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Convergence test: Direct comparison test

Remark: Convergence tests determine whether an improper
integral converges or diverges.

Theorem (Direct comparison test)

If functions f, g : [a,00) — R are continuous and 0 < f(x) < g(x)
for every x € [a,00), then holds

Oé/:of(x)dxé/aoog(x)dx.

The inequalities above imply the following statements:

o0
(a) / g(x) dx converges = / x) dx converges;
a

e}
(b) / f(x) dx diverges = / x) dx diverges.
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2
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J1 €



Convergence test: Direct comparison test

Example

Determine whether | = converges or diverges.

| e



Convergence test: Direct comparison test

Example
dx
Determine whether | = / converges or diverges.
Vx6 11

Solution: We need to find an appropriate function to compare with
the integrand above.



Convergence test: Direct comparison test

Example
dx
Determine whether | = / converges or diverges.
Vx6 11

Solution: We need to find an appropriate function to compare with
the integrand above. We need to find either

> a bigger function with convergent integral;



Convergence test: Direct comparison test

Example
dx
Determine whether | = / converges or diverges.
Vx6 11

Solution: We need to find an appropriate function to compare with
the integrand above. We need to find either

> a bigger function with convergent integral;

» or a smaller function with divergent integral.



Convergence test: Direct comparison test

Example
dx
Determine whether | = / converges or diverges.
Vx6 11

Solution: We need to find an appropriate function to compare with
the integrand above. We need to find either

> a bigger function with convergent integral;

» or a smaller function with divergent integral.

Notice: x® < x0+1



Convergence test: Direct comparison test

Example
dx
Determine whether | = / converges or diverges.
Vx6 11

Solution: We need to find an appropriate function to compare with
the integrand above. We need to find either

> a bigger function with convergent integral;

» or a smaller function with divergent integral.

Notice: x® < x®+1 = x3</x6+1



Convergence test: Direct comparison test

Example
dx
Determine whether | = / converges or diverges.
Vx6 11

Solution: We need to find an appropriate function to compare with
the integrand above. We need to find either

> a bigger function with convergent integral;

» or a smaller function with divergent integral.

1 1
Notice: x® <x®+1 = XB<yxb+1 = —— < .



Convergence test: Direct comparison test

Example

Determine whether | = converges or diverges.

s

Solution: We need to find an appropriate function to compare with
the integrand above. We need to find either

> a bigger function with convergent integral;

» or a smaller function with divergent integral.

1 1
Notice: x® <x®+1 = XB<yxb+1 = —— < .

dx
Therefore, O</ /
1/X6



Convergence test: Direct comparison test

Example

Determine whether | = converges or diverges.

s

Solution: We need to find an appropriate function to compare with
the integrand above. We need to find either

> a bigger function with convergent integral;

» or a smaller function with divergent integral.

1 1
Notice: x® <x®+1 = XB<yxb+1 = —— < .

d
Therefore, O</ \/xﬁi / X— 7‘1



Convergence test: Direct comparison test

Example

Determine whether | = converges or diverges.

s

Solution: We need to find an appropriate function to compare with
the integrand above. We need to find either

> a bigger function with convergent integral;

» or a smaller function with divergent integral.

1 1
Notice: x® <x®+1 = XB<yxb+1 = —— < .

dx
Theref —_7‘ _——
erefore, O</ \/xﬁi / > |y >



Convergence test: Direct comparison test

Example
dx
Determine whether | = / converges or diverges.
Vx6 11

Solution: We need to find an appropriate function to compare with
the integrand above. We need to find either

> a bigger function with convergent integral;

» or a smaller function with divergent integral.

1 1
Notice: x® <x®+1 = XB<yxb+1 = — < =
x0+1 x
dx -2 1
Therefore, 0 < / \/xﬁi / X —T‘l =5
1
Since 0 < / —, the integral converges. <
W & &



Improper integrals (Sect. 8.7)

» Review: Improper integrals type | and II.
< d ld

» Examples: l:/ —X, and [ = —X.
1 xP o xP

v

Convergence test: Direct comparison test.

v

Convergence test: Limit comparison test.



Convergence test: Limit comparison test
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both converge or both diverge.
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Remark: Convergence tests determine whether an improper
integral converges or diverges.

Theorem (Limit comparison test)
If positive functions f, g : [a,00) — R are continuous and
f(x)

lim —= =L, with 0<L<o0,
x—o0 g(x)

then the integrals
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both converge or both diverge.

Remark: Although both integrals above may converge, their values
need not be the same.
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we conclude that / converges.



Infinite sequences (Sect. 10.1)

Today's Lecture:

v

Overview: Sequences, series, and calculus.
Definition and geometrical representations.

The limit of a sequence, convergence, divergence.
Properties of sequence limits.

The Sandwich Theorem for sequences.

Next Lecture:
» The Continuous Function Theorem for sequences.
» Using L'Hopital’s rule on sequences.
> Table of useful limits.

» Bounded and monotonic sequences.
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Overview: Sequences, series, and calculus

Remarks:

>

b
We have defined the f(x) dx as a limit of partial sums.

a
That is, as an infinite sum of numbers (areas of rectangles).

In the next section we define, precisely, what is an infinite
sum. Infinite sums are called series.

In this section we introduce the idea of an infinite sequence of
numbers. We will use sequences to define series.

Later on, the idea of infinite sums will be generalized from
numbers to functions.

We will express differentiable functions as infinite sums of
polynomials (Taylor series expansions).

b
. . . —x2
Then we will be able to compute integrals like / e ™ dx.
a



Infinite sequences (Sect. 10.1)

Overview: Sequences, series, and calculus.
Definition and geometrical representations.
The limit of a sequence, convergence, divergence.

Properties of sequence limits.
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The Sandwich Theorem for sequences.
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Definition and geometrical representations
Definition

An infinite sequence of numbers is an ordered set of real numbers

Remark: A sequence is denoted as

{a1,a2,a3, -+ ,an,- -}, or {an}peqy, or {an}.
Example
{ n }OO n {1 2 3 n }
a, = —_ = = e o .. .
n+1Ja=t" " n+1 122374 np41

()"}, an=(-1)"Vn, {-V3.V4,-V5 -}

o0 V31
{cos(mr/6)}n:0, ap = cos(nm/6), {1,7,5,0,'--}.
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Example

Find a formula for the general term of the sequence
{§ 45 6 }
57 2571257 625’ ’

Solution: We know that:

175 27705 ST 150 T ey
(1+2) (2+2) (3+2) (4+2)
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Example

Find a formula for the general term of the sequence
{§ 45 6 }
57 2571257 625’ ’

Solution: We know that:

'Ts T 5t U125 T 625
1+2 2+2 3+2 4+2
RCE S RN PO R RO (S
We conclude that a, = (—1)(”*1)M. <
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Remark:
Infinite sequences can be represented on a line or on a plane.

Example
1yo© .
Graph the sequence {f} on a line and on a plane.
nJn=1
Solution:
an
1’ [ ]
112 [ ]
134 L[]
1/4- [ ]
1/8: [
0 1 ‘2 3 4 n

ettt t t
0 ws waus 12 1 a
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The limit of a sequence, convergence, divergence

Remark:

» As it happened in the example above, the numbers a, in a
sequence may approach a single value as n increases.

1y 111
= — =41 7)777)"'} .
{a” n}n:1 {’2 34 —0

» This is not the case for every sequence. The sequence
elements may grow unbounded:

{nz}:‘;l ={1,4,9,16,-}.

The sequence numbers may oscillate:

()"}, = {1, -1,1,-1,1,--- }.
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Definition
An infinite sequence {a,} has limit L iff for every number ¢ > 0
there exists a positive integer N such that

N<n = |a,—L[<e

A sequence is called convergent iff it has a limit, otherwise it is
called divergent.

Remark: We use the notation lim,_ a, = L or a, — L.

Example
Find the limit of the sequence {a,, =1+ %}oo

n=1

1
Solution: Since — — 0, we will prove that L = 1.
n
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Example

3
Find the limit of the sequence {a,, =1+ —2}00 .
n n=1

Solution: Recall: The candidate for limit is L = 1.
Given any € > 0, we need to find the appropriate N. Since

3
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lan—1| <e < ‘nz
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Properties of sequence limits

Remark: The limits of simple sequences can be used to compute
limits of more complicated sequences.

Theorem (Limit properties)
If the sequence {ap,} — A and {b,} — B, then holds,

(a) lim{a,+ by} =A+B;
n—oo

(b) lim{ap,— by} =A—B;

(c) lim {kap} = KA,

(d) lim {anbn} = AB;
n—oo

A
(e) IFB #£0, then lim {%} =5

n—oo
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Find the limit of the sequence {a,, =51 3n

n:l.
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Example
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Find the limit of the sequence {a,, =51 3n

Solution: We use the properties above to find the limit.
Rewrite the sequence as follows,
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Example

Find the limit of th { 1_2”}00
n e limit o e sequence an = .
q " 30 et

Solution: We use the properties above to find the limit.

Rewrite the sequence as follows,
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Example
3n —2n+1 }OO

Find the limit of th { -
n e limit o esequence dnp 2n2+4

n=1
Solution: Rewrite the sequence as follows,
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Example
3 —2n+1
Find the limit of the sequence {an = %}W

n:l.

Solution: Rewrite the sequence as follows,

1 2 1
5 = Br—20+1) () _3n—7+aw
(2n2+4) (%) 24+ %

. 1
Since — — 0 as n — oo, then
n

1 1\2 2 4
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n? n n n?

. . . . 3n
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Properties of sequence limits

Example
3 —2n+1
Find the limit of the sequence {an = %}W

n:l.

Solution: Rewrite the sequence as follows,

LB —2nt1) () 3n-ftg
(2n2+4) (%) 24+ %

. 1
Since — — 0 as n — oo, then
n

1 /132 2 4
() —0, S50, 2452
n n

n” n
. - . . 3n
Hence, the quotient property implies lim a, = lim —.
n—o0o n—oo 2

We conclude that a,, diverges.
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Definition and geometrical representations.
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Theorem (Sandwich-Squeeze)
If the sequences {an}, {bn}, and {c,} satisfy

an<b,<c,, for n>N,
and if both a, — L and ¢, — L, then holds

b, — L.
Example

sin(3n)}<><>

Find the limit of the sequence {a,, = > )
n n=1

Solution: Since |sin(3n)| < 1, then
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Theorem (Sandwich-Squeeze)
If the sequences {an}, {bn}, and {c,} satisfy

an<b,<c,, for n>N,
and if both a, — L and ¢, — L, then holds

b, — L.
Example
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Find the limit of the sequence {a,, = > )
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The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)
If the sequences {an}, {bn}, and {c,} satisfy

an<b,<c,, for n>N,
and if both a, — L and ¢, — L, then holds

b, — L.
Example

sin(3n)}<><>

Find the limit of the sequence {a,, = > )
n n=1

Solution: Since |sin(3n)| < 1, then
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The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)
If the sequences {an}, {bn}, and {c,} satisfy

an<b,<c,, for n>N,

and if both a, — L and ¢, — L, then holds

b, — L.
Example
in(3

Find the limit of the sequence {a,, = sm(2 n)}oo )

n n=1
Solution: Since |sin(3n)| < 1, then

sin(3n) 1 1 1 1
S THETIE R e
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The Sandwich Theorem for sequences

Theorem (Sandwich-Squeeze)
If the sequences {an}, {bn}, and {c,} satisfy

an<b,<c,, for n>N,

and if both a, — L and ¢, — L, then holds

b, — L.
Example
in(3

Find the limit of the sequence {a,, = sm(2 n)}oo )

n n=1
Solution: Since |sin(3n)| < 1, then

sin(3n) 1 1 1
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1
Since i—z — 0, we conclude that a, — 0.
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Bounded and monotonic sequences.
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called divergent.



Review: Infinite sequences

Definition
An infinite sequence of numbers is an ordered set of real numbers.

Definition
An infinite sequence {a,} has limit L iff for every number ¢ > 0
there exists a positive integer N such that

N<n = |a,—L|<e

A sequence is called convergent iff it has a limit, otherwise it is
called divergent.

Remark: The limits of simple sequences can be used to compute
limits of more complicated sequences.
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The Continuous Function Theorem for sequences

Theorem
If a sequence {a,} — L and a continuous function f is defined
both at L and every a,,, then the sequence {f(a,)} — f(L).

Example

2 2
Find the limit of {In(%)} as n — oo.
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The Continuous Function Theorem for sequences

Theorem
If a sequence {a,} — L and a continuous function f is defined
both at L and every a,,, then the sequence {f(a,)} — f(L).

Example

2 2
Find the limit of {In(%)} as n — oo.

(2+ n+3n?)
(2n? 4+ 3)
(24 n+3n?)
(2n? 4+ 3)
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@iy (3 @)

Solution: The sequence b, = In( ) can be written as

bn = f(an), f(x)=In(x), an=
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The Continuous Function Theorem for sequences

Theorem
If a sequence {a,} — L and a continuous function f is defined
both at L and every a,,, then the sequence {f(a,)} — f(L).

Example

2 2
Find the limit of {In(%)} as n — oo.

(2+ n+3n?)
(2n? 4+ 3)
(24 n+3n?)
(2n? 4+ 3)
L _@tnt3r) () _ (p+a+3) 3
(22 +3) (%) (2+3) 2

We conclude that b, — In(g). <

Solution: The sequence b, = In( ) can be written as

bn = f(an), f(x)=In(x), an=
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Using L'Hopital’s rule on sequences

Theorem (L'Hépital's rule for sequences)
If the sequence {a,} satisfies that:
» There exist a function f such that for n > N the sequence
elements a, can be written as a, = f(n);
» And lim f(x) =L,
X—00
then holds that lim a, = L.

n—oo
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Using L'Hopital’s rule on sequences

Theorem (L'Hépital's rule for sequences)
If the sequence {a,} satisfies that:

» There exist a function f such that for n > N the sequence
elements a, can be written as a, = f(n);

» And lim f(x) =L,
then holds that lim a, = L.

n—oo

Remark: The lim f(x) may indeterminate, and L'Hépital’s rule
X—00

might be used to compute that limit.

Example
Find the limit a, = ¥/5nas n — .

Solution: Notice that a, = f(n) for f(x) = ¥/5x.
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Using L'Hopital’s rule on sequences

Example
Find the limit a, = %/5n as n — oo.

Solution: Recall: a, = f(n) for f(x) = ¥/5x.

¥/6x = (V5



Using L'Hopital’s rule on sequences

Example
Find the limit a, = %/5n as n — oo.

Solution: Recall: a, = f(n) for f(x) = ¥/5x.

§/5x = el Wox) — e(lngf))
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Find the limit a, = %/5n as n — oo.
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Using L'Hopital’s rule on sequences

Example
Find the limit a, = %/5n as n — oo.

Solution: Recall: a, = f(n) for f(x) = ¥/5x.

8\></57 _ eln( 8{/57) _ e(ln(SiX))

In(5
But lim n(5x) is indeterminate g. L'Hopital’s rule,
X—00 X 0.9]
_In(sx) () 1
A e Mg M g =0

) x A In(5x) i "
lim 8\/57X:I|m e( 8x):eo = lim ¥/6x = 1.

X—00 X—00 X—00

We conclude that ¥/5n — 1 as n — .
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Example
b\ an
Given positive numbers a, b, find the lim (1 — E) .

n—oo

Solution: We rewrite the sequence as follows,
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n

b
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1 0
n
Recall the argument with the L'H6pital’s rule on functions,

The exponent has an indeterminate limit,
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Example
b\ an
Given positive numbers a, b, find the lim (1 — —) .
n

n—oo

Solution: We rewrite the sequence as follows,

aln( —%)
(1 _ é>an _ e[anln(l—%)} _ e[%]
n
aln(1—2% 0
The exponent has an indeterminate limit, M — =

5
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Recall the argument with the L'H6pital’s rule on functions,
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S|

(1 _ é)"" _ lanma-2)] _ e[

n

: . aln(1-%2) o0
The exponent has an indeterminate limit, ———" — o

n
Recall the argument with the L'H6pital’s rule on functions,

b
2

In(1 - 2) ’
. aln(1 -2 . (1-%
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X—00 X— 00 —
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Example
b\ an
Given positive numbers a, b, find the lim (1 — E) .

n—oo

Solution: We rewrite the sequence as follows,

a|n(17%)]
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Example
b\ an
Given positive numbers a, b, find the lim (1 — E) .

n—oo

Solution: We rewrite the sequence as follows,

a|n(17%)]
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n
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n
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Using L'Hopital’s rule on sequences

Example
b\ an
Given positive numbers a, b, find the lim (1 — E) .

n—oo

Solution: We rewrite the sequence as follows,

a|n(17%)]

S|

(1 . é)an _ e[anln(l—%)] _ e[
n

. . _aln(t=2 o
The exponent has an indeterminate limit, ———" — o
Recall the argument with the L'H&pital’s rule on functions,

aln(1 -2
fim ML)y G 2
X—00 X—00  — = X—00 (]_ — 7)

X =

b\ an
We conclude that |im (1 — 7)3 =%,

n—o0 n
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Review: Infinite sequences.
The Continuous Function Theorem for sequences.
Using L'Hopital’s rule on sequences.

Table of useful limits.
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Table of useful limits

Remark: The following limits appear often in applications:

In(n)

» |lim =0;
n—oo n

» lim /n=1;
n—oo

» |lim x(%) =1, for x> 0;

» lim x" =0, for |x|<1;
n—oo

> |im (1+§)n:ex, for x € R;

n—o0 n
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Bounded and monotonic sequences

Definition
A sequence {a,} is bounded above iff there is M € R such that

an <M for all n > 1.
The sequence {a,} is bounded below iff there is m € R such that
m < ap for all n > 1.

A sequence is bounded iff it is bounded above and below.

Example

1 1
> a, — — is bounded, since 0 < - <1
n

» a, = (—1)"is bounded, since —1 < (—1)" < 1.
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Bounded and monotonic sequences
Definition
> A sequence {a,} is increasing iff a, < apy1.
> A sequence {a,} is non-decreasing iff a, < ap+1.
» A sequence {a,} is decreasing iff a, > apy1.
> A sequence {a,} is non-increasing iff a, > a,41.
» A sequence is monotonic iff the sequence is both

non-increasing and non-decreasing.

Theorem

» A non-decreasing, bounded above sequence, converges.

» A non-increasing, bounded below sequence, converges.
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Bounded and monotonic sequences

Example

Determine whether the sequence a, = converges or not.

n?+1
Solution: We show that a, is decreasing. Indeed, the condition

n+1 < n
(n+1)2+1 n?+1

apt1 < an <~

(n+1)(n* 4+ 1) < n(n® +2n+2)
w4+’ +n+1<n+20+2n

Since 1 < (n2 + n) is true for n > 1, then a,41 < a,; decreasing.
The sequence satisfies that 0 < a,, bounded below.

We conclude that a, converges. <



