $a_{n}=\frac{n}{n^{2}+1}$ converges or not.
Solution: We show that $a_{n}$ is decreasing.

## Bounded and monotonic sequences

Example
Determine whether the sequence $a_{n}=\frac{n}{n^{2}+1}$ converges or not.
Solution: We show that $a_{n}$ is decreasing. Indeed, the condition

$$
a_{n+1}<a_{n}
$$

## Bounded and monotonic sequences

Example
Determine whether the sequence $a_{n}=\frac{n}{n^{2}+1}$ converges or not.
Solution: We show that $a_{n}$ is decreasing. Indeed, the condition

$$
a_{n+1}<a_{n} \quad \Leftrightarrow \quad \frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1}
$$

## Bounded and monotonic sequences

Example
Determine whether the sequence $a_{n}=\frac{n}{n^{2}+1}$ converges or not.
Solution: We show that $a_{n}$ is decreasing. Indeed, the condition

$$
\begin{gathered}
a_{n+1}<a_{n} \Leftrightarrow \frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1} \\
(n+1)\left(n^{2}+1\right)<n\left(n^{2}+2 n+2\right)
\end{gathered}
$$

## Bounded and monotonic sequences

Example
Determine whether the sequence $a_{n}=\frac{n}{n^{2}+1}$ converges or not.
Solution: We show that $a_{n}$ is decreasing. Indeed, the condition

$$
\begin{gathered}
a_{n+1}<a_{n} \Leftrightarrow \frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1} \\
(n+1)\left(n^{2}+1\right)<n\left(n^{2}+2 n+2\right) \\
n^{3}+n^{2}+n+1<n^{3}+2 n^{2}+2 n
\end{gathered}
$$

## Bounded and monotonic sequences

Example
Determine whether the sequence $a_{n}=\frac{n}{n^{2}+1}$ converges or not.
Solution: We show that $a_{n}$ is decreasing. Indeed, the condition

$$
\begin{gathered}
a_{n+1}<a_{n} \Leftrightarrow \frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1} \\
(n+1)\left(n^{2}+1\right)<n\left(n^{2}+2 n+2\right) \\
n^{3}+n^{2}+n+1<n^{3}+2 n^{2}+2 n
\end{gathered}
$$

Since $1<\left(n^{2}+n\right)$ is true for $n \geqslant 1$,

## Bounded and monotonic sequences

Example
Determine whether the sequence $a_{n}=\frac{n}{n^{2}+1}$ converges or not.
Solution: We show that $a_{n}$ is decreasing. Indeed, the condition

$$
\begin{gathered}
a_{n+1}<a_{n} \Leftrightarrow \frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1} \\
(n+1)\left(n^{2}+1\right)<n\left(n^{2}+2 n+2\right) \\
n^{3}+n^{2}+n+1<n^{3}+2 n^{2}+2 n
\end{gathered}
$$

Since $1<\left(n^{2}+n\right)$ is true for $n \geqslant 1$, then $a_{n+1}<a_{n}$; decreasing.

## Bounded and monotonic sequences

Example
Determine whether the sequence $a_{n}=\frac{n}{n^{2}+1}$ converges or not.
Solution: We show that $a_{n}$ is decreasing. Indeed, the condition

$$
\begin{gathered}
a_{n+1}<a_{n} \Leftrightarrow \frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1} \\
(n+1)\left(n^{2}+1\right)<n\left(n^{2}+2 n+2\right) \\
n^{3}+n^{2}+n+1<n^{3}+2 n^{2}+2 n
\end{gathered}
$$

Since $1<\left(n^{2}+n\right)$ is true for $n \geqslant 1$, then $a_{n+1}<a_{n}$; decreasing.
The sequence satisfies that $0<a_{n}$, bounded below.

## Bounded and monotonic sequences

Example
Determine whether the sequence $a_{n}=\frac{n}{n^{2}+1}$ converges or not.
Solution: We show that $a_{n}$ is decreasing. Indeed, the condition

$$
\begin{gathered}
a_{n+1}<a_{n} \quad \Leftrightarrow \quad \frac{n+1}{(n+1)^{2}+1}<\frac{n}{n^{2}+1} \\
(n+1)\left(n^{2}+1\right)<n\left(n^{2}+2 n+2\right) \\
n^{3}+n^{2}+n+1<n^{3}+2 n^{2}+2 n
\end{gathered}
$$

Since $1<\left(n^{2}+n\right)$ is true for $n \geqslant 1$, then $a_{n+1}<a_{n}$; decreasing.
The sequence satisfies that $0<a_{n}$, bounded below.
We conclude that $a_{n}$ converges.

